

Installing & Configuring
OpenLDAP

29-SEP-2005/MLL

Technical White Paper

1 Installing & Configuring OpenLDAP

Introduction

Despite what most books on the subject would lead you to believe, LDAP really isn’t that difficult to use. The
best way to learn LDAP is by running your own LDAP server. This white paper covers the installation and basic
configuration of the OpenLDAP LDAP server.

Lots of sites use OpenLDAP in preference to commercial solutions because:

• It’s free. Most IT departments have a fixed yearly budget, and system administrators would rather spend
the little money they get on new hardware rather than software they can get for free.

• It’s open source. Anybody can download and look at the guts of the server, and you can also change how
any part of the server works to fit your needs.

• It’s compliant with the latest version of the LDAP protocol: LDAP Version 3 (LDAPv3).
• OpenLDAP is open source and written in C, so it can be compiled to run on almost any platform your site

has lying around: Linux, Solaris, Tru64, VMS, Windows, MacOS, OpenBSD, HP-UX, etc.

Getting & Installing Prerequisites

Like most large open source software packages, OpenLDAP depends on several other open source packages to
run. A database to store the directory data in is required, and most sites will want their LDAP server to support
Transport Layer Security (TLS). TLS provides end-to-end encryption of data being sent to and from the LDAP
server. Since that data might contain user passwords, encryption may be required.

Database
OpenLDAP stores its directory data in indexed files that follow the DBM format. The use of indexed files greatly
speeds up searching data, which is what most LDAP servers spend the majority of their time doing. The most
common database management software that supports DBM is Berkeley DB, available from SleepyCat Software.
You should use the most current version of Berkeley DB that’s available. When this white paper was written, the
most current version was 4.3.28.

To install Berkeley DB, perform the following steps:

1. Download the most current version of Berkeley DB to your working directory on the system you want to install
OpenLDAP on. The download URL is http://www.sleepycat.com/download/index.shtml

2. Uncompress and un-archive the distribution package:

$ gzip -d db-4.3.28.NC.tar.gz
$ tar xfv db-4.3.28.NC.tar
db-4.3.28.NC

[...]

db-4.3.28.NC/docs/utility/index.html
db-4.3.28.NC/docs/index.html
$

3. Change your current directory to the db-x.x.xx.NC/build_unix directory, and run the configure script
located in the dist subdirectory. By default, Berkeley DB is configured to install itself into a non-standard

2 Installing & Configuring OpenLDAP

installation directory. We’re going to tell the configure script to install Berkeley DB into the /usr/local/
directory.

$ cd db-4.3.28.NC/build_unix
$../dist/configure --prefix=/usr/local/
checking build system type... sparc-sun-solaris2.9
checking host system type... sparc-sun-solaris2.9
checking if building in the top-level or dist directories... no
checking if --disable-cryptography option specified... no
checking if --disable-hash option specified... no

[...]

config.status: creating include.tcl
config.status: creating db.h
config.status: creating db_config.h
$

4. Compile the Berkeley DB package by running make.

$ make
/bin/sh ./libtool --mode=compile cc -c -I. -I../dist/.. -D_REENTRANT -O2
../dist/../mutex/mut_pthread.c
mkdir .libs
cc -c -I. -I../dist/.. -D_REENTRANT -O2 ../dist/../mutex/mut_pthread.c -
fPIC -DPIC -o .libs/mut_pthread.o

[...]

cc -O2 -o .libs/db_verify .libs/db_verify.o .libs/util_cache.o
.libs/util_sig.o ./.libs/libdb-4.3.so -lrt -R/usr/local/lib
creating db_verify
/bin/sh ./libtool --mode=execute true db_verify
$

5. Install the Berkeley DB package by running make install as the root user.

$ sudo1 make install
Installing DB include files: /usr/local/include ...
Installing DB library: /usr/local/lib ...

[...]

cp -p .libs/db_verify /usr/local/bin/db_verify
Installing documentation: /usr/local/docs ...
$

1 The sudo command grants selective root access for individual commands, without requiring the use of the root account’s
password. If you’re not using sudo on your UNIX systems, you should be.

3 Installing & Configuring OpenLDAP

TLS
While TLS isn’t required to run OpenLDAP, the encryption capability it provides is something most sites will
want. The freely available OpenSSL package provides TLS libraries suitable for use with OpenLDAP. As you
might expect, you should use the most current version of OpenSSL that’s available. When this paper was written,
the most recent version was 0.9.8.

