TCPware 6.1 Management
Guide

September 2023

This manual provides the system manager with the procedures for managing the TCPware family of
software products.

Operating System/Version: OpenVMS VAX V5.5-2 or later
OpenVMS Alpha V6.2 or later

OpenVMS Itanium V8.2 or later

Software Version: TCPware 6.1

Process Software
Framingham, Massachusetts
USA

The material in this document is for informational purposes only and is subject to change without notice.
It should not be construed as a commitment by Process Software. Process Software assumes no
responsibility for any errors that may appear in this document.

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013.

Third-party software may be included in your distribution of TCPware, and subject to their software
license agreements. See www.process.com/products/tcpware/3rdparty.html for complete information.

All other trademarks, service marks, registered trademarks, or registered service marks mentioned in this
document are the property of their respective holders.

TCPware is a registered trademark and Process Software and the Process Software logo are trademarks
of Process Software.

Copyright ©2021 Process Software Corporation. All rights reserved. Printed in USA.

If the examples of URLs, domain names, internet addresses, and web sites we use in this documentation
reflect any that actually exist, it is not intentional and should not to be considered an endorsement,
approval, or recommendation of the actual site, or any products or services located at any such site by
Process Software. Any resemblance or duplication is strictly coincidental.

http://www.process.com/products/tcpware/3rdparty.html

Preface

Introducing This Guide

This guide describes how to manage a TCP/IP network and the TCPware components. It is for system
managers and administrators.

What You Need to Know Beforehand

Before using TCPware, you should be familiar with:

The TCPware for OpenVMS products, components, features, and capabilities (see the User's
Guide for more information)

Computer networks in general

The OpenVMS operating system and file system

How This Guide Is Organized

This guide has the following contents:

Part I, Managing Hosts - Includes chapters on the Dynamic Host Configuration Protocol (DHCP)
Client, Domain Name Services, and the Dynamic Host Configuration Protocol (DHCP) and
BOOTP servers.

Part 11, Managing Networks - Includes chapters on the PPP and SLIP serial link interfaces,
Cluster Alias Failover, the Simple Network Management Protocol (SNMP), and X.25 networks.
Part 111, Managing Routing - Includes a chapter on the routing protocols (primarily GateD).

Part IV, Managing Time Services - Includes chapters on the Network Time Protocol (NTP) and
TIMED protocol.

Part VV, Managing Applications - Includes chapters on managing the FTP-OpenVMS Client and
Server, NFS-OpenVMS Client and Server, Print Services, Berkeley R Command services, the
mail services (SMTP-OpenVMS and IMAP), and TELNET-OpenVMS Server.

Part VI, Managing Security - Includes chapters on general TCPware security, Access
Restrictions, Packet Filtering, Token Authentication, Kerberos server and applications, the IP
Security Option (IPSO), and Secure Shell (SSH).

e Part VII, Managing Additional Support - Includes chapters on PATHWORKS support, tunneling
DECnet over IP, X Display Manager (XDM), and DECwindows support.

e Part VIII, Network Testing Tools - Includes a chapter on the network testing tools, such as
DISCARD, FINGER, NETCU DEBUG, NSLOOKUP, PING, QUOTED, TCPDUMP, and
TRACEROUTE.

e Appendixes, including NFS-to-OpenVVMS filename mapping rules, Data Network Identification
Codes for X.25 networks, and TCPware logicals.

e Index to this guide.

Online Help

You can use help at the DCL prompt to find the following:

e Topical help - Access TCPware help topics as follows:
SBHELP TCPWARE [topic]

The topic entry is optional. You can also enter topics and subtopics at the following prompt and
its subprompts:

TCPWARE Subtopic?

Online help is also available from within certain TCPware components: FTP client and server,
Network Control Utility (NETCU), TELNET client, NSLOOKUP, and TRACEROUTE. Use the
HELP command from within each component:

NETCU>IziH N ofe] o ¥ Ne

e Error messages help - Access help for TCPware error messages as follows:

$ HELP TCPWARE MESSAGES

If the error message is included in the MESSAGES help, it identifies the TCPware component
and provides a meaning and user action. See the ITnstructions under MESSAGES.

Obtaining Customer Support

You can use the following customer support services for information and help about TCPware and other
Process Software products if you subscribe to our Product Support Services. (If you bought TCPware
products through an authorized TCPware reseller, contact your reseller for technical support.) Contact
Technical Support directly using the following methods:

Electronic Mail
E-mail relays your question to us quickly and allows us to respond as soon as we have information for
you. Send e-mail to support@process.com. Be sure to include your:

e Name

e Telephone number

e Company name

e Process Software product name and version number
e Operating system name and version number

e Process Software support contract number

Describe the problem in as much detail as possible. You should receive an immediate automated
response telling you that your call was logged.

Telephone

If calling within the continental United States or Canada, call Process Software Technical Support toll-
free at (800) 394-8700. If calling from outside the continental United States or Canada, dial +1 (508)
628-5074. Please be ready to provide your name, company name, Process Software support contract
number, and telephone number.

World Wide Web

There is a variety of useful technical information available on our World Wide Web home page,
http://www.process.com/

License Information

TCPware for OpenVMS includes a software license that entitles you to install and use it on one
machine. Please read and understand the Software License Agreement before installing the product. If
you want to use TCPware on more than one machine, you need to purchase additional licenses. Contact
Process Software or your distributor for details.

Maintenance Services

Process Software offers a variety of software maintenance and support services. Contact us or your
distributor for details about these services.

Documentation Set

The documentation set for TCPware consists of the following:

Installation & Configuration Guide - For system managers and those installing the software.
The guide provides installation and configuration instructions for the TCPware products.
Management Guide - For system managers. This guide contains information on functions not
normally available to the general network end user. It also includes implementation notes and
troubleshooting information.

Network Control Utility (NETCU) Command Reference - For users and system managers. This
reference covers all the commands available with the Network Control Utility (NETCU) and
contains troubleshooting information.

Programmer's Guide - For network application programmers. This guide gives application
programmers information on the callable interfaces between TCPware and application programs.
Release Notes for the current version of TCPware - For all users, system managers, and
application programmers. The Release Notes are available online on your TCPware media and
are accessible before or after software installation.

User's Guide - For all users. This guide includes an introduction to TCPware products as well as
a reference for the user functions arranged alphabetically by product, utility, or service.

Conventions Used

Convention Meaning

host

Any computer system on the network. The local host is your computer. A remote
host is any other computer.

monospaced System output or user input. User input is in type.

type

Example: Is this configuration correct?

Monospaced type also indicates user input where the case of the entry should be
preserved.

italic type Variable value in commands and examples. For example, username indicates that
you must substitute your actual username. Italic text also identifies documentation
references.

[directory] Directory name in an OpenVMS file specification. Include the brackets in the
specification.

[optional-text] (Italicized text and square brackets) Enclosed information is optional. Do not include
the brackets when entering the information.

Example: START/IP line address [info]

This command indicates that the i nfo parameter is optional.

{value | value} Denotes that you should use only one of the given values. Do not include the braces
or vertical bars when entering the value.

Note Information that follows is particularly noteworthy.

Caution Information that follows is critical in preventing a system interruption or security
breach.

Press the specified key on your keyboard.

Ctrl+key Press the control key and the other specified key simultaneously.

Press the Return or Enter key on your keyboard.

1. Common Interfaces

Introduction

This chapter describes the following network interfaces:

e Ethernet
e Fiber Distributed Data Interface (FDDI)
e Token Ring

e LAN Emulation over ATM

e Classical IP over ATM

e HYPERchannel

e |P-over-DECnet

e proNET

e HP Wide Area Network (WAN) device drivers
e Pseudo devices

Ethernet, FDDI, Token Ring, and ATM

TCPware for OpenVMS supports all HP Ethernet, FDDI, Token Ring, LAN Emulation over
Asynchronous Transfer Mode (ATM), and Classical IP over ATM (CLIP) interfaces, so that you can
send IP datagrams over these types of LANS.

These interfaces generally include the use of the Address Resolution Protocol (ARP) and the Reverse
Address Resolution Protocol (RARP), except CLIP, which does not support RARP.

For details on configuring LAN network devices and their addresses, see the Installation &
Configuration Guide, Chapter 3, Configuring the TCP/IP Core Environment.

Address Resolution Protocol

ARP dynamically maps between internet and physical addresses. TCPware provides an ARP table of
mappings that it keeps in cache. If a mapping is not in this cache when a datagram is transmitted,
TCPware queues the datagram and broadcasts an ARP request over the network. When a host responds
with an internet-to-physical address mapping, TCPware adds it to its cache and transmits the queued
datagrams.

TCPware’s implementation of ARP does not probe for imposters. However, it may generate the
following OPCOM message, which includes the physical address of the system with a duplicate internet
address:

Duplicate IP address: Sent from physical address...

In the rare case where the remote system does not support ARP, you can use the ADD ARP and
REMOVE ARP commands in TCPware’s Network Control Utility (NETCU) to add or remove entries for
the system. You can also find specific ARP entries using FIND ARP, and show the entire ARP table
using the SHOW ARP command.

You can also set various ARP parameters using /ARP x qualifiers with the SET INTERFACE
command. The ARP qualifiers control when to check the age of an ARP entry, how long to keep it in
cache, how long to wait for an unresolved entry to be removed from cache, and the maximum size of the
cache. TCPware provides defaults for these parameters, so you do not normally need to use these
commands. For example, it normally removes entries from its ARP table if it does not receive a packet
for an entry within 10 minutes, or if the table is more than 512 entries long.

Reverse Address Resolution Protocol

The Reverse Address Resolution Protocol (RARP) enables a diskless client to find its IP address at
startup from a RARP server. The diskless client broadcasts a request that contains its physical hardware
address. The server maps the hardware address to the IP address corresponding to the physical address
of the client. The TCPware system only responds to RARP requests for permanent address entries in its
ARP cache. (Note that BOOTP provides the same type of services.)

RARP support is enabled by default for all Ethernet, FDDI, and Token Ring interfaces. RARP support is
disabled for LAN Emulation over Asynchronous Transfer Mode (ATM) and Classical IP over ATM
(CLIP-n) lines. You can explicitly disable RARP support using the NETCU STARTUP command with
the /FLAGS=NORARP qualifier.

Ethernet Trailer Packets

TCPware can operate with trailer packets enabled or disabled. Trailer packets have some of the packet
headers at the end of the packet rather than at the beginning. TCPware disables trailer packet support by
default on Ethernet lines. However, some implementations use trailer packets, such as those running
under UNIX. TCPware can receive and process trailer packets, but it will never transmit them.

To disable trailer packets on UNIX systems, use the i fconfig command with the -trailers
option. To disable trailer packets on OpenVMS systems, use the NETCU START/IP
/FLAGS=NOTRAILERS qualifier.

Qualifiers with LAN Device Lines

The START/IP command supports several qualifiers that you can use with Ethernet, FDDI, Token
Ring, LAN Emulation over Asynchronous Transfer Mode (ATM), and Classical IP over ATM lines. See
Table 2-11 and Table 2-13 in the NETCU Command Reference.

VMS Communications Interfaces Support

TCPware supports VMS Communications Interfaces (VCIs). VCI is a high speed interface to the LAN
drivers. If you want to disable VVCI support for some reason, use the /FLAGS=NOVCTI qualifier to the
NETCU START/IP command.

Limiting Receive Packet Rate
TCPware supports placing a limit on the number of receive packets it processes per second. If a limit is
set on an interface and that limit is exceeded, TCPware may issue the following OPCOM message:

Warning - maximum receive packet rate exceeded on line Iline-id (rate
packets/second) .

