
PSCSSH (SSH for OpenVMS)
Administration & User’s
Guide

July 2025

This manual provides the system manager with the procedures for installing, managing, and using the

PSCSSH family of software products.

Operating System/Version: OpenVMS VAX V5.5-2 or later

OpenVMS Alpha V6.2 or later

OpenVMS Itanium V8.2 or later

OpenVMS X86_64 V9.2-3 or later

TCP/IP Services Version: V5.5 or higher

Software Version: PSCSSH 3.0

Process Software

Framingham, Massachusetts

USA

The material in this document is for informational purposes only and is subject to change without notice.

It should not be construed as a commitment by Process Software. Process Software assumes no

responsibility for any errors that may appear in this document.

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in

subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS

252.227-7013.

Third-party software may be included in your distribution of PSCSSH and subject to their software

license agreements. See www.process.com/products/ssh/3rdparty.html for complete information.

All other trademarks, service marks, registered trademarks, or registered service marks mentioned in this

document are the property of their respective holders.

Process Software and the Process Software logo are trademarks of Process Software.

Copyright © Process Software Corporation. All rights reserved. Printed in USA.

If the examples of URLs, domain names, internet addresses, and web sites we use in this documentation

reflect any that actually exist, it is not intentional and should not be considered an endorsement,

approval, or recommendation of the actual site, or any products or services located at any such site by

Process Software. Any resemblance or duplication is strictly coincidental.

http://www.process.com/products/tcpware/3rdparty.html

Preface

Introducing This Guide
This guide describes the PSCSSH software. It covers the following topics: software installation, server

and client configuration, server startup and shutdown, using the SSH clients, utilities, and server

monitoring and control.

What You Need to Know Beforehand
Before using PSCSSH, you should be familiar with:

• Computer networks in general

• OpenVMS operating system and file system

• HPE/VSI’s OpenVMS TCP/IP software

How This Guide Is Organized
This guide has the following contents:

• Chapter 1, Before You Begin, explains what you need to prepare for an installation.

• Chapter 2, Installing PSCSSH, provides a step-by-step procedure for executing the software

installation.

• Chapter 3, Configuring PSCSSH, explains how to configure PSCSSH.

• Chapter 4, Configuring the Secure Shell (SSH) V1 Server, describes how to configure and

maintain the PSCSSH SSH V1 server.

• Chapter 5, Configuring the Secure Shell (SSH) V2 Server, describes how to configure and

maintain the PSCSSH SSH V2 server.

• Chapter 6, Accessing Remote Systems with the Secure Shell (SSH) Utilities, explains how to

configure and maintain the PSCSSH Secure Shell (SSH) client.

• Chapter 7, Secure File Transfer, describes using SCP, SFTP2, and FTP over SSH for transferring

files in a secure manner.

• Chapter 8, Monitoring and Controlling SSH, describes the utilities used for monitoring and

controlling the SSH server environment.

Online Help
You can use HELP at the DCL prompt to access SSH topical help:

$ HELP SSH [topic]

The topic entry is optional. You can also enter topics and subtopics at the following prompt and its

subprompts:

SSH Subtopic?

Obtaining Customer Support
You can use the following customer support services for information and help about PSCSSH and other

Process Software products if you subscribe to our Product Support Services. (If you bought SSH through

an authorized reseller, contact your reseller for technical support.) Contact Technical Support directly

using the following methods:

Electronic Mail
E-mail relays your question to us quickly and allows us to respond as soon as we have information for

you. Send e-mail to support@process.com. Be sure to include your:

• Name

• Telephone number

• Company name

• Process Software product name and version number

• Operating system name and version number

• Process Software support contract number

Describe the problem in as much detail as possible. You should receive an immediate automated

response telling you that your call was logged.

Telephone
If calling within the continental United States or Canada, call Process Software Technical Support toll-

free at (800) 394-8700. If calling from outside the continental United States or Canada, dial +1 (508)

628-5074. Please be ready to provide your name, company name, Process Software support contract

number, and telephone number.

Web
There is a variety of useful technical information available on our website, https://www.process.com/

Conventions Used

Convention Meaning

host Any computer system on the network. The local host is your computer. A remote host

is any other computer.

monospaced

type
System output or user input. User input is in reversed bold type.

Example: Is this configuration correct? YES

Monospaced type also indicates user input where the case of the entry should be

preserved.

italic type Variable value in commands and examples. For example, username indicates that you

must substitute your actual username. Italic text also identifies documentation

references.

[directory] Directory name in an OpenVMS file specification. Include the brackets in the

specification.

[optional-text] (Italicized text and square brackets) Enclosed information is optional. Do not include

the brackets when entering the information.

Example: START/IP line address [info]

This command indicates that the info parameter is optional.

{value | value} Denotes that you should use only one of the given values. Do not include the braces

or vertical bars when entering the value.

Note Information that follows is particularly noteworthy.

Caution Information that follows is critical in preventing a system interruption or security

breach.

key Press the specified key on your keyboard.

Ctrl+key Press the control key and the other specified key simultaneously.

Return Press the Return or Enter key on your keyboard.

1. Before You Begin

This chapter introduces you to and prepares you for SSH product installation, configuration, startup, and

testing. It is for the OpenVMS system manager or technician responsible for product installation and

configuration.

Steps to Get SSH Up and Running
To get SSH up and working, you must perform the following steps:

1. Load the license pack.

2. Install the software. See Chapter 2, Installing PSCSSH.

3. Configure the PSCSSH environment. See Chapter 3, Configuring PSCSSH.

4. Configure the PSCSSH SSH V1 server. See Chapter 4, Configuring the Secure Shell (SSH) V1

Server.

5. Configure the PSCSSH SSH V2 server. See Chapter 5, Configuring the Secure Shell (SSH) V2

Server.

6. Configure the PSCSSH client. See Chapter 6, Accessing Remote Systems with the Secure Shell

(SSH) Utilities.

Prepare for Installation
PSCSSH installation involves using the VMSINSTAL procedure. Preparing for installation involves:

• Understanding the hardware and software requirements

• Determining if you have sufficient disk space and global pages for the installation

• Determining where to install the software

Hardware Requirements
PSCSSH has no special hardware requirements beyond those stated in the Software Product Description

for OpenVMS’s TCP/IP Services.

Software Requirements
PSCSSH supports OpenVMS VAX version 5.5-2 and later; OpenVMS Alpha version 6.2 and higher;

OpenVMS Integrity 8.2 and later; and TCP/IP Services version 5.0 and later.

Disk Space and Global Pages
The destination device for your PSCSSH software must have enough disk space so that you can install

and run the software. Your system must meet the following approximate parameters:

System Number of Blocks

Needed to Install

Number of Blocks Needed After

Installation

Free GBLPAGES Needed

to Run

VAX 150,000 about 42,000 35,000

Alpha 250,000 about 88,000 45,000

Itanium 280,000 about 135,000 45,000

X86_64 280,000 about 135,000 45,000

The runtime values for disk space are slightly higher once you configure and start PSCSSH.

Note: Insufficient GBLPAGES can abort the installation and leave your system command tables

disconnected. The only way to recover is through a system reboot.

General Requirements
Check at this point that you:

• Have OPER, SYSPRV, or BYPASS privileges

• Can log in to the system manager's account

• Are the only user logged in (recommended)

• Backed up your system disk on a known, good, current, full backup (recommended)

• Need to reinstall PSCSSH after performing a major VMS upgrade

• If PSCSSH is currently running, shut it down using the PSCSSH SHUTDOWN command. This is

mandatory.

• Ensure TCP/IP Services is currently running.

Where to Install PSCSSH
Install PSCSSH in a location depending on the following:

• Generally, on your system disk, but you can install PSCSSH anywhere, just answer the question

when it appears. This is also where you would keep your "common" files. Node-specific files

should always be on your system disk.

• If the machine is in a single platform cluster, on a common disk.

• If the machine is in a mixed platform cluster, once on the Alpha system disk (or disks), once on

the Integrity system disk (or disks), and once on the VAX common system disk.

Release Notes and Online
Documentation
The PSCSSH Release Notes provide important information on the current release.

The Release Notes, along with the rest of the documentation set for this product, are always available for

viewing and download on the Process Software website at https://www.process.com/ under the Support

area.

https://www.process.com/

2. Installing PSCSSH

This chapter takes you through the PSCSSH product installation procedure and certain post-installation

tasks. It is for the OpenVMS system manager, administrator, or technician responsible for product

installation.

To prepare for installation, see Chapter 1, Before You Begin.

Note: Once you have installed PSCSSH, you need to reinstall it after you have done a major

OpenVMS upgrade.

To install PSCSSH:

1. Load the software.

2. Run the VMSINSTAL procedure.

3. Install other products, if needed, and perform post-installation tasks.

Load the Software
PSCSSH is available as a download.

There are three steps to loading the PSCSSH software:

1. Log in to the system manager's account.

2. If PSCSSH is currently running, shut it down:

$ SSHCTRL SHUTDOWN

3. If you are installing on a VMScluster, shut down PSCSSH on each node in the cluster.

Note: If you install PSCSSH on a VMS cluster that has a common system disk, install the software

on only one node in the cluster. If reinstalling or upgrading PSCSSH, first shut down PSCSSH

on all nodes in the cluster.

Be sure to configure PSCSSH on all systems in a VMS cluster that has a common system disk,

even though it only needs to be installed once.

Start VMSINSTAL
VMSINSTAL is the OpenVMS installation program for layered products. VMSINSTAL prompts you

for any information it needs. The below table shows the steps to follow.

1. Make sure that you are logged in to the system manager’s account, and invoke VMSINSTAL

2. Determine if you are satisfied with your system disk backup

3. Determine where the distribution volumes will be mounted

4. Enter the products you want processed from the first distribution volume set

5. Enter the installation options you wish to use (such as obtaining the Release Notes)

6. Specify the directory where you want the files installed.

7. Specify the directory where you want the system-specific files installed

Sample Installation

$ @SYS$UPDATE:VMSINSTAL PSCSSH030 DKA600:[PSCSSH030]

 OpenVMS Software Product Installation Procedure V9.2-3

It is 13-MAY-2025 at 11:38.

Enter a question mark (?) at any time for help.

%VMSINSTAL-W-NOTSYSTEM, You are not logged in to the SYSTEM account.

%VMSINSTAL-W-ACTIVE, The following processes are still active:

 Goat Busters

The following products will be processed:

 PSCSSH V3.0

 Beginning installation of PSCSSH V3.0 at 11:38

No signature manifests found for PSCSSH030

* Do you want to install this product [NO]? yes

%VMSINSTAL-I-RESTORE, Restoring product save set A ...

%VMSINSTAL-I-RELMOVED, Product's release notes have been moved to SYS$HELP.

* Where do you want to install PSCSSH for OpenVMS [SYS$SYSDEVICE:[PSCSSH]]:

RETURN

%VMSINSTAL-I-SYSDIR, This product creates system disk directory

_X86$DKA0:[PSCSSH].

%VMSINSTAL-I-RESTORE, Restoring product save set E ...

%VMSINSTAL-I-SYSDIR, This product creates system disk directory

_X86$DKA0:[PSCSSH.X86].

%VMSINSTAL-I-SYSDIR, This product creates system disk directory

PSCSSH_COMMON_ROOT:[COMMON].

%VMSINSTAL-I-SYSDIR, This product creates system disk directory

PSCSSH_COMMON_ROOT:[X86_EXE].

%VMSINSTAL-I-SYSDIR, This product creates system disk directory

PSCSSH_LOCAL_ROOT:[LOG].

%VMSINSTAL-I-SYSDIR, This product creates system disk directory

PSCSSH_LOCAL_ROOT:[SSH].

%VMSINSTAL-I-SYSDIR, This product creates system disk directory

PSCSSH_LOCAL_ROOT:[SSH2].

%VMSINSTAL-I-SYSDIR, This product creates system disk directory

PSCSSH_LOCAL_ROOT:[SSH2.HOSTKEYS].

%VMSINSTAL-I-SYSDIR, This product creates system disk directory

PSCSSH_LOCAL_ROOT:[SSH2.KNOWNHOSTS].

 Installation Complete.

 Please report any problems to support@process.com

 Before starting PSCSSH, you must configure it using this command:

 $ @sys$startup:pscssh_startup.com logicals

 $ @pscssh:pscssh configure

 Once configured, execute this command and add it to your system

 startup produre:

 $ @sys$startup:pscssh_startup.com

%VMSINSTAL-I-MOVEFILES, Files will now be moved to their target

directories...

 Installation of PSCSSH V3.0 completed at 11:38

$

Installing PSCSSH for the First Time
on a Common VMScluster System
Disk

After installing PSCSSH on one node of a VMScluster with a common system disk, you must perform

the following steps on each additional cluster node that shares the common system disk:

1. Log in (telnet/set host/etc.) to the next node of the cluster.

2. Create the SSH logicals by using the following command:

$ @SYS$STARTUP:PSCSSH_STARTUP LOGICALS

3. Make the node-specific SSH root and configure SSH for this node:
$ @PSCSSH:SSH_MAKE_ROOT

4. Start PSCSSH:

$ @SYS$STARTUP:PSCSSH_STARTUP

5. Repeat steps 1-4 for each remaining node of the cluster except for the one where SSH was

originally installed.

3. Configuring PSCSSH

This chapter describes how to configure the SSHD Master process, which controls access to the SSH

servers for the PSCSSH software.

For a basic configuration, accept the default values for each component, which appear after a prompt.

This also helps you step through the process more quickly.

After performing the basic configuration, you must perform the advanced configuration for the SSH1

and SSH2 servers, and for the SSH clients as desired. Chapters 4 through 7 describe the configuration

and use of these components.

The SSH Configuration Utility
SSH is the Secure Shell protocol. PSCSSH provides support for both SSH Version 1 protocol and SSH

Version 2 protocol.

Please note that in addition to the configuration performed via CNFSSH as described below, there are

configuration files for both the SSH1/SSH2 servers and SSH client which must be modified as

appropriate to meet the security requirements of your organization. Refer to chapters 4 and 5 of this

manual for details on the configuration files.

You can use the CNFSSH utility to configure the SSH server as shown in the below example.

$ @PSCSSH:PSCSSH CONFIGURE

PSCSSH Version V3.0A SSH Configuration procedure

This procedure helps you define the parameters needed to get

PSCSSH running on this system.

This procedure creates the configuration data file,

PSCSSH_LOCAL:SSH_CONFIGURE.COM,

to reflect your system's configuration.

For detailed information on the following parameters, refer to the

PSCSSH Administration and User Guide.

Do you want to enable the SSH2 server [NO]? yes

You may specify an alternate configuration file for the SSH2 server. If you

have already specified an alternate configuration file, enter a single space

and hit RETURN at the prompt to reset it to the default file name.

Enter an alternate SSH2 configuration filename []: RETURN

Specify the level of debug for the SSH2 server.

The level is a value from 0 to 50, where zero is no debug and 50 is

the maximum level of debug. Note that at levels exceeding debug level 8,

there may be a substantial impact on SSH2 server (and possibly, the system,

too) performance due to the amount of information logged.

Enter the debug level [0 - 50, 0]: RETURN

You may specify the number of seconds a user has to enter a password during

user authentication (default = 600). In addition, you may allow this

to default to the value used by OpenVMS when a user is logging into a

non-SSH session. To specify an infinite wait time, enter 0 for the timeout

value.

Do you want to change the default login grace time [NO]? RETURN

Specify the address for the SSH server to listen on, if you wish to use

an address other than the default listen_address of ANY (0.0.0.0). Any

valid IPV4 or IPV6 address may be specified, or ANY to listen on all

addresses.

Enter address to listen on [ANY]: RETURN

Specify the port for the SSH server to listen on, if you wish to use

a port other than the default port of 22.

Enter port to use [22]: RETURN

Do you want to suppress SSH server logging (/QUIET mode) [YES]? RETURN

Do you want verbose logging by the SSH server [NO]? RETURN

You may specify the maximum number of concurrent SSH sessions to be

allowed on the server. The default is 1000 sessions.

Enter maximum number of concurrent SSH sessions [1-1000, 1000]: RETURN

You may permit the server to log a brief informational message when a

user is allowed or denied access to a system.

- For SSH2 sessions, an ACCEPT or REJECT event will be logged when the

 user is either successfully authenticated or fails authentication. The

 message will be of the form:

 <date><time> SSH2 (accepted) from user "foo" at [192.168.0.1,111]

 (my.server.com)

You may specify the name and location of the log file to record accepted

and/or rejected connections. If you simply hit RETURN, this information

will be logged to OPCOM as opposed to a disk file.

By default, this file will be in the SSH_DIR: directory. You may

override this by specifying a complete filename, including the directory

specification; or by specifying a logical name that translates to a

full filename specification.

Do you want to log accepted sessions [NO] RETURN

Do you want to log rejected sessions [NO] RETURN

When generating user keys, a passphrase may be used to further protect

the key. No limit is normally enforced for the length of the passphrase.

However, you may specify a minimum length the passphrase may be.

What you want the minimum passphrase length to be for SSH2 [0-1024, 0]?

The SSH2 host key has not yet been generated. Answer YES to the

following question to generate the key now. Answer NO to generate

the key manually later by issuing the command:

 $ PSCSSH SSHKEYGEN /SSH2/HOST/KEYTYPE=ECDSA/BITS=521

Generating a host key can take a few minutes on slow systems.

Do you want to generate the SSH2 host key now [YES]? RETURN

Generating 521-bit ecdsa key pair

Key generated.

521-bit ecdsa, hunter@x86.goatley.com, Tue May 13 2025 11:40:41 -0400

Private key saved to PSCSSH_ssh2_hostkey_dir:hostkey_ecdsa

Public key saved to PSCSSH_ssh2_hostkey_dir:hostkey_ecdsa.pub

Public key digest for DNS:

x86.goatley.com. IN SSHFP 3 1 0d0b90403716af7d8191e5eecd67f18cc23bdd1c

x86.goatley.com. IN SSHFP 3 2

22aada6b5aa93d362699a85b7ee1d33ee6d885b793589

5090ea34aeed19efeb1

 PLEASE NOTE

The following VERB definitions, provided by TCP/IP Services,

will be deleted, as they will conflict with corresponding

PSCSSH commands:

 SSH, SSH2, SCP, SCP2, SFTP, SFTP2

Note: %CDU-W-NOSUCHVERB messages may be ignored

The CLI table does not contain verb name SCP

The CLI table does not contain verb name SFTP2

The following file, supplied by TCP/IP Services, should be edited:

 SYS$MANAGER:TCPIP$DEFINE_COMMANDS.COM

Comment out the command definitions for the foreign TCP/IP Services

commands that are listed under the "ssh2 utilities" heading,

which may include:

 scp, sftp, ssh, ssh_add, ssh_agent, ssh_keygen

Failure to remove these commands may result in the incorrect SSH

utility being run instead of the intended PSCSSH utility.

SSH Configuration completed.

Review the additional steps you may need to perform as described in

the configuration chapters of the PSCSSH Administration and

User Guide before starting SSH.

Refer to the "Monitoring and Controlling SSH" chapter of the SSH for

OpenVMS Administration and User Guide for information on starting SSH.

$

4. Configuring the Secure
Shell (SSH) v1 Server

This chapter describes how to configure and maintain the PSCSSH Secure Shell (SSH) v1 server.

Note: SSH1 is deprecated and not configurable via the PSCSSSH CONFIGURE utility. Though its

use is not recommended, it is possible to enable the SSH1 server by editing

PSCSSH_LOCAL:SSH_CONFIGURE.COM and setting ENABLE_SSH1 to 1:

$ ENABLE_SSH1 == 1

This is the server side of the software that allows secure interactive connections to other computers. The

SSH server has been developed to discriminate between SSH v1 and SSH v2 protocols, so the two

protocols can coexist simultaneously on the same system.

SSH1 and SSH2 Differences
SSH1 and SSH2 are different, and incompatible, protocols. The SSH1 implementation is based on the

V1.5 protocol, and the SSH2 implementation is based on the V2 protocol. While SSH2 is generally

regarded to be more secure than SSH1, both protocols are offered by PSCSSH, and although they are

incompatible, they may exist simultaneously on an OpenVMS system. The PSCSSH server front-end

identifies what protocol a client desires to use and will create an appropriate server for that client.

Note: You must install the DEC C 6.0 backport library on all OpenVMS VAX v5.5-2 and v6.0

systems prior to using SSH. This is the AACRT060.A file. You can find the ECO on the PSCSSH

CD in the following directory: VAX55_DECC_RTL.DIR.

When using SSH1 to connect to a VMS server, if the VMS account is set up with a secondary password,

SSH1 does not prompt the user for the secondary password. If the VMS primary password entered is

valid, the user is logged in, bypassing the secondary password.

When using SSH1 to execute single commands (in the same manner as RSHELL), some keystrokes like

CTRL+Y are ignored. In addition, some interactive programs such as HELP may not function as

expected. This is a restriction of SSH1. If this behavior poses a problem, log into the remote system

using SSH1 in interactive mode to execute the program.

Understanding the Secure Shell
Server
Secure Shell daemon (SSHD) is the daemon program for SSH that listens for connections from clients.

The server program replaces rshell and telnet programs. The server/client programs provide secure

encrypted communication between two untrusted hosts over an insecure network. A new daemon is

created for each incoming connection. These daemons handle key exchange, encryption, authentication,

command execution, and data exchange.

Servers and Clients
An SSH server is an OpenVMS system server that acts as a host for executing interactive commands or

for conducting an interactive session. The server software consists of two processes (for future

reference, “SSHD” will refer to both SSHD_MASTER and SSHD, unless otherwise specified):

• SSHD_MASTER, recognizes the differences between SSH v1 and SSH v2 and starts the

appropriate server. If the request is for SSH v1, then a new SSH v1 server is run; if the request is

for SSH v2, then a new SSH v2 server is run.

• SSHD, a copy of which is spawned for each time a new connection attempt is made from a

client. SSHD handles all the interaction with the SSH client.

A client is any system that accesses the server. A client program (SSH) is provided, but any SSH client

that uses SSH version 1 protocol may be used to access the server. Examples of such programs are

FISSH, MultiNet SSH, and TCPware SSH on OpenVMS systems; TTSSH, SecureCRT, F-Secure SSH

Client, and PuTTY on Windows-based systems; and other SSH programs such as OpenSSH on UNIX-

based systems.

Security
Each host has a host-specific RSA key (normally 1024 bits) that identifies the host. Additionally, when

the SSHD daemon starts, it generates a server RSA key (normally 768 bits). This key is regenerated

every hour (the time may be changed in the configuration file) if it has been used and is never stored on

disk. Whenever a client connects to the SSHD daemon,

• SSHD sends its host and server public keys to the client.

• The client compares the host key against its own database to verify that it has not changed.