To install OpenSSL, perform the following tasks:

1. Download the most current version of OpenSSL to your working directory on the system you want to install
OpenLDAP on. The download URL is http://www.openssl.org/source/

2. Uncompress and un-archive the distribution package:

$ gzip -d openssl-0.9.8.tar.gz
$ tar xfv openssl-0.9.8.tar
openssl-0.9.8/apps/
openssl-0.9.8/apps/app_rand.c

[...]

openssl-0.9.8/VMS/VMSify-conf.pl
$

3. Change your current directory to the openssl-0.x.x directory, and run the config script. Just like we did
with Berkeley DB, we’re going to tell OpenSSL to install itself in the /usr/local/ directory. We’re also going
to instruct it to build shared versions of its libraries, which OpenLDAP is going to need.

$ cd openssl-0.9.8
$./config shared --openssldir=/usr/local
Operating system: sun4u-whatever-solaris2
Configuring for solaris-sparcv9-gcc

[...]

make[1]: Leaving directory `~/openssl-0.9.8/test'

Configured for solaris-sparcv9-gcc.
$

4. Compile the OpenSSL package by running make.

$ make
making all in crypto...
 (echo "#ifndef MK1MF_BUILD"; \

[...]

make[1]: Nothing to be done for `all'.
make[1]: Leaving directory `~/openssl-0.9.8/tools'
$

4 Installing & Configuring OpenLDAP

5. Install the OpenSSL package by running make install as the root user.

$ sudo make install
making all in crypto...
make[1]: Entering directory `~/openssl-0.9.8/crypto'

[...]

cp openssl.pc /usr/local/lib/pkgconfig
chmod 644 /usr/local/lib/pkgconfig/openssl.pc
$

Downloading & Installing OpenLDAP

Once Berkeley DB and OpenSSL are installed, it’s time to download and install the OpenLDAP package. As
always, you should use the latest stable release of the software. When this paper was written, 2.2.26 was the
newest stable version of OpenLDAP.

To install OpenLDAP, follow these steps:

1. Download the most current version of OpenLDAP to your working directory. The download URL is
http://www.openldap.org/software/download/

2. Uncompress and un-archive the distribution package:

$ gzip -d openldap-2.2.26.tgz
$ tar xfv openldap-2.2.26.tar
openldap-2.2.26/
openldap-2.2.26/doc/

[...]

openldap-2.2.26/tests/scripts/test020-proxycache
openldap-2.2.26/tests/scripts/test021-certificate
$

3. Change your current directory to the openldap-2.x.x directory, and run the configure script.

$ cd openldap-2.2.26
$./configure
Configuring OpenLDAP 2.2.26-Release ...
checking host system type... sparc-sun-solaris2.9

[...]

creating include/ldap_features.h
creating include/lber_types.h
$

By default, several versions of UNIX and Linux do not search the /usr/local/ directory for shareable files.
That’s a problem when installing OpenLDAP, since it depends on the Berkeley DB and OpenSSL shareables that

5 Installing & Configuring OpenLDAP

we installed in /usr/local/. On Linux, add /usr/local/lib/ to the file /etc/ld.so.conf, then run the
ldconfig -v command. On other versions of UNIX, set the LD_LIBRARY_PATH environment variable to
/usr/local/lib/.

4. Build several programs that the OpenLDAP build process depends upon by running make depend.

$ make depend
Making depend in ~/openldap-2.2.26
 Entering subdirectory include

[...]

make[1]: Leaving directory `~/openldap-2.2.26/doc'

$

5. Build OpenLDAP by running make.

$ make
Making all in ~/openldap-2.2.26
 Entering subdirectory include

[...]

make[1]: Leaving directory `~/openldap-2.2.26/doc'

$

6. Run the OpenLDAP test suite to make sure the package was built correctly.

$ make test
Initiating LDAP tests for BDB...
Running ./scripts/all...

[...]

>>>>> ./scripts/test021-certificate completed OK.
>>>>> waiting 10 seconds for things to exit
$

7. Run make install as root to install OpenLDAP on your system.

$ sudo make install
Making all in ~/openldap-2.2.26
 Entering subdirectory include

[...]

make[1]: Leaving directory `~/openldap-2.2.26/doc'

$

6 Installing & Configuring OpenLDAP

Configuring OpenLDAP

OpenLDAP is controlled primarily by the settings in the slapd.conf file. (The executable that handles
incoming LDAP requests is named slapd - it’s probably short for “Standalone Lightweight Access Protocol
Daemon”.) By default, slapd.conf is located in the /usr/local/etc/openldap/ directory. slapd.conf
contains a list of configuration variables and their values, separated by white space. Blank lines are ignored, as
well as lines that begin with a pound (#) sign.