This indicates that the interface specified by 11ine-1id received more packets than were allowed. This
may indicate that either the receive packet rate limit is too low or that a flood of packets arrived at the
system and a network problem exists that should be corrected. If the limit is too low, raise it using the
NETCU SET INTERFACE /RECEIVE LIMIT command. If a network problem exists, investigate it
and correct it.

HYPERchannel

TCPware supports any HYPERchannel interface supported by Network System Corporation’s H269
device driver, including the UNIBUS, QBUS, MASSBUS, and BIBUS interfaces.

The HYPERchannel interface support includes the use of the Address Resolution Protocol (ARP). Use
ARP to automatically map an internet address to a physical address.

Address Format

When starting a HYPERchannel line, you must specify line-specific-information. This is the local
HYPERchannel address in 32-bit address. The format is aa-bb-cc-dd, where aa, bb, cc, and dd are
hexadecimal values representing each byte of the address:

e aa is the global network address domain (if none, specify 00)
e Dbb is the global network address network (if none, specify 00)

e cc isthe physical unit
e ddisthe logical unit

If you are using 16-bit addresses, specify the address as 00-00-cc-dd.

The H269 driver’s I0$ ATTACH function uses the cc-dd portion of the local HYPERchannel address
as the path address. You should always specify the local HYPERchannel address parameter as the 32-bit
HYPERchannel address.

Address Mapping

TCPware needs to map the 32-bit internet addresses into 32-bit HYPERchannel addresses. These two
address families are not related. That is, there is no mathematical formula that you can use to convert
from one address family to the other. Instead, you must either configure an ARP server or pre-load the
address resolution table with the mappings.

Note: You must properly configure the server with address mappings for all systems on the
HYPERchannel network.

To pre-load the address resolution table, use NETCU ADD ARP commands (see the NETCU Command
Reference). The ADD ARP command requires that you specify a 48-bit value (in hexadecimal format).
The syntax is:

aa-bb-cc-dd-ee-ff

where the additional ee is the HYPERchannel trunks-to-try mask (typically FF) and £ £ is the
HYPERchannel flags mask (typically 00). For ease of use, the ADD ARP command allows you to
specify most addresses using aa-bb-cc-dd-00-00. It supplies the proper trunks-to-try mask of FF.
See the HYPERchannel documentation for information on other values for the trunks-to-try and flags
fields.

Note that if you load the address resolution table through the ADD ARP command, specify
/PERMANENT. Otherwise, TCPware removes the added entries after a short time.

Qualifiers with HYPERchannel Lines

The START/IP command supports several qualifiers that you can use with HYPERchannel lines. See
Table 2-11 in the NETCU Command Reference.

|IP-over-DECnet

TCPware provides support for DECnet interface implementations so that you can send IP datagrams
over DECnet links. This lets you connect separate TCP/IP LANs over DECnet WAN links.

Configuring DECnet Lines

To configure a DECnet line:

1. Enter the DECnet line identification, internet address, and host name for the local internet
address in the response to the applicable prompts in the CNFNET network configuration utility.
Note that you need a different IP address for the DECnet line.

2. Enter the appropriate line-specific information.

Line-Specific Information

The START/IP command Iine-specific-information parameter provides the required
DECnet link information. Enter the 1ine-specific-information in the following format:

node-name: : "TASK=object-name”

Parameter Identifies the...

node—name listener node when the master mode issues it. It identifies the master node when the
listener mode issues it.

object-name object used on the listener node. Both the master and listener nodes must specify the
same object-name.

An IP-over-DECnet line has a master node at one end and a listener node at the other end.

Sample Configuration
The below example shows selections from a sample IP-over-DECnet configuration in TCPware’s
CNFNET.

Line Id Network Device
ONA-n for HP’s DELQA, DESQA, or DEQNA (UQDRIVER)
UNA-n for HP’s DELUA or DEUNA (XEDRIVER)

Enter the line identifications [LPB-0, ISA-0]: LPB-0, ISA-0, DECNET-0

What is the local host’s INTERNET ADDRESS for line ISA-0 [10.16.1.17:

What is the NAME for line ISA-0 [BVA2]: [:3%:¥4
What is the SUBNET MASK for the line SVA-0 [255.255.0.0]:

Do you want to enable TRAILER packet support for line ISA-0 [NO]:

Do you want to enable RARP (Reverse ARP) support for line ISA-0 [YES]:

What is the local host’s INTERNET ADDRESS for line ISA-0 [10.16.1.2]:

What is the NAME for line DECNET-0 [BVA2]: 1:\Y:¥4

What is the SUBNET MASK for the line DECNET-0 [255.255.0.07]: INHNEISNY

What is the DECnet link information for line DECNET-0: @\:NEEEEIV:NICoV40)))1
Is this the LISTENER end of the DECnet link for line DECNET-0 [NO]: 330¥q8j2

The network devices are configured as follows:

Line Address Name Options

LPB-0 127.0.0.1 LOOPBACK

SVA-0 10.16.1.1 BVA2 /MASK=255.255.0.0
/FLAGS= (NOTRAILERS)

DECNET-0 10.16.1.2 ONA1 /MASK=255.255.0.0

ONAl: :”task=0ZONE” /FLAGS=LISTENER

Qualifiers with DECnet Lines

The START/IP command supports several qualifiers that you can use with DECnet lines. See Table 2-
11 in the NETCU Command Reference.

ProNET-10/80

The proNET-10 and proNET-80 token ring controllers produced by Proteon, Inc. form a link between
the hardware devices, the token ring, and TCPware.

Configuring proNET Lines
When you configure proNET lines, the D component of the internet address (using the standard
A.B.C.D convention) must match the node address of the proNET controller.

Qualifiers with proNET Lines
The START/IP command supports a qualifier that you can use with proNET lines. See Table 2-11 in
the NETCU Command Reference.

HP Wide Area Network (WAN) Device Drivers

The HP WAN Device Drivers are synchronous interfaces that form a link between the hardware devices
and TCPware. TCPware for OpenVMS supports the DSV11, DSB32, and DST32 HP WAN interfaces.

Line-Specific Information

The NETCU START/IP command’s 1ine-specific-information parameter provides the
required DECnet link information. The 1ine-specific-information isa quoted string of the
line configuration options shown in Chapter 4.

For details on these parameters, such as the possible values for the line speed, CRC, and so on, see the
VAX Wide Area Network Device Driver’s Programmer’s Guide.

An example of 1ine-specific-informationis
“PROTOCOL DDCMP POINT CLOCK INTERNAL LINE SPEED 64000”

When specifying 1 ine-specific-information for HP WAN device drivers lines, be aware of
the following:

e Youmustenclose 1ine-specific-information in quotes for these lines.
e You can use keyword abbreviations.

Qualifiers with VAX WAN Device Driver Lines

The START/IP command supports several qualifiers you can use with HP WAN device driver lines.
See Table 2-11 in the NETCU Command Reference.

Parameter Takes... Description

PROTOCOL DDCMP POINT Line protocol used
LAPBE

LAPB

SDLC
DUPLEX HALF Line operation used
FULL
CLOCK INTERNAL Line clocking used
EXTERNAL
CRC type Type of CRC used (not recommended)
LINE SPEED baud Line speed (only useful with CLOCK INTERNAL)
RECEIVE BUFFERS number Number of receive buffers
RETRANSMIT TIMER time Retransmission tine (for PROTOCOL, DDCMP POINT only)

Pseudo Devices

Pseudo devices are a way to configure a physical device to have multiple Internet addresses. Pseudo
devices are typically used when a system is connected to a network that needs extra network numbers
assigned to it. Pseudo devices can also be used in place of secondary addresses (for example, when a
system has multiple addresses on the same network).

When starting a pseudo device, you specify the local Internet address, network mask, and the physical
device to which the pseudo device is connected.

Adding a Pseudo Device

CNFNET allows the configuration of pseudo devices.
The TCPware line-id for a pseudo device is PSD-n, and n is 0 to 255.

To configure one or more pseudo devices via CNFNET, include the line-id or line-ids for the pseudo
devices when prompted to enter the line identifications for all the network devices. Be sure to enter the
pseudo device line-id after the physical device line-id. CNFNET prompts you for the standard
information (Internet address, host name, and subnet mask) and for the physical device line-id for the
pseudo device.

You can also start pseudo devices by using the NETCU START/IP command. See START/IP in
Chapter 2 of the NETCU Command Reference.

Characteristics of Pseudo Devices

Pseudo devices are interchangeable and usable just like physical devices.
However, there are a few special characteristics that are important to point out:

e Multicast joins/leaves are redirected to the physical device.

e NETCU SHOW NETWORK shows no transmit/receive counts for pseudo devices. The physical
device reflects the transmit/receive activity.

e Pseudo devices are removed automatically whenever the physical device is removed (such as by
aNETCU STOP/IP line-id command.

e Starting a pseudo device on a pseudo device (by specifying a pseudo device line-id as the Real-
Line-ID foraNETCU START/IP command) is allowed; however, the underlying physical device is
used.

e Packet filtering is not available for pseudo devices as these devices never receive any packets
(the physical device does). Therefore, you must do all packet filtering on the physical device and
must take this into consideration when creating the packet filter list. Attempting to issue a NETCU
SET FILTEROrNETCU SHOW FILTER command on a pseudo device returns an error message.
e Once a pseudo device is started, the command NETCU SHOW INTERFACE Iine-id canbe
utilized to display the physical device information. For example:

S NETCU SHOW INTERFACE PSD-1
For Network Line PSD-1:
On Physical Line EWA-0:

No receive packet rate limit has been set.
The maximum receive packet rate was 0 packets/second.

The ARP entry limit is 512 entries.

The ARP age check interval is 30 seconds.
The ARP entry age limit is 600 seconds.
The ARP entry wait limit is 20 seconds.

e The line-id value for pseudo devices is 00nn0042 (hex), where n is the unit number (PSD-n).

e For proper operation of pseudo devices (and TCPware is general), the LPB-0 (loopback) device
must exist. The LPB-0 device is technically not optional.

e Pseudo devices cannot be started on unnumbered interfaces.

When to Use Pseudo Devices, Secondary
Addresses, and Interface Routes

TCPware continues to support secondary addresses (NETCU ADD SECONDARY) and interface routes

(NETCU ADD ROUTE) in addition to the new pseudo devices. Some recommendations as to which
method to use and the conditions under which to use them are described next.

e If a TCPware system is connected to a network via a single interface that has multiple networks
numbers assigned to it:

o Use a pseudo device for each network number on which the TCPware system has an
Internet address (other than the one that is used to start the physical device).

o Use an interface route for each network number on which the TCPware system does not
have an Internet address. For an interface route, specify the line-id of the physical device
in place of the gateway address parameter.

e If a TCPware system has multiple addresses on a single network number:

o Use either pseudo devices or secondary addresses for the additional addresses. Using a
pseudo device has some advantages and is recommended (especially if a DNS server is
running on the system).

e To use the cluster alias failover support:
o The secondary address feature must be used.

Note: If your site is using secondary addresses you might want to consider whether switching to
pseudo devices makes sense for these addresses.

2. DHCP Client

Introduction

This chapter describes the Dynamic Host Configuration Protocol (DHCP) client.

General Description

The DHCP client resides on the client host and dynamically sets the network configuration. The
TCPware DHCP client communicates with a DHCP server to get an IP address and other configuration
information. It uses this information to configure the network parameters of the host and to start up the
network.

When the network starts on the host, the DHCP client communicates dynamically and automatically
with the DHCP server in case reconfiguration is needed. The configuration information the client uses is
defined by the policy stored in the DHCP server.

For more general DHCP information, see RFC2132 and RFC2131. Also, see Chapter 4 of this guide for
general DHCP process and TCPware DHCP server information.