• The client generates a 256-bit random number. It encrypts this random number using both the

host key and the server key and sends the encrypted number to the server.

• The client and the server start to use this random number as a session key which is used to

encrypt all further communications in the session.

The rest of the session is encrypted using a conventional cipher. Currently, IDEA (the default), DES,

3DES, Blowfish, and ARCFOUR are supported.

• The client selects the encryption algorithm to use from those offered by the server.

• The server and the client enter an authentication dialog.

• The client tries to authenticate itself using any of the following methods:

o .rhosts authentication

o .rhosts authentication combined with RSA host authentication

o RSA challenge-response authentication

o password-based authentication

Note: RHOSTS authentication is normally disabled because it is fundamentally insecure, but can

be enabled in the server configuration file, if desired.

System security is not improved unless the RLOGIN and RSHELL services are disabled. When the

client authenticates itself successfully, a dialog is entered for preparing the session. At this time the

client may request things such as:

• forwarding X11 connections

• forwarding TCP/IP connections

• forwarding the authentication agent connection over the secure channel

Finally, the client either requests an interactive session or execution of a command. The client and the

server enter session mode. In this mode, either the client or the server may send data at any time, and

such data is forwarded to/from the virtual terminal or command on the server side, and the user terminal

in the client side. When the user program terminates and all forwarded X11 and other connections have

been closed, the server sends command exit status to the client, and both sides exit.

Care must be exercised when configuring the SSH clients and server to minimize problems due to

intrusion records created by OpenVMS security auditing. The SSH user should consult the system

manager to determine the authentication methods offered by the SSH server. The client should then be

configured to not attempt any authentication method that is not offered by the server.

If a client attempts authentication methods not offered by the server, the OpenVMS security auditing

system may log several intrusion records for each attempt to create a session to that server. The result

being that the user could be locked out and prevented from accessing the server system without

intervention from the server's system manager.

The authentication methods to be offered by the server are determined by the configuration keywords

RhostsAuthentication, RhostsRSAAuthentication, RSAAuthentication, and

PasswordAuthentication. The number of intrusion records to be logged for any attempted SSH

session is determined by the StrictIntrusionLogging configuration keyword.

When StrictIntrusionLogging is set to YES (the default), each method that is tried and fails

causes an intrusion record to be logged:

• When Rhosts, RhostsRSA or RSA authentications are attempted and fail, one intrusion record

will be logged for each failed method.

• When password authentication is attempted, one intrusion record will be logged for each failed

password.

Example 1

The server is set up to allow Rhosts, RSA, and password authentication; also, up to three password

attempts are allowed. If all methods fail, five intrusion records are logged:

1 for the failed Rhosts

1 for the failed RSA

3 for the failed password attempts, one per attempt

When StrictIntrusionLogging is set to NO, it has the effect of relaxing the number of intrusions

logged. Overall failure of all authentication methods simply counts as a single failure, except for

password authentication. The following rules apply:

• When password authentication is attempted, one intrusion record is logged for each failed

password.

• When any of Rhosts, RhostsRSA, or RSA authentication fails, and password authentication is

not attempted, exactly one intrusion record is logged, as opposed to one for each failed method.

• When any of Rhosts, RhostsRSA, or RSA authentication fails, but password authentication is

attempted and succeeds, the only intrusion record(s) logged is one for each failed password

attempt.

Example 2

The server is set up to allow Rhosts, RSA, and password authentication; also, up to three password

attempts are allowed. If all methods fail, three intrusion records are logged:

0 for the failed Rhosts

0 for the failed RSA

3 for the failed password attempts, one per attempt

Example 3

The server is set up to allow Rhosts, RSA, and password authentication; also, up to three password

attempts are allowed. Rhosts and RSA fail, but password authentication is successful after 1 failed

password. Therefore, one intrusion record is logged:

0 for the failed Rhosts

0 for the failed RSA

1 for the failed password attempt

Example 4

The server is set up to allow Rhosts, RhostsRSA, and RSA authentication, but not password

authentication. If all methods fail, one intrusion record is logged.

Example 5

The server is set up to allow Rhosts, RhostsRSA, and RSA authentication, but not password

authentication. Rhosts and RSA authentication both fail, but RhostsRSA succeeds. No intrusion records

are logged.

The SSH v1 protocol does not provide a method for changing an expired VMS password. When an

expired password is encountered by the SSH1 server, it will do one of two things.

1. If the logical name PSCSSH_SSH_ALLOW_EXPIRED_PW is defined for allowing access for

passwords that have exceeded the UAF value for PWDLIFETIME, or if the logical name

PSCSSH_SSH_ALLOW_PREEXPIRED_PW is defined for allowing access for users that have a pre-

expired password, the server will allow the user to log in. In the logical name table

LNM$SSH_LOGICALS, the logical name PSCSSH_SSH_pid_PWDEXP (where pid is the

process ID for the user process) will be defined. The system manager can look for this logical to be

defined, and if so, take action such as executing the DCL SET PASSWORD command.

2. If the appropriate logical is not set as described above, the user will be denied access to the system. In

that case, the user must log in interactively via another mechanism such as telnet and change the

password, or the system manager must reset the password.

When a user is allowed access to the system with an expired password, the LOGIN_FLAGS for the

process will reflect this. The values of the LOGIN_FLAGS will be as follows:

• new mail has been received (JPI$M_NEW_MAIL_AT_LOGIN)

• the password is about to expire (JPI$M_PASSWORD_WARNING)

• the password has expired (JPI$M_PASSWORD_EXPIRED)

The DCL lexical function F$GETJPI may be used to examine these flags, as can the $GETJPI(W)

system service or LIB$GETJPI RTL function. When an expired password value is detected, the user

may then execute a SET PASSWORD command in the command procedure run for the account.

For example:

$!

$! Login_flags:

$! 1 = new mail messages waiting (JPI$M_NEW_MAIL_AT_LOGIN)

$! 4 = password expired during login (JPI$M_PASSWORD_EXPIRED)

$! 5 = password expires within 5 days (JPI$M_PASSWORD_WARNING)

$!

$ flags = f$getjpi("", "LOGIN_FLAGS")

$ new_flags = (flags/2)*2

$ if new_flags .ne. flags then write sys$output "New mail waiting"

$!

$!Note - new_flags is used below because it has the NEW_MAIL_AT_LOGIN$

$! bit stripped. The rest of the possible values are all

$! discrete; i.e., you can't have combinations of them at the

$! same time.

$!

$ if new_flags .eq. 4 then write sys$output "Password expired during login"

$ if new_flags .eq. 5 then write sys$output "Password expires within 5 days"

$!

Configuration File
SSHD reads configuration data from PSCSSH_LOCAL_ROOT:[SSH]SSHD_CONFIG. The file

contains keyword value pairs, one per line. The following keywords are possible. Keywords are case

insensitive

Keyword Value Default Description

AllowForwardingPort Port list Permit forwarding for the specified

ports

AllowForwardingTo Host/port

list

 Permit forwarding for hosts

AllowGroups List Access control by UAF rights list

entries

AllowHosts Host list Access control by hostname

AllowShosts Host list Access control by hostname

AllowTcpForwarding Y/N Y Enable TCP port forwarding

AllowUsers User list Access control by username

DenyForwardingPort Port list Forbid forwarding for ports

DenyForwardingTo Host/port

list

 Forbid forwarding for hosts

DenyGroups Rights list Deny access for UAF rightslist

identifiers

DenyHosts Host list Deny access for hosts

DenySHosts Host list Deny access for hosts

DenyUsers User list Access control by username

FascistLogging Y/N Y Verbose logging

Hostkey Filename Ssh_host_key. Host key filename

IdleTimeout Time 0 (infinite) Set idle timeout

IgnoreRhosts Y/N N Ignore local rhosts

IgnoreRootRhosts Y/N Y Ignore system rhosts

KeepAlive Y/N Y Send keepalives

ListenAddress IP address 0.0.0.0 Listen on given interface

LoginGraceTime Time 600 Time limit for authentication in

seconds

PasswordAuthentication Y/N Y Permit password authentication

PermitEmptyPasswords Y/N N Permit empty (blank) passwords

PermitRootLogin Y/N N SYSTEM can log in

QuietMode Y/N N Quiet mode

RandomSeed Filename Random_seed Random seed file

RhostsAuthentication Y/N N Enable rhosts authentication

RhostsRSAAuthentication Y/N Y Enable rhosts with RSA

authentication

RSAAuthentication Y/N Y Enable RSA authentication

StrictIntrusionLogging Y/N Y Determine how intrusion records are

created by failed authentication

attempts

StrictModes Y/N N Strict checking for directory and file

protection

SyslogFacility Syslog

level

“DAEMON” Syslog log facility

VerboseLogging Y/N Y Verbose logging (also known as

FacistLogging)

X11Forwarding Y/N Y Enable X11 forwarding

X11DisplayOffset #offset 10 Limit X displays for SSH

Starting the SSH Server for the First
Time

Follow these instructions to configure the SSH server. You must define the SSH logicals by using:

$ @SYS$STARTUP:PSCSSH$STARTUP LOGICALS

1. Use the CNFSSH utility to configure the SSH server. It is recommended that the host keys be

generated when executing the CNFSSH procedure, by answering Y to the question “Do you want to

generate the SSH1 host key now?”

2. Use SSHKEYGEN to create the file SSH_HOST_KEY in the SSH_DIR: directory if it has not been

created as a result of executing @PSCSSH:PSCSSH CONFIGURE.

$ PSCSSH SSHKEYGEN/SSH1/HOST

Initializing random number generator...

Generating p:

...

.++ (distance 1088)

Generating q:

...

..++ (distance 1740)

Computing the keys...

Testing the keys...

Key generation complete.

Key file will be PSCSSH_LOCAL_ROOT:[SSH]SSH_HOST_KEY.

Your identification has been saved in PSCSSH_LOCAL_ROOT:[SSH]SSH_HOST_KEY..

Your public key is:

1024 35

109063762180373766639976433607825468151696193384697555192852820112461975

3837523799344856531440200887028053892874193668513161070975040465747843948953

0538

6057538388354033341563851625715852348701318298342668310409467662916510875307

5494

5011446178189289099352454972290913181938239865403988016163761992667021314071

3 SY

STEM@x86.kingkong.com

Your public key has been saved in PSCSSH_LOCAL_ROOT:[SSH]SSH_HOST_KEY.pub

$

3. Edit the default configuration file at SSH_DIR:SSHD_CONFIG (if you wish to change the default

settings). This default configuration is the same as contained in the file

PSCSSH_COMMON:SSHD_CONFIG.TEMPLATE.

Note: As delivered, the template file provides a reasonably secure SSH environment. However,

Process Software recommends this file be examined and modified appropriately to reflect the

security policies of your organization.

4. Restart SSH. This creates the SSH server process and defines the SSH logical names.

$ SSHCTRL RESTART

$ SHOW PROCESS "SSHD Master"

22-JUL-2025 09:03:06.42 User: SYSTEM Process ID: 00000057

Node: PANTHR Process name: "SSHD Master"

Terminal:

User Identifier: [SYSTEM]

Base priority: 4

Default file spec: Not available

Number of Kthreads: 1

Devices allocated: BG1:

 BG2:

$ SHOW LOGICAL/SYSTEM SSH*

(LNM$SYSTEM_TABLE)

 "SSH2_DIR" = "PSCSSH_LOCAL_ROOT:[SSH2]"

 "SSHLEI" = "PSCSSH_EXE:SSHLEI"

 "SSHSHR" = "PSCSSH_EXE:SSHSHR"

 "SSH_DIR" = "PSCSSH_LOCAL_ROOT:[SSH]"

 "SSH_EXE" = "PSCSSH_EXE:"

 "SSH_FSCLM" = "PSCSSH_EXE:SSH_FSCLM.EXE"

 "SSH_LOG" = "PSCSSH_LOCAL_ROOT:[LOG]"

 "SSH_MAX_SESSIONS" = "1000"

 "SSH_TERM_MBX" = "MBA43:"

 "SSH_ZLIB" = "PSCSSH_EXE:SSH_ZLIB.EXE"

Changing the SSH1 Configuration File After

Enabling SSH1
If you make a change to the SSH1 configuration file after you have enabled SSH1, you must restart SSH

for these changes to take effect.

$ SSHCTRL RESTART

Note: When issuing the RESTART command for SSH, all active SSH server sessions are

terminated. Active client sessions are not affected.

Connection and Login Process
To create a session, SSHD does the following:

1. SSHD_MASTER process sees the connection attempt. It creates an SSHD v1 or v2 process,

depending on the protocol version presented to it by the client. SSHD_MASTER then passes necessary

information to the SSHD process, such as the server key and other operating parameters.

2. SSHD process performs validation for the user.

3. Assuming the login is successful, SSHD process creates a pseudoterminal for the user (an FTAnn:

device). This device is owned by the user logging in.

4. SSHD process creates an interactive process on the pseudoterminal, using the username, priority, and

privileges of the user logging in. If a command was specified, it is executed and the session is

terminated.

5. SSH generates the file SSHD.LOG in the directory PSCSSH_LOCAL: for each connection to the

SSH server. Many connections result in many log files. Instead of purging the files on a regular basis,

use the following DCL command to limit the number of versions:

$ SET FILE /VERSION_LIMIT=x PSCSSH_LOCAL:SSHD.LOG

Note: The value for /VERSION_LIMIT must not be smaller than the maximum number of

simultaneous SSH sessions anticipated. If the value is smaller, SSH users may be prevented from

establishing sessions with the server.

FILES

PSCSSH_LOCAL_ROOT:[SSH]SSH_HOST_KEY.

Contains the private part of the host key. This file does not exist when PSCSSH is first installed.

The SSH server starts only with this file. This file must be created using PSCSSH:PSCSSH

CONFIGURE or manually using the command:

$ PSCSSH SSHKEYGEN /SSH1 /HOST

This file should be owned by SYSTEM, readable only by SYSTEM, and not accessible to others.

To create a host key with a name that is different than what SSHKEYGEN creates, do one of the

following:

• Generate with PSCSSH SSHKEYGEN /SSH1 /HOST and simply rename the file.

• Generate a public/private key pair using SSHKEYGEN without the /HOST switch, then copy and

rename the resulting files appropriately.

PSCSSH_LOCAL_ROOT:[SSH]SSH_HOST_KEY.PUB

Contains the public part of the host key. This file should be world-readable but writeable only by

SYSTEM. Its contents should match the private part of the key. This file is not used for anything; it is

only provided for the convenience of the user so its contents can be copied to known hosts files.

PSCSSH_LOCAL_ROOT:[SSH]SSH_KNOWN_HOSTS

SYS$LOGIN1:[.SSH]KNOWN_HOSTS

Checks the public key of the host. These files are consulted when using rhosts with RSA host

authentication. The key must be listed in one of these files to be accepted. (The client uses the same files

to verify that the remote host is the one you intended to connect.) These files should be writeable only

by SYSTEM (the owner). PSCSH_LOCAL_ROOT:[SSH]SSH_KNOWN_HOSTS should be world-

readable, and SYS$LOGIN:[.SSH]KNOWN_HOSTS can, but need not be, world-readable.

SSH2_DIR:SSH_RANDOM_SEED

SYS$LOGIN:[.SSH]RANDOM_SEED

Contains a seed for the random number generator. This file should only be accessible by system.

PSCSSH_LOCAL_ROOT:[SSH]SSHD_CONFIG

Contains configuration data for SSHD. This file should be writeable by system only, but it is

recommended (though not necessary) that it be world-readable.

AUTHORIZED_KEYS

In the user’s SYS$LOGIN[.SSH] directory, this file lists the RSA keys that can be used to log into the

user's account. This file must be readable by system. It is recommended that it not be accessible by

others. The format of this file is described below.

AUTHORIZED_KEYS File Format
The SYS$LOGIN:[.SSH]AUTHORIZED_KEYS file lists the RSA keys that are permitted for RSA

authentication. Each line of the file contains one key (empty lines and lines starting with a # are

comments and ignored). Each line consists of the following fields, separated by spaces:

Key Description

bits Is the length of the key in bits.

comment Not used for anything (but may be convenient for the user to identify the key).

exponent Is a component used to identify and make up the key.

1 . In this chapter, the [.SSH] subdirectory in the user’s login directory displays as SYS$LOGIN:[.SSH]

modulus Is a component used to identify and make up the key.

options Optional; its presence is determined by whether the line starts with a number or not (the

option field never starts with a number.)

Note: Lines in this file are usually several hundred characters long (because of the size of the RSA

key modulus). You do not want to type them in; instead, copy the IDENTITY.PUB file and edit it.

The options (if present) consist of comma-separated option specifications. No spaces are permitted,

except within double quotes. Option names are case insensitive.

The following RSA key file AUTHORIZED_KEYS option specifications are supported:

Allowforwardingport=”ports”

Can be followed by any number of port numbers, separated by spaces. Remote forwarding is allowed for

those ports whose number matches one of the patterns.

You can use * as a wildcard entry for all ports.

You can use these formats ‘>x’, ‘<x’, and ‘x_y’ to specify greater than, less than, or inclusive port

range. By default, all port forwardings are allowed.

The quotes (“ “) are required. For example: allowforwardingport “2,52,2043”

Allowforwardingto=”host_port_list”

Can be followed by any number of hostname and port number patterns, separated by spaces. A port

number pattern is separated from a hostname pattern by a colon. For example: hostname:port

Forwardings from the client are allowed to those hosts and port pairs whose name and port number

match one of the patterns.

You can use * and ? as wildcards in the patterns for host names. Normal name servers are used to map

the client’s host into a fully-qualified host name. If the name cannot be mapped, its IP address is used as

the hostname.

You can use * as a wildcard entry for all ports.

You can use these formats ‘>x’, ‘<x’, and ‘x_y’ to specify greater than, less than, or inclusive port

range. By default, all port forwardings are allowed.

command=”command”

Specifies the command to be executed whenever this key is used for authentication. The user-supplied

command (if any) is ignored. You may include a quote in the command by surrounding it with a

backslash (\). Use this option to restrict certain RSA keys to perform just a specific operation. An

example might be a key that permits remote backups but nothing else. Notice that the client may specify

TCP/IP and/or X11 forwardings unless they are prohibited explicitly.

Denyforwardingport=”ports”

Can be followed by any number of port numbers, separated by spaces. Remote forwardings are

disallowed for those ports whose number matches one of the patterns.

You can use * as a wildcard entry for all ports.

You can use these formats ‘>x’, ‘<x’, and ‘x_x’ to specify greater than, less than, or inclusive port

range.

Denyforwardingto=”host_port_list”

Can be followed by any number of hostname and port number patterns, separated by spaces. A port

number pattern is separated from a hostname by a colon. For example: hostname:port_number_pattern

Forwardings from the client are disallowed to those hosts and port pairs whose name and port number

match one of the patterns.

You can use * and ? as wildcards in the patterns for host names. Normal name servers are used to map

the client’s host into a fully-qualified host name. If the name cannot be mapped, its IP address is used as

a host name.

You can use * as a wildcard entry for all ports.

You can use these formats ‘>x’, ‘<x’, and ‘x_x’ to specify greater than, less than, or inclusive port

range.

from=”pattern-list”

In addition to RSA authentication, specifies that the fully-qualified name of the remote host must be

present in the comma-separated list of patterns. You can use * and ? as wildcards.

The list may contain patterns negated by prefixing them with ! - if the fully-qualified host name

matches a negated pattern, the key is not accepted.

This option increases security. RSA authentication by itself does not trust the network or name servers

(but the key). However, if somebody steals the key, the key permits login from anywhere in the world.

This option makes using a stolen key more difficult because the name servers and/or routers would have

to be comprised in addition to just the key.

idle-timeout=time

Sets the idle timeout limit to a time in seconds (s or nothing after the number), in minutes (m), in hours

(h), in days (d), or in weeks (w). If the connection has been idle (all channels) for that time, the process

is terminated and the connection is closed.

no-agent-forwarding

Forbids authentication agent forwarding when used for authentication.

no-port-forwarding

Forbids TCP/IP forwarding when used for authentication. Any port forward requests by the client will

return an error. For example, this might be used in connection with the command option.

no-X11-forwarding

Forbids X11 forwarding when used for authentication. Any X11 forward requests by the client will

return an error.

SSH_KNOWN_HOSTS File Format
The PSCSSH_LOCAL_ROOT:[SSH]SSH_KNOWN_HOSTS and

SYS$LOGIN:[.SSH]KNOWN_HOSTS files contain host public keys for all known hosts. The global

file should be prepared by the administrator (optional), and the per-user file is maintained automatically;

whenever the user connects an unknown host its key is added to the per-user file. Each line in these files

contains the following fields: hostnames, bits, exponent, modulus, comment. The fields are separated by

spaces.

Hostnames is a comma-separated list of patterns (* and ? act as wildcards). Each pattern is matched

against the fully-qualified host names (when authenticating a client) or against the user-supplied name

(when authenticating a server). A pattern may be preceded by ! to indicate negation; if the hostname

matches a negated pattern, it is not accepted (by that line) even if it matched another pattern on the line.

Bits, exponent, and modulus are taken directly from the host key. They can be obtained from

PSCSSH_LOCAL_ROOT:[SSH]SSH_HOST_KEY.PUB. The optional comment field continues to the

end of the line, and is not used. Lines starting with # and empty lines are ignored as comments. When

performing host authentication, authentication is accepted if any matching line has the proper key.

It is permissible (but not recommended) to have several lines or different host keys for the same names.

This happens when short forms of host names from different domains are put in the file. It is possible

that the files contain conflicting information. Authentication is accepted if valid information can be

found from either file.

Note: The lines in these files are hundreds of characters long. Instead of typing in the host keys,

generate them by a script or by copying PSCSSH_LOCAL_ROOT:[SSH]SSH_HOST_KEY.PUB

and adding the host names at the front.

SSH Logicals
These logicals are used with the SSH server in the system logical name table.

$ SHOW LOGICAL/SYSTEM *SSH*

SSH_DIR

Points to the directory where the SSH1 configuration, master server log file, and host key files are kept.

Normally, this is PSCSSH_LOCAL_ROOT:[SSH]. It is defined in START_SSH.COM.

SSH_EXE

Points to the directory where SSH executables are kept. Normally, this is

PSCSSH_COMMON_ROOT:[xxx_EXE]. It is defined in START_SSH.COM.

SSH_LOG

Points to the directory where the log files are kept. Normally, this is PSCSSH_LOCAL_ROOT:[LOG].

It is defined in START_SSH.COM.

SSH_TERM_MBX

Mailbox used by SSHD_MASTER to receive termination messages from SSHD daemon processes. Do

not change this logical name. This is created by the SSHD_MASTER process.