Following is a sample slapd.conf file that has been split into logical sections. Following every section is a
brief explanation of it configuration variables and their possible values. For detailed information about every
configuration variable supported by OpenLDAP, see the OpenLDAP Administrator’s Guide on the OpenLDAP
website.

/usr/local/etc/openldap/slapd.conf

include /usr/local/etc/openldap/schema/core.schema
include /usr/local/etc/openldap/schema/cosine.schema
include /usr/local/etc/openldap/schema/inetorgperson.schema

A schema describes one or more objects that can exist in an LDAP directory. The core.schema and
cosine.schema files include descriptions for very low-level objects2 that are needed for a bare-bones LDAP
directory. The inetorgperson.schema file describes the inetOrgPerson object3 that most LDAP-integrated
software uses.

loglevel 264
pidfile /usr/local/var/run/slapd.pid
argsfile /usr/local/var/run/slapd.args

The loglevel configuration variable controls the amount of logging that OpenLDAP performs. The possible
types of logging are:

Level Type Of Logging
0 No logging
1 Trace function calls
2 TCP packet-level debugging
4 Detailed trace debugging
8 Connection management
16 Sent and received packets
32 Search filter processing
64 Configuration file processing
128 Access control list processing
256 Connection, operation, and results statistics
512 Client results statistics
1024 Shell back-end communications
2048 Entry parsing debugging

2 These base objects are described in RFC 2251, RFC 2252, RFC 2253, RFC 2254, RFC 2255, and RFC 2256.
3 The inetOrgPerson object is described by RFC 2798.

7 Installing & Configuring OpenLDAP

loglevel is an integer bit mask, which means you just add together the level values for each type of logging you
want. For example, loglevel in our sample slapd.conf file is set to 264. A value of 264 means that
operational statistics and connection management logging are turned on (256 + 8 = 264).

Setting loglevel to a value of -1 turns on all logging. You should only do this if you’re trying to debug a
problem. Otherwise, OpenLDAP will generate so much log data that it’ll swamp the system.

OpenLDAP stores its process ID (PID) in the file named by the pidfile configuration variable. Scripts that start
and stop the OpenLDAP server use the contents of this file. The argsfile variable specifies a file that contains
OpenLDAP command-line arguments. The OpenLDAP server will automatically use these arguments every time
it’s started, which can save you a lot of typing if you want to specify a lot of command line arguments.

TLS options
TLSCipherSuite HIGH:MEDIUM
TLSCertificateFile /usr/local/etc/openldap/slapd-cert.pem
TLSCertificateKeyFile /usr/local/etc/openldap/slapd-key.pem

These configuration variables control TLS encryption settings, if you built OpenLDAP with TLS support.
TLSCipherSuite specifies which encryption methods the server will accept, as well as the order it prefers to
accept them in. You can specify either cipher groups (the HIGH and MEDIUM groups are used in this example), or
individual cipher methods (such as AES:3DES:SHA1:RC4). Separate each cipher method with a colon.

The TLSCertificateFile and TLSCertificateKeyFile configuration variables specify the files that
contain the server’s public certificate and private key, respectively. If you already have TLS certificates4 for the
system you’re running OpenLDAP on, you can set these variables to point at them. If you don’t have TLS
certificates, see Appendix A - Generating TLS Certificates at the end of this paper for step-by-step instructions on
how to create them.

BDB database definitions

database bdb

The database variable specifies the backend database used by OpenLDAP to store data. The bdb module is
used to support Berkeley DB, which is what we’ve built OpenLDAP to support.

suffix "dc=apes.process,dc=com"

The suffix configuration variable specifies the name of the base entry in the directory. All other entries in the
directory will be descendents of this object. Unless you’re trying to do something unusual, the base entry should
be based on the local domain name. In the above example, the LDAP directory would hold entries for the
apes.process.com domain.

rootdn "cn=Directory Manager,dc=apes.process,dc=com"
rootpw secret

Every LDAP directory has a root distinguished name (DN), which is roughly analogous to the root user on a
UNIX system. The user specified by the rootdn variable can read, write, and search any part of the directory.
You can name the root DN anything you want, but cn=Manager or cn=Directory Manager are commonly