Beginning with TCPware 6.0, TCPware supplies two clients: v3 and v4. Only one can be run at any
given time.

Because the DHCP client supports a single network interface on the host, you can only use it to
configure a single network line in TCPware.

Process Software recommends that you do not use the DHCP client with other TCPware components
that usually need a static IP address on the same host, such as DHCP server, authoritative DNS server,
and GateD.

Setting Up the DHCP Client

If this is your first time using a DHCP client on the host, you need to create a configuration file for it
(TCPWARE : DHCLIENT.CONF). If you have been running the DHCP V3 client and want to change to
running the DHCP V4 client, you can use the same configuration file.

If you need to create a configuration file, there are template configuration files available for both the
DHCP V4 client (DHCLIENT) and the DHCP V4 client (DHCLIENT4) in the TCPWARE common
directory.

To create a configuration file from one of the templates, do the following. For DHCLIENT:

SECOPY TCPWARE :DHCLIENT CONF.TEMPLATE TCPWARE :DHCLIENT.CONF

Or for DHCLIENT4:

SEICOPY TCPWARE :DHCLIENT4 CONF.TEMPLATE TCPWARE:DHCLIENT.CON

The DHCP client configuration file should now be edited to specify the name of your host. Talk to your
network administrator: the administrator may want to assign you a host name.

To specify a host name, edit the configuration file to replace this line:
#send host-name “testing”;

with this line:

send host-name “any hostname you want”;

To configure your local host to use the DHCP client, run the TCPware configuration utility CNENET.
To use the V3 DHCP client, you can run CNENET in one of two ways:

¥ ¢ rCEiiaRE : CNFNET

Sl ATCPWARE : CNFNET DHCLIENT,

To use the V4 DHCP client, you must configure it individually:

SMATCPWARE : CNFNET DHCLIENT4

CNFNET can also be used to disable the DHCP client on the host. If you have been running the V3
DHCP client and want to change to the V4 DHCP client, run CNFNET to disable DHCLIENT then run
CNFNET again to enable DHCLIENT4.

After you configure the local host to use a DHCP client, you can run STARTNET to start TCPware:

SMTCPWARE : STARTNET

Here are two examples:

Using CNFNET

M@ TCPWARE : CNFNET

TCPware (R) for OpenVMS Version 6.1-0 Network Configuration procedure for:
TCP/IP Services:

FTP-OpenVMS

NFS-OpenVMS Client

NES-OpenVMS Server

SMTP-OpenVMS

TELNET-OpenVMS

Kerberos Services

SSH-OpenVMS Server

This procedure helps you define the parameters needed to get
TCPware (R) for OpenVMS running on this system.

This procedure creates the configuration data file,

TCPWARE SPECIFIC: [TCPWARE]TCPWARE CONFIGURE.COM, to reflect your
system’s configuration.

Type Return to continue...

You need to supply the following information for each line:

- The internet address for the line

- The name for the line (same as the host name if single

line host, fully qualified domain name if using DNS)

- The subnet mask for the line

- The line specific information (depends on the line)
If there is a DHCP server running on the network and this is a single line
host, you may get the information from DHCP server automatically. To do so,
please select 2.

1. Configure Internet address and related items manually.

2. Configure Internet address and related items automatically

Continue with selection [1]: 2
Configure line SVA-0:
Set DHCP client Host Name
You can press Enter to let the system choose a host name. Or you can specify
a name you would like to use for the host. However, the final name for the
host will be up to the DHCP server to decide, it may not be the name you

specify.

Host Name (Return to end) []:

You need to specify local time zone information. Time zone maybe specified
as fixed value which must be manually set for the daylight savings time
change, or you can use NTP (Network Time Protocol) Daemon to change the
system clock and time offset automatically.

Do you want to have NTP set the time and time offset automatically [NO]?

Using CNFNET DHCLIENT
S ATCPWARE : CNFNET DHCLIENT)
TCPware (R) for OpenVMS Version 6.0-0 Network Configuration procedure for:
TCP/IP Services:
FTP-OpenVMS
NEFS-OpenVMS Client
NFS-OpenVMS Server
SMTP-OpenVMS
TELNET-OpenVMS
Kerberos Services

SSH-OpenVMS Server

This procedure helps you define the parameters needed to get
TCPware (R) for OpenVMS running on this system.

This procedure creates the configuration data file,

TCPWARE SPECIFIC: [TCPWARE]TCPWARE CONFIGURE.COM, to reflect your system's
configuration.

Type Return to continue...

Configuring the Dynamic Host Configuration Protocol (DHCP) Client:

Do you want to use the DHCP Client [YES]:

Set the DHCP client host name.

You can press Enter to let the system choose a host name. Or you can specify
a name you would like to use for the host. However, the final name for the
host will be up to the DHCP server to decide. It may not be the name you
specify.

Host Name (press Return to end []:

The DHCP Client can perform error and debug message logging to OPCOM and a

log file.
Do you want to enable logging [NO]:

Do you want to restart DHCLIENT [NO]:
S

DHCP Client Functions and Logicals

The DHCP client is started as a VMS detached process when TCPware is started up.

When the client starts, it configures the network interface (the line) with an IP address of "0.0.0.0", and
then sends a DHCP discover packet to contact any DHCP server on the net. After getting an IP address
and other net configuration information back from a DHCP server, it restarts the network interface with
the IP address and configures TCPware on the host with the information it received. That information
may include the default gateway, DNS domain name, host name, DNS servers’ IP addresses, and other
things. After the network interface is configured and started, the DHCP client goes to sleep and waits for
specified events (lease expired, renewal time reached) to wake it up again for possible re-configuration.

When the DHCP client is enabled, the logical TCPWARE DHCP CLIENT isequal to 1.

If the DHCP client cannot get the information it needs from the DHCP server, it may re-try until it
succeeds. The re-try frequency can be controlled by the configuration file.

The DHCP client process sets the following items only when configuring the network interface, if it
received the appropriate information from the DHCP server:

e |P address of the network interface
e Host name of the network interface
e Domain Name

e DNS client (Resolver)

e Routes/Gateway

It may change or set the following TCPware logicals:

e TCPWARE DOMATINNAME
e TCPWARE NAMESERVERS

It may change the following related OpenVMS logicals:

e UCX$BIND DOMAIN

e UCXSBIND SERVEROOx
e UCX$SINET HOST

e UCXSBIND SERVER0O0O
e UCX$SINET DOMAIN

e UCXSINET HOSTADDR

DHCP Client Configuration

The TCPware DHCP client uses the configuration file TCPWARE : DHCLIENT . CONF to control the
behavior of the client. You can use one of the supplied template files to start with, as described above.

To explore more configuration possibilities, read the following dhclient.conf descriptions. The
descriptions were edited based on the ISC's descriptions for the Unix version of the DHCP client
configuration file. The original documents can be found in the ISC's website at http://www.isc.org.

The dhclient.conf fileis a free-form ASCII text file. The file may contain extra tabs and new lines
for formatting purposes. Keywords in the file are case-insensitive. Comments begin with the # character
and end at the end of the line and may be placed anywhere within the file (except within quotation
marks). You can use the dhclient.conf file to configure the behavior of the client in the following
ways:

e Protocol timing

e Information requested from the server

e Information required of the server

e Defaults to use if the server does not provide certain information

e Values with which to override information provided by the server
e Values to prepend or append to information provided by the server

The configuration file can also be preloaded with addresses to use on networks that do not have DHCP
servers.

Protocol Timing

The timing behavior of the client need not be configured by the user. If no timing configuration is
provided by the user, a reasonable timing behavior will be used by default - one which results in timely
updates without placing an inordinate load on the server. The following statements can be used to adjust
the timing behavior of the DHCP client, if required, however.

Statement Description

backoff-cutoff time; The client uses an exponential back off algorithm with some
randomness, so that if many clients try to configure themselves at the
same time, they will not make their requests in lockstep. The
backoff-cutoff statement determines the maximum amount of

http://www.isc.org/

initial-delay time;

(V4 only)

initial-interval time;

reboot time;

retry time;

select-timeout time;

time that the client is allowed to back off. The actual value is set
randomly between one-half to one and a half times the time specified.
The default is two minutes (for VV3) or fifteen seconds (for V4).

The initial-delay statement sets the maximum time the client
can wait after starting before commencing its first transmission.
Previous versions of the ISC DHCP client waited up to 5 seconds.
Version 4 has no initial delay by default, to avoid an adverse impact on
system startup time. To restore the old behavior, set initial-
delaytob.

The initial-interval statement sets the amount of time
between the first attempt to reach a server and the second attempt to
reach a server. Each time a message is sent, the interval between
messages is incremented by twice the current interval multiplied by a
random number between zero and one. If it is greater than the
backoff-cutoff amount, it is set to that amount. The default is ten
seconds.

When the client is restarted, it first tries to reacquire the last address it
had. This is called the INIT-REBOOT state. This is the quickest way to
get started if it is still attached to the same network it was attached to
when it last ran. The reboot statement sets the time that must elapse
after the client first tries to reacquire its old address before it gives up
and tries to discover a new address. The reboot timeout default is ten
seconds.

The retry statement determines the time that must pass after the
client has determined that there is no DHCP server present before it
tries again to contact a DHCP server. By default, this is 60 seconds (for
V3) or 5 minutes (for V4).

It is possible to have more than one DHCP server serving any given
network. It is also possible that a client may receive more than one
offer in response to its initial lease discovery message. It may be that
one of these offers is preferable to the other (e.g., one offer may have
the address the client previously used, and the other may not). The
select-timeout isthe time after the client sends its first lease
discovery request at which it stops waiting for offers from servers, if it

timeout time;

has received at least one such offer. If no offers have been received by
the time the select-timeout has expired, the client will accept the
first offer that arrives. By default, the select-timeout is zero
seconds - that is, the client will take the first offer it sees.

The timeout statement determines the amount of time that must pass
between the time that the client begins to try to determine its address
and the time it decides that it is not going to be able to contact a server.
The default is sixty (60) seconds. After the timeout has passed, if there
are any static leases defined in the configuration file, or any leases
remaining in the lease database that have not yet expired, the client
loops through these leases attempting to validate them. If it finds one
that appears to be valid, it uses that lease's address. If there are no valid
static leases or unexpired leases in the lease database, the client restarts
the protocol after the defined retry interval.

Lease Requirements and Requests

The DHCP protocol allows the client to request the server to send it specific information, and not send it
other information that it is not prepared to accept. The protocol also allows the client to reject offers
from servers if they do not contain information the client needs, or if the information provided is not
satisfactory. There is a variety of data contained in offers that DHCP servers send to DHCP clients. The
DHCP client can request any of the DHCP options. See the DHCP Server chapter in this guide for a list
of DHCP options.

Statement

request [option]

(V4 only)
[also] request

[
[,

[option-space
. option];

-]

Description

option]; The request statement causes the client to request that
any server responding to the client send the client its
values for the specified options. Only the option names
should be specified in the request statement, not option
parameters. For example,

option]

request subnet-mask, routers;

require [option] [,

(V4 only)

[also] require

[[option-space .] option]
[, .. option];

send { [option declaration]
[, ... option declaration]}

option];

(V4 only) By default the V4 client requests the
subnet-mask, broadcast-address, time-
offset, routers, domain-name, domain-
name-servers, and host-name options. Note
that if you specify a request statement, you override
these defaults and these options will not be requested.

In some cases, it may be desirable to send no parameter
request list at all. To do this, simply write the request
statement but specify no parameters:

request;

In most cases, it is desirable to simply add one option
to the request list which is of interest to the client in
question. In this case, it is best to 'also request’ the
additional options:

also request static-routes;

The require statement lists options that must be sent
for an offer to be accepted. Offers that do not contain
all the listed options are ignored. There is no default
require list.