PSCSSH_SSH_ACC_REJ_LOG_FILE

If the user has set a log file to log connection accept and reject messages, this logical will be defined and

will provide the name of the log file. This logical is set by using the @PSCSSH:PSCSSH CONFIGURE

command or by editing PSCSSH_LOCAL:SSH_CONFIGURE.COM.

PSCSSH_SSH_ALLOW_EXPIRED_PW

Allows logging in to an account when the account's password has expired due to pwdlifetime

elapsing. This applies to all users and circumvents normal VMS expired-password checking, and

therefore should be used with caution. An entry is made into the SSH_LOG:SSHD.LOG file when

access is allowed using this logical name.

When access is allowed by way of this logical, the logical name table LNM$SSH_LOGICALS contains a

logical name constructed as PSCSSH_SSH_pid_PWDEXP (where pid is the PID for the process). The

system manager can use this to execute, for example, the DCL SET PASSWORD command in the site

SYLOGIN.COM file.

PSCSSH_SSH_ALLOW_PREEXPIRED_PW

Allows logging in to an account when the password has been pre-expired. This applies to all users and

circumvents normal VMS expired-password checking, and therefore should be used with caution. An

entry is made into the SSH_LOG:SSHD.LOG file when access is allowed using this logical name.

When access is allowed by way of this logical, the logical name table LNM$SSH_LOGICALS contains a

logical name constructed as PSCSSH_SSH_pid_PWDEXP (where pid is the PID for the process). The

system manager can use this to execute, for example, the DCL SET PASSWORD command in the site

SYLOGIN.COM file.

PSCSSH_SSH_DISPLAY_SYS$ANNOUNCE

The SSH v1 protocol does not allow for the display of SYS$ANNOUNCE prior to logging in. If this

logical is set, the contents of SYS$ANNOUNCE is displayed immediately after successful authentication

and prior to the display of the contents of SYS$WELCOME.

PSCSSH_SSH_ENABLE_SSH1_CONNECTIONS

Set to enable SSH V1 sessions.

PSCSSH_SSH_KEYGEN_MIN_PW_LEN

Defines the minimum passphrase length when one is to be set in SSHKEYGEN. If not defined, defaults

to zero.

PSCSSH_SSH_LOG_ACCEPTS

When set, causes the server to log successful connection requests as either an OPCOM message or a line

in a log file. Note that a successful connection request doesn't equate to a successful authentication

request.

PSCSSH_SSH_LOG_MBX

Points to the OpenVMS mailbox used to log connection accept and reject messages. This must not be

modified by the user.

PSCSSH_SSH_LOG_REJECTS

When set, causes the server to log rejected connection requests as either an OPCOM message or a line

in a log file.

PSCSSH_SSH_MAX_SESSIONS

Set this to the maximum number of concurrent SSH sessions you want to allow on the server system. If

PSCSSH_SSH_MAX_SESSIONS is not defined, the default is 1000. Setting

PSCSSH_SSH_MAX_SESSIONS to zero (0) causes an error. The value must be between 1 and 1000.

The suggested place to set this is in START_SSH.COM. You must restart SSH for these changes to take

effect.

PSCSSH_SSH_PARAMETERS_n

These values are set by PSCSSH and must not be modified by the user.

PSCSSH_SSH_USE_SYSGEN_LGI

If defined, causes SSHD to use the VMS SYSGEN value of LGI_PWD_TMO to set the login grace time,

overriding anything specified in the command line or the configuration file.

5. Configuring the Secure
Shell (SSH) Server v2

This chapter describes how to configure and maintain the PSCSSH Secure Shell (SSH) server v2.

This is the server side of the software that allows secure interactive connections to other computers in

the manner of rlogin/rshell/telnet. The SSH server has been developed to discriminate between SSH v1

and SSH v2 protocols, so the two protocols can coexist simultaneously on the same system.

SSH1 and SSH2 Differences
SSH1 and SSH2 are different, and incompatible, protocols. The SSH1 implementation is based on the

version 1.5 protocol, and the SSH2 implementation is based on the V2. While SSH2 is generally

regarded to be more secure than SSH1, both protocols are offered by PSCSSH, and although they are

incompatible, they may exist simultaneously on an OpenVMS system. The PSCSSH server front-end

identifies what protocol a client desires to use and will create an appropriate server for that client.

The cryptographic library used by the SSH2 server (this does not apply to SSH1 sessions) is FIPS 140-2

level 2 compliant, as determined by the Computer Security Division of the National Institute of Science

and Technology (NIST).

Note: You must install the DEC C 6.0 backport library on all OpenVMS VAX v6.0 and earlier

systems prior to using SSH. This is the AACRT060.A file. You can find the ECO on

ftp.multinet.process.com in the following directory: PATCHES.DIR.

When using SSH2 to connect to a VMS server, if the VMS account is set up with a secondary password,

SSH2 does not prompt the user for the secondary password. If the VMS primary password entered is

valid, the user is logged in, bypassing the secondary password.

ftp://ftp.multinet.process.com/

When using SSH2 to execute single commands (in the same manner as RSHELL), some keystrokes like

CTRL+Y are ignored. In addition, some interactive programs such as HELP may not function as

expected. This is a restriction of SSH2. If this behavior poses a problem, log into the remote system

using SSH2 in interactive mode to execute the program.

Understanding the Secure Shell
Server
Secure Shell daemon (SSHD) is the daemon program for SSH2 that listens for connections from clients.

The server program replaces the rshell and telnet programs. The server/client programs provide secure

encrypted communications between two untrusted hosts over an insecure network. A new daemon is

created for each incoming connection. These daemons handle key exchange, encryption, authentication,

command execution, and data exchange.

Servers and Clients
An SSH server is an OpenVMS system that acts as a host for executing interactive commands or for

conducting an interactive session. The server software consists of two pieces of software (for future

reference, “SSHD” will refer to both SSHD_MASTER and SSHD, unless otherwise specified):

• SSHD_MASTER, recognizes the differences between SSH v1 and SSH v2 and starts the

appropriate server. If the request is for SSH v1, then the existing SSH v1 server is run; if the

request is for SSH v2, then the SSH v2 server is run.

• SSHD, a copy of which is spawned for each connection instance. SSHD handles all the

interaction with the SSH client.

A client is any system that accesses the server. A client program (SSH) is provided with PSCSSH, but

any SSH client that uses SSH version 2 protocol may be used to access the server. Examples of such

programs are MultiNet SSH, TCPware SSH, SecureCRT, and puTTY for Windows, MacSSH for Apple

systems, and other SSH programs on Linux and UNIX-based systems.

Each host has a key using DSA encryption and is usually 1024 bits long (although, the user may create a

different-sized key, if desired). The same key may be used on multiple machines. For example, each

machine in a VMScluster could use the same key.

When a client connects to the SSHD daemon:

• The client and server together, using the Diffie-Hellman key-exchange method, determine a 256-

bit random number to use as the "session key". This key is used to encrypt all further

communications in the session.

Note that this key may be renegotiated between the client and the server on a periodic basis by

including the RekeyIntervalSeconds keyword in the server configuration file

(SSH2_DIR:SSHD2_CONFIG). This is desirable because during long sessions, the more data

that is exchanged using the same encryption key, the more likely it is that an attacker who is

watching the encrypted traffic could deduce the session key.

• The server informs the client which encryption methods it supports. See the description of the

CIPHERS configuration keyword for the encryption methods supported.

• The client selects the encryption algorithm from those offered by the server.

• The client and the server then enter a user authentication dialog. The server informs the client

which authentication methods it supports, and the client then attempts to authenticate the user by

using some or all of the authentication methods. The following authentication algorithms are

supported:

o public-key (DSA keys)

o host-based

o password keyboard-interactive

o Kerberos V5 (password, kerberos-tgt, kerberos-1, kerberos-tgt-1, kerberos-2, kerberos-

tgt-2)

o Certificate

System security is not improved unless the RLOGIN and RSHELL services are disabled.

If the client authenticates itself successfully, a dialog is entered for preparing the session. At this time

the client may request things like:

• forwarding X11 connections

• forwarding TCP/IP connections

• forwarding the authentication agent connection over the secure channel

Finally, the client either requests an interactive session or execution of a command. The client and the

server enter session mode. In this mode, either the client or the server may send data at any time, and

such data is forwarded to/from the virtual terminal or command on the server side, and the user terminal

in the client side. When the user program terminates and all forwarded X11 and other connections have

been closed, the server sends command exit status to the client, and both sides exit.

Expired Password Handling
The SSH2 server supports expired password changing for interactive accounts without the CAPTIVE or

RESTRICTED flags set and, via the DCL SET PASSWORD command. When an expired password is

detected, the server will behave as if a SET PASSWORD command was specified by the user as a

remotely executed command (e.g., $ ssh host set password), and the user will be logged out

after changing the password. The user may then log in again using the changed password.

For CAPTIVE or RESTRICTED accounts, or for those accounts where LGICMD is set in the UAF

record, the scenario is different. In these cases, the server can't directly execute SET PASSWORD

command, because the command procedure specified in the LGICMD field of the UAF record will

override the SSH server attempting to do a SET PASSWORD command. For these types of accounts,

the system manager and/or user can use the value of the LOGIN_FLAGS for the process (normal

interactive sessions may also examine these flags). For SSH logins, these flags will reflect:

• new mail has been received (JPI$M_NEW_MAIL_AT_LOGIN)

• the password is about to expire (JPI$M_PASSWORD_WARNING)

• the password has expired (JPI$M_PASSWORD_EXPIRED)

The DCL lexical function F$GETJPI may be used to examine these flags, as can the $GETJPI(W)

system service or LIB$GETJPI RTL function. When an expired password value is detected, the user

may then execute a SET PASSWORD command in the command procedure run for the account.

For example:

$!

$! Login_flags:

$! 1 = new mail messages waiting (JPI$M_NEW_MAIL_AT_LOGIN)

$! 4 = password expired during login (JPI$M_PASSWORD_EXPIRED)

$! 5 = password expires within 5 days (JPI$M_PASSWORD_WARNING)

$!

$ flags = f$getjpi("", "LOGIN_FLAGS")

$ new_flags = (flags/2)*2

$ if new_flags .ne. flags then write sys$output "New mail waiting"

$!

$! Note - new_flags is used below because it has the NEW_MAIL_AT_LOGIN$

$! bit stripped. The rest of the possible values are all

$! discrete; i.e., you can't have combinations of them at the

$! same time.

$!

$ if new_flags .eq. 4 then write sys$output "Password expired during login"

$ if new_flags .eq. 5 then write sys$output "Password expires within 5 days"

$!

When an account in the SYSUAF has an expired password and the system syslogin.com or user’s

login.com has a SET TERM command, a warning message will be displayed prior to prompting to

change the password as shown in the following example:

Your password has expired; you must set a new password to log in

% SET-W-NOTSET, error modifying DKA0:

-SET-E-INVDEV, device is invalid for requested operation

Old password:

The way to suppress these warning messages would be to check for the appropriate login flag, ignoring

any SET TERM commands. For example:

$ flags = $getjpi(““, “LOGIN_FLAGS”)

$ new_flags = (flags/2)*2

$ if new_flags.eq.4 then goto skip_the_inquiry

Break-In and Intrusion Detection
Care must be exercised when configuring the SSH clients and server to minimize problems due to

intrusion records created by OpenVMS security auditing. The SSH user should consult the system

manager to determine the authentication methods offered by the SSH server. The client should then be

configured to not attempt any authentication method that is not offered by the server.

If a client attempts authentication methods not offered by the server, the OpenVMS security auditing

system may log several intrusion records for each attempt to create a session to that server. The result

being that the user could be locked out and prevented from accessing the server system without

intervention from the server's system manager.

The authentication methods to be offered by the server are determined by the configuration keywords

AllowedAuthentications and RequiredAuthentications. The number of intrusion

records to be logged for any attempted SSH session is determined by the

StrictIntrusionLogging configuration keyword.

When StrictIntrusionLogging is set to YES (the default), each method that is tried and fails

causes an intrusion record to be logged. The following rules apply:

• When HostBased or PublicKey authentications are attempted and fail, one intrusion record

is logged for each failed method.

• When password authentication is attempted, one intrusion record is logged for each failed

password.

Example 1:
The server is set up to allow HostBased and password authentication; also, up to three password

attempts are allowed. If all methods fail, four intrusion records are logged:

1 for the failed HostBased

3 for the failed password attempts, one per attempt

When StrictIntrusionLogging is set to NO, it has the effect of relaxing the number of intrusions

logged. Overall failure of all authentication methods simply counts as a single failure, except for

password authentication. The following rules apply:

• When password authentication is attempted, one intrusion record is logged for each failed

password.

• When any of HostBased or PublicKey authentication fails, and password authentication is

not attempted, exactly one intrusion record is logged, as opposed to one for each failed method.

• When any of HostBased or PublicKey authentication fails, but password authentication is

attempted and succeeds, the only intrusion record(s) logged is one for each failed password

attempt.

The server is set up to allow HostBased and password authentication; also, up to three password

attempts are allowed. If all methods fail, three intrusion records are logged:

0 for the failed HostBased

3 for the failed password attempts, one per attempt

The server is set up to allow HostBased and password authentication; also, up to three password

attempts are allowed. HostBased and RSA fail, but password authentication is successful after 1

failed password. Therefore, one intrusion record is logged:

0 for the failed HostBased

1 for the failed password attempt

The server is set up to allow HostBased and PublicKey authentication, but not password

authentication. If all methods fail, one intrusion record is logged.

The server is set up to allow HostBased and PublicKey authentication, but not password

authentication. HostBased authentication fails, but PublicKey succeeds. No intrusion records are

logged.

Configuring SSHD Master
The SSHD Master is configured via CNFSSH. See Chapter 3 of the PSCSSH Administration and User’s

Guide for details on using CNFSSH to configure SSH.

Note: The only supported methods for starting SSH are to use the

@SYS$STARTUP:PSCSSH_STARTUP command if SSH isn’t running, or to use the SSHCTRL

RESTART command if SSH is currently running.

SSH2 Configuration File
SSHD reads configuration data from its configuration file. By default, this file is

SSH2_DIR:SSHD2_CONFIG. The file contains keyword value pairs, one per line. Lines starting with

and empty lines are interpreted as comments. The following keywords are possible.

Keywords are case insensitive.

Keyword Value Default Description

AllowedAuthentications List Publickey,

Password

Permitted techniques.

Valid values are:

keyboard-

interactive, password,

publickey, hostbased,

kerberos-1, kerberos-

tgt-1, kerberos-2,

kerberos-tgt-2.

Along with Required

Authentications, the system

administrator can force the

users to complete several

authentications before they

are considered authenticated.

AllowedPasswordAuthenticatio

ns
List kerberos,

local
Specifies the different

password authentication

schemes that are allowed.

Only kerberos and local

are acceptable.

AllowGroups List Access control by UAF rights

list entries

AllowHosts Host list Access control by hostname

AllowShosts Host list Access control by hostname

AllowTcpForwarding Y/N Y Enable TCP port forwarding

AllowTcpForwardingForUsers User list Per-User forwarding

AllowTcpForwardingForGroups Rights list Per-rights list ID forwarding

AllowUsers User list Access control by username

AllowX11Forwarding Y/N Y Enable X11 forwarding

AuthInteractiveFailureTimeou

t
Seconds 2 Delay, in seconds, that the

server delays after a failed

attempt to log in using

keyboard-interactive

and password

authentication.

AuthKbdInt.NumOptional Number 0 Specifies how many optional

sub methods must be passed

before the authentication is

considered a success.

(Note that all reported sub

methods must always be

passed.) See

AuthKbdInt.Optional

for specifying optional sub

methods, and

AuthKbdInt.Required

for required sub methods. The

default is 0, although if no

required sub methods are

specified, the client must

always pass at least one

optional sub method.

AuthKbdint.Optional List None Specifies the optional sub

methods keyboard-interactive

will use. Currently only the

sub method password is

defined.

AuthKbdInt.NumOption

al specifies how many

optional sub methods must be

passed. The keyboard-

interactive

authentication method is

considered a success when

the specified amount of

optional sub methods and all

required sub methods are

passed.

AuthKbdInt.Required Specifies the required sub

methods that must be passed

before the keyboard-

interactive

authentication method can

succeed.

AuthKbdInt.Retries Number 3 Specifies how many times the

user can retry keyboard-

interactive.

AuthorizationFile Filename Authorization Authorization file for public

key authentication.

AuthPublicKey.MaxSize Number 0 Specifies the maximum size

of a public key that can be

used to log in. Value of 0

disables the check.

AuthPublicKey.MinSize Number 0 Specifies the minimum size

of a public key that can be

used to log in. Value of 0

disables the check.

Cert.RSA.Compat.HashScheme md5 or sha md5 Previous clients and servers

may use hashes in RSA

certificates incoherently

(sometimes SHA-1 and

sometimes MD5). This

specifies the hash used when

a signature is sent to old

versions during the initial key

exchanges.

BannerMessageFile Filename SYS$ANNOUNC

E
Message sent to the client

before authentication begins.

CheckMail Y/N Y Display information about

new mail messages when

logging in

Ciphers Cipher list Encryption ciphers offered

DenyGroups Rights list Deny access for UAF rights

list identifiers

DenyHosts Host list Deny access for hosts

DenySHosts Host list Deny access for hosts

DenyTcpForwardingForUsers User list Forbid forwarding for listed

users

DenyTcpForwardingForGroups Rights list Forbid forwarding for listed

rights list names

DenyUsers User list Access control by username

FascistLogging Y/N Y Verbose logging

ForwardACL Pattern None With this option, you can

have more fine-grained

control over what the client is

allowed to forward, and to

where. See ForwardACL

Notes below.

ForwardAgent Y/N Y Enable agent forwarding

HostCA Certificate None Specifies the CA

certificate (in binary or PEM

format) to be used when

authenticating remote hosts.

The certificate received from

the host must be issued by the

specified CA and must

contain a correct alternate

name of type DNS (FQDN).

If no CA certificates are

specified in the configuration

file, the protocol tries to do

key exchange with ordinary

public keys. Otherwise,

certificates are preferred.

Multiple CAs are permitted.

HostCANoCRLs Certificate None Similar to HostCA, but

disables CRL checking for

the given ca-certificate.

HostCertificateFile Filename None This keyword works very

much like

PublicHostKeyFile,

except that the file is

assumed to contain an X.509

certificate in binary format.

The keyword must be paired

with a corresponding

HostKeyFile option. If

multiple certificates with the

same public key type (DSS

or RSA) are specified, only

the first one is used.

HostbasedAuthForceClient

HostnameDNSMatch
Y/N N Host name given by client.

Hostkeyfile Filename Hostkey Host key filename

HostSpecificConfig Pattern None Specifies a sub-configuration

file for this server, based on

the hostname of the client

system.

IdentityFile Filename Identification Identity filename

IdleTimeout Time 0 = none Set idle timeout (in seconds)

IgnoreRhosts Y/N N Don’t use rhosts and

shosts for host-based

authentication for all users

IgnoreRootRhosts Y/N Y Don’t use rhosts and

shosts files for

authentication of

SYSTEM

KeepAlive Y/N Y Send keepalives

LdapServers Server URL None Specified as ldap://

server.domainname:389

CRLs are automatically

retrieved from the CRL

distribution point defined in

the certificate to be checked

if the point exists. Otherwise,

the comma-separated server

list given by option

LdapServers is used. If

intermediate CA certificates

are needed in certificate

validity checking, this option

must be used or retrieving the

certificates will fail.

ListenAddress IP address 0.0.0.0 Listen on given interface

Macs Algorithm Select MAC (Message

Authentication Code)

algorithm

MapFile Filename None This keyword specifies a

mapping file for the

preceding Pki keyword.

Multiple mapping files are

permitted per one Pki

keyword. The mapping file

format is described below.

MaxBroadcastsPerSecond #broadcasts 0 Listen for UDP broadcasts

NoDelay Y/N N Enable Nagel Algorithm

PasswordAuthentication Y/N Y Permit password

authentication

PasswordGuesses #guesses 3 Limit number of password

tries to specified number

PermitEmptyPasswords Y/N N Permit empty (blank)

passwords

PermitRootLogin Y/N N SYSTEM can log in

Pki Filename None This keyword enables user

authentication using

certificates.

Cacertificate must be

an X.509 certificate in binary

format. This keyword must

be followed by one or more

MapFile keywords. The

validity of a received

certificate is checked

separately using each of the

defined Pki keywords in

turn until they are exhausted

(in which case the

authentication fails), or a

positive result is achieved. If

the certificate is valid, the

mapping files are examined

to determine whether the

certificate allows the user to

log in. A correct signature

generated by a matching

private key is always

required.

PkiDisableCrls Y/N Y This keyword disables CRL

checking for the Pki

keyword, if set to “Y”.

PrintMotd Y/N Y Display SYS$WELCOME

when logging in

PublicHostKeyFile Filename Hostkey.pub Host key file location

QuietMode Y/N N Quiet mode

RandomSeedFile Filename Random_seed Random seed file

RekeyIntervalSeconds #seconds 0 Frequency of rekeying

RequiredAuthentication Authenticatio

n list

 Authentications client must

support

RequireReverseMapping Y/N N Remote IP address must map

to hostname

ResolveClientHostName Y/N Y Controls whether the server

will try to resolve the client

IP address at all, or not. This

is useful when you know that

the DNS cannot be reached,

and the query would cause

additional delay in logging in.

Note that if you set this to

“no”, you should not set

RequireReverseMappin

g to “Y”.

RSAAuthentication Y/N Y Enable RSA authentication

SendKeyGuess Y/N Y This parameter controls

whether the server will try to

guess connection parameters

during key exchange, or not.

Some clients do not support

key exchange guesses and

may fail when they are

present.

SftpSysLogFacility log facility None Defines the log facility the

SFTP server will use

StrictIntrusionLogging Y/N Y Determine how intrusion

records are created by failed

authentication attempts.

StrictModes Y/N N Strict checking for directory

and file protection.

SyslogFacility Facility AUTH Defines what log facility to

be used when logging server

messages.

Terminal.AllowUsers pattern All users List users that are allowed

terminal (interactive) access

to the server.

Terminal.DenyUsers pattern None List users that are denied

terminal (interactive) access

to the server.

Terminal.AllowGroups pattern All groups Similar to

Terminal.AllowUsers

but matches groups instead of

usernames.

Terminal.DenyGroups pattern None Similar to

Terminal.DenyUsers

but matches groups instead of

usernames

UserConfigDirectory Directory SYS$LOGIN: Location of user SSH2

directories

UserKnownHosts Y/N Y Respect user [.ssh2]

known hosts keys

UserSpecificConfig Pattern None Specifies a sub-configuration

file for this server, based on

user logging in.

VerboseMode Y/N N Verbose mode

The keywords MACS and CIPHERS have discrete values, plus there are values that denote a grouping of

2 or more of the discrete values. Each of these values may be put in the configuration file

SSH2_DIR:SSHD2_CONFIG.