4 With a few exceptions, SSL certificates can do double duty as TLS certificates.

8 Installing & Configuring OpenLDAP

used. Note that the value of the suffix variable is appended to the end of the root DN’s name. The rootpw
configuration variable specifies the password for the root DN account.

directory /usr/local/var/openldap-data

The directory variable specifies the location on the file system where the actual database files that contain
directory data are stored. Make sure that this directory exists, and that it’s only accessible by the user that
OpenLDAP will be running as (running the command chmod 700 /usr/local/var/openldap-data will
set the correct permissions).

Indices to maintain
index objectClass eq

The index variable specifies the object attributes that OpenLDAP should maintain indexes for. An index can
greatly reduce the amount of time needed to find an object based on a particular attribute. The default index
setting will create an index for the objectClass attribute, which should be sufficient for all but the most highly
loaded sites. Tuning OpenLDAP indexes is outside the scope of this white paper, but there should be little reason
to do so at most sites.

The complete slapd.conf configuration file looks like:

/usr/local/etc/openldap/slapd.conf

include /usr/local/etc/openldap/schema/core.schema
include /usr/local/etc/openldap/schema/cosine.schema
include /usr/local/etc/openldap/schema/inetorgperson.schema

loglevel 264
pidfile /usr/local/var/run/slapd.pid
argsfile /usr/local/var/run/slapd.args

TLS options
TLSCipherSuite HIGH:MEDIUM
TLSCertificateFile /usr/local/etc/openldap/slapd-cert.pem
TLSCertificateKeyFile /usr/local/etc/openldap/slapd-key.pem

BDB database definitions

database bdb
suffix "dc=my-domain,dc=com"

rootdn "cn=Manager,dc=my-domain,dc=com"
rootpw secret

directory /usr/local/var/openldap-data

Indices to maintain
index objectClass eq

9 Installing & Configuring OpenLDAP

Running OpenLDAP

Now that OpenLDAP is configured for your site, it’s time to start it up. Starting OpenLDAP is simple - just run
slapd as root.

$ sudo /usr/local/libexec/slapd
$

You can verify that OpenLDAP started by checking the system process listing for the slapd process:

$ ps -ef | grep slapd
 root 23932 1 0 09:52:03 ? 0:00 /usr/local/libexec/slapd
$

The recommended way to shut down OpenLDAP is to send the slapd process an interrupt signal (SIGINT). This
lets slapd write out all cached data and exit gracefully. You can get slapd’s process ID either by running ps
(like in the above example) or by looking at the contents of the /usr/local/var/run/slapd.pid file.

$ sudo kill -INT `cat /usr/local/var/run/slapd.pid`
$

You should avoid using kill -9 to stop slapd at all costs. Using drastic means to shut down OpenLDAP will
corrupt the directory data.

If you want OpenLDAP to automatically start when the system boots and automatically stop when the system
halts, you can create a simple initialization script in the /etc/init.d directory. Your script should look
something like this:

#!/sbin/sh

NAME: /etc/init.d/openldap

case “$1” in
’start’)
 [-f /usr/local/libexec/slapd] && /usr/local/libexec/slapd
 ;;
’stop’)
 kill -INT `cat /usr/local/var/run/slapd.pid`
 ;;
*)
 echo “Usage: $0 { start | stop }”
 exit 1
esac

exit 0

10 Installing & Configuring OpenLDAP

Populating An OpenLDAP Directory

An LDAP directory that doesn’t contain any data isn’t very useful. The ldapmodify tool is used to add new
entries to the directory or modify existing entries. The details of new entries are specified in a special type of text
file called an LDIF file5. The full details of LDIF are beyond the scope of this white paper, but most LDAP
reference books contain a complete description.

We’re going to create an LDIF file that contains an entry for the root node, an entry for an organizational unit
named “people”, and two inetOrgPerson objects. You’ll want to alter the dn attributes to correspond with the
suffix that you specified in the slapd.conf file.