The send statement causes the client to send the
specified options to the server with the specified
values. These are full option declarations. Options that
are always sent in the DHCP protocol should not be
specified here. The one exception is that the client can
specify a requested-lease-time option other than the
default requested lease time, which is two hours. The

other obvious use for this statement is to send
information to the server that allows it to differentiate
between this client and other clients or kinds of clients.
For example,

send host—-name “my-name”;

Dynamic DNS

The V4 DHCP client contains a prototype implementation with very limited support for doing DNS
updates when a lease is acquired. Its use is not recommended. No further information is provided here.
By default, the DHCP client will not do DNS updates.

Option Modifiers

In some cases, a client may receive option data from the server that is not appropriate for that client, or
may not receive information that it needs, and for which a useful default value exists. It may also receive
information that is useful, but needs to be supplemented with local information. To handle these needs,
these option modifiers are available.

Statement Description

append [option declaration]; Use the append statement if the client should use the
values supplied by the server followed by a value you
supply. The append statement can only be used for
options that allow more than one value to be given. This
restriction is not enforced. If you ignore it, the behavior
is unpredictable.

default [option declaration]; Use the default statement to specify a default value if
no value was supplied by the server.

prepend [option declaration]; Use the prepend statement if the client should use a
value you supply followed by the values supplied by the
server. The prepend statement can only be used for
options that allow more than one value to be given. This

restriction is not enforced. If you ignore it, the behavior
is unpredictable.

supersede [option declaration]; Usethe supersede statement if the client should
always use a locally configured value or values rather
than whatever is supplied by the server.

Lease Declarations

A 1lease statement consists of the 1ease keyword, followed by a left curly brace ({), followed by
one or more lease declaration statements, followed by a right curly brace (}).

lease { lease-declaration [... lease-declaration] }

The DHCP client may decide after some period of time (see Protocol Timing) that it is not going to
succeed in contacting a server. At that time, it consults its own database of old leases and tests each one
that has not yet timed out by pinging the listed router for that lease to see if that lease could work. It is
possible to define one or more fixed leases in the client configuration file for networks where there is no
DHCP or BOOTP service, so that the client can still configure automatically its address. This is done
with the 1ease statement.

Note: The lease statement is also used in the dhclient.db (v3) or dhclient.leases (V4)
file in order to record leases that have been received from DHCP servers. Some of the syntax for
leases as described below is only needed in the dhclient.db/dhclient.leases file. Such
syntax is documented here for completeness.

The following lease declarations are possible:

Declaration Description

bootp; The bootyp statement indicates that the lease was acquired
using the BOOTP protocol rather than the DHCP protocol. It

is never necessary to specify this in the client configuration
file. The client uses this syntax in its lease database file.

filename "string"; The £ilename statement specifies the name of the boot
filename to use. This is not used by the standard client
configuration script, but is included for completeness.

fixed-address ip-address; The fixed-address statement sets the IP address of a
particular lease. This is required for all lease statements. The
IP address must be specified as a dotted quad (e.g.,
12.34.56.78).

interface "string"; The interface statement indicates the interface on which
the lease is valid. If set, this lease will be tried only on a
particular interface. When the client receives a lease from a
server, it always records the interface number on which it
received that lease. If predefined leases are specified in the
dhclient.conf file, the interface should also be specified,
although this is not required.

option option-declaration; The option statement specifies the value of an option
supplied by the server, or, in the case of predefined leases
declared in dhclient.conf, the value that the user wants
the client configuration script to use if the predefined lease is
used.

renew date; The renew statement defines the time at which the DHCP

rebind date; client should begin trying to contact its server to renew a lease
explre date; o .
that it is using.

The rebind statement defines the time at which the DHCP
client should begin to try to contact any DHCP server to renew
its lease.

The expire statement defines the time at which the DHCP
client must stop using a lease if it has not been able to contact
a server to renew it.

These declarations are set automatically in leases acquired by
the DHCP client, but must be configured in predefined leases:
a predefined lease whose expiration time has passed will not
be used by the DHCP client.

Dates are specified as follows:

weekday year/month/day hour:minute:second

W YYYY/MM/DD HH:MM:SS

w is the day of the week, from zero (Sunday) to six (Saturday).
For predefined leases, this can always be set to 0.

YYYY is the year, including the century.

MM is the number of the month, from 01 to 12.

DD is the day of the month, counting from 01.

HH is the hour, from 00 to 23.

MM is the minute, from 00 to 59.

SS is the second, from 00 to 59.

The time is always in Greenwich Mean Time, not local time.

(V4 only) The V4 DHCP client can specify dates in two
formats. The software will output times in one of these two
formats depending on the setting of the db-time-format
configuration parameter: default or local. The default

server-name "string";

script "script-name";

vendor option space "name";

format is the one described above. The 1ocal format is as
follows:

epoch seconds-since-epoch;

The seconds-since-epoch is set according to the
system's local clock (often referred to as "UNIX time").

Note that when defining a static lease, you may use either time
format, and need not include the comment or values after it.

If the time is infinite in duration, then the date is never
instead of an actual date.

The server-name statement specifies the name of the boot
server name to use. This is not used by the standard client
configuration script.

The script statement specifies the file name of the DHCP
client configuration script. This script is used by the DHCP
client to set the interface's initial configuration prior to
requesting an address, to test the address once it has been
offered, and to set the interface's final configuration once a
lease has been acquired. If no lease is acquired, the script is
used to test predefined leases, if any, and also called once if no
valid lease can be identified. The default value for script-
name is

TCPWARE : DHCLIENT-SCRIPT.COM.

(V4 only) The vendor option space Statement is used
to specify which option space should be used for decoding the
vendor-encapsulate-options option, if one is

received. The dhcp-vendor-identifier can be used to
request a specific class of vendor options from the server.

Alias Declarations

(V4 only) The alias declaration resembles a lease declaration, except that options other than the
subnet-mask option are ignored by the client configuration script, and expiry times are ignored. A
typical alias declaration includes an interface declaration, a fixed-address declaration for the IP alias
address, and a subnet-mask option declaration.

alias { lease-declaration [... lease-declaration] }

Some DHCP clients may require that in addition to the lease they may acquire via DHCP, their interface
also be configured with a predefined IP alias so that they can have a permanent IP address even while
roaming. The DHCP V4 client doesn't support roaming with fixed addresses directly, but in order to
facilitate such experimentation, the DHCP client can be set up to configure an IP alias using the alias
declaration.

Other Declarations

The below table lists all of the other DHCP client declarations that are supported by TCPware. There are
other declarations in the ISC DHCP V4 client which are not supported by TCPware and are not
mentioned here.

Declaration Description

db-time-format [default | locall]l; (V4 only) The db-time-format option determines
which of two output methods are used for printing
times in leases files. The default format provides
day-and-time in UTC, whereas local uses a
seconds-since-epoch to store the time value,
and helpfully places a local time zone time in a
comment on the same line. The formats are described
in detail above.

reject ip-address; The reject statement causes the DHCP client to
. . . reject offers from servers whose server identifier
reject cidr-ip-address L .
[, .. cidr-ip-address]; matches the specified hosts or subnets. This can be
used to avoid being configured by rogue or mis-

configured DHCP servers, although it should be a last
resort; better to track down the bad DHCP server and
fix it.

(V4 only) The cidr-ip-address configuration
type is of the form ip-address[/prefixlen],
where ip-address is a dotted quad IP address, and
prefixlenisthe CIDR prefix length of the subnet,
counting the number of significant bits in the netmask
starting from the leftmost end. Example configuration
syntax:

reject 192.168.0.0/16, 10.0.0.5;

The above example would cause offers from any server
identifier in the entire RFC 1918 "Class C" network
192.168.0.0/16, or the specific single address 10.0.0.5,
to be rejected.

Example
This is the template configuration for the V4 DHCP client:

you can specify a host name here

#send host-name "testing";

#

you can specify the length of the lease for the client

fsend dhcp-lease-time 7200;

#

you can request certain options from the server

note: these are the options that are looked at by the tcpware client

request subnet-mask, broadcast-address, routers, static-routes,
domain-name, domain-name-servers, host-name;

#

you can require certain options

require subnet-mask;

#

you can modify options received from the server using

prepend/append/supersede

#prepend domain-name-servers 127.0.0.1;

#

you can supply defaults for options not sent by the server
#default domain-name-servers 127.0.0.1;

#

you can reject offers from certain servers
#reject 10.10.10.10;

#

client configuration script

#script "tcpware:dhclient-script.com";

Troubleshooting the DHCP Client

How do I know the DHCP client has configured my network successfully?

Check if the TCPWARE DHCP CLIENT logical is equal to 1, you can do:

SEISHOW LOGICAL TCPWARE DHCP CLIENT
"TCPWARE DHCP CLIENT" = "1" (LNMSSYSTEM TABLE)
$

Then run the NETCU SHOW NET command to check if the line is assigned with an IP address.

SEINETCU SHOW NET

Line Local Address Subnet Mask MTU Xmits Errs Recvs Errs RBU
SVA-0 10.10.10.10 255.255.255.0 1500 49 0 3999 0 0
LPB-0 127.0.0.1 255.0.0.0 64512 ©64 0 64 0 0

4191 IP datagrams were transmitted, of which
0 were fragmented
0 were forwards
0 were IGMP reports

115244 TP datagrams/fragments were received, of which
0 were fragments
0 were forwarded
1397 were IGMP queries/reports
61785 IP datagrams were delivered to receivers.

What if | cannot ping an IP address on the internet?

If you can ping the same IP address from another host and the network interface has been configured by
the DHCP client, check the gateway and route configuration on the host.

What if I can ping a host by its IP address but not by its name?

e The DNS client on the host may not be configured right. Type:

Sllshow logical TCPWARE NAMESERVERS

and

Sllshow logical TCPWARE DOMAINNAME

to make sure the DNS client information is correct.

» The DNS server may be down.
» The DNS client may be down. Check if the TCPware DNS process exists.

Why is the local address 0.0.0.0 when | use netcu show net?

The DHCP client has failed to allocate an IP address. The possible reasons and solutions are:

Reason Solution
There is no DHCP server on the net. Set up a DHCP server.

The DHCP server is not configured correctly. Modify the DHCP server configuration.

The DHCP client is configured to reject the Reconfigure the DHCP client to not reject the
DHCP server. DHCP server.
The hostname selection process failed. Use another host name.

There are no IP addresses available in the DHCP Increase the IP address on the DHCP pool server.
server.

Where can | find the status information of the DHCP client?

* The file TCPWARE : DHCLIENT-SCRIPT-ENV.TMP contains the most recent environment
variables used by the DHCP client script file to configure the network.
* The file TCPWARE : DHCLIENT . DB (V3) or TCPWARE : DHCLIENT . LEASES (V4) contains the

DHCP client lease history.
e The file TCPWARE : DHCLIENT . LOG contains information about the DHCP client process.

Note: The TCPWARE : DHCLIENT . LOG file is not created by the default setting of the DHCP
client. To create this log file, configure the DHCP client to enable the error and debug logging
using the command:

SMlQtcpware:cnfnet dhclien

or

SllQtcpware:cnfnet dhclient4

3. Domain Name Services

Introduction

This chapter describes TCPware's Domain Name Services and how it relates to the Domain Name
System (DNS). Specific sections describe:

e The different types of DNS servers, the DNS client, and what they do.
e The syntax, special commands, and fields used in each type of database record.
e TCP/IP cluster load balancing.

Domain Name Services allows local hosts to obtain information about other hosts by accessing a
distributed DNS database. This database supplies Internet addresses and hostnames throughout the
network. Any upper-layer protocol, such as FTP or SMTP, can use DNS when it needs host information.

Domain Name Services also provides the services for cluster load balancing.