MACs discrete values:

hmac-sha1, hmac-sha256, hmac-md5, hmac-ripemd160, none

 group ANYMAC consists of:

hmac-sha1, hmac-sha256, hmac-md5, hmac-ripemd160

 group ANY consists of:

hmac-sha1, hmac-sha256, hmac-md5, hmac-ripemd160, none

 group ANYSTD consists of:

rhmac-sha1, hmac-md5, none

 group ANYSTDMAC consists of:

hmac-sha1, hmac-md5

Ciphers discrete values:

3des, aes, blowfish, aes128-ctr, aes128-cbc, aes192-ctr, aes192-

cbc, aes256-ctr, aes256-cbc, 3des-ctr, 3des-cbc, blowfish-ctr,

blowfish-cbc, des-cbc@ssh.com, rc2-cbc@ssh.com, none

 group ANYSTDCIPHER consists of:

aes128-ctr, aes128-cbc, aes192-ctr, aes192-cbc, aes256-ctr, aes256-

cbc, 3des-ctr, 3des-cbc, blowfish-ctr, blowfish-cbc

 group ANY consists of:

aes128-ctr, aes128-cbc, aes192-ctr, aes192-cbc, aes256-ctr, aes256-

cbc, 3des-ctr, 3des-cbc, blowfish-ctr, blowfish-cbc, des-

cbc@ssh.com, rc2-cbc@ssh.com, none

 group ANYCIPHER

aes128-cbc, 3des-cbc, twofish128-cbc, cast128-cbc, twofish-cbc,

blowfish-cbc, aes192-cbc, aes256-cbc, twofish192-cbc, twofish256-

cbc, arcfour, des-cbc@ssh.com, rc2-cbc@ssh.com

 group ANYSTD

aes128-cbc, 3des-cbc, twofish128-cbc, cast128-cbc, twofish-cbc,

blowfish-cbc, aes192-cbc, aes256-cbc, twofish192-cbc, twofish256-

cbc, arcfour, none

A discrete value or a group identifier may be used with MACs and Ciphers. For example, in the

configuration file, the following examples could be used:

Ciphers ANYCIPHER

Ciphers 3des, aes128-cbc

MACs ANYMAC

MACs hmac-sha1

Aliases may be used for some standard ciphers:

Alias Value

aes aes128-cbc

3des 3des-cbc

blowfish blowfish-cbc

The global server file (SSH_DIR:SSHD2_CONFIG) now can use the keyword

HostSpecificConfig to allow the specification of a configuration file based on the client system.

These lines are specified as:

HostSpecificConfig hostname subconfig-file

hostname will be used to match the client host, as specified under option AllowHosts. The file

subconfig-file will then be read, and configuration data amended accordingly. The file is read

before any actual protocol transactions begin, and you can specify most of the options allowed in the

main configuration file. You can specify more than one sub-configuration file; in which case the patterns

are matched and the files read in the order specified. Later defined values of configuration options will

either override or amend the previous value, depending on which option it is. The effect of redefining

an option is described in the documentation for that option. For example, setting Ciphers in the sub-

configuration file will override the old value, but setting AllowUsers will amend the value.

The subconfig-file will be assumed by default to exist in the SSH2_DIR directory. However, this

may be overridden by specifying a complete directory/file specification. For example:

HostSpecificConfig foo.example.com dka0:[sshconfigs]fooconfig.dat

HostSpecificConfig lima.example.com limaconfig.dat

In the first instance, an incoming connection from foo.example.com will use the sub-configuration file

dka0:[sshconfigs]fooconfig.dat. In the second example, an incoming connection from

lima.beans.com will use ssh2_dir:limaconfig.dat.

Unlike ssh2_config, the sub-configuration files may have configuration blocks, or stanzas, in them.

They are used per-host. The sub-configuration heading is interpreted identically to what is described

above (i.e, with UserSpecificConfig, the pattern is of the format hostname.)

Note: If the sub-configuration file cannot be found or cannot be parsed successfully for any reason,

access to the system will be denied for the system to which the sub-configuration file applies.

The global server file (SSH2_DIR:SSHD2_CONFIG) can use the keyword UserSpecificConfig

to allow the specification of a configuration file based on the username of the user who’s logging into

the server. These keywords are of the form:

UserSpecificConfig user[@host] subconfig-file

The user and host fields will be used to match the username, as specified under the option

AllowUsers. The file subconfig-file will then be read, and configuration data amended

accordingly. The file is read before any actual protocol transactions begin, and you can specify most of

the options allowed in the main configuration file. You can specify more than one sub-configuration file,

in which case the patterns are matched and the files read in the order specified. Later defined values of

configuration options will either override or amend the previous value, depending on which option it is.

The effect of redefining an option is described in the documentation for that option. For example, setting

Ciphers in the sub-configuration file will override the old value, but setting AllowUsers will

amend the value.

Unlike sshd2_config, the sub-configuration files may have configuration blocks, or stanzas, in

them. They are used per user. The sub-configuration heading is interpreted identically to what is

described above (i.e., with UserSpecificConfig, the pattern is of the format user[@host].

The subconfig-file will be assumed by default to exist in the SSH2_DIR directory. However, this

may be overridden by specifying a complete directory/file specification. For example:

UserSpecificConfig dilbert dka0:[sshconfigs]dilbert.dat

UserSpecificConfig boss@lima.example.com pointyhair.dat

In the first instance, an incoming connection for user dilbert will use the sub-configuration file

dka0:[sshconfigs]dilbert.dat. In the second example, an incoming connection from user

boss at system lima.example.com will use ssh2:dir:pointyhair.dat.

Note: If the sub-configuration file cannot be found or cannot be parsed successfully for any reason,

access to the system will be denied for the user to which the sub-configuration file applies.

KEYBOARD-INTERACTIVE mode is simply another form of password authentication. The user won’t

notice anything different with this mode.

With this option, you can have more fine-grained control over what the client is allowed to forward, and

to where. Format for this option is:

[allow|deny] [local|remote] user-pat forward-pat [originator-pat]

user-pat will be used to match the client-user, as specified under the option

UserSpecificConfig. forward-pat is a pattern of format host-id[%port]. This has

different interpretations, depending on whether the ACL is specified for local or remote forwards. For

local forwards, the host-id will match with the target host of the forwarding, as specified under the

option AllowHosts. port will match with the target port. Also, if the client sent a host name, the IP

address will be looked up from the DNS, which will be used to match the pattern. For remote

forwardings, where the forward target is not known (the client handles that end of the connection); this

will be used to match with the listen address specified by the user (and as such is not as usable as with

local forwards). port will match the port the server is supposed to be listening to with this forward.

With local forwards, originator-pat will match with the originator address that the client has

reported. Remember, if you do not administer the client machine, users on that machine may use a

modified copy of ssh that can be used to lie about the originator address. Also, with NATs (Network

Address Translation), the originator address will not be meaningful (it will probably be an internal

network address). Therefore, you should not rely on the originator address with local forwards, unless

you know exactly what you are doing. With remote forwards, originator-pat will match with the IP

address of the host connecting to the forwarded port. This will be valid information, as it is the server

that is checking that information.

If you specify any allow directives, all forwards in that class (local or remote) not specifically allowed

will be denied (note that local and remote forwards are separate in this respect, e.g., if you have one

“allow remote” definition, local forwards are still allowed, pending other restrictions). If a forward

matches with both allow and deny directives, the forwarding will be denied. Also, if you have

specified any of the options [Allow.Deny]TcpForwardingForUsers.Groups] or

AllowTcpForwarding, and the forwarding for the user is disabled with those, an allow directive

will not re-enable the forwarding for the user. Forwarding is enabled by default.

Mapping File Format
When certificates are used in user authentication, one or more mapping files determine whether the user

can log to an account with a certificate. The mapping file must contain one or more lines in the

following format:

account-id keyword arguments

Keyword must be one of the following: Email, EmailRegex, Subject, SerialAndIssuer, or

SubjectRegex.

Arguments are different for each keyword. The following list describes each variation:

Email

arguments: an email address in standard format. If the certificate contains the email address as an

alternate name, it is good for logging in as user account-id.

Subject

arguments: a subject name in DN notation (LDAP style). If the name matches the one in the certificate,

the certificate is good for logging in as user account-id.

SerialAndIssuer

arguments: a number and an issuer name in DN notation (LDAP style), separated by whitespace. If the

issuer name and serial number match those in the certificate, the certificate is good for logging in as user

account-id.

EmailRegex

arguments: a regular expression (egrep syntax). If it matches an alternate name (of type email-

address) in the certificate, the certificate is good lor logging in as user account-id. As a special

feature, if account-id contains a string %subst%, it is replaced by the first parenthesized substring

of the regular expression before comparing it with the account the user is trying to log into.

SubjectRegex

Works identically to EmailRegex, except it matches the regular expression to the canonical subject

name in the received certificate.

Empty lines and lines beginning with # are ignored.

guest email guest@domain.org guest subject C=Fl,O=Company Ltd., CN-Guest

User guest SerialAndUser 123 C=Fl, O=Foo\Ltd., CN=Test CA %subst% EmailRegex

([a-z]+)@domain.\org

%subst% Subjectregex ^C=Fl,O=Company,CN=([a-z]+)$

The example EmailRegex permits in users with email addresses with domain domain.org and

usernames that contain only letters, each user to the account that corresponds to the username part of the

email address.

The example SubjectRegex lets in all users with fields C=Fl and O=Company in the subject name

if their CN field contains only letters and is the account name they are trying to log into.

Note the ^ and $ at the beginning and end of the regular expression; they are required to prevent the

regular expression from matching less than the whole string (subject name).

Note also that all characters interpreted by the regular expression parser as special characters must be

escaped with a backslash if they are a part of the subject name. This also means that the backslash in the

SerialAndIssuer example would have to be escaped with another backslash if the same subject

name was used in a SubjectRegex rule.

Starting the SSH Server for the First
Time
Follow these instructions to configure the SSH server. If SSH isn’t currently running, you must define

the PSCSSH logicals by using:

$ @SYS$STARTUP:PSCSSH_STARTUP LOGICALS

1. Use the PSCSSH utility to enable the SSH2 server. It is recommended that the host keys be generated

when executing the PSCSSH procedure by answering Y to the question “Do you want to

generate the SSH2 host key now?” For more information, see Chapter 3 in this manual.

2. If you answer no to that question, use SSHKEYGEN /SSH2/HOST to generate an SSH2 key and to

create the server key in the PSCSSH_SSH2_HOSTKEY_DIR directory if it has not previously been

created as part of the PSCSSH configuration:

$ DEFINE PSCSSH_SSH2_HOSTKEY_DIR -

_$ PSCSSH_LOCAL_ROOT:[SSH2.HOSTKEYS]

$ PSCSSH SSHKEYGEN /SSH2/HOST

Generating 1024-bit dsa key pair

 8 .oOo.oOoo.oO Key generated.

1024-bit dsa, lillies@flower.example.com, Mon Mar 03 2022 09:19:47

Private key saved to PSCSSH_ssh2_hostkey_dir:hostkey.

Public key saved to PSCSSH_ssh2_hostkey_dir:hostkey.pub

3. Copy the template server configuration file to the ssh2_dir: directory, renaming it

SSHD2_CONFIG.:

$ COPY PSCSSH_COMMON:SSHD2_CONFIG.TEMPLATE –

_$ SSH2_DIR:SSHD2_CONFIG.

4. Copy the template client configuration file to the ssh2_dir: directory, renaming it

SSH2_CONFIG.:

$ COPY PSCSSH_COMMON:SSH2_CONFIG.TEMPLATE –

_$ SSH2_DIR:SSH2_CONFIG.

Note: As delivered, the template files provide a reasonably secure SSH environment. However,

Process Software recommends these files be examined and modified appropriately to reflect the

security policies of your organization.

5. Start SSH. This creates the SSH server process and defines the SSH logical names.

$ @SYS$STARTUP:PSCSSH_STARTUP

$ SHOW PROCESS "SSHD Master"

3-MAR-2022 09:03:06.42 User: SYSTEM Process ID: 00000057

Node: PANTHR Process name: "SSHD Master"

Terminal:

User Identifier: [SYSTEM]

Base priority: 4

Default file spec: Not available

Number of Kthreads: 1

Devices allocated: BG1:

 BG2:

$ SHOW LOGICAL/SYSTEM *SSH*

 "PSCSSH" = "PSCSSH_ROOT:[COMMON]"

 "PSCSSH_COMMON" = "PSCSSH_ROOT:[COMMON]"

 "PSCSSH_EXE" = "PSCSSH_ROOT:[xxx_EXE]"

 "PSCSSH_HELP" = "PSCSSH_ROOT:[PSCSSH.HELP]"

 "PSCSSH_LOCAL" = "PSCSSH_ROOT:[node]"

 "PSCSSH_LOCAL_ROOT" = "_X86$DKA0:[PSCSSH.node.]"

 "PSCSSH_ROOT" = "_X86$DKA0:[PSCSSH.]"

 "PSCSSH_SSH2_HOSTKEY_DIR" = "PSCSSH_LOCAL_ROOT:[SSH2.HOSTKEYS]"

 "PSCSSH_SSH2_KNOWNHOSTS_DIR" = "PSCSSH_ROOT:[node.SSH2.KNOWNHOSTS]"

 "PSCSSH_SSH_ENABLE_SSH2_CONNECTIONS" = "1"

 "PSCSSH_SSH_LOG_MBX" = "MBA44:"

 "PSCSSH_SSH_PARAMETERS_0" = " /BITS=768/PORT=22"

 "PSCSSH_SSH_PARAMETERS_1" = " /LISTEN_ADDRESS=ANY/KEY_GEN_TIME=3600"

 "PSCSSH_SSH_PARAMETERS_2" = " /DEBUG=50"

 "PSCSSH_SSH_PARAMETERS_3" = " "

 "SSH2_DIR" = "PSCSSH_LOCAL_ROOT:[SSH2]"

 "SSHLEI" = "PSCSSH_EXE:SSHLEI"

 "SSHSHR" = "PSCSSH_EXE:SSHSHR"

 "SSH_DIR" = "PSCSSH_LOCAL_ROOT:[SSH]"

 "SSH_EXE" = "PSCSSH_EXE:"

 "SSH_FSCLM" = "PSCSSH_EXE:SSH_FSCLM.EXE"

 "SSH_LOG" = "PSCSSH_LOCAL_ROOT:[LOG]"

 "SSH_MAX_SESSIONS" = "1000"

 "SSH_TERM_MBX" = "MBA43:"

 "SSH_ZLIB" = "PSCSSH_EXE:SSH_ZLIB.EXE"

Modifying the SSH2 Configuration File
If you make a change to the SSH configuration file after you have enabled SSH, you must restart SSH

for these changes to take effect.

$ SSHCTRL RESTART

Note: When issuing the RESTART command for SSH, all active SSH server sessions are

terminated. Active client sessions are not affected.

Connection and Login Process
To create a session, SSHD does the following:

1. SSHD_MASTER sees the connection attempt. It creates an SSHD process, passing the operating

parameters to it. SSHD performs validation for the user.

2. Assuming the login is successful, SSHD creates a pseudo terminal for the user (an _FTAnn:

device). This device is owned by the user attempting to log in.

3. SSHD creates an interactive process on the pseudo terminal, using the username, priority, and

privileges of the user who is attempting to log in. If a command was specified, it is executed and

the session is terminated.

4. SSH generates the file SSHD.LOG for each connection to the SSH server. Many connections

result in many log files. Instead of purging the files on a regular basis, use the following DCL

command to limit the number of versions:

$ SET FILE /VERSION_LIMIT=x SSH_LOG:SSHD.LOG

Note: The value for /VERSION_LIMIT must not be smaller than the maximum number of

simultaneous SSH sessions anticipated. If the value is smaller, SSH users may be prevented from

establishing sessions with the server.

Files

PSCSSH_SSH2_HOSTKEY_DIR:HOSTKEY

Contains the private part of the host key. This file does not exist when PSCSSH is installed. The SSH

server starts only with this file. This file must be created manually using the command:

$ PSCSSH SSHKEYGEN /SSH2 /HOST.

This file should be owned by SYSTEM, readable only by SYSTEM, and not accessible to others.

To create a host key with a name that is different than what SSHKEYGEN creates, do one of the

following:

• Generate with SSHKEYGEN /SSH2/HOST and simply rename the file(s).

• Generate without the /HOST switch and then name the file(s) whatever you want.

By default the logical name SSH2_DIR points to the PSCSSH_LOCAL_ROOT:[SSH2] directory.

PSCSSH_SSH2_HOSTKEY_DIR:HOSTKEY.PUB

Contains the public part of the host key. This file should be world-readable but writable only by

SYSTEM. Its contents should match the private part. This file is not used for anything; it is only

provided for the convenience of the user so its contents can be copied to known hosts files.

SSH2:SSH_RANDOM_SEED

SYS$LOGIN:[.SSH]RANDOM_SEED

Contains a seed for the random number generator. This file should only be accessible by SYSTEM.

SSH2_DIR:SSHD2_CONFIG

Contains configuration data for the SSHv2 server. This file should be writable by SYSTEM only, but it

is recommended (though not necessary) that it be world-readable.

SYS$LOGIN:[.SSH2]AUTHORIZATION

This file contains information on how the server verifies the identity of a user.

SYS$LOGIN:[.SSH2.KNOWNHOSTS]xxxxyyyy.pub

These are the public host keys of hosts that a user wants to log in from using host-based authentication

(equivalent to SSH1's RhostsRSAAuthentication). Also, a user must set up their individual

.SHOSTS or .RHOSTS file. If the username is the same in both hosts, it is adequate to put the public

host key in SSH2_DIR:KNOWNHOSTS and add the host's name to the systemwide SHOSTS.EQUIV or

RHOSTS.EQUIV file.

xxxx is the hostname (FQDN) and yyyy denotes the public key algorithm of the key (ssh-dss or

ssh-rsa).

For example flower.example.com's host key algorithm is ssh-dss. The host key would then be

flower_example_com_ssh-dss.pub in the [.SSH2.KNOWNHOSTS] directory.

SSH2 AUTHORIZATION File Format
The authorization file contains information on how the server verifies the identity of a user. This file has

the same general syntax as the SSH2 configuration files. The following keywords may be used:

Keyword Description

KEY The filename of a public key in the [.SSH2] directory in the user's SYS$LOGIN directory.

This key is used for identification when contacting the host. If there are multiple KEY lines,

all are acceptable for login.

COMMAND This keyword, if used, must follow the KEY keyword above. This is used to specify a

"forced command" that executes on the server side instead of anything else when the user is

authenticated. This option might be useful for restricting certain public keys to perform

certain operations.

SSH2 Logicals
These logicals are used with the SSH server in the system logical name table.

SSH_DIR

Points to the directory where the master server log file is kept. Normally, this is

PSCSSH_LOCAL_ROOT:[SSH]. It is defined in START_SSH.COM.

SSH_EXE

Points to the directory where SSH executables are kept. Normally, this is PSCSSH_EXE:. It is defined

in START_SSH.COM.

SSH_LOG

Points to the directory where the log files are kept. Normally, this is PSCSSH_LOCAL_ROOT:[LOG].

It is defined in START_SSH.COM.

PSCSSH_LOG_MBX

Points to the OpenVMS mailbox used to log connection accept and reject messages. This must not be

modified by the user.

PSCSSH_SSH_ACC_REJ_LOG_FILE

If the user has set a log file to log connection accept and reject messages, this logical will be defined and

will provide the name of the log file. This logical is set by using the @PSCSSH:PSCSSH CONFIGURE

command or by editing PSCSSH_LOCAL:SSH_CONFIGURE.COM.

PSCSSH_SSH_LOG_ACCEPTS

When set, causes the server to log successful connection requests as either an OPCOM message or a line

in a log file. Specified by the line “SSH_LOG_ACCEPTS = 1” in

PSCSSH_LOCAL:SSH_CONFIGURE.COM. Note that the server uses the AllowHosts and

DenyHosts keywords in the SSH server configuration file. Also, a successful connection request

doesn't equate to a successful authentication request. This logical should not be modified directly by the

user.

PSCSSH_SSH_LOG_REJECTS

When set, causes the server to log rejected connection requests as either an OPCOM message or a line

in a log file. Specified by the line “SSH_LOG_REJEPTS = 1” in

PSCSSH_LOCAL:SSH_CONFIGURE.COM. Note that the server uses the AllowHosts and

DenyHosts keywords in the SSH server configuration file. This logical should not be modified

directly by the user.

PSCSSH_SSH_MAX_SESSIONS

Set this to the maximum number of concurrent SSH sessions you want to allow on the server system. If

PSCSSH_SSH_MAX_SESSIONS is not defined, the default is 1000. Setting

PSCSSH_SSH_MAX_SESSIONS to zero (0) will cause an error. The value must be between 1 and

1000. The suggested place to set this is in START_SSH.COM. SSH must be restarted to use the new

value if it is changed.

SSH_TERM_MBX

Mailbox used by SSHD_MASTER to receive termination messages from SSHD daemon processes. Do

not change this logical name. This is created by the SSHD_MASTER process.

PSCSSH_SSH_KEYGEN_MIN_PW_LEN

Defines the minimum passphrase length when one is to be set in SSHKEYGEN. If not defined, defaults

to zero.

PSCSSH_SSH_PARAMETERS_n

These values are set by PSCSSH and must not be modified by the user.

PSCSSH_SSH_USE_SYSGEN_LGI

If defined, causes SSHD to use the VMS SYSGEN value of LGI_PWD_TMO to set the login grace time,

overriding anything specified in the command line or the configuration file.

PSCSSH_SSH_ENABLE_SSH2_CONNECTIONS

Enables SSHD Master to accept SSH2 sessions.

PSCSSH_SSH2_HOSTKEY_DIR

Directory containing the host keys for the SSH2 server. Normally set to

PSCSSH_LOCAL_ROOT:[SSH2.HOSTKEYS]

PSCSSH_SSH2_KNOWNHOSTS_DIR

Directory containing the public keys for known systems. Normally set to

PSCSSH_LOCAL_ROOT:[SSH2.KNOWNHOSTS].

SSH2_DIR

Contains all SSH V2-specific files, such as configuration files. Normally set to

PSCSSH_LOCAL_ROOT:[SSH2]

SSH daemon Files
These files are used by or created by SSH when you log into a daemon. These files are not to be altered

in any way.

SSH_LOG:SSHD.LOG

This log file is created by each SSHD daemon.

SSHD_MASTER.LOG

This log file is created by SSHD_MASTER.

SSH_START.COM

This file is used to start SSH.

6. Accessing Remote
Systems with the Secure

Shell (SSH) Utilities

PSCSSH provides the client software for allowing secure interactive connections to other computers,

replacing TELNET.