#NAME: users.ldif
#root node
dn: dc=apes.process,dc=com
dc: apes.process
objectClass: dcObject
objectClass: organizationalUnit
ou: Apes Incorporated

#people organizational unit
dn: ou=people,dc=apes.process,dc=com
ou: people
objectClass: organizationalUnit

#entry for "Charlton Heston"
dn: cn=Charlton Heston,ou=people,dc=apes.process,dc=com
cn: Charlton Heston
sn: Heston
mail: heston@apes.process.com
telephoneNumber: 508-555-1212
objectclass: inetOrgPerson

#entry for "Roddy McDowall"
dn: cn=Roddy McDowall,ou=people,dc=apes.process,dc=com
cn: Roddy McDowall
sn: McDowall
mail: mcdowall@apes.process.com
telephoneNumber: 508-555-1234
objectclass: inetOrgPerson

It’s very important that there be exactly one blank line between each of the objects in the LDIF file. The line has
to be completely blank - no white space characters like tabs or spaces are allowed. If you get error messages that
follow the form of “additional info: objectClass: value #1 provided more than once”, then
you have a non-blank line between objects somewhere in the file.

Now, use ldapmodify to add the entries to the directory. Make sure OpenLDAP is running before you run
ldapmodify. Note that you need to supply ldapmodify with the root DN and password that you specified in
slapd.conf, since it needs write access to the directory to add the entries.

$ ldapmodify -D "cn=Directory Manager,dc=apes.process,dc=com” -w secret \
 -x -a -f users.ldif
adding new entry "dc=apes.process,dc=com"

5 The LDAP Data Interchange Format (LDIF) is defined in RFC 2849.

11 Installing & Configuring OpenLDAP

adding new entry "ou=people,dc=apes.process,dc=com"
adding new entry "cn=Charlton Heston,ou=people,dc=apes.process,dc=com"
adding new entry "cn=Roddy McDowall,ou=people,dc=apes.process,dc=com"
$

If you want, you can use the ldapsearch command line tool to verify that the entries have been added to the
directory.

$ ldapsearch -x -b "dc=apes.process,dc=com"
extended LDIF

LDAPv3
base <dc=apes.process,dc=com> with scope sub
filter: (objectclass=*)
requesting: ALL

apes.process.com
dn: dc=apes.process,dc=com
dc: apes.process
objectClass: dcObject
objectClass: organizationalUnit
ou: Apes Incorporated

[...]

search result
search: 2
result: 0 Success

numResponses: 5
numEntries: 4
$

About Process Software
Process Software is a premier supplier of communications software solutions to mission critical environments.
With over 20 years in business, we were early innovators of email software and anti-spam technology. Process
Software has a proven track record of success with thousands of customers, including many Global 2000 and
Fortune 1000 companies.

U.S.A.: (800)722-7770 • International: (508)879-6994 • Fax: (508)879-0042

E-mail: info@process.com • Web: http://www.process.com

Appendix A - Generating TLS Certificates

Recent versions of OpenSSL include a certificate generation script that makes it very easy to generate your own
TLS certificates. The script is named CA.pl, and is located in the /usr/local/misc/ directory. To generate
TLS certificates suitable for use with OpenLDAP, perform the following steps:

1. Run CA.pl as the root user.

$ sudo /usr/local/misc/CA.pl -newcert
Generating a 1024 bit RSA private key
..............++++++
........................++++++
writing new private key to 'newkey.pem'
Enter PEM pass phrase:I am the Walrus.
Verifying - Enter PEM pass phrase:I am the Walrus.

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Massachusetts
Locality Name (eg, city) []:Boston
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Process Software
Organizational Unit Name (eg, section) []:Engineering
Common Name (eg, YOUR name) []:John Doe
Email Address []:jdoe@process.com
Certificate is in newcert.pem, private key is in newkey.pem
$

2. The new private key is password protected, which means you have to re-enter the pass phrase every time you
start OpenLDAP. That’s going to cause problems if you want to have OpenLDAP automatically start when the
system is booted (or if you don’t want to remember yet another password). Strip out the password using the
openssl command line tool.

$ /usr/local/bin/openssl rsa -in newkey.pem -out newkey1.pem
Enter pass phrase for newkey.pem:I am the Walrus.
writing RSA key
$

3. Move the public certificate and private key files to the locations specified by TLSCertificateFile and
TLSCertificateKeyFile in your slapd.conf file.

$ sudo mv newcert.pem /usr/local/etc/openldap/slapd-cert.pem
$ sudo mv newkey1.pem /usr/local/etc/openldap/slapd-key.pem

4. If you desire, you can have your certificate signed by a certificate authority (CA) like Thawte or VeriSign.
Visit the website of your CA of choice for more information.