Domain Name System (DNS)
Concepts

For a full description of the concepts behind the Domain Name System (DNS) that forms the basis of the
Domain Name Services, see DNS Defined: A Practical Guide to TCP/IP Domain Name System and
Services. DNS Defined is one of the volumes in Process Software's useful TCP/IP Reference Library.

DNS Client

A DNS client (also called a resolver) communicates with a DNS server to resolve a host name and
internet address. The client does not maintain a database. The client only sends queries and provides the
received answers to applications.

You can configure your local host to support a DNS client when you run the TCPware configuration.
The host can support a DNS client only, or both a client and name server.

The configuration procedure (CNENET) prompts you to specify the internet addresses of up to three

name servers the client can query. The client reads this information from two logicals you set through
CNFNET:

e TCPWARE DOMAINNAME
e TCPWARE NAMESERVERS

The client also allows you to set up to six domains in a search list, as well as the minimum number of
dots to recognize in a host name to make it fully qualified. The client reads this information from two
logicals you set through CNFNET:

o TCPWARE_DOMAINLIST
e TCPWARE RES OPTIONS "ndots: ndots"

The configuration procedure (CNFNET) allows you to specify a resolver timeout setting that the client
reads from two logicals you set through CNFNET:

e TCPWARE RES RETRANS MIN (specifies minimum retransmit time value in seconds)
e TCPWARE RES RETRIES (specifies retry count)

See the Installation & Configuration Guide, Chapter 4, Configuring the TCP/IP Services, the Configure
the DNS Resolver section.

When an application needs to resolve a host name or internet address, the client queries the first name
server the TCPWARE NAMESERVERS logical defines. The client continues to query the other name

servers on its list until it receives an answer, or the list is exhausted. The amount of time varies for what
is needed to send a query and receive a response.

The TCPware resolver queries domain names in the following sequence:

1. The resolver queries the fully qualified domain name if the domain name contains ndots
number of dots (see the TCPWARE RES OPTIONS logical syntax); the default is 1.

2. If the first step fails or the domain name contains less than ndots, the resolver queries
name.default-domain or the list established by the TCPWARE DOMAINLIST logical.

3. If the second step fails, the resolver queries for name only.

You can restart the resolver process (TCPware DNS) if it goes down (or the NETCU STOP/DNS
command was used) by specifying @ TCPWARE : STARTUP_RESOLVER DETACH on the command
line.

Domain Name Server

To set up a domain name server on your local host, perform these steps:

1. Determine whether the names on the local host will be authoritative for a zone or will be just a
caching server.

2. Runthe CNENET configuration procedure described in the Installation & Configuration Guide,
Chapter 4. When you set up a server and (there is no existing NAMED . CONF file), CNFNET
converts the existing TCPWARE NAMED ROOT :NAMED.BOOT fileto a
TCPWARE NAMED ROOT:NAMED.CONF file. If there is no NAMED. BOOT file, CNENET
creates a default NAMED . CONF file set up as a caching server.

3. If the host is to be authoritative, add zone statements in the NAMED . CONF file (see Zone) for
each zone.

4. Gather the information you need for the database files so that the server can resolve queries. The
information is in the Resource Records section of this chapter.

5. Enter the information in the database files using a text editor. (See Editing Database Files.)

Starting and Stopping

The name server starts up when you execute the STARTNET . COM procedure and shuts down with the
SHUTNET . COM procedure.

1. Log in as the system manager.
2. Stop the name server process:

SMATCPWARE : SHUTNET DNS

3. Start the name server process:

SMQTCPWARE : STARTNET DNS

When you start the name server, it creates a log file, TCPWARE : NAMESERVER . LOG. This file contains
information about any problems uncovered when loading the database or during name server operation.

If the name server is already active and you edited the database files, you can restart the name server or
you can reload it using the NETCU RELOAD NAMED command. See Chapter 2 of the Network Control
Utility (NETCU) Command Reference.

You can investigate this file after updating the database or if the name server exits immediately after
startup. Syntax errors in the database files are the most common source of errors. If there is an error in
one of the database files, Domain Name Services records the error type and relevant database file in the
log file.

Editing Database Files can help you find the cause of these errors.

The TCPWARE_NAMED_ROOT:NAMED.CONF File

The main DNS configuration file, from which the name server gets its initial data, is

TCPWARE NAMED ROOT:NAMED.CONEF. The equivalent of this file in UNIX-based BIND
implementations is /etc/named. conf. Use this file to add information about your site when setting
up a master DNS server. An example configuration file follows.

/*
** Sample Configuration File for DNS server

*/

options {

directory "TCPWARE_ROOT:[TCPWARE.NAMED]";
// forward only;

forwarders { 128.0.1.1; 128.0.2.10; };
b g

zone "example.com" in {
type master;
file "domain-name-service.iris";

b8

zone "0.128.in-addr.arpa" in {
type master;
file "domain-name-service.iris-net";

J 8

zone "cc.example.com" in {
type slave;
masters { 128.0.1.1; };
file "domain-name-service.cc";

)8

zone "1.0.128.in-addr.arpa" in {
type slave;
masters { 128.0.1.1; };
file "domain—-name-service.cc-net";

J g

zone "0.0.127.in-addr.arpa" in {
type master;
file "domain-name-service.local";

) 8

zone "." in {
type hint;
file "domain-name-service.cache";

)8

The following sections describe the zone, options, and logging sections.

Zone

A zone is that part of a name server that contains complete information about the domain name space.

You specify a zone is the following way:

zone “domain name” [class] {

type type;

)8

The below table defines the NAMED . CONF zone fields.

Field

class

“domain-name”

file "filename";

masters {ip addr; [ip addr;

type (master | slave

Optional Zone Statements

Statement

stub

hint);

Description

The class to which this zone applies. If the class is
not specified, the type IN is used by default. The
syntax is

[(in | hs | hesiod)]

e in (default) - Used for objects connected
to the Internet. This is the only supported

type.
e hs or Hesiod - Confined mostly to MIT.

hs is the abbreviation for hesiod.

The name of the domain for which this zone is
authoritative.

Specifies the name of the file.

Specifies the IP addresses from where the server is
to transfer the zone data. This statement is
meaningful only for slave or stub zones.

See the zone types table below for a description of
these zones.

Description

allow-query {address match 1ist};
allow-transfer {address match 1ist};

allow-update {address match 1ist};

also-notify {ip addr;

check-names (warn | fail | ignore);

notify (yes | no);
Zone Types

Type Description
hint

[ip addr; ...1};

Overrides the respective statement in the
global options section for this zone. See
Logging Options.

Specifies the addresses of hosts that are
allowed to modify the zone with dynamic
updates. Defaults to none.

Lists the servers to send zone change
notifications to as well as to the slave servers
specified via the NS records for the zone.

Overrides the default name checking specified
in the global options section. See the check-
names Statement in NAMED.CONF Options
Error! Reference source not found. for more
details.

Specifies if zone change notifications should
be sent to the slave servers for the zone. This
overrides the not i £y statement in the global
options section. See the not 1 fy statement in
NAMED.CONF Options for more details.

Specifies that data in the DOMATIN-NAME-SERVICE . CACHE file, which is in standard

resource record format, should be placed in the bootstrap cache. The hint zone definition is
used to specify locations of root domain servers. An up-to-date list of root name servers is
automatically obtained and stored in memory without replacing the cache file.

master Specifies data for the zone and the domain. The first master zone definition states that the file
DOMAIN-NAME-SERVICE. IRIS contains authoritative data for the EXAMPLE . COM zone,

in standard resource record format.

The second master zone definition states that the file DOMAIN-NAME-SERVICE.IRIS-
NET contains authoritative data for the domain 0.128.IN-ARPA.ARPA, which is used in
translating addresses in network 128.0.0.0 to host names.

Be sure each zone master file begins with an SOA (Start of Authority) resource record for the
zone, as shown in the DNS Zone Information Files section.

slave Specifies the zones for which this DNS server acts as a secondary name server. After this
name server receives a "zone transfer," it becomes authoritative for the specified zone.

The first slave zone definition specifies that all authoritative data under CC . EXAMPLE . COM
is to be transferred from the name server at 128.0.1.1.

The file statement in this section is the file name in which to back up the transferred zone.
When it boots, the name server loads the zone from this backup file, if it exists, providing a
complete copy even if the master DNS server is unreachable. This file is updated whenever a
new copy of the domain is received by automatic zone transfer from one of the master
servers. The file statement is optional but recommended to speed up server startup and
eliminates needless bandwidth.

The second slave zone definition states that the address-to-hostname mapping for the subnet
128.0.1.0 should be obtained from the same list of master servers as the previous zone.

stub Works like a slave zone, except it transfers only the nameserver records for the master zone
rather than the full zone information.

Options
The options statement sets up global options to be used by NAMED. Use this statement only once in
a configuration file. If it is used more than once, the first occurrence determines what options to use, and

a warning is generated. If no options statement is present, an options block is used setting each option
to its default value.

You specify options in the following way:

options {
options-statements

Y

The below table defines the NAMED . CONF options.

Option Description

allow-query {address match list}; See the Address_match_list section.

Specifies the addresses of hosts that are allowed to

query the server for information. It defaults to all.

allow-transfer {address match list}; Seethe Address_match_list section.

Specifies the addresses of hosts that are allowed to
perform zone transfers from the server. It defaults

to all.
check-names (master | slave | The server checks names in three areas:
response)
(warn | fail | ignore); e Master zone files.

e Slave zone files.
e Responses to queries the server has
initiated.

The server assumes the following defaults:

options {
check—-names master fail;
check—-names slave warn;
check-names response ignore;

iy

directory "path";

forward

(only

first);

e ignore - No checking is done.

e warn - Names are checked against their
expected client contexts. Invalid names are
logged, but processing continues normally.

e fail - Names are checked against their
expected client contexts. Invalid names are
logged, and the offending data is rejected.

If check-names response fail has been
specified, and answering the client’s question
requires sending an invalid name to the client, the
server sends a REFUSED response code to the
client.

Causes the server to change its default directory to
the specified directory. This can be important for
the correct processing of SINCLUDE files in
primary zone files, or £i1e statements in zone
definitions.

This statement is meaningful only if there is a
forwarders statement.

When first (default) is used, the server queries
the forwarders first before consulting the root
domain servers.

When only is used, the server queries the
forwarders only. If the forwarders fail to
find an answer, the server does not query the root
domain servers.

forwarders {ip addr; [ip addr;

NNy

listen-on [port ip port]
{ address match 1list };

options {
forward only;
forwarders
{192.1.1.98; 192.1.1.99;};
bi

Specifies the addresses of site-wide servers that
accept recursive queries from other servers. If the
DNS server configuration file specifies one or more
forwarders, the server sends all queries for data
not in the cache to the forwarders.

Central name servers designated to handle
forwarded requests can then develop a cache of
answers to external queries. The central cache
reduces the number of requests sent to root name
servers and improves DNS performance.

See the Address match 1list section.

Specifies what port on what interface to listen on.
The default is:

listen-on port 53 { any };

Example:

options {
// listen on port 53 for
// external interfaces.
listen-on { 192.168.1.0;};
// listen on port 43 for
// internal interfaces.
listen-on port 43

max-transfer-time-in number

notify (yes | no);

recursion (yes | no);

transfer-format number

{ 127.0.0.1; 10.0.0.0; };
}i

Terminates the inbound zone transfers (named-
xfer processes) running longer than the minutes
specified. The default is 120 minutes (2 hours).

If yes (default), the server notifies slave servers if
there are any changes to a domain for which the
server is master. The server determines the slave
servers by the nameserver records contained in the
zones data file.

For more information, see the also-notify
statement in Error! Reference source not found..