The following topics describe how to configure, maintain, and use the following PSCSSH client and

utilities:

• Secure Shell Client (remote login program)

• SSHKEYGEN

• SSHAGENT (authentication agent)

• SSHADD

• CERTTOOL

• CERTVIEW

• CMPCLIENT

• Public key subsystem

SSH Protocol Support
The SSH client software supports both the SSH1 and SSH2 protocols. SSH1 and SSH2 are different, and

incompatible protocols. While SSH2 is generally regarded to be more secure than SSH1, both protocols

are offered by PSCSSH, and although they are incompatible, they may exist simultaneously on server

systems, including PSCSSH servers. The SSH client identifies the protocol(s) offered by any given

server. If both SSH2 and SSH1 protocols are offered, the client will always use SSH2. Otherwise, the

client will use the correct protocol based on the server’s capability.

The cryptographic library used by PSCSSH SSH2 is FIPS 140 Level 2 compliant, as determined by the

Computer Security Division of the National Institute of Science and Technology (NIST).

Secure Shell Client
$ SSH hostname[#port] [qualifiers] [command]

$ SSH "user@hostname[#port]" [qualifiers] [command]

SSH (Secure Shell) is a program for logging into and executing commands on a remote system. It

replaces insecure protocols like rlogin, rsh, and telnet, and provides secure encrypted communications

between two untrusted hosts over an insecure network. X11 connections and arbitrary TCP/IP ports can

be forwarded over the secure channel. SSH connects and logs into the specified hostname.

Qualifier Description

/ALLOW_REMOTE_CONNECT Allow remote hosts to connect local port forwarding

ports. The default is only localhost; may connect to

locally bound ports.

/CIPHER=(cipher-1,…,cipher-n) Select encryption algorithm(s).

/COMPRESS Enable compression.

/CONFIG_FILE=file Read an alternative client config file.

/DEBUG=level Set debug level.

/ESCAPE_CHARACTER=char Set escape character; none = disable (default: ~).

/HELP Display help text.

/IDENTITY_FILE=file Identity file for public key authentication.

/IPV4 Use IPv4 protocol to connect.

/IPV6 Use IPv6 protocol to connect.

/LOCAL_FORWARD=

([protocol/]listenport:host:port,…)
Causes the given port on the local (client) host to be

forwarded to the given host and port on the remote

side. The system to which SSH connects acts as the

intermediary between the two endpoint systems. Port

forwardings can be specified in the configuration file.

Only SYSTEM can forward privileged ports.

See the Port Forwarding section for more details.

/LOG_FILE=logfilename Log all terminal activity to the specified log file.

Defaults to SYS$DISK:[]SSH.LOG if

logfilename is not specified.

/MAC=(mac-1,…,mac-n) Select MAC algorithm(s).

/NO_AGENT_FORWARDING Disable authentication agent forwarding.

/NO_X11_FORWARDING Disable X11 connection forwarding.

/OPTION=(option-1,…option-n) Gives options in the format used in the configuration

file. This is useful for specifying options for which

there is no separate command line flag. The options

have the same format as a line in the configuration

file and are processed prior to any keywords in the

configuration file.

For example:

/OPTION=(CompressionLevel=6)

/PORT=port Connect to this port on server system. Server must be

listening on the same port.

/QUIET Quiet Mode. Causes all warning and diagnostic

messages to be suppressed. Only fatal errors display.

/REMOTE_FORWARD=

([protocol/]listenport:host:port,…)
Forward remote port to local address. These cause

SSH to listen for connections on a port and forward

them to the other side by connecting to host port.

/USE_NONPRIV_PORT Use a non-privileged (>1023) source port.

/USER=user Log in to the server system using this username.

/VERBOSE Display verbose debugging messages. Equal to
/DEBUG=2

/VERSION Display version number of the client.

Initial Server System Authentication
When an initial connection is made from the client system to the server system, a preliminary

authentication of the server is made by the client. To accomplish this, the server system sends its public

key to the client system.

SSH maintains a directory containing the public keys for all hosts to which it has successfully

connected. For each user, this is the [.SSH2.HOSTKEYS] directory under the individual SYS$LOGIN

directory. In addition, a system-wide directory of known public keys exists in the system directory

pointed to by the logical name PSCSSH_SSH2_HOSTKEY_DIR, and this may be populated by the

system manager. Both directories are searched as needed when establishing a connection between

systems. Any new host public keys are added to the user's HOSTKEYS directory. If a host's identification

changes, SSH warns about this and disables password authentication to prevent a trojan horse from

getting the user's password. Another purpose of this mechanism is to prevent man-in-the-middle attacks

that could be used to circumvent the encryption. The SSH configuration option

StrictHostKeyChecking can be used to prevent logins to a system whose host key is not known

or has changed.

Host-Based Authentication
Host-based authentication relies on two things: the existence of the user's system and username in either

SSH_DIR:HOSTS.EQUIV or in the individual user's SYS$LOGIN:.RHOSTS or

SYS$LOGIN:.SHOSTS file; and the server system having prior knowledge of the client system's

public host key.

When a user logs in to SSH2:

1. The server checks the SSH_DIR:HOSTS.EQUIV file, and the user's SYS$LOGIN:.RHOSTS

and SYS$LOGIN:.SHOSTS files for a match for both the system and username. Wildcards are

not permitted.

2. The server checks to see if it knows of the client's public host key (SSH2_DIR:HOSTKEY.PUB

on VMS client systems) in either the user’s SYS$LOGIN:[SSH2.KNOWNHOSTS] directory or

in the system-wide directory pointed to by the PSCSSH_SSH2_KNOWNHOSTS_DIR logical

name. The key file is named FQDN_algorithm.PUB. For example, if the client system is

foo.example.com and its key uses the DSS algorithm, the file that would contain its key on the

server would be FOO_EXAMPLE_COM_SSH-DSS.PUB. This key file must exist on the server

system before attempting host-based authentication.

3. If the key file is found by the server, the client sends its digitally signed public host key to the

server. The server will check the signature for validity.

When a user logs in to SSH1, host-based authentication alone is not allowed by the server because it is

not secure. The second (and primary) authentication method is the RHOSTS or HOSTS.EQUIV method

combined with RSA-based host authentication. It means that if the login would be permitted by

.RHOSTS, .SHOSTS, SSH_DIR:HOSTS.EQUIV, or SSH_DIR:SHOSTS.EQUIV file, and if the

client’s host key can be verified (see SYS$LOGIN:[.SSH]KNOWN_HOSTS and

SSH_DIR:SSH_KNOWN_HOSTS), only then is login permitted. This authentication method closes

security holes due to IP spoofing, DNS spoofing, and routing spoofing.

Caution! SSH_DIR:HOSTS.EQUIV,.RHOSTS, and the rlogin/rshell protocol are inherently

insecure and should be disabled if security is desired.

Public Key Authentication
The SSH client supports DSA-based authentication for SSH2 sessions, and RSA-based authentication

for SSH1 sessions. The scheme is based on public key cryptography. There are cryptosystems where

encryption and decryption are done using separate keys, and it is not possible to derive the decryption

key from the encryption key.

SSH supports RSA-based authentication. The scheme is based on public-key cryptography. There are

cryptosystems where encryption and decryption are done using separate keys, and it is not possible to

derive the decryption key from the encryption key.

RSA is one such system. The idea is that each user creates a public/private key pair for authentication

purposes. The server knows the public key (SYS$LOGIN:[.SSH]AUTHORIZED_KEYS lists the

public keys permitted for log in), and only the user knows the private key.

When the user logs in:

1. The SSH client program tells the server the key pair it would like to use for authentication.

2. The server checks if this key pair is permitted.

3. If it is permitted, the server sends the SSH client program running on behalf of the user a

challenge (a random number) encrypted by the user's public key. The challenge can only be

decrypted using the proper private key.

4. The user's client then decrypts the challenge using the private key, proving that he/she knows the

private key but without disclosing it to the server.

5. SSH implements the RSA authentication protocol automatically.

The key identity files are created with SSHKEYGEN. To create the RSA key pair files: run SSHKEYGEN

to create the RSA key pair: IDENTITY. and IDENTITY.PUB. Both of these files are stored in the

user’s SYS$LOGIN:[.SSH] directory. IDENTITY. is the private key; IDENTITY.PUB is the public

key.

Once you have created your identity files:

1. Transfer the IDENTITY.PUB file to the remote machine.

2. Update the AUTHORIZED_KEYS file on the remote machine by appending the contents of the

public key file to the SYS$LOGIN:[.SSH]AUTHORIZED_KEYS file on the remote host. The

format of the AUTHORIZED_KEYS file requires that each entry consists of a single long line.

After this, the user can log in without giving the password. RSA authentication is much more secure

than rhosts authentication. The most convenient way to use RSA authentication may be with an

authentication agent. See Public Key Authentication for more information.

When the user logs in:

1. The client reads possible keys to be used for authentication from its IDENTIFICATION file.

2. Note that this file does not contain the actual keys; rather, it contains the name of the key files.

3. The client sends to the server its list of keys.

4. The server compares each key that it received to see if it can match this key with one of those

specified in the AUTHORIZATION file.

5. The server tells the client the key that was accepted. The client then signs the key with a digital

signature that only the server with the proper key could verify, and sends the signature to the

server.

6. The server verifies the signature.

Password Authentication
The password is sent to the remote host for checking. The password cannot be seen on the network

because all communications are encrypted. When the server accepts the user's identity it either executes

the given command or logs into the system and gives the user a normal shell on the remote system. All

communication with the remote command or shell will be encrypted automatically.

Using Public Key Authentication with SSH
When a parameter such as a username or hostname is quoted, it’s always passed verbatim to the other

side. When it’s not quoted, it’s lowercased. The username entered is used when constructing the digital

signature for a key.

On the host side, the uppercase username will be used, and on the server side, the lowercased username

(the default on the server since VMS isn’t case-sensitive) will be used to generate the digital signature of

the public key that’s being used, as shown in the following examples:

$ PSCSSH SSH2 ”USER@HOSTNAME” command

USER is the username that was specified in all uppercase letters. Public key authentication fails.

$ PSCSSH SSH2 “user@HOSTNAME” command

user is the username that was specified in all lowercase letters. Public key authentication is successful.

Break-in and Intrusion Detection
Care must be exercised when configuring the client to minimize problems due to intrusion records

created by OpenVMS security auditing. The SSH user should consult the system manager to determine

the authentication methods offered by the SSH server. Examples of such authentication methods include

HostBased, PublicKey, and Password. The client should be configured to not attempt any

authentication method that is not offered by the server.

If a client attempts authentication methods not offered by the server, the OpenVMS security auditing

system may log several intrusion records for each attempt to create a session to that server. The result

being that the user could be locked out and prevented from accessing the server system without

intervention from the server's system manager.

Session Termination
The user can disconnect by typing “~.”. All forwarded connections can be listed with “~#”. All

available escapes can be listed with “~?”. A single tilde character can be sent as “~~” (or by following

the tilde with a character other than those described above). The escape character must always follow a

carriage return to be interpreted as special. The escape character “~” can be changed in configuration

files or on the command line.

The session terminates when the command or shell on the remote system exits, or when the user logs out

of an interactive session, and all X11 and TCP/IP connections have been closed. The exit status of the

remote program is returned as the exit status of SSH.

X11 Forwarding
With X11 in use, the connection to the X11 display forwards to the remote side any X11 programs

started from the interactive session (or command) through the encrypted channel. Also, the connection

to the real X server is made from the local system. The user should not set DECW$DISPLAY manually.

Forwarding of X11 connections can be configured on the command line or in configuration files.

The DECW$DISPLAY value set by SSH points to the server system with a display number greater than

zero. This is normal and happens because SSH creates a “proxy" X server on the server system for

forwarding the connections over the encrypted channel.

SSH sets up “fake” Xauthority data on the OpenVMS server, as OpenVMS does not support Xauthority

currently. It generates a random authorization cookie, stores it in Xauthority on the server, and verifies

that any forwarded connections carry this cookie and replace it by the real cookie when the connection is

opened. The real authentication cookie is never sent to the server system (and no cookies are sent in

plain text).

Configuring the SSH Client
The SSH client uses only SSH2 configuration keywords. There are no SSH1-specific configuration

keywords for the SSH client.

The SSH client obtains configuration data from the following sources (in this order):

1. Command line options. See the below table for details.

2. User’s configuration file (SYS$LOGIN [.SSH2]SSH2_CONFIG). See the following table for

details.

3. System-wide configuration file (SSH2_DIR:SSH2_CONFIG). See the following table for

details.

For each parameter, the first obtained value is used. The configuration files contain sections bracketed

by “Host" specifications. That section applies only for hosts that match one of the patterns given in the

specification. The matched host name is the one given on the command line. Since the first obtained

value for each parameter is used, more host-specific declarations should be given near the beginning of

the file, and general defaults at the end.

Keyword Value Default Description

AllowedAuthentications List All methods

except for

HostBased

Permitted techniques, listed in

desired order of attempt. These

can be the following:

keyboard-interactive,

password, publickey,

kerberos-1@ssh.com,

kerberos-tgt-

1@ssh.com, kerberos-

2@ssh.com, kerberos-

tgt-2@ssh.com, and

hostbased. Each specifies

an authentication method. The

authentication methods are

tried in the order in which they

are specified with this

configuration parameter.

AuthenticationSuccessMsg Y/N Y Print message on successful

authentication

AuthorizationFile Filename Authorization Authorization file for

publickey authentication.

See below for more

information on the contents of

this file.

BatchMode Y/N N Don’t prompt for any input

during session

Ciphers Cipher list None Supported encryption ciphers

ClearAllForwardings Y/N N Ignore any specified

forwardings

Compression Y/N N Enable data compression

DebugLogFile Filename None Specify the file to hold debug

information. If used with the

QuietMode keyword turned

on as well, only the first part of

the log information will be

written to SYS$ERROR, until

the DebugLogFile keyword

is parsed. If QuietMode is

not used, all debug output will

go to both SYS$ERROR and

the log file.

DefaultDomain Domain Specify domain name

EscapeChar Character “~” Set escape character (^ =

CTRL key)

ForwardAgent Y/N Y Enable agent forwarding

ForwardX11 Y/N Y Enable X11 forwarding

GatewayPorts Y/N N Allow connection to locally

forwarded ports

Host Pattern Begin the per-host

configuration section for the

specified host

HostCA Certificate None Specifies the CA certificate (in

binary or PEM [base64]

format) to be used when

authenticating remote hosts.

The certificate received from

the host must be issued by the

specified CA and must contain

a correct alternate name of

type DNS (FQDN). If the

remote host’s name is not fully

qualified, the domain specified

by configuration option

DefaultDomain is not fully

qualified, the domain specified

by configuration option

DefaultDomain is

appended to it before

comparing it to certificate

alternate names. If no CA

certificates are specified in the

configuration file, the protocol

tries to do key exchange with

ordinary public keys.

Otherwise, certificates are

preferred.

Multiple CAs are permitted.

HostCANoCRLs Certificate None Similar to HostCA but

disables CRL checking for the

given ca-certificate.

IdentityFile Filename Identification Name of identification file for

public key authentication

KeepAlive Y/N Y Send keepalives

LdapServers ServerURL None Specified as
ldap://

server.domainname:389

CRLs are automatically

retrieved from the CRL

distribution point defined in

the certificate to be checked if

the point exists.

Otherwise, the comma-

separated server list given by

option LdapServers is

used. If intermediate CA

certificates are needed in

certificate validity checking,

this option must be used or

retrieving the certificates will

fail.

LocalForward Port, Socket Local port forwarding

Macs Algorithm None Select MAC (Message

Authentication Code)

algorithm

NoDelay Y/N N Disable Nagle

(TCP_NODELAY)

NumberOfPasswordPrompts Number 3 Number of times the user is

prompted for a password

before the connection is

dropped

PasswordPrompt String “%U’s

password:”

Password prompt. The

following substitutions may

be made within the prompt

string:

%U = insert user’s username

%H = insert user’s system name

Port Port 22 Server port number

QuietMode Y/N Y Quiet mode - only fatal errors

are displayed

RandomSeedFile Filename Random_seed Random seed file

RekeyIntervalSeconds Seconds 3600 Number of seconds between

doing key exchanges during a

session. 0 = disable

RemoteForward Port, Socket Remote port forwarding

SendNOOPPackets Y/N N Send NOOP packets through

the connection. Used typically

to prevent a firewall from

closing an interactive session

StrictHostKeyChecking Y/N/Ask Y Behavior on host key

mismatch

TryEmptyPassword Y/N N Attempt an empty password

first when doing password

authentication.

Note: Doing so may result in

an extra intrusion being

logged.

User Username Remote username

VerboseMode Y/N N Verbose mode

The user may specify default configuration options, called “stanzas”, for different destination systems.

The format of this within the configuration file is:

hostname:

 keyword value

 keyword value

hostname2:

 keyword value

 keyword value

For example:

petunia:

 port 17300

 user jdoe

 host petunia.example.com

rose:

 port 16003

 user alice

 host rose.example.com

 allowedauthentications password

*.beans.com:

 user limabean

 keepalive no

 ciphers 3des,twofish

In the preceding example:

• When a user types SSH PETUNIA, the client will connect to port 17300 on

petunia.example.com, and will use the default username of jdoe.

• When a user types SSH ROSE, the client will connect to port 16003 on host rose.example.com,

and will use the default username of alice, and only allow password authentication.

• When a user types SSH anything.BEANS.COM, the client will use the default username of

limabean, will not send keepalives, and will only allow 3DES or TWOFISH encryption.

The user may override defaults specified in configurations. Options that are specified on the command

line override any like options in the configuration file. For example, if the user wants to use a username

of bob when connecting to host rose instead of the default username of alice, this would be specified

as:

 $ SSH /USER=BOB ROSE

Authorization File Options
The authorization file has the same general syntax as the configuration files. The following keywords

may be used.

Key

This is followed by the filename of a public key in the [.SSH2] directory file that is used for

identification when contacting the host. If there is more than one key, they are all acceptable for login.

Options

This keyword, if used, must follow the Key keyword above. The various options are specified as a

comma-separated list. See below for documentation of the options.

Command

Deprecated - use Options instead.

Available Options

allow-from

deny-from

Specifies that in addition to public-key authentication, the canonical name of the remote host must

match the pattern(s). These parameters follow the logic of AllowHosts/DenyHosts described in

detail in sshd2_config. Specify one pattern per keyword, and multiple keywords can be used.

command=”command”

This is used to specify a “forced command” that will be executed on the server side instead of anything

else when the user is authenticated. This option might be useful for restricting certain public keys to

perform just a specific operation. An example might be a key that permits remote backups but nothing

else. Notice that the client may specify TCP/IP and/or X11 forwarding unless they are explicitly

prohibited.

idle-timeout=time

Sets idle timeout limit to time in seconds (s or nothing after number), in minutes (m), in hours (h), in

days (d), or in weeks (w). If the connections have been idle (all channels) for the specified period of

time, the connection is closed down.

no-port-forwarding

Forbids TCP/IP forwarding when this key is used for authentication. Any port forward requests by the

client will return an error. This might be used, for example, in connection with the command option.

no-x11-forwarding

Forbids X11 forwarding when this key is used for authentication. An X11 forward request by the client

will return an error.

Authentication Configuration
Examples

Hostbased Authentication Example
The following is an example of how to set up the SSH client and SSH2 server for Hostbased

authentication:

$!

$! First, generate the host key - ONLY if it doesn't exist!

$!

$ PSCSSH SSHkeygen /ssh2 /host

Generating 1024-bit dsa key pair

4 oOo.oOo.oOo

Key generated.

1024-bit dsa, myname@myclient.foo.com, Thu MAR 04 2022 13:43:54

Private key saved to PSCSSH_ssh2_hostkey_dir:hostkey.

Public key saved to PSCSSH_ssh2_hostkey_dir:hostkey.pub

$ directory PSCSSH_ssh2_hostkey_dir:hostkey*.*

Directory PSCSSH_LOCAL_ROOT:[SSH2.HOSTKEYS]

HOSTKEY_ECDSA.;1 HOSTKEY_ECDSA.PUB;1

Total of 2 files $!

$! Copy the client system public key to the user directory on the server

$!

$! DECnet must be running before you execute the following commands:

$!

$ copy PSCSSH_ssh2_hostkey_dir:hostkey.pub -

_$ myserv"myname myuser"::[.ssh2.knownhosts]myclient_foo_com.pub

$!

MYSERV_$

MYSERV_$ logout

 MYNAME logged out at 1-MAR-2022 13:46:58.91 %REM-S-END, control

returned to node MYCLIENT::

Publickey Authentication Example
The following is an example of how to set up the SSH client and SSH2 server for Publickey

authentication:

$!

$! First, generate a key tuple $!

$ PSCSSH SSHkeygen /ssh2

Generating 1024-bit dsa key pair

1 oOo.oOo.oOo.

Key generated.

1024-bit dsa, myname@myclient.foo.com, Thu Mar 04 2022 14:06:10

Passphrase :

Again :

Private key saved to DISK$USERDISK:[MYNAME.SSH2]id_dsa_1024_a.

Public key saved to DISK$USERDISK:[MYNAME.SSH2]id_dsa_1024_a.pub

$ directory [.ssh2]id*.*/since = TODAY

Directory DKA0:[MYNAME.SSH2]

ID_DSA_1024_A.;1 ID_DSA_1024_A.PUB;1

Total of 2 files.

$!

$! Now create the IDENTIFICATION. file. This contains the name of

$! all the keys you wish to use for public-key authentication.

$!

$ set default [.ssh2]

$ copy tt: identification. idkey id_dsa_1024_a

 ^Z

$!

$! Copy the key to the user's [.ssh2] directory on the server system

$!

$ copy id_dsa_1024_a.pub myserv"myname mypass"::[.ssh2]

$!

$! Now log into the server system and create the AUTHORIZATION file

$!

$ set host myserv

 Welcome to OpenVMS (TM) VAX Operating System, Version V7.3

Username: myname

Password:

 Welcome to OpenVMS VAX V7.3

 Last interactive login on Tuesday, 2-MAR-2022 13:46

 Last non-interactive login on Tuesday, 2-MAR-2022 13:47

$ set default [.ssh2]

$ directory [.ssh2]id*.*

Directory DKA0:[MYNAME.SSH2]

ID_DSA_1024_A.PUB;1

Total of 1 file.

$ copy tt: authorization.key id_dsa_1024_a.pub

 ^Z

$ logout

 MYNAME logged out at 2-MAR-2004 14:10:26.16 %REM-S-END, control

returned to node MYCLIENT::

$! An example of the procedure of setting up SSH to enable

$! RSA-based authentication.

$! Using SSH client node to connect to an SSH server node.

$!

$! On the client node

$!

$ PSCSSH SSHKEYGEN /SSH1

Initializing random number generator...