If yes (default), the server attempts to do all the
work required to answer a query that has requested
recursion. Turning this off results in the server
responding to the client with referrals.

To prevent the server’s cache from growing, use
recursion no; in combination with fetch-
glue no;.

The server supports two zone transfer methods.
one-answer Uses one DNS message per resource
record transferred. many-answers packs as
many resource records as possible into a message.
many-answers IS more efficient, but is only
known to be understood by BIND 8.1 and patched
versions of BIND 4.9.5. The default is one-
answer. transfer-format may be
overridden on a per-server basis by using the
server Statement.

transfers-in number The maximum number of inbound zone transfers

that can be running concurrently. The default value
is 10. Increasing transfers-in may speed up
the convergence of slave zones, but it also may
increase the load on the local system.

transfers-per-ns number The maximum number of inbound zone transfers

(named-xfer processes) thatcan be
concurrently transferred from a given remote
nameserver. The default value is 2. Increasing
transfers-per—-ns may speed up the
convergence of slave zones, but it also may
increase the load on the remote nameserver.
transfers-per-ns may be overridden on a
per-server basis by using the transfers phrase
of the server statement.

Address_match_list

The following can be address match lists:

an IP address (in dotted-decimal notation)

an IP address match list

an IP prefix (in /- notation)

an address match list defined with the ac1 statement

The following ACLs are predefined:

any
none

localhost
localnets

Place the ! character in front of elements you want to negate.

When an IP address or prefix is compared to an address match list, the list is examined and the first
match (regardless of its negated state) is used. The interpretation of a match depends on the conditions
defined in the following table.

When alist A non-negated match... A negated match...

is being

used...

as an access allows access. denies access.

control list
You can use the 1isten-on clause to
define local addresses not normally used to
accept nameserver connections.

with the returns a distance based on its position on A negated match is assigned the maximum

topology the list; the closer the match to the start of distance from the server.

clause the list, the shorter the distance between it

and the server.

If there is no match, the address gets a
distance that is further than any non-
negated list element, and closer than any
negated element.

Since the address match list uses a first-match algorithm, care must be taken when using negation. In
general, if an element is a subset of another element, the subset should be present in the list before the
broader element.

For example, 10.0.0/24; '10.0.0.1 will never negate to the 10.0.0.1 address because a 10.0.0.1 address
will match with the 10.0.0/24 element and not traverse any farther. So the 10.0.0.1 address will be
accepted in the match list.

Using 110.0.0.1; 10.0.0/24 will elicit the desired effect. The 10.0.0.1 will be matched against the first,
negated, element. All other 10.0.0.* addresses will pass by the 10.0.0.1 element and be matched against
the 10.0.0/24 subnet element.

Logging

The 1ogging section configures a wide variety of logging options for the nameserver. Its channel
phrase associates output methods, format options and severity levels with a name that can be used with
the category phrase to select how various classes of messages are logged. The basic 1ogging syntax is
as follows:

logging {
channel channel name {
file pathname;
severity type;
print-category yes or no;
print-severity yes or no;
print-time yes or no;
}i
category category name {
channel name; [channel name; ...]

) 8

Only one logging section is used to define as many channels and categories as you want. If there are
multiple 1ogging sections in a configuration, the first one defined determines the logging, and
warnings are issued for the others. If there is no 1ogging section, the default logging configuration
will be:

logging {
category default { default syslog; default debug; };

i
The following is an example:

channel xfers {
file “TCPWARE:XFERS.LOG”;
severity info;
print-severity yes;
print-time yes;

}i
category xfer-in {
xfers;

J 8

The below table describes the logging options.

Options Description
channel Specifies where the logging data goes: to syslog, to a file, to stderr, or to null.
category Specifies what data is logged. You can send a category to one channel or to many

channels. These are the valid categories:

default general client config database
dnssec lame-servers network notify queries
resolver security update xfer-in xfer-out

lame-servers

file Specifies the path name of the file you want the message to go to.
syslog daemon Specifies that the message goes to syslog (OPCOM) instead of to a file.

severity Specifies the severity level for this channel. The severity choices are critical,

error,warning, notice, info, debug level, and dynamic.

print-category Specifies the category, severity level, and time stamp of the messages.

print-severity Tpg default is NO for each item.
print-time

Editing Database Files

The CNFNET configuration procedure creates templates of the database files. Some of the templates are
only examples of the database records necessary for configuration. You must enter information specific
to your configuration for the server to function properly. The type of server you configure determines
which database file you need to edit.

Note: If you edit the database files, restart the DNS software so that the name server can update its
database.

Special Characters

The characters listed in the below table have special uses in the database files.
The character... Isused...

\char To quote a single character, char, that otherwise has special meaning. For
example, use \'$ to place a dollar sign in the text.

() To group data that exceeds a line boundary. The SOA record requires parentheses.
See the Start of Authority (SOA) resource record.

. To start a comment. TCPware ignores the remaining characters in the line.

* As a wildcard. For example, the domain name *.EXAMPLE.COM refers to any
host within the EXAMPLE.COM domain.

Use a period (.) to end a domain name. If the domain name does not end with a period, DNS appends
the current domain name to it. The NAMED . CONF file defines the current domain name, or you can use
the Sorigin command to redefine it.

Special Commands

You can use two special commands in database files:

e Sorigin
e Sinclude

These commands are described on the following pages.

[] []
$origin
Indicates that all the records following the command belong to a different domain than the previous

records. The name server has authority over all records listed. This command gives you a shorthand way
of expressing the domain name of the host.

Format

Sorigin domain-name

Parameter
domain-name

Domain name to which the records belong.

Example
This example defines the DAISY.EXAMPLE.COM, IRIS.EXAMPLE.COM,

SPARROW.EXAMPLE.ORG, DOVE.EXAMPLE.ORG, MAPLE.EXAMPLE.EDU, and
ACORN.EXAMPLE.EDU domains.

;the default domain is example.com.

daisy in a 192.168.62.1
iris in a 192.168.62.2
Sorigin example.org.

sSparrow in a 192.168.95.1
dove in a 192.168.95.3
Sorigin example.edu.

maple in a 192.168.74.1

acorn in a 192.168.74.2

$include

Includes an external file in a DNS database file. Useful for organizing different types of information into
separate files.

Format
Sinclude file [origin]

Parameter

file

File you want to include in the database.

origin

(Optional) Origin of the include file (see the Sorigin command on the previous page).

Examples
1. This command includes the file TCPWARE :MAILLIST . TXT in the database file.

Sllinclude tcpware named root:maillist.tx

2. These commands include the file TCPWARE : EXAMPLE . ORG in a series of definitions, using the
EXAMPLE.ORG domain as origin (see the Sorigin command) for the include file.

Sllorigin example.com.

daisy
iris

Sllinclude tcpware named root:example.org example.org.

rose

If the EXAMPLE . ORG file includes records for SPARROW and DOVE, the extended version of the
above definition would be:

daisy.example.com
iris.example.com
sparrow.example.org
dove.example.org
rose.example.com

Note that the include file origin definition is for the include file only and does not affect the "external"
origin.

Resource Records

All database files contain entries called resource records (RRs). TCPware supports all of the resource
record types supported by BIND. Some of the more commonly used resource records are detailed below.

This section provides the following information for each DNS resource record:

e Purpose

e Format

e Field definitions
e Example of usage

The fields that are common to most resource records are: owner, ttl, class, and type. The
remaining data fields are different for each record type. This section documents these data fields
under the appropriate record type.

All resource records are case insensitive. However, TCPware preserves the case you enter.

Format
owner ttl class type data

Fields

owner
Domain name of the owner of the record.

The domain name can be absolute or relative. An absolute domain name lists all the labels of the name
and ends with a period. For example, DATSY . EXAMPLE . COM. is an absolute domain name. A relative
domain name does not end with a period. DNS assumes it belongs to the current domain. For example,
DATISY is a relative domain name in the EXAMPLE.COM domain.

Acceptable characters are A through Z (upper or lower case), 0 through 9, and dash (-). The period (.) is
a label separator.

The values listed below have special meaning in the name field.

Value Description
(all blank) The resource record applies to the last explicitly stated domain name

Indicates the root (or top level) domain

@ Indicates this is the current domain name

ttl
Time-to-live (TTL).

This is the length of time (in seconds) the record is valid after a requestor host receives it from a primary
server. For example, a TTL of 86400 equals 24 hours.

You can specify in the time-to-live field in the following ways (each of these is equivalent to one week):

e 604800

o 1w

e 7d

e 168h

e 10080m

e Or any combination

For example:
sigma 2h46m40s IN A 10.1.1.97

Loadsthe TTLas: ttl = 10000 (2 hours 46 mins 40 secs)

If you leave this field blank, DNS uses the TTL designated in the SOA (start of authority) record
minimum field. The minimum field value is the "default™ TTL.

All resource records that have the same values in the name, class, and type fields should also have
the same value in the ¢t 1 field.

class
Address class (it should be 1N for "internet™).

type
Resource record type. Some of the most commonly used ones are listed below and described more fully

on the following pages.

Type Description Type Description

A IPv4 Address MX Mail exchange
AAAA IPv6 Address NS Name server
CNAME Canonical name PTR Pointer

DHCID DHCP client ID SOA Start of authority
DNSKEY DNSSEC key SPF SPF information
HINFO Host information TSIG Transaction Signature

IPSECKEY IPsec key TXT Descriptive text

data
Data specific to each entry. This field varies with each type of resource record.

A

Address record, or internet address of a host. The name server uses this record when it responds to a
query for an internet address.

Use this record in any of the database files.

Format
owner ttl class A address

Fields
A

The type, which must be A.

address
Internet address of the host specified in the name field.

Example

This example includes two A records for local hosts DAISY and LILAC.
;name ttl class type address

daisy IN A 192.168.95.3

lilac 99999999 IN A 192.168.95.4

CNAME

Canonical Name (CNAME) record, or official name of the host. You can include a nickname, or if you
rename the host, use the nickname field to give the old domain name.

Format
nickname ttl class CNAME canonical-name

Fields

nickname
Nickname or alias for the host. If you rename the host, this is the old domain name.

CNAME
The type, which must be CNAME.

canonical-name
Official domain name for the host. This can be an absolute or relative name. If you rename the host, this
is the new domain name.

Example

This example includes two CNAME records. These records define SPRING as a nickname for host
LILAC.EXAMPLE.COM and SUMMER as a nickname for host DAISY.EXAMPLE.COM. Because no
period (.) follows the nicknames, DNS assumes they are in the current domain.

;nickname ttl class type canonical-name
spring IN CNAME lilac.example.com.
summer IN CNAME daisy.example.com.

HINFO

Host Information (HINFO) record, or hardware type and operating system of a host. DNS uses this
information to answer queries.

Each host in a domain can have just one HINFO record.

Format
owner ttl class HINFO hardware opsys

The hardware and opsys fields require a space between them. If you need to use a space within
either field, enclose the field within quotation marks (" ™).

Fields
HINFO

The type, which must be HINFO.

hardware
Type of CPU. See the latest Assigned Numbers RFC for a list of standard hardware types.

opsys
Host operating system.

Example
This example includes two records for hosts IRIS and LILAC in the current domain and gives their

hardware type and operating system. Some field entries include quotation marks because they contain
space characters.

;owner ttl class type hardware OopPSys
iris IN HINFO "AlphaStation 8400" VMS
lilac IN HINFO "VAXStation 4000" "VMS V7.0"

MX

Mail Exchanger (MX) record, or a host that can accept mail for another host. A host can have multiple
MX records. Each record receives a preference value.

When a mailer tries to deliver mail to a host:

1. Itreads all MX records defined for the destination host and sorts them by preference value.

2. It tries to deliver the mail to the host specified on the record with the highest preference. The
record with the lowest value (beginning at 0) has the highest preference.

3. If the first attempt fails, it tries the host specified on the record with the next highest preference

value.
4. It keeps trying until it delivers the mail, or until it tries the host specified on the record with the

lowest preference.

If you assign the same preference value to multiple MX records for a host, the mailer tries the equally-
preferenced records in random order.

See Chapter 17, Managing Mail Services, the Completing SMTP/MR Configuration section for MX
records used with the SMTP mail facility.

Format
system ttl class MX preference gateway

Fields

system
Domain name of the host the gateway host accepts. The host might not be connected directly to the

network. Using wildcards in domain names is strongly discouraged if the hosts are Internet-connected
(see section 2.7 of RFC 1912 for details).

MX
The type, which must be MXx.

preference
Delivery order when a host has multiple MX records. The lower the number (starting at 0), the higher

the preference.

gateway
Name of the host accepting mail for the host specified in the system field.

Example
This example gives three MX records for host TULIP (in the current domain). The mailer tries to deliver

the mail to host TULIP.EXAMPLE.COM first, because that record has the lowest pre ference-value.
If the attempt fails, it tries host IRIS.EXAMPLE.COM and then LILAC.EXAMPLE.COM.

;system ttl class type preference gateway
tulip IN MX 10 tulip.example.com.
tulip IN MX 15 iris.example.com.

tulip IN MX 20 lilac.example.com.

NS

Name Server (NS) record that lists the domain name of a host that provides domain name services, and
the name of the domain being served. Therefore, the specified host is an authoritative name server for
the specified domain.

You can enter NS records in any database file.

Format
owner ttl class NS server

Fields
NS

The type, which must be NS.

server
Domain name of the host that serves the domain.

Example
This example gives the syntax of three NS records. DAISY.EXAMPLE.COM and IRIS.EXAMPE.COM

are both servers for the EXAMPLE.COM domain. The owner field is blank for
IRIS.EXAMPLE.COM, indicating it serves the domain specified in the previous record. The owner
field for NS.NASA.GOV server contains only a dot (.), indicating NS.NASA.GQOV is a root server.
IRIS.EXAMPLE.COM takes its time-to-live (TTL) value from the min field of the SOA record. The
TTL for NS.NASA.GOV is 99999999 seconds (approximately three years).

;owner ttl class type server
example.com. IN NS daisy.example.com.
IN NS iris.example.com.

99999999 1IN NS ns.nasa.gov.

PTR

Domain Name Pointer (PTR) record that allows special names to point to another location in the
domain. The most common use of PTR records is for reverse mapping: Domain Name Services finds a
host domain name when given an internet address. The IN-ADDR.ARPA domain maintains reverse
mapping information.

PTR records in the IN-ADDR.ARPA domain contain a host name that consists of the internet address
specified in reverse order, combined with the IN-ADDR.ARPA domain name. This name points to the
domain name of the host with that internet address.

Enter PTR records in the NAMED . REV, NAMED. HOSTS, or NAMED. LOCAL files.

Format

rev-addr ttl class PTR realname

Fields
rev-addr
Combination reverse internet address and domain name IN-ADDR.ARPA. Each rev-addr should be

unique to the zone.

PTR
The type, which must be PTR.

realname
Full domain name of the host. If the host is not in the current domain, this name must end in a period (.).

Do not use a nickname.

Example
This example gives PTR records for two hosts. The internet addresses are in the current domain,

95.168.192.IN-ADDR.ARPA.

;rev-—addr ttl class type realname
Sorigin 95.168.192.in-addr.arpa

IN
IN

PTR
PTR

daisy.example.com.
lilac.example.com.

SOA

Start of Authority (SOA) record that defines the start of a zone. There is one SOA record for each zone,
and it is on the primary server. If other servers in the zone have SOA records, these records must be
identical to the one on the primary server. The SOA record is the first one listed in a database file.

You can enter this record in any database file. The NAMED. CA file can store an SOA record, but the
record does not define the server as authoritative.

Format

owner ttl class SOA origin person (serial refresh retry expire minimum)

The parentheses are required if continuing onto one or more subsequent lines. At least one space must
separate the parentheses from the text within it.

Fields

SOA
The type, which must be SOA.

origin
Name of the host on which the primary server resides.

If the local host is not the primary server, the local host periodically obtains database information from
the specified host. See the refresh, retry, and expi re fields.

person
Mailbox address of the person responsible for the DNS software on the local domain. Replace the @ sign

in the mailbox address with a period (.); for example: gardener@iris.example.com becomes

gardener.iris.example.com..

serial
Version number of the database file. A 32-bit unsigned integer that can theoretically start at 0.

Increment this field by a certain interval each time you edit a database file (using the YYYYMMDDVV
date syntax provides a "safe" interval). If serial on the primary server is "higher" (based on serial

number arithmetic) than serial on the secondary server, the secondary server knows that the primary
server contains new data and it performs a zone transfer to update its database. The serial number also
tells the DNS software which of two file copies is the most recent.

refresh

Time interval (in seconds) after which the secondary server must request the SOA record from the
primary server. For example, a refresh value of 86400 equals 24 hours. A value of 900 seconds (15
minutes) is the minimum value allowed.

retry
Time interval (in seconds) after which the secondary server should re-request the SOA record from the
primary server after a refresh failure. 600 seconds (10 minutes) is a reasonable value.

expire
How long (in seconds) the secondary server can use its copy of the database file when it cannot obtain a
refresh. A typical value is 3600000 seconds (approximately 41 days and 16 hours).

minimum
Minimum time to live (TTL) value, in seconds, for the records in the zone. DNS uses this value if you
do not specify the t ¢ 1 field for other resource records. A reasonable value is 86400 seconds (24 hours).

Example
This example shows a typical SOA record format. The values are described in the table.
;owner ttl class type origin person
@ IN SOA iris.example.com. gardener.iris.example.com. (
1 serial
3600 refresh (1 hour)

Ne Ne Ne Ne N

600 retry (10 minutes)
3600000 expire (1000 hours)
86400) minimum (24 hours)
Value Description

@ Current domain name

iris.example.com.

gardener.iris.example.com.

3600

600

3600000

86400

Primary server host name

"Owner" of the DNS software on the local domain (the mailbox
address gardener@iris.example.com becomes
gardener.iris.example.com.)

Serial (version) number of the database file

Refresh time — the secondary server requests an SOA record from
the primary server every 3600 seconds (1 hour)

Retry time — the secondary server retries requests for the SOA
record from the primary server every 600 seconds (10 minutes) if
a refresh fails

Expiration time — the secondary server can use its copy of the
database if all refreshes fail for a total of 360000 seconds (1,000
hours, or 41 days and 16 hours)

Minimum time-to-live of 86400 seconds (24 hours) for records in
the zone

The parentheses at the end of the second line indicate that one or more additional lines related to the
record follow. The lines usually include the serial, refresh, retry, expire,and minimum
field values and their commented out (;) descriptions. You must include a space between the
parentheses and the text it encloses (such as by indenting the next line). You must also include a white
between the last value (86400 in the example) and the closing parentheses.

TXT

Text (TXT) record. Holds descriptive text. The semantics of the text depend on the domain.

Format
owner ttl class TXT txt-data

Fields
TXT

The type, which must be TXT.

txt-data
One or more character strings of descriptive text.

Troubleshooting Domain Name

Services
Access error messages help by entering RSN R I N e S 2P 2 T3

When you start the name server, it creates a log file, TCPWARE : NAMESERVER . LOG. This file contains
information about any problems uncovered when loading the database or during name server operation.
TCPware sends system logging errors to this file. By default, TCPware logs all errors except Debug
messages to the log file.

Dynamic TCP/IP Load Balancing

TCPware provides TCP/IP load balancing services for a TCP/IP cluster that are analogous to the load
balancing services the LAT terminal service provides.

When a new TCP connection to a cluster name occurs, the TCPware Domain Name Services name
server assigns the connection to one of a number of hosts. The host to which it assigns the connection
depends on:

e The availability of the host.
e The observed load on the host.

TELNET most often uses TCP/IP cluster load balancing, although other TCP protocols do also. UDP-
based protocols also work well with cluster load balancing, but only if:

e The server (such as DNS) does not retain state information.
e The client (such as TFTP) resolves the domain name only once at the start of a connection.

TCP/IP load balancing does NOT:

e Provide effective NFS server failover. Most clients do not resolve names again and remount
filesystems when an NFS server fails to respond.

e Provide local preference to clients' selection of hosts.

e Actively re-balance the load: a failed and recovered host receives only new connections.

e Support non-TCPware hosts as part of the cluster.

In addition, the default metric is not very useful for RPC type services. It is oriented toward
measurement of users.

Configuration Requirements

All hosts in the TCP/IP cluster must run TCPware. Also, all DNS servers for the zone defined with the
TCP/IP cluster name must be on systems running TCPware. Client systems do not have to run a
particular TCP/IP implementation.

The term cluster here means a TCP/IP cluster. Hosts in a TCP/IP cluster do not have to be part of a
VMScluster. They even do not have to be on the same bridged LAN.

In a TCP/IP cluster, the hosts can be at least one of the following:

e Independent systems with TCP/IP connectivity
e Located anywhere so long as there is TCP/IP connectivity
e Part of several VMSclusters with TCP/IP connectivity

You can define multiple cluster names describing subsets, or overlapping or separate clusters.

Load Balancing Process

When a client wants to connect to a host within the cluster:

1. It sends the DNS server a name-to-address translation request for a host to which it wants to
connect.

2. The DNS server looks in a cache that holds recent load information for the hosts in the cluster. If
the name is a cluster name, a routine sorts the addresses by reported load. The server determines
the load by exchanging UDP datagrams with each host in the cluster, which report their current
load metrics. The server treats hosts that fail to respond as unavailable and does not offer them
any new traffic. Specifically:

a. The DNS server searches its resource record for host addresses and looks up each host in
a private list of hosts. Different cluster names share this list. If a host appears in more
than one cluster, the server requests its load metrics only once.

b. The DNS server sends update requests to the hosts if there is no information or if there is
outdated information in the cache.

c. Ifahost fails to respond to the load information requests, it does not return its address to
the server. In this case, the host could be down.

Alternatively, the host also could have been administratively shut down by removing the
UDP service that responds to load requests. Removing this UDP service effectively
removes the host from the cluster.

d. TCPware moves the address record corresponding to the host with the lowest load metric
to the front of the DNS information list.

3. The server responds to the client with a list of addresses in preferred order of use. Most clients
use the first address, or if it fails, second or subsequent addresses.
4. When DNS returns its reply to the client, it:
e Rotates the first address down the list among hosts with similar load metrics. This means that
DNS "round-robins” calls among similarly loaded hosts.
e Sets the time to live (TTL) to a small value. This forces a new request for subsequent
connections.

Cluster Names
In DNS, you define each cluster name as an ordinary host name with an IP address and resource records
for each host address used. There are straightforward, overlapping, and subzone clusters.

Straightforward Clusters
The below example shows a cluster name defined as a DNS address (A) resource record as part of a

zone file. The cluster is called perennials and is assigned an IP address of 192.168.3.50.

@ IN SOA rose.example.com. system.rose.example.com. (
1 ; Serial
3600 ; Refresh
600 ; Retry
3600000 ; Expire
86400) ; Minimum
IN NS rose.example.com.
rose IN A 192.168.3.50
lilac IN A 192.168.3.51
petunia IN A 192.168.3.52
hydrangea IN A 192.168.3.53
perennials IN A 192.168.3.50
IN A 192.168.3.51
IN A 192.168.3.52
IN A 192.168.3.53

As the DNS server consults its cache, it matches the cluster name against a list. If the name is in the list,
TCPware sorts the addresses in the list by reported load.