Generating p: ++ (distance 662)

Generating q: ++ (distance 370)

Computing the keys...

Testing the keys...

Key generation complete.

Enter file in which to save the key (DISK$SYS_LOGIN:[MYNAME.ssh]identity.):

Enter passphrase:

Enter the same passphrase again:

Your identification has been saved in DISK$SYS_LOGIN:[MYNAME.ssh]identity..

Your public key is:

1024 33 13428..........29361 MYNAME@long.hair.com

Your public key has been saved in DISK$SYS_LOGIN:[MYNAME.ssh]identity.pub

$!

$! A TCP/IP stack must be loaded on the remote system.

$!

$ FTP DAISY /USER=MYNAME/PASSWORD=DEMONSOFSTUPIDITY -

_$ PUT DISK$SYS_LOGIN:[MYNAME.ssh]identity.PUB

_$ DISK$SYS_LOGIN:[MYNAME.ssh]identity.PUB

long.hair.com MultiNet FTP user process V5.4(119)

Connection opened (Assuming 8-bit connections)

<daisy.hair.com MultiNet FTP Server Process V5.4(16) at Thu 4-Mar-2022

3:20PM-EDT

[Attempting to log in as myname]

<User MYNAME logged into DISK$SYS_LOGIN:[MYNAME] at Thu 4-MAR-2022

3:21PMEDT, job 20e00297.

<VMS Store of DISK$SYS_LOGIN:[MYNAME.SSH]IDENTITY.PUB; started.

<Transfer completed. 395 (8) bytes transferred.

<QUIT command received. Goodbye.

$

$ TELNET DAISY

Trying... Connected to DAISY.HAIR.COM.

 Authorized Users Only (TM) VAX Operating System, Version V7.1

Username: MYNAME

Password:

 Welcome to OpenVMS (TM) VAX Operating System, Version V7.1 on node

DAISY

 Last interactive login on Thursday, 4-MAR-2022 08:07

 Last non-interactive login on Thursday, 6-MAR-2022 15:21

 Logged into DAISY at 4-MAR-2022 15:22:43.68 $!

$! For the first entry into the AUTHORIZED_KEYS file copy

$! (or rename) the file [.SSH]IDENTITY.PUB to [.SSH]AUTHORIZED_KEYS.

$!

$ COPY [.SSH]IDENTITY.PUB [.SSH]AUTHORIZED_KEYS.

$

$! FOR SUBSEQUENT ENTRIES use the APPEND command

$!

$ APPEND [.SSH]IDENTITY.PUB [.SSH]AUTHORIZED_KEYS.

$

$! A sanity check of the file protections shows

$!

$ DIRECTORY/PROTECTION [.SSH]*.*

Directory DISK$SYS_LOGIN:[MYNAME.SSH]

AUTHORIZED_KEYS.;1 (RWE,RWED,RE,E)

IDENTITY.;1 (RWD,RWD,,)

IDENTITY.PUB;1 (RWE,RWED,RE,E)

KNOWN_HOSTS.;1 (RWD,RWD,,)

RANDOM_SEED.;1 (RWD,RWD,,)

Total of 5 files.

$!

$ DIRECTORY/PROTECTION SSH.DIR

Directory DISK$SYS_LOGIN:[MYNAME]

SSH.DIR;1 (RWD,RWD,,)

Total of 1 file.

Client setup: Copy the private key and certificate (.crt) into the user’s [.ssh2] directory, and edit

the [.ssh2]identification file, adding the entry “certkey private_key_name”.

$ dir [.ssh2]

Directory DKA0:[JDOE.SSH2]

AUTHORIZATION.;13 IDENTIFICATION.;1 MYCERT.;1 MYCERT1.CRT.;2

Total of 4 files.

$ type [.ssh2]identification.

certkey mycert1

$

Server setup:

1. Copy the CA certificate into your SSH2_DIR: directory.

2. Add the following entries in SSH2_DIR:SSHD2_CONFIG:

Pki SSH2_DIR:CAcertname

Mapfile SSH2_DIR:CAcertname.map

The Pki keyword begins an authority block for a given CA certificate. There might be more than one

CA certificate along with its own mapping file.

The Mapfile keyword specifies the location of the certificate to username mapping file.

In addition, for testing, you might use PkiDisableCRLs yes to disable CRL checking for the

given authorization block.

3. Create the mapping file SSH2_DIR:CAcertname.map. The mapping file consists of rows of the

following format:

userid mappingrule mapdata

userid is the user ID that’s allowed to login for the given cert (there might be multiple userid

values for a given certificate).

mappingrule is one of subject, email, serialandissuer or emailregex.

• subject means that the following mapdata is matched against the subject of the certificate.

• email is the e-mail alternative subject extension

• emailregex allows the use of regular expressions - e.g., %subst%

emailregex ([a-z}|+)@example\.com would allow any trusted certificate having an

e-mail alternative name of username@example.com to login with userid username)

• SerialAndIssuer is the serial number and DN of the issuer separated by whitespace.

DNs are used in reverse LDAP order (e.g., c=US,o=Foobar,cn=Jane Doe).

Server setup:

1. Create a certificate for the server. The host certificate must contain the fully-qualified domain name

(FQDN) as the DNS alternative name.

2. Copy the private key and certificate into the PSCSSH_SSH2_HOSTKEY_DIR directory.

3. Add the following entries into the ssh2_dir:sshd2_config file:

HostKeyFile PSCSSH_ssh_hostkey_dir:hostcert

HostCertificateFile PSCSSH_ssh_hostkey_dir:hostcert.crt

Client setup:

1. Copy the CA certificate into the PSCSSH_SSH2_HOSTKEY_DIR directory.

2. Add the following entries into the ssh2_dir:ssh2_config file:

HostCA PSCSSH_ssh_hostkey_dir:CAcert.crt

DefaultDomain client_FQDN

Note: For testing purposes, you can use HostCANoCRLs instead of HostCA to disable CRL

checking.

Port Forwarding
Port forwarding is a mechanism whereby programs that use known TCP/IP ports can have encrypted

data forwarded over unsecure connections. This is also known as "tunneling".

If the user is using an authentication agent, the connection to the agent is forwarded automatically to the

remote side unless disabled on the command line or in a configuration file. Forwarding of arbitrary

TCP/IP connections over the secure channel can be specified either on the command line or in a

configuration file.

Note: Forwarded ports (tunnels) exist only as long as the SSH session that established them exists;

if the SSH session goes away, so do the forwardings.

/LOCAL_FORWARD=(localport:remotehost:remoteport)

This causes localport on the system the client is running on to be forwarded to

remotehost:remoteport. The system to which SSH2 connects acts as the intermediary between

the two endpoint systems.

For example: Use port forwarding to allow a system (midsys) to encrypt and forward TELNET

sessions between itself (mysys) that's outside a corporate firewall to a system (remotesys) that is

inside a corporate firewall. Note that the use of port 2300 in the examples is arbitrary.

From the DCL prompt on mysys:

$ SSH midsys /local_forward=(2300:remotesys:23)

With the SSH session to midsys now active, type in another window on mysys:

$ telnet localhost /port=2300

Note: The SSH session must remain active for port forwarding activity.

This causes a connection to mysys:2300. The SSH2 client has bound to this port and will see the

connection request. SSH sends an "open channel" request to midsys, telling it there's a connect request

for port 23 on remotesys. Midsys will connect to remotesys:23 and send back the port

information to mysys. Mysys completes the connection request, and the TELNET session between

mysys and remotesys is now in place, using the tunnel just created through the firewall between

mysys and midsys.

All traffic between mysys and midsys (through the firewall) is encrypted/decrypted by SSH on

mysys and SSHD on midsys, and hence, is safe. TELNET does not know this, of course, and does

not care.

Note that ports can also be forwarded from a local host to the remote host that's running SSHD, as

illustrated in this figure.

In this example, port 2300 on mysys is being forwarded to remotesys:23. To do this, use SSH on

mysys:

$ SSH remotesys /local_forward=(2300:remotesys:23)

Then, also on mysys, type:

$ telnet localhost /port=2300

When SSH and SSHD start their dialog, SSHD on remotesys connects back to itself, port 23, and the

TELNET session is established.

/REMOTE_FORWARD=(remoteport1:remotehost:remoteport2)

This causes remoteport1 on the system to which SSH connects to be forwarded to

remotehost:remoteport2. In this case, the system on which the client is running becomes the

intermediary between the other two systems.

For example, a user wants to use mysys to create a tunnel between sys1:4000 and sys2:23, so that

TELNET sessions that originate on sys1:4000 get tunneled to sys2 through the firewall. On

mysys:

$ SSH sys1 /remote_forward=(4000:sys2:23)

Now, on sys1, a user could establish a TELNET session to sys1 by doing:

$ telnet localhost /port=4000

The mechanism used for making the TELNET connection (setting up the tunnel) is essentially the same

as described in the /LOCAL_FORWARD example above, except that the roles of SSH and SSHD in the

dialog are reversed.

Other Files
The files in the below table are used by SSH. Note that these files generally reside in the [.SSH2]

subdirectory from the user’s SYS$LOGIN directory. The [.SSH2] subdirectory is created

automatically on your local system the first time SSH is executed, and on a remote OpenVMS system

the first time an SSH connection is made to that system. File protection for SYS$LOGIN:SSH2.DIR

should be (S:RWD,O:RWD,G:,W:).

File Name Resides

On

Description

[.SSH2]SSH2_CONFIG. Client

System

This is the individual configuration file.

This file is used by the SSH2 client. It

does not contain sensitive information.

The recommended file protection is

(S:RWD,O:RWD,G:,W:).

[.SSH2]IDENTIFICATION Client

System

Contains the information about private

keys that can be used for public-key

authentication when logging in.

[.SSH2]ID_alg_bits_seq Client

System

Contains a private key for authentication.

• alg is either RSA or DSA

• bits is the length of the key

• seq is an incrementing alphabetic

value

Thus, a key named ID_DSA_1024_A.

indicates this is a private DSA key 1024

bits long, and it is the first time the key

was generated using SSHKEYGEN. A

user may have multiple private key files

in a directory.

[.SSH2]ID_alg_bits_seq.PUB Client

System and

Server

System

Contains a public key for authentication.

• alg is either RSA or DSA

• bits is the length of the key

• seq is an incrementing alphabetic

value

Thus, a key named

ID_DSA_1024_B.PUB indicates this is

a public DSA key 1024 bits long,

and it is the second time the key was

generated using SSHKEYGEN. A user

may have multiple public key files in a

directory.

[.SSH2.HOSTKEYS]xxx.PUB Client

System

Contains public host keys for all hosts the

user has logged into. The files

specifications have the format
KEY_port_hostname.PUB

• port is the port over which the

connection was made.

• hostname is the hostname of the

key's host.

For example, if tulip.example.com was

accessed via port 22, the key file would

be
 KEY_22_TULIP_EXAMPLE_

COM.PUB.

If this file changes on the host (for

example, the system manager regenerates

the host key), SSH2 will note this and ask

if you want the new key saved. This helps

prevent man-in-the-middle attacks.

[.SSH2]RANDOM_SEED. Client

System

Seeds the random number generator.

This file contains sensitive data and

MUST have a protection of no more than

(S:RWD,O:RWD,G:,W:), and it must be

owned by the user. This file is created the

first time the program is run and is

updated automatically. The user should

never need to read or modify this file. On

OpenVMS systems, multiple versions of

this file will be created; however, all older

versions of the file may be safely purged.

Use the DCL command:

SET FILE /VERSION_LIMIT=n

RANDOM_SEED to set a limit on the

maximum number of versions of this file

that may exist at any given time.

SSH2_DIR:SSH2_CONFIG Client

System

This is a system-wide client configuration

file. This file provides defaults for those

values that are not specified in a user’s

configuration file, and for users who do

not have a configuration file. This file

must be world readable.

PSCSSH_SSH2_KNOWNHOSTS_DIR Server

System

Contains public host keys for all hosts the

system has logged into. The files

specifications have the format
KEY_port_hostname.PUB

• port is the port over which the

connection was made.

• hostname is the hostname of the

key's host.

For example, if tulip.example.com was

accessed via port 22, the key file would

be:

KEY_22_TULIP_EXAMPLE_

COM.PUB

If this file changes on the host (for

example, the system manager regenerates

the host key), SSH will note this and ask

if you want the new key saved. This helps

prevent man-in-the-middle attacks.

SSHKEYGEN
Generates authentication key pairs. The format of the keys is incompatible between SSH1 and SSH2.

Therefore, the correct format keys must be generated for each version of the protocol to be supported.

There is no way to recover a lost passphrase. If the passphrase is lost or forgotten, you need to generate a

new key and copy the corresponding public key to other systems.

Each key may be protected via a passphrase, or it may be left empty. Good passphrases are 10-30

characters long and are not simple sentences or otherwise easily guessable. Note that the passphrase can

be changed later, but a lost passphrase cannot be recovered, as a “one-way” encryption algorithm is used

to encrypt the passphrase.

PSCSSH SSHKEYGEN /SSH1 [/BITS=n] [/IDENTITY_FILE=file]

 [/PASSPHRASE=passphrase] [/COMMENT=comment]

PSCSSH SSHKEYGEN /SSH1 /CHANGE_PASSPHRASE [/PASSPHRASE=old_passphrase]

[/NEW_PASSPHRASE=new_passphrase]

PSCSSH SSHKEYGEN /SSH1 /CHANGE_COMMENT [/PASSPHRASE=passphrase]

 [/COMMENT=comment]

PSCSSH SSHKEYGEN /SSH1 /CHANGE_CIPHER [/IDENTITY_FILE=file]

 [/PASSPHRASE=passphrase]

PSCSSH SSHKEYGEN /SSH1 /HOST [/BITS=n][/COMMENT=comment]

Option Description

/BITS=nnn Specify key strength in bits (default = 1024).

/CHANGE_PASSPHRASE Change the passphrase of private key file.

/CHANGE_COMMENT Change the comment for a key.

/CHANGE_CIPHER Change the cipher to current default (3DES).

/COMMENT=”comment” Provide the comment.

/HOST Generate the host key.

/IDENTITY_FILE=file Specify the name of the host key file.

/PASSPHRASE=ppp Provide the current passphrase.

/NEW_PASSPHRASE=ppp Provide new passphrase.

/VERSION Print sshkeygen version number.

PSCSSH SSHKEYGEN /SSH2[/BITS=n][/COMMENT=comment][/KEYTYPE=type]

 [/KEYS=(key1...keyn)]

 [/PASSPHRASE=ppp|/NOPASSPHRASE][/STIR=file][/QUIET]

PSCSSH SSHKEYGEN /SSH2/HOST

 [/BITS=n][/COMMENT=comment][/STIR=file][/QUIET]

PSCSSH SSHKEYGEN /SSH2/DERIVE_KEY=file

PSCSSH SSHKEYGEN /SSH2/EDIT=file

PSCSSH SSHKEYGEN /SSH2/FINGERPRINT=file

PSCSSH SSHKEYGEN /SSH2/INFO=file [/BASE=n]

PSCSSH SSHKEYGEN /SSH2/SSH1_CONVERT=file

PSCSSH SSHKEYGEN /SSH2/X509_CONVERT=file

PSCSSH SSHKEYGEN /SSH2/PKCS_CONVERT=file

PSCSSH SSHKEYGEN /SSH2/EXTRACT_CERTS=file

PSCSSH SSHKEYGEN /SSH2/HELP

PSCSSH SSHKEYGEN /SSH2/VERSION

Option Description

/BASE=nnn Number base for displaying key info

/BITS=nnn Specify key strength in bits (default = 1024).

/COMMENTS=”comment” Provide the comment.

/PKCS_CONVERT=file Convert a PKCS 12 file to an SSH2 format certificate and private

key.

/SSH1_CONVERT=file Convert SSH1 identity to SSH2 format.

/X509_CONVERT=file Convert private key from X.509 format to SSH2 format.

/DERIVE_KEY=file Derive the private key given in file to public key.

/EDIT=file Edit the comment/passphrase of the key.

/EXTRACT_CERTS=file Extract certificates from a PKCS 7 file.

/FINGERPRINT=file Dump the fingerprint of file.

/INFO=file Load and display information for file.

/HELP Print help text.

/HOST Generate the host key.

/KEYS=(key1,...,keyn) Generate the specified key file(s).

/KEYTYPE=(dsa | rsa) Choose the key type: dsa or rsa.

/OPENSSH_CONVERT=file Convert the specified OpenSSH key to SSH2 format

/OUTPUT_FILE=file Write the key to the specified output file

/PASSPHRASE=ppp Provide the current passphrase.

/NOPASSPHRASE Assume an empty passphrase.

/QUIET Suppress the progress indicator.

/STIR=file Stir data from file to random pool.

/VERSION Print sshkeygen version number.

/[NO]WARN Enable or disable warnings if the process of generating host keys

using /HOST will cause existing host keys to be overwritten. If

enabled, the user will be prompted to overwrite them. If disabled, no

warnings or prompts are issued if the host keys exist.

Default is /WARN.

There is also a comment field in the public key file that is for the convenience to the user to help identify

the key. The comment can tell what the key is for, or whatever is useful. The comment is initialized to

nnn-bit dsa, username@hostname, ddd mm-dd-yyyy hh:mm:ss when the key is

created unless the /COMMENT qualifier is used, and may be changed later using the /EDIT qualifier.

Note: When the /HOST qualifier is used, the /KEYS=(key1,...keyn) qualifier is ignored.

Note: The public key file must be world readable.

SSHAGENT
PSCSSH SSHAGENT

SSHAGENT is a program that holds authentication private keys. Both SSH1 and SSH2 keys are

supported by SSHAGENT. SSHAGENT may be started in the beginning of a login session by including

the commands to start it in, for example, LOGIN.COM. It may also be started interactively at any time

during a login session.

To start SSHAGENT, one of the three methods may be used:

1. Start it in a separate window:

$ PSCSSH SSHAGENT

2. Spawn it as a subprocess:

$ SPAWN/NOWAIT PSCSSH SSHAGENT

3. Run it in a detached process:

$ RUN/DETACHED/OUTPUT=AGENT.OUT/INPUT=NLA0:/PROCESS_NAME="SSH AGENT" –

$_ SSH_EXE:SSH-AGENT2

The agent is used for public key authentication when logging to other systems using SSH. A connection

to the agent is available to all programs run by all instances of the user on a specific system. The name

of the mailbox used for communicating with the agent is stored in the

PSCSSH_SSH_AGENT_username logical name.

The agent does not have any private keys initially. Keys are added using SSHADD. When executed

without arguments, SSHADD adds the user’s identity files. If the identity has a passphrase, SSHADD asks

for the passphrase. It then sends the identity to the agent. Several identities can be stored in the agent;

the agent can use any of these identities automatically.

PSCSSH SSHADD /LIST displays the identities currently held by the agent.

[.SSH]IDENTITY in

SYS$LOGIN:

Contains the RSA authentication identity of the user. This file should not be

readable by anyone but the user. It is possible to specify a passphrase when

generating the key. That passphrase is used to encrypt the private part of this

file. This file is not used by SSHAGENT, but is added to the agent using

SSHADD at login.

SSHADD
Adds identities for the authentication agent.

PSCSSH SSHADD [OPTIONS] [FILE[,FILE,FILE]]

SSHADD adds identities to SSHAGENT, the authentication agent. When run without arguments,

SSHADD adds the file [.SSH]IDENTITY. Alternative file names can be given on the command line. If

any file requires a passphrase, SSHADD asks for the passphrase from the user.

The authentication agent must be running and must have been executed by the user for SSHADD to

work.

FILE is an identity or certificate file. If no file is specified, the files in the user’s [.SSH2] directory

are used.

/HELP Display help text.

/LIST List all identities currently represented by the agent.

/LOCK Lock the agent with a password.

/NOSSH1 Agent cannot use SSH1 keys.

/PURGE Remove all identities from the agent.

/REMOVE Remove the identity from the agent. In order to remove identities, you must either issue

the command from the subdirectory that the identities are located in, or issue the

command using the full path name of the identity (as is seen in an SSHADD /LIST

command).

/TIMEOUT=n Agent should delete this key after the timeout value (in minutes) expires.

/UNLOCK Unlock the locked agent.

/URL Give key to the agent as a URL.

FILES
These files exist in SYS$LOGIN:

[.SSH]IDENTITY Contains the RSA authentication identity of the user. This file should not be

readable by anyone but the user. It is possible to specify a passphrase when

generating the key. That passphrase is used to encrypt the private part of this

file. This is the default file added by SSHADD when no other files have been

specified.

If SSHADD needs a passphrase, it reads the passphrase from the current

terminal if it was run from a terminal. If SSHADD does not have a terminal

associated with it but DECW$DISPLAY is set, it opens an X11 window to

read the passphrase.

[.SSH]IDENTITY.PUB Contains the public key for authentication. The contents of this file should

be added to [.SSH]AUTHORIZED_KEYS on all systems where you want

to log in using RSA authentication. There is no need to keep the contents of

this file secret.

[.SSH]RANDOM_SEED Seeds the random number generator. This file should not be readable by

anyone but the user. This file is created the first time the program is run, and

is updated every time SSHKEYGEN is run.

CERTTOOL
pscssh certtool [options] /pk10 /subject=subject /key_usage=flags

/extended_key_usage=flags

pscssh certview [options] /pk12 /input_files=objects

The CERTTOOL utility is used for different needs concerning X.509 certificates.

/BITS=n Key strength in bits (default 2048)

/DEBUG=n Set debug level to n

/EXTENDED_KEY_USAGE=(flag1…flagn) (PKCS#10 only)

Extended key usage flags, as a comma-separated

list. Valid values are:

• anyExtendedKeyUsage

• ServerAuth

• clientAuth

• codeSigning

• emailprotection

No extended flags are set by default.

/HELP[=(PK10,PK12)] Display help. More detailed help on manipulating

PKCS#10 and PKCS#12 certs is available by

adding the PK10 and PK12 qualifier, respectively,

to the HELP switch.

/INPUT_FILES=(file1…filen) (PKCS#12 only)

List of files to include in the PFX package.

/KEY_TYPE=type Create a new key of type DSA or RSA.

/KEY_USAGE=(flag1…flagn) (PKCS#10 only)

Key usage flags, as a comma-separated list. Valid

values are:

• digitalSignature

• nonRepudiation

• keyEncipherment

• dataEncipherment

• keyAgreement

• keyCertSign

• CRLSign

• encipherOnly

• decipherOnly

Default values are digitalSignature and

keyEncipherment.

/OPTION=(x,y) Set certificate option x to y. The options that can be

set are dependent upon the type of certificate

(PKCS#10 or PKCS#12) being affected.

For PKCS#10:

• DNS - set certificate DNS names.

• Email - set certificate email addresses.

For PKCS#12:

• KeyPBE - set the PBE scheme for

shrouding keys. default means

pbeWithSHAAnd3-KeyTripleDES-

CBC.

• SafePBE - set the PBE scheme for

protecting safes. default means

pbeWithSHAAand40BitRC2-CBC.

/OUTPUT_FILE=prefix Use prefix as the prefix for all output filenames.

Private key filenames will be prefix.SSH2 and

PKCS#10 fields will be prefix.PKCS10.

/PRIVATE_KEY=keyname Use keyname as the private key.

/SUBJECT=”subject” (PKCS#10 only)

Use subject as the certificate subject.

/VERSION Display the version of CERTTOOL.

$ PSCSSH CERTTOOL /PK10 /SUBJECT=(“cn=john doe,cn=lima,cn=beans” -

$_ /PRIVATE_KEY=DKA0:[JOHENDOE.SSH2]ID_DSA_1024_A

PKCS#10 creation succcesful.

Wrote certificate request to output.pkcs10.

CERTVIEW
pscssh certview [options] certificate [, certificate, …, certificate]

CERTVIEW can be used to view certificates and check their validity. This tool can also be used to

output the data in format that is suitable for insertion in the SSH2_DIR:SSHD2_CONFIG

configuration file.

/COMMENT Prepend information lines with # (comment mark)

/DEBUG=n Set debug level to n

/FORMAT_OUTPUT Output data in a format suitable for insertion to usermap

/HELP Display help

/QUIET Don’t display certificate information

/VALIDATE=certificate Validate using the CA certificate certificate

/VERBOSE Increase verbosity (display extensions).

/VERSION Display version information

$ PSCSSH CERTVIEW MYCERT_PKCS7.P7B-1_SSH2_CRT

Certificate MYCERT_PKCS7.P7B-1_SSH2_CRT

Certificate issuer : MAILTO=foo@bar.com, C=US, ST=CO,L=Colorado

Springs, CN=FOOCA

Certificate serial number : 20668029027158235697617769792662904421

Certificate subject : MAILTO=foo@bar,com, C=US, ST=CO, L=Colorado

Springs, CN=FOOCA

CMPCLIENT
pscssh cmpclient [options]/ca_access_url=“url” /subject=“subject” /cert-file

[private-key]

Allows users to enroll certificates. It will connect to a CA (certification authority) and use the CMPv2

protocol for enrolling a certificate. The user may supply an existing private key when creating the

certification request or allow a new key to be generated.

url Specifies the URL for the Certification Authority

subject Specifies the subject name for the certificate. For example,

“c-ca,o=acme,ou=development,cn=Bob Jones”

Cert-file Specifies the file the certification is written to.

Private-key Specifies the private key to be written to.

/BASE=name Specify base prefix for the generated files.

/BITS=n Specify the key length in bits.

/CA_URL=“url” Specify the URL of the Certification Authority.

/DEBUG=n Set debug to level n (0-60).

/ENROLLMENT_PROTOCOL=prot Use specified enrollment protocol (SCEP or CMP).

/EXTENSIONS Enable extensions in the subject name.

/GENERATE_KEY Generate a new private key.

/HELP Print this help text.

/PROXY_URL“=url” Specify the URL of the HTTP proxy server URL to be used when

connecting to the certification authority.

/REFNUM=refnum:key Specify the CMP enrollment reference number and key.

/SOCKS_SERVER=“url” Specify the URL of the SOCKS server URL to be used when

connecting to the certification authority.

/SUBJECT=“subject” Specifies the subject name for the certificate.

/TYPE=rsa|dsa Specify the key type to generate (default: RSA)

/USAGE_BITS=n Specify the key usage bits.

/VERSION Print the version information for this program.

Examples:
1. Enroll a certificate and generate a DSA private key:

$ pscssh cmpclient/type=dsa/generate_key/base=mykey/refnum=1234:abc -

_$ /ca_access_url=“http://www.ca-auth.domain:8080/pkix/”-

_$ /subject=“c=us,o=foobar,cn=John Doe” ca-certification.crt

This will generate a private key called mykey.prv and a certificate called mykey-0.crt.

2. Enroll a certificate using a supplied private key and provide an e-mail extension:

$ pscssh cmpclient/base=mykey/refnum=12345:abcd -

_$ /ca_access_url=“http://www.ca-auth.domain:8080/pkix/”-

_$ /subject=“c=us,o=foobar,cn=John Doe:email=jdoe@example.com” -

_$ ca-certification.crt my_private_key.prv

This will generate and enroll a certificate called mykey-0.crt.

Note: SSH stores and uses software certificates in DER encoded binary format. You can use

sshkeygen to import and convert PKCS#12 packages (/pkcs_convert=file) into private

key/certificate pair, X.509 format private key into SSH private key (/x509_convert=file) or

PKC#7 into certificate (/extract_certs=file).

Public Key Subsystem
The public key subsystem and assistant that can be used to add, remove and list public keys stored on a

remote server. The public key assistant and server are based upon a recent IETF draft, so other

implementations of SSH may not yet offer this functionality.

The public key assistant can be started with:

$ PSCSSH PUBLICKEY_ASSISTANT [qualifiers] [[user@]host[#port]]

Public Key Assistant Commands

ADD key-file-name

Transfers the key file name to the remote system. The file name specified is expected to be in the

SSH2_CONFIG directory from the user's login directory. e.g., ADD ID_DSA_1024_A.PUB will

transfer the public key in ID_DSA_1024_A.PUB to the remote system and updates the

AUTHORIZATION. file on the remote system to include this key name.

CLOSE

Closes the connection to the remote system.

DEBUG {no | debug_level}

Sets debug level (like in SFTP2).

DELETE key finger-print

Deletes the key that matches the fingerprint specified. It is necessary to do a LIST command before

this to get a list of the fingerprints (and for the program to build its internal database mapping

fingerprints to keys).

EXIT

Exits the program.

HELP

Displays a summary of the commands available.

LIST

Displays the fingerprint and attributes of keys stored on the remote system. The attributes that are listed

will vary with key. Example output:

Fingerprint: xozil-bemup-favug-fimid-tohuk-kybic-loz-fukuc-kuril-gezahloxex

key type: ssh-dss

Comment: 1024-bit dsa, user@simple.example.com, Wed Jun 05 2022 21:05:40

OPEN [user@]host[#port]

Opens a connection to a remote public key subsystem.

QUIT

Quits the program.

UPLOAD key-file-name

Synonym for the ADD command.

VERSION [protocol-version]

Displays or sets the protocol version to use. The protocol version can only be set before the OPEN

command is used. The default version is 1.

Public Key Assistant Qualifiers

/BATCHFILE

Provides a file with public key assistant commands to be executed. Starts SSH2 in batch mode.

Authentication must not require user interaction.

/CIPHER

Selects encryption algorithm(s).

/COMPRESS

Enables SSH data compression.

/DEBUG

Sets debug level (0-99).

/HELP

Displays a summary of the qualifiers available.

/MAC

Selects MAC algorithm(s). /MAC=(mac-1,…,mac-n)

/PORT

Tells SFTP2 which port SSHD2 listens to on the remote machine.

/VERBOSE

Enables verbose mode debugging messages. Equal to /DEBUG=2. You can disable verbose mode by

using debug disable.

/VERSION

Displays version number only.

7. Secure File Transfer

There are three methods to do secure file transfer: SCP2, SFTP2, and FTP over SSH2. SCP2 and

SFTP2 communicate with SSH2 for authentication and data transport (which includes encryption) to

remote systems. An SCP1 server is provided for compatibility with OpenSSH SCP.

The following diagram illustrates the relationship among the client and server portions of an SCP2 or

SFTP2 file transfer:

SCP file transfers are different from FTP file transfers. With FTP a file can be transferred as ASCII,

BINARY, RECORD, or in OpenVMS format (if MultiNet or TCPware is in use). In SCP the primary

transfer format is BINARY. Also, the defined syntax for a file specification is UNIX syntax. Due to

these restrictions, files that are transferred from dissimilar systems may or may not be useful. ASCII

transfers are done by searching the transferred data for the specified newline sequence and making the

specified substitution. Process Software has used methods available in the protocol to attempt to

improve the chances that files will be useful upon transfer.

Process Software has used the defined extensions in the protocol to transfer information about the VMS

file header characteristics such that when a file is transferred between two VMS systems running

MultiNet v5.4 or higher, TCPware v5.9 or higher, and/or PSCSSH, the file header information will also

be transferred and the file will have the same format on the destination system as it had on the source

system. Also, when a text file is transferred to a non-VMS system, a method has been provided to

convert those files that can be translated into a format that will be usable on the remote system. Files that

are converted from non-VMS systems are stored as stream files on the VMS system, which provides

compatibility for text files from those systems. Filenames are SRI encoded when files are stored on

ODS-2 disks.

SCP2

Usage
SCP2 [qualifiers] [[user@]host[#port]::]file [[user@]host[#port]::]file

Note: The source and destination file specification must be quoted if they contain a user

specification or a non-VMS file specification.

Qualifiers

Qualifier Description

/ASCII[=convention] The newline convention specified is the newline convention

to use if a newline convention is not specified by the server.

Allowed values: dos (\r\n), mac (\r) , unix (\n), vms (\n

) , sftp (\r\n). Default = unix.

/BATCH Starts SSH2 in batch mode. Authentication must be possible

without user interaction.

/BUFFER_SIZE=integer Number of bytes of data to transfer in a buffer. Default is

7500. Minimum value is 512.

/CIPHER=(cipher1,…,cipher-n) Selects an encryption algorithm(s).

/COMPRESS Enables SSH data compression.

/CONCURRENT_REQUEST=integer Number of concurrent read requests to post to the source file.

Default is 4.

/DEBUG=level Sets a debug level. (0-99)

/DIRECTORY Forces the target to be a directory.

/HELP Displays the help text.

/IDENTITY_FILE=file Identifies the file for public key authentication.

/PORT=number Tells the SCP2 client which port the SSHv2 server listens to

on the remote machine.

/PRESERVE Preserves file attributes and timestamps.

/NOPROGRESS Does not show progress indicator.

/QUIET Does not display any warning messages.

/RECURSIVE Processes the entire directory tree.

/REMOVE Removes the source files after copying.

/TRANSLATE_VMS=

(ALL, NONE, VARIABLE, FIXED,

VFC)

Selects the VMS text files to be translated (default=ALL).

Note that /ASCII performs a similar function and may be

supported in other SCP products.

/VERBOSE Displays verbose debugging messages. Equal to "/debug=2".

/VERSION

Displays the version number only.

/VMS Negotiates the ability to transfer VMS file information.

Note: /ASCII, /VMS and /TRANSLATE_VMS are mutually exclusive

File Specifications
The source and destination strings are changed to lowercase unless they are enclosed in quotes, in which

case they are left the same. File specification must be in UNIX format for remote systems, unless the

remote system is running TCPware 5.9 or higher, MultiNet 5.5 or higher, or PSCSSH; and /VMS or

/TRANSLATE_VMS (source files only) are used. UNIX format file specifications need to be enclosed in

quotes (") if they contain the / character to prevent the DCL parsing routines from interpreting the

string as a qualifier.

Qualifiers

/ASCII[=convention]

Uses the newline convention specified if the server does not specify a newline convention.

Available conventions are: dos (\r\n), mac (\r) , unix (\n), vms (\n) , sftp (\r\n). Default = unix.

/BATCH

Starts the SSH2 client in BATCH mode. When SSH2 is running in BATCH mode it does not prompt for

a password, so user authentication must be performed without user interaction.

/BUFFER_SIZE=integer

Number of bytes of data to transfer in a buffer. Default is 7500.

/CIPHER=(cipher,…,cipher-n)

Lets you select which SSH2 cipher to use.

/COMPRESS

Enables SSH2 data compression. This can be beneficial for large file transfers over slow links. The

compression level is set by the client configuration file for SSH2.

/CONCURRENT_REQUEST=integer

Number of concurrent read requests to post to the source file. Default is 4.

/DEBUG

Enables debugging messages for SCP2 and SSH2. Higher numbers get more messages. The legal values

are between 0 (none) and 99. Debugging for the SFTP2 server is enabled via the

PSCSSH_SSH_SFTP_SERVER_DEBUG logical.

/DIRECTORY

Informs SCP2 that the target specification should be a directory that the source file(s) will be put in.

This qualifier is necessary when using wildcards in the source file specification, or /RECURSIVE.

/HELP

Displays command qualifier list and parameter format.

/IDENTITY_FILE=file

Specifies the identity file that SSH2 should use for public key authentication.

/PORT=number

Specifies the port that SSH2 uses on the remote system. Note that if both the source and destination files

are remote, this value is applied to both. If SSH2 is available on different ports on the two systems, then

the #port method must be used.

/PRESERVE

Sets the Protection, Owner (UIC), and Modification dates on the target file to match that of the source

file. The adjustment of timestamps for time zones is dependent upon the logical SYS$LOCALTIME

being set correctly. This is defined automatically on OpenVMS versions 7+ and can be defined similarly

on earlier versions of VMS. /PRESERVE is not very useful when the target machine is a VMS system

as VMS does not provide runtime library calls for setting the file attributes (owner, protection) and

timestamps. Note that the VMS modification date (not the creation date) is propagated to the remote

system. When files are copied between two VMS systems and /VMS is used /PRESERVE is implied

and the process of transferring VMS attributes preserves the information about the protection, dates, and

file characteristics.

/NOPROGRESS

SCP2, by default, updates a progress line at regular intervals when it is run interactively to show how

much of the file has been transferred. This qualifier disables the progress line.

/QUIET

Disables warning messages. Note that it does not disable warning messages from the SFTP2 server,

which return on the error channel.

/RECURSIVE

Copies all of the files in the specified directory tree. Note that the top level directory on the local system

is not created on the remote system. Only the most recent version is copied unless in VMS mode and the

PSCSSH_SFTP_VMS_ALL_VERSIONS logical is defined to be TRUE.

/REMOVE

Deletes the source files after they have been copied to the remote system.

/TRANSLATE_VMS

Translates VMS text files in the copying process to byte streams separated by linefeeds because the

defined data transfer format for SCP2 is a binary stream of bytes.

/TRANSLATE_VMS is only applicable to the source specification. If a remote source file is specified,

then that system must be running MultiNet 4.4 or higher, TCPware 5.6 or higher, or PSCSSH. If

/TRANSLATE_VMS is specified with no value, then VARIABLE, FIXED, and VFC (Variable, Fixed

Control) files are translated to stream linefeed files. If the value is NONE, no files are translated.

VARIABLE, FIXED, and VFC can be combined in any manner. The SFTP2 server process uses the

value of the logical PSCSSH_SFTP_TRANSLATE_VMS_FILE_TYPES to determine which files

should be translated automatically. This is a bit mask with bit 0 (1) = FIXED, bit 1 (2) = VARIABLE,

and bit 2 (4) = VFC. These values can be combined into a number between 0 and 7 to control which files

are translated.

Note: Due to the structure of the programs, the SCP2 program uses the

PSCSSH_SFTP_TRANSLATE_VMS_FILE_TYPES logical if the /TRANSLATE_VMS qualifier

has not been specified.

/VERBOSE

Displays debugging messages that allow the user to see what command was used to start up SSH and

other basic debugging information. Note that debugging information can interfere with the normal

display of the progress line. Equivalent to /DEBUG=2.

/VERSION

Displays the version of the base SCP2 code.

/VMS

Transfers VMS file information similar to that transferred in OVMS mode in FTP such that VMS file

structure can be preserved. All of the information transferred in FTP OVMS mode is transferred along

with the file creation date and protection. Timestamps are not adjusted for time zone differences in VMS

transfers. If the file is a contiguous file, and it is not possible to create the file contiguously, and the

logical PSCSSH_SFTP_FALLBACK_TO_CBT has the value of TRUE, the SFTP2 server attempts to

create the file Contiguous, Best Try.

The logical name PSCSSH_SCP2_VMS_MODE_BY_DEFAULT can be defined to TRUE to specify that

/VMS should be the default unless /NOVMS or /TRANSLATE_VMS are specified. /VMS and

/TRANSLATE_VMS cannot be used on the same command line. If /VMS is not specified, but the logical

is set to enable it by default, a /TRANSLATE_VMS on the command line will take precedence.

Note that even though SCP2 and the SFTP2 server pass the request for VMS file transfers or to translate

a VMS file in a manner that is consistent with the protocol specification, other implementations may not

handle this information well. Since there is no error response present at that point in the protocol, the

program hangs. To prevent it from hanging forever, the logical PSCSSH_SCP2_CONNECT_TIMEOUT

is checked to see how long SCP2 should wait for a response when establishing the connection. The

format for this logical is a VMS delta time. The default value is 2 minutes. If SCP2 times out before a

connection is established with the SFTP2 server and /VMS or /TRANSLATE_VMS were specified, a

warning message is displayed, and the initialization is tried again without the request for VMS

information (or /TRANSLATE_VMS). This retry is also subject to the timeout, and if the timeout

happens again, then SCP2 exits. This helps for implementations that ignore the initialization message

when information they do not recognize is present; implementations that abort will cause SCP2 to exit

immediately.

Logicals
For the following logicals, all that start PSCSSH_SFTP apply to the SCP2 client, SFTP2 client and

SFTP2 server.

PSCSSH_SFTP_FALLBACK_TO_CBT

When defined to TRUE and a VMS file transfer is being performed, this logical creates a Contiguous file

if that file has Contiguous characteristics. The file will be created as Contiguous Best Try if there is

insufficient space to create it as Contiguous.

PSCSSH_SFTP_TRANSLATE_VMS_FILE_TYPES

This is a bit mask that determines which VMS file types should be translated when not operating in

VMS mode.

• Bit 0 (1) = FIXED

• Bit 1 (2) = VARIABLE

• Bit 2 (4) = VFC

The values are:

• 0 (zero) = NONE

• 7 = ALL

Note that this logical affects SCP2 as well as the server, as SCP2 has the server built into it for handling

local file access. If this logical is not defined, the value 7 will be used.

PSCSSH_SCP2_CONNECT_TIMEOUT

This logical defines a number specifying how long SCP2 should wait for a response to the INITIALIZE

command from the server program. This is a VMS delta time number. The default is 2 minutes.

PSCSSH_SCP2_VMS_MODE_BY_DEFAULT

When defined to TRUE, this logical chooses the /VMS qualifier if /TRANSLATE_VMS or /NOVMS has

not been specified.

PSCSSH_SFTP_RETURN_ALQ

When defined to TRUE and files are being transferred in VMS mode, this logical includes the Allocation

Quantity for the file in the file header information. This is disabled by default because copying a small

file from a disk with a large cluster size to a disk with a small cluster size causes the file to be allocated

with more space than necessary. You have the option of retaining the allocated size of a file if it was

allocated the space for a reason. Some combinations of file characteristics require that the Allocation

Quantity be included in the file attributes; this is handled by SCP2 or the SFTP2 server.

PSCSSH_SSH_SCP_SERVER_DEBUG

Enables debugging messages for the SCP server that provides service to SCP commands that use the

RCP over SSH2 protocol (OpenSSH). When this is defined, the file SCP-SERVER.LOG is created in

the user’s login directory. These files are not purged. Larger values yield more debugging information.

PSCSSH_SSH_SFTP_SERVER_DEBUG

Enables debugging messages for the SFTP2 server that provides service to SCP2 commands that use the

SFTP protocol. When this is defined, the file SFTP-SERVER.LOG is created in the user’s login

directory. These files are not purged. Larger values yield more debugging information

PSCSSH_SFTP_MAXIMUM_PROTOCOL_VERSION

This logical can be used to limit the version of the SSH File Transfer Protocol that the SFTP client and

server use. This can sometimes provide a work-around for problems encountered with different

implementations of the protocol. The default value is 4. Protocol versions 2 and 3 are also used by

popular implementations.

PSCSSH_SFTP_VMS_ALL_VERSIONS

This logical controls whether all versions of a file are returned. The value TRUE will cause all versions

to be returned, any other value is to only return the name of the file without a version. The default is to

return only one filename without the version number.

PSCSSH_SFTP_NEWLINE_STYLE

This logical controls the newline style that SFTP uses, which can be helpful in transferring text files. The

values are: UNIX <lf>, VMS <lf>, MAC <cr>. If the logical is not defined, or defined to any other value,

then <cr><lf> will be used for the text line separator as documented in the SSH File Transfer

specification.

PSCSSH_SFTP_CASE_INSENSITIVE

This logical causes SFTP to treat filenames in a case insensitive manner when it is defined to TRUE.

PSCSSH_SFTP_ODS2_SRI_ENCODING

This logical controls whether SRI encoding is used for filenames on VMS ODS-2 disks. If the logical is

not defined, or is defined to TRUE then SRI encoding is used on ODS-2 disks for filenames that contain

uppercase letters and special characters.

PSCSSH_SFTP_FILE_ESTIMATE_THRESHOLD

This logical controls the minimum number of blocks that a text file must be for an estimated transfer

size to be returned instead of an exact size. The default is to estimate the transfer size for all text files.

PSCSSH_SFTP_DEFAULT_FILE_TYPE_REGULAR

If this logical is defined to TRUE, then the SFTP server will use a default file type of REGULAR instead

of UNKNOWN for OPEN operations. This can correct problems with filenames without a . (dot) in

them getting .dir added to them. The filename will appear with a . at the end of the name in directory

listings.

PSCSSH_SFTP_username_CONTROL

This logical can be defined /SYSTEM to any combination of NOLIST, NOREAD, NOWRITE,

NODELETE, NORENAME, NOMKDIR, NORMDIR, to restrict operations for the username in the logical.

NOWRITE will disable PUT, DELETE, RENAME, MKDIR, RMDIR; NOREAD will disable GET and

LIST.

PSCSSH_SFTP_username_ROOT

This logical can be defined /SYSTEM to restrict the user to the directory path specified. Subdirectories

below the specified directory are allowed.

SSH_SFTP_LOG_SEVERITY

This logical can be defined /SYSTEM to 20000 to log file transfers or 30000 to log all SFTP operations.

SSH2_SFTP_LOG_FACILITY

This logical must also be defined /SYSTEM to specify the logging class that is used with OPCOM.

Values below 5 will use the network class; 5 will use OPER1, 6 will user OPER2, etc. The maximum

value that can be specified is 12, which will use OPER8.

PSCSSH_SFTP_SEND_VENDOR_ID

If this logical is defined as FALSE, then the SFTP2 client will not send the extended command

containing the vendor ID upon completion of version negotiation with the server.

SFTP2

File Specifications
File specification must be in UNIX format for remote systems, unless /VMS transfers are being used.

SFTP2 Command Syntax and Qualifiers
Usage

SFTP2 [qualifiers] [[user@]host[#port]]

If the username@ is included in the remote system specification, the specification must be enclosed in

quotes.

Qualifiers

Qualifier Description

/BATCHFILE=file_spec Provides file with SFTP commands to be executed. Starts

SSH2 in batch mode. Authentication must not require user

interaction.

/BUFFER_SIZE=integer Number of bytes of data to transfer in a buffer. Default is

7500.

/CIPHER=(cipher-1,…,cipher-n) Selects encryption algorithm(s).

/COMPRESS Enables SSH data compression.

/CONCURRENT_REQUEST=integer Number of concurrent read requests to post to the source

file.

Default is 4.

/DEBUG=level Sets debug level (0-99).

/HELP Displays help.

/MAC=(mac-1,…,mac-n) Select MAC algorithm(s).

/NOPROGRESS Do not show progress indicator.

/PORT Tells SFTP2 which port the SSHD2 server is listening on.

/VERBOSE Enables verbose mode debugging messages.

Equal to /debug=2. You can disable verbose mode by

using debug disable.

/VERSION Displays version number only.

/[NO]VMS Negotiates ability to transfer VMS file information. VMS

transfer mode will be automatically negotiated if SFTP2

detects that the server is capable of doing VMS transfers

unless /NOVMS is specified.

SFTP2 Commands

SFTP2 Command Description

ASCII [{-s | remote [local]}] With -s option, shows current newline convention.

remote sets remote newline convention. local operates on

local side, but is not as useful (the correct local newline

convention is usually compiled in, so this is mainly for

testing). You can set either of these to “ask”, which will

cause sftp to prompt you for the newline convention when

needed. With the exception of the -s option, this

command sets transfer mode to ascii.

Available conventions are dos, unix,

sftp, vms, or mac, using “\r\n”, “\n”,

“\r\n”, “\n” and “\r” as newlines, respectively.

Note that some implementations of SFTP

may check to see if a file can be transferred in ASCII

mode before doing so, and return errors for files that

cannot be transferred. PSCSSH, MultiNet, and TCPware

make this check.

AUTO Sets the transfer mode (ASCII or BINARY) to depend

upon the extension of the file specification.

BINARY Sets the transfer mode to be binary. (This is the default.)

BUFFERSIZE number Sets the size of the buffer used for file transfer. A larger

buffer size helps speed large transfers. Displays the

current buffer size when no parameter is specified.

CD dirspec Changes current directory on remote system. VMS file

specifications may be used when operating in VMS mode.

A logical name must include the trailing colon so that it

can be recognized as such. SFTP from other vendors

cannot use VMS specifications due to the way that SFTP

works.

CHMOD [-R] mode file [file…] Change the protection on a file or directory to the specified

octal mode. (Unix values).

-R recurses over directories.

CLOSE Closes connection to the remote server.

DEBUG {disable | debug level} Sets the debug level for SFTP2. It does not change the

current debug level for SSH2 for an existing connection,

but will be used with SSH2 for a new connection. With

disable, this disables all debugging current sessions for

SFTP2.

DELETE filespec Removes the specified file from the remote system.

DIRECTORY [file | dirspec] Displays the contents of the current directory or specified

directory in VMS format when the transfer mode is VMS.

File names are displayed as they would be with a DIR

command from DCL.

EXIT Exits SFTP client.

GET [-p] file1 [file2 …] Retrieves the specified file(s) from the remote system and

stores it in the current working directory on the local

system. File names are case sensitive and in UNIX

format. When operating in VMS mode, either UNIX or

VMS-style file specifications can be used. Directories are

recursively copied with their contents. Multiple files may

be specified by separating the names with spaces.

If -p is specified, then SFTP attempts to preserve

timestamps and access permissions.

Note that a target filename cannot be provided.

GETEXT Displays the list of file extensions to use ASCII transfers

when in AUTO mode. The initial value is
txt,htm*,pl,php*

HELP Displays help on commands.

LCD dirspec Changes the current directory on the local system. VMS

file specifications may be used when in VMS mode.

LCHMOD [-R] mode file [file…] Change the protection on a file or directory on the local

connection to the specified octal mode. (Unix values). -R

recurses over directories.

LCLOSE Close the local connection.

LDELETE file Removes the specified file from the local system. VMS

file specifications may be used when in VMS mode.

LDIRECTORY [file | dirspec] Displays the contents of the current directory for the local

system in VMS format when the transfer mode is VMS.

File names are displayed as they would be with a DIR

command from DCL.

LLS [file | dirspec] Displays the contents of the current directory or specified

directory in UNIX format. Lists the names of files on the

local server. For directories, contents are listed.

See LS for options and more details.

LLSROOTS Like LSROOTS, but for the local side.

LMKDIR dirspec Creates the specified directory on the local system.

LOCALOPEN {[user@host[#port] |

-1}
Tries to connect the local side to the host host. If

successful, LLS and friends will show the contents of the

filesystem on that host. With the -l option, connects to

the local filesystem (which doesn’t require a server).

There is an implied LOCALOPEN -l when SFTP2 starts

up.

Note that an implicit LOCALOPEN is done when SFTP2

starts, so the only time that a user needs to do a

LOCALOPEN is when neither directory tree is

immediately accessible. OPEN is the command that is

generally used to establish the connection with the remote

system.

LOPEN is a synonym for LOCALOPEN.

LPWD Displays the current working directory on the local

system.

LREADLINK path Provided that path is a symbolic link, shows where the

link is pointing to. This command is not supported for

VMS servers.

LRENAME oldfile newfile Renames a file on the local system.

LRM filespec Removes the specified file from the local system. VMS

file specifications may be used when in VMS mode.

LRMDIR dirspec Deletes a directory on the local system.

LS [-R] [-l] [-S] [-r] [file …] Displays the contents of the current directory or specified

directory in UNIX format. Lists the names of files on the

remote server. For directories, contents are listed. When

the -R option is given, directory trees are listed

recursively. (By default, subdirectories of the arguments

are not visited.) When the -l option is given,

permissions, owners, sizes, and modification times are

also shown. When the -S options is specified sorting is

based upon file size instead of alphabetically.

The -r option reverses the sort order. When no

arguments are given, it assumes that the contents of the

current working directory are being listed. Currently, the

options -R and -l are mutually incompatible. LS will fill

a screen with output, then wait for the user to decide if

they want more or have seen enough.

LSROOTS Displays the virtual roots of the server. This is a VMS-

only extension to display the roots (devices) on the VMS

system.

LSYMLINK targetpath linkpath Like SYMLINK, but for the “local” side.

MGET [-p] file1 [file2…] Retrieves multiple files from the remote system and stores

them in the current working directory on the local system.

If -p is specified, then SFTP attempts to preserve

timestamps and access permissions.

MKDIR dirspec Creates the specified directory on the remote system.

MPUT [-p] file1 [file2…] Stores multiple files in the current working directory on

the remote system. File names are case-sensitive and in

UNIX format. When operating in VMS mode, either

UNIX or VMS-style file specifications can be used.

Directories are recursively copied with their contents.

Multiple files may be specified by separating the names

with spaces.

If -p is specified, then SFTP attempts to preserve

timestamps and access permissions.

OPEN {-1 | [user@]host[#port]} Tries to connect to host. Or with the -l option, connects

the remote side to the local filesystem (which doesn’t

require a server).

PUT [-p] file1 [file2…] Stores the specified file in the current working directory

on the remote system. File names are case-sensitive and

in UNIX format. When operating in VMS mode, either

UNIX or VMS-style file specifications can be used.

Directories are recursively copied with their contents.

Multiple files may be specified by separating the names

with spaces.

If -p is specified, then SFTP attempts to preserve

timestamps and access permissions.

Note that a target filename cannot be provided.

PWD Displays the current working directory on the remote

system. Displayed in VMS format when in VMS mode;

otherwise displayed in UNIX format.

QUIT Exits the SFTP client.

READLINK targetpath linkpath Provided that <path> is a symbolic link, shows where the

link is pointing to. Not valid for VMS systems as VMS

does not have symbolic links.

RECORD Enters record transfer mode if the server supports Process

Software’s record open. The direction in which record

transfer mode is possible will be displayed in response to

this command. In record transfer mode the source file is

opened as binary records and the destination file is

opened as binary. This produces the same effect as

MultiNet’s FTP server BINARY transfer when a

BLOCK_SIZE has not been specified, and can be used to

transfer a file that contains VMS records to a system that

can only handle “flat” files.

RENAME oldfile newfile Renames file on the remote system.

RM filespec Removes the specified file from the remote system.

RMDIR dirspec Deletes a directory on the remote system.

SETEXT ext1 [ext2 …] Sets the list of file extensions to use ASCII transfers when

in AUTO mode. Individual file extensions must be

separated by spaces.

STATUS Shows the transfer mode, remote server name, and remote

server version. The current newline sequence is displayed

if operating in ASCII or AUTO mode.

SYMLINK targetpath linkpath Creates symbolic link linkpath, which

will point to targetpath. Not valid for VMS servers as

VMS does not have symbolic links.

VERBOSE Enables verbose mode (identical to the /DEBUG=2

command-line option). You may later disable verbose

mode with the command DEBUG DISABLE.

VMS Sets the transfer mode to include VMS file information.

Logicals
The following logicals are specific to SFTP2:

PSCSSH_SFTP_VMS_MODE_BY_DEFAULT

When defined to TRUE, this logical chooses the /VMS qualifier if /NOVMS has not been specified.

Configuration File Parameters
The system wide configuration file (SSH2_DIR:SSH2_CONFIG.) or the user’s configuration file

(SYS$LOGIN:[.SSH2]SSH2_CONFIG.) can be used to specify the following parameters. The

user’s configuration file takes precedence over the system configuration file.

FilecopyMaxBuffers This is equivalent to the /CONCURRENT_REQUEST qualifier on the

SFTP2 or SCP2 command line. The command line qualifier will

supersede any value in the configuration file.

FilecopyMaxBuffersize This is equivalent to the SFTP2 BUFFERSIZE command or the SCP2

/BUFFER_SIZE qualifier. The command or qualifier takes

precedence.

The system server configuration file (SSH2_DIR:SSHD2_CONFIG.) can include parameters to

control which users can perform remove SSH commands (including SSH terminal sessions) as well as

SFTP2 access:

Terminal.AllowUsers Allow users in the specified list to create SSH2 terminals and do

interactive commands

Terminal.DenyUsers Prevent users in the specified list from creating SSH2 terminals and

performing interactive commands. The users can still use the SFTP2,

SCP1 and public key servers.

Terminal.AllowGroups Allow groups in the specified list to create SSH2 terminals and do

interactive commands

Terminal.DenyGroups Prevent groups in the specified list from creating SSH2 terminals and

performing interactive commands. The groups can still use the SFTP2,

SCP1 and public key servers.

FTP over SSH
SSH2 can be used to set up port forwarding that can be used for FTP. This allows users to use the

richness of the FTP command set to access files on a remote system and have their control and data

information encrypted. The command format to set up the SSH port forwarding is:

$ ssh remote_host_name –

_$ /local_forward=(“ “ “ftp/forwarded_port_number:localhost:21” ” ”)

The usual SSH authentication mechanisms come into play, so there may be a request for a password and

a terminal session is established to the remote host. As long as this terminal session is alive, other users

on the local system can use FTP to access the remote system over an encrypted channel. The location of

the quotes is important, as it is necessary to prevent DCL from interpreting the / in the local forwarding

information as the start of a new qualifier, and SSH2 does not know or expect to find the () around

the forwarding information. Note that the localhost inside of the forwarding string is important, as it

will make the connection to FTP on the remote system come from localhost, which will then allow FTP

to open the data port.

When a user desires to use an encrypted FTP connection, the following sequence of commands would

be issued:

SSH> PORT forward_port_number

SSH> OPEN LOCALHOST

 Normal FTP authentication takes place and multiple FTP sessions may use a single forwarded port. The

FTP protocol filter in SSH2 scans the FTP command stream for the FTP PORT and PASV commands

and their replies, and makes substitutions in these commands and replies to use a secure data stream

through the SSH2 session that has been set up. This command will establish an encrypted FTP session

with the remote host that the SSH connection is sent to.

To allow a single system to act as a gateway between two networks, add /ALLOW_REMOTE_CONNECT

to the SSH command that initiates the connection.

8. Monitoring and Controlling
SSH

PSCSSH provides utilities for monitoring and controlling the SSH server environment. The following

topics describe the utilities, their capabilities, and their use.

Controlling SSH Server Functions
The following control functions are available for the SSH servers:

• Startup

• Shutdown

• Restart

• Set debug level

The SSHCTRL Utility
The SSHCTRL utility is used to perform all but the startup function. For the startup function, the

SYS$STARTUP:PSCSSH_STARTUP.COM file is used. Usage:

$ SSHCTRL operation options

The below table shows the various operations that can be used with the SSHCTRL utility.

Operation Description

SET /DEBUG=n Set debug level (0 = no debug)

SHOW Show session information.

SHOW /ALL Show all sessions. This is the default if no switch is used with the SHOW

keyword.

SHOW /USER=username Show sessions for username

SHOW /HOST=address Show sessions for address

SHUTDOWN Stop all SSH server sessions.

RESTART Stop/restart SSH server.

HELP Display help text.

VERSION Display version information.

Starting the SSHD Master Process
$ @SYS$STARTUP:PSCSSH_STARTUP

Starting PSCSSH...

%RUN-S-PROC_ID, identification of created process is 22C000AD

$

Shutting down the SSHD Master
Process
This function is used to stop the SSHD Master process on the system, so it won’t accept new

connections. Note that shutting down the SSHD Master process will also terminate all outstanding SSH

server sessions on the system. OPER privilege is required to shut down the SSHD Master process and its

servers.

$ SSHCTRL SHUTDOWN

Shutting down PSCSSH...

$

Restarting the SSHD Master Process
Restarting the SSHD Master process is required after the CNFSSH utility is used to modify the existing

configuration. Note that restarting the SSHD Master process will terminate all outstanding SSH server

sessions on the system. OPER privilege is required to restart the SSHD Master process.

$ SSHCTRL RESTART

Shutting down PSCSSH...

Starting PSCSSH...

%RUN-S-PROC_ID, identification of created process is 22C000B8 $

Changing the Server Debug Level
The server debug level is changed using SSHCTRL. The debug level controls the amount of debug

information written to the SSH_LOG:SSHD.LOG file for each server instance. This may be a value

from 0 (no debug) to 50 (maximum debug). Process Software recommends this value not be set above 5

without instructions from Process Software, as the amount of debug information written to the log at

higher levels can severely impact both the SSH server performance and the server host disk resources.

Note that setting the debug level only affects new server processes which are started after setting the

level. Currently active servers use the debug level set when they were started. OPER privilege is

required to change the debug level.

$ SSHCTRL SET/DEBUG=4

SSHCTRL-S-DEBUGSET - old debug level = 2, new debug level = 4

$

Displaying SSH Server Utilization
The SSHCTRL SHOW command is used to display the active SSH server sessions on a system. It can

display all users (/ALL), users with a specific username (/USER=jdoe), or users with sessions that

originate from a specific host (/HOST=192.168.29.248).

Normally, a user may only display the sessions with the same UIC as his own. GROUP privilege is

required to display the sessions with UICs in the same group as the user. WORLD privilege is required

to display all other servers.

For each session, the display is of the following form:

Process “processname” (pid pid) - an <ssh1|ssh2> session

 User = username

 From system address port port

 Started: date/time session was started

 Bytes in: count out: count (from child process PID)

 Child process = “process name” (pid pid) - an type session

 PTD Device = FTAnn:

 Started date/time this child started

Note that SSH2 provides the capability for one server to handle multiple child sessions. The child

sessions may be a mixture of interactive SSH2 sessions and file transfer (SCP/SFTP) sessions.

In the below example, a display of all users on the system is done. Note that server “SSHD 0003”

actually has six active child processes.

$ SSHCTRL SHOW /ALL

SSHD Master PID = 22C000B8 (SSHD_MASTER)

Debug level is set to 4

Process "SSHD 0000" (pid 22C000B9) - an SSH2 session

 User = JDOE

 From system 192.168.29.52 port 49152

 Started: 01/15/2010 03:05:22

 Bytes in: 262 out: 0 (from child process: 15100)

 Child process = "JDOE_@FTA4" (pid 22C000BA) - an SSH2 session

 PTD Device = _FTA4:

 Started: 01/15/2010 03:05:35

Process "SSHD 0003" (pid 22C000BF) - an SSH2 session

 User = ALICE

 From system 192.168.29.50 port 1129

 Started: 01/15/2010 03:07:46

 Bytes in: 0 out: 0 (from child process: 55215)

 Child process = "ALICE_@FTA9" (pid 22C000C0) - an SSH2 session

 PTD Device= _FTA9:

 Started: 01/15/2010 03:07:54

 Child process = "SSHD 0003A SFTP" (pid 22C000C1) - an SFTP-SERVER2

session

 PTD Device = _FTA10:

 Started: 01/15/2010 03:07:55

 Child process = "ALICE_@FTA11" (pid 22C000C2) - an SSH2 session

 PTD Device = _FTA11:

 Started: 01/15/2010 03:07:57

 Child process = "SSHD 0003B SFTP" (pid 22C000C3) - an SFTP-SERVER2

session

 PTD Device = _FTA12:

 Started: 01/15/2010 03:08:00

 Child process = "SSHD 0003C SFTP" (pid 22C000C4) - an SFTP-SERVER2

session

 Device = _FTA13:

 Started: 01/15/2010 03:08:07

 Child process = "ALICE_@FTA14" (pid 22C000C5) - an SSH2 session

 PTD Device = _FTA14:

 Started: 01/15/2010 03:08:09

Process "SSHD 0004" (pid 22C000C6) - an SSH1 session

 User = BOB

 From system 192.168.29.51 port 1023

 Started: 01/15/2010 03:08:29

 Bytes in: 0 out: 537 (from child process: 17)

 Child process = "BOB_@FTA15" (pid 22C000C7) - an SSH1 session

 PTD Device = _FTA15:

 Started: 01/15/2010 03:08:29

The below example illustrates showing the sessions that originate from a specific TCP/IP address:

$ SSHCTRL SHOW /HOST=192.168.29.51

SSHD Master PID = 22C000B8 (SSHD_MASTER)

Debug level is set to 4

Process "SSHD 0004" (pid 22C000C6) - an SSH1 session

 User = ALICE

 From system 192.168.29.51 port 1023

 Started: 01/15/2010 03:08:29

 Bytes in: 0 out: 537 (from child process: 17)

 Child process = "ALICE_@FTA15" (pid 22C000C7) - an SSH1 session

 PTD Device = _FTA15:

 Started: 01/15/2010 03:08:29

Appendix A. SRI Encoding of
Filenames

SFTP2, SCP2, SFTP2 server, and SCP server use SRI mapping to preserve case and characters that are

not valid in filenames on OpenVMS ODS-2 disks.

OpenVMS disk filenames can be 39 characters long (as can file extensions) and include only the

following characters: 0 through 9, A through Z, dollar sign ($), hyphen (-), and underscore (_).

The below table shows the default SRI International mapping.

ASCII character... Is mapped to... With octal value...

Ctrl/A (soh) $4A 001

Ctrl/B (stx) $4B 002

Ctrl/C (etx) $4C 003

Ctrl/D (eot) $4D 004

Ctrl/E (enq) $4E 005

Ctrl/F (ack) $4F 006

Ctrl/G (bel) $4G 007

Ctrl/H (bs) $4H 010

Ctrl/I (ht) $4I 011

Ctrl/J (nl) $4J 012

Ctrl/K (vt) $4K 013

Ctrl/L (np) $4L 014

Ctrl/M (cr) $4M 015

Ctrl/N (so) $4N 016

Ctrl/O (si) $4O 017

Ctrl/P (dle) $4P 020

Ctrl/Q (dc1) $4Q 021

Ctrl/R (dc2) $4R 022

Ctrl/S (dc3) $4S 023

Ctrl/T (dc4) $4T 024

Ctrl/U (nak) $4U 025

Ctrl/V (syn) $4V 026

Ctrl/W (etb) $4W 027

Ctrl/X (can) $4X 030

Ctrl/Y (em) $4Y 031

Ctrl/Z (sub) $4Z 032

Ctrl/[(esc) $6B 033

Ctrl/(fs) $6C 034

Ctrl/] (gs) $6D 035

Ctrl/^ (rs) $6E
036

Ctrl/_ (us) $6F 037

SPACE (sp) $7A 040

! $5A 041

" $5B 042

$5C 043

$ $$ (See Rule 8 in the following table.) 044

% $5E 045

& $5F 046

' $5G 047

($5H 050

) $5I 051

* $5J 052

+ $5K 053

, $5L 054

- same 055

. . or $5N (See the following table.) 056

/ not mapped (directory delimiter) 057

0 to 9 same 060 to 071

: $5Z 072

; $7B 073

< $7C 074

= $7D 075

> $7E 076

? $7F 077

@ $8A 100

A to Z same 101 to 132

[$8B 133

 $8C 134

] $8D 135

^ $8E 136

_ same 137

` $9A 140

a to z same 141 to 172

{ $9B 173

| $9C 174

} $9D 175

~ $9E 176

DEL $9F 177

octal 200 to ¿ $200 to $277 200 to 277 (Multinational)

À to octal 377 $300 to $377 300 to 377 (Multinational)

The SRI mapping filename translation rules in the below table are based on the character mapping

scheme from above.

Rule What happens to filenames on OpenVMS...

1 Lowercase characters become uppercase (unless Rule 2 applies; see also Rule 3):

foobar.txt becomes FOOBAR.TXT;1

2 Initial uppercase characters or a sequence of case-shifted characters get a $ prefix:

CaseShiftedFile becomes CASESHIFTEDFILE.;1

3
An unversioned file gets a version number preceded by a semicolon:

foobar.txt becomes FOOBAR.TXT;1

4 If a filename does not include a file extension dot (.), it gets one before the version number

semicolon:

foobar becomes FOOBAR.;1

5 The first dot in a filename is preserved, unless the result fails the 39-character extension limit test

in Rule 5 (if so, the dot becomes $5N). Each successive dot becomes $5N, unless the filename

exceeds the limits in Rule 5.

more.file.txt becomes MORE.FILE$5NTXT;1

6 If the filename is a directory name, each dot in it becomes $5N and the filename gets the .DIR

extension:

dot.directory.list becomes DOT$5NDIRECTORY$5NLIST.DIR;1

7 Invalid OpenVMS characters become the escape character sequences in the second column of

the above table ($ followed by a digit and a letter):

special#character&file becomes SPECIAL$5CCHARACTER$5FFILE.;1

(# becomes $5C and & becomes $5F)

8 Any existing $ becomes $$ (plus any $ added due to Rule 2 or 8 above):

dollar$Sign$5cfile becomes DOLLAR$$$S$IGN$$5CFILE.;1