After setting up the cluster name in the zone file, make sure the cluster name is known to DNS by
reconfiguring DNS using CNEFNET. During the configuration of DNS, you are asked if you would like to
configure a list of cluster names.

Overlapping Clusters
The below example shows two clusters defined in a zone file. Note that the 192.168.100.2 address is

common to both clusters.

SORIGIN example.com

orders IN A 192.168.100.1
IN A 192.168.100.2
invoices IN A 192.168.100.2
IN A 192.168.100.4

Subzone Clusters
In some cases, you may want to load balance your cluster using an external name server instead of a

local one. Since the external server cannot configure an internal load balanced cluster, the primary
server must delegate authority on a subdomain to the internal server. The internal server then becomes
primary for the subzone, which becomes the actual address of the cluster.

The following set of examples show three systems in a cluster: 10.0.0.1, 10.0.0.2 and 10.0.0.3. The
domain is example.com. The first step is to set up a subdomain on the primary server by editing the zone
file for the example.com domain and adding the line to delegate the authority to the internal server,
homerdns.example.com:

homer IN NS homerdns.example.com.

The next step is to set up homerdns .example.com as a primary name server for domain

homer.example.com.

The zone file for homer .example.comon homerdns.example.com should include the lines
below:

cluster IN A 10.0.0.1
IN A 10.0.0.2
IN A 10.0.0.3

There is now a load balanced cluster set up to be cluster.homer.example.com that is accessible
from both the primary server (by delegation) and the internal server.

Finally, map cluster.example.com to the load balanced cluster. Add the following line to the
NAMED.HOSTS equivalent file on the primary server:

cluster 1IN CNAME cluster.homer.example.com.

The primary server now serves out the addresses from the zone file in load balanced order.

Load Request Protocol
When the DNS server finds that its load information for a host is out of date, it sends a UDP datagram to
the host asking for load updates.

Each UDP request starts a timed sequence in the host. This causes the host to send updates to the DNS
server at specified intervals over a set time period. When the sequence ends, the DNS server considers
the information stale and sends a new request. This procedure:

e Minimizes traffic when the DNS server is heavily loaded (for example, handling more than 100
requests per second from clients).
e Is quiet when there are no requests.

The procedure does not require hosts to maintain more than a transient state on the DNS servers, since if
they fail, they simply cease to respond.

If a host is part of multiple clusters, the DNS server makes the load request once and not for each
separate cluster.

The host normally provides the load reply service from within NETCP. However, you can do this
through a configured UDP service using the definition:

INAYOIADD SERVICE METRIC UDP /ROUTINE=REPORT TCLB METRIC

LAT looks at the number of processes in COM state and uses that information to calculate its metric.
LAT determines the TCP/IP cluster load balancing metric from the number of active users on the
system.

Part of the metric consists of a value that is set for each host. You set this value by defining the system
logical TCPWARE ~ TCLB_BIAS with a multiplier and an addend as two values of the logical. Both are
real numbers. TCPware uses the values in computing the reported load.

You can also use these values to bias a load offered to the host. For example, the following command
doubles the observed load and adds 1.5 users:

SADEFINE/SYSTEM TCPWARE TCLB BIAS "2.0","1.5"

A cluster might consist of four hosts with one running other tasks. This host should not receive its full
share. You can set the values to cause that host to report a higher load.

TCPware re-translates the TCPWARE TCLB_BIAS logical before it sends each response. This means
that some other process can change it dynamically or you can set it statically.

SET LOGIN/INTERACTIVE=0 forces TCPware cluster load balancing to report the node as an
extremely high load (2147483647).

4. DHCP/BOOTP Server

Introduction

This chapter describes the DHCP/BOOTP Server. It combines the Dynamic Host Configuration Protocol
(DHCP) server with the Bootstrap Protocol (BOOTP). DHCP allows hosts on a TCP/IP network to
request and be assigned IP addresses, and also to discover information about the network to which they
are attached. BOOTP provides similar functionality, with certain restrictions.

Note: DHCP uses DNS for host names and IP addresses; thus, a malfunction in your DNS server
can affect the DHCP server.

DHCP and BOOTP

In TCPware, the DHCP Server (DHCPD) is combined with the BOOTP Server (BOOTPD) to form the
DHCP/BOOTP Server (DHCPD/BOOTPD).

DHCP

DHCP is the Dynamic Host Configuration Protocol. It centralizes and automates TCP/IP network
configuration. The DHCP Server dynamically allocates IP addresses for hosts on the network from an
available pool of addresses. In this way, new hosts or hosts that are frequently relocated can
automatically get new IP addresses for a certain lease period. For this to work, the network administrator
allocates address pools in each subnet and enters them into the DHCP configuration file

(DHCPD. CONF).

DHCP is an extension of the Internet Bootstrap Protocol (BOOTP). DHCP offers a network host a
temporary lease rather than an ownership of an IP address. The lease identifies the duration for which
the client can safely use its dynamically assigned IP address. Lease lengths generally depend on the
number of network users (crowding of the network) and the number of available IP addresses the DHCP

server can assign. The network manager sets the lease length through parameters in the DHCPD. CONF
file.

BOOTP

BOOTP support is also provided by this server. BOOTP uses UDP to allow diskless systems to find
their IP addresses, addresses of boot servers, and names of boot files. BOOTP can supply other client
information, such as the addresses of name servers, gateways, and LPD servers.

Unlike DHCP, the BOOTP protocol does not provide a protocol for recovering dynamically assigned
addresses once they are no longer needed. It is still possible to dynamically assign addresses to BOOTP
clients, but some administrative process for reclaiming addresses is required. By default, leases are
granted to BOOTP clients in perpetuity, although the network administrator may set an earlier cutoff
date or a shorter lease length for BOOTP leases. BOOTP clients may also be served in the old standard
way, which is to simply provide a declaration in the DHCPD. CONF file for each BOOTP client,
permanently assigning an address to each client.

Dynamic Host Configuration Process

On startup, the DHCP server reads the DHCPD . CONF file and stores a list of available addresses on each
subnet in memory. When a client requests an address using the DHCP protocol, the server allocates an
address for it. Each client is assigned a lease, which expires after an amount of time chosen by the
administrator (by default, one day). Before leases expire, the clients to which leases are assigned are
expected to renew them in order to continue to use the addresses. Once a lease has expired, the client to
which that lease was assigned is no longer permitted to use the leased IP address.

To keep track of leases across system reboots and server restarts, the DHCP server keeps a list of leases
it has assigned in a lease file (DHCPD.LEASES). Before the server grants a lease to a host, it records
the lease in this file and makes sure that the contents of the file are flushed to disk. This ensures that
even in the event of a system crash, the server will not forget about a lease that it has assigned. On
startup, after reading the configuration file, the server reads the leases file to refresh its memory about
what leases have been assigned.

DHCP Protocol

With respect to the DHCP protocol, the DHCP server goes through an initializing, selecting, requesting,
binding, renewal, rebinding, and expiration cycle when negotiating for an IP address, as shown in the
below diagram. The process is basically as follows:

1. The client just added or relocated on the network requests an IP address by broadcasting a
DHCPDISCOVER message to the local subnet over the well-known BOOTP server port. (The
client can also go through a BOOTP router or relay agent to forward the DHCPDISCOVER to
additional remote DHCP servers.) This is the initializing state.

2. The participating DHCP servers respond with a DHCPOFFER message if they have a valid
configuration for the client. The client may get many of these messages, which contain the IP
address and configuration data. (The servers make sure to reserve the addresses so as not to
accidentally offer them to another client.) At this point the client enters the selecting state.

3. After selecting an address, the client broadcasts the selected address and name of the "winning"
server (Server 1) using a DHCPREQUEST message. This is the requesting state. All the other
servers can now safely unreserve their addresses.

4. Server 1 sends the client a DHCPACK (acknowledgment) message with the negotiated IP
address, the lease, and the network configuration parameters. The client now enters the binding
state and can fully use the assigned IP address.

5. About halfway through the lease, the client sends Server 1 another DHCPREQUEST for a lease
renewal and enters the renewal state. If the server deems the lease renewable, it sends back
another DHCPACK to update the lease (including any new parameters). The client now returns
to the binding state, as in Step 4.

6. If the client cannot renew the lease (such as if Server 1 is down), the client waits until about
87.5% of the way through the lease and broadcasts another DHCPREQUEST to all DHCP
servers. Any server can now return a DHCPACK containing the extended lease and updated
parameters. This is the rebinding state.

7. When the lease reaches 100% expired, or a server sends back a DHCPNAK negative
acknowledgment message, the client must give up the IP address. It then returns to the
initializing state and must start the address negotiation over again.

DHCP is defined in RFC 2131 and RFC 2132. Refer to them for more information.

Two DHCP servers are recommended for a network. The benefit of having more than one server is if
one fails another is available to continue processing requests, ensuring that all hosts (old and new) are
serviced continuously.

DHCP
Server 1

(Selected) DHCPREQUEST

D DHCP

Server 3

DHCPDISCOVER

DHCPREQUEST

DHCPREQUEST

Rernewing
(B50%)

Host to
Configure

‘.=..?. 474 .:;
DHCPOFFER DHCPOFFER

Selecting

{optional)
BOOTP
Router

DHCP
Server 4

[]

)

Initializing

Rebinding
(87 .5%)
DHCPDISCOVER

-, DHCPREQUEST DHCPOEFER
Expiration
[100%)

DHCP Administration

You can administer the DHCP server using the following TCPware Network Control Utility (NETCU)
commands.

Command Description

RELEASE DHCP4 ip-address Forces the DHCP server to act as if it heard a
DHCPRELEASE message from the client for the given
IP address.

REMOVE DHCP4 ip-address Synonym for RELEASE DHCP4

SET DHCP4/DEBUG=value Sets the debug logging level to the given value.

SET DHCP4/NEWLOG

SET DHCP4/PARTNERDOWN

STOP/DHCP4

SHOW

SHOW

DHCP4/ALL

DHCP4/CLIENT IDENTIFIER=client-id

SHOW

SHOW

DHCP4/CONFIGURATION

DHCP4/HARDWARE ADDRESS=

hardware-address

SHOW

SHOW

SHOW

SHOW

SHOW

SHOW

DHCP4/IP ADDRESS=ip-address

DHCP4/ISKNOWN host, subclass

DHCP4/LEASES

DHCP4/POOLS

DHCP4/STATUS

DHCP4/SUBNET=1ip-address

Starts a new debug log file.

For Failover DHCP: causes the DHCP server to
transition into Partner Down state.

Causes the server to shut down.

Displays SHOW DHCP4/SUBNET output for all
subnets, plus information about static assignments.

Displays all lease binding and static assignment details
for the given client ID.

Writes all configuration and lease information to a
dump file.

Displays all lease binding and static assignment details
for the given hardware address.

Displays lease binding details for the given IP address.
Static assignments are not supported.

If host is specified, shows whether the given
hardware address or client identifier is "known", that is
if there is a host declaration for that hardware address
or client identifier. If subclass is specified, shows
whether the given subclass data exists as a subclass
within the given class.

Displays brief information about each lease.
Displays address pool availability.
Checks if the DHCP server is running.

Displays brief information about each IP address in the
same shared network as the given IP address.

SHOW DHCP4/VERIFY Checks the syntax of the configuration file and
optionally the lease file and the update file.

SHOW DHCP4/VERSION Displays the version of the DHCP server.

UPDATE DHCP4 Instructs the Dynamic Host Configuration Protocol
(DHCP) server to process the update file and add or
remove the specified host and subclass declarations.

See the TCPware NETCU Command Reference for details about these commands.

DHCP Service Configuration

You can configure the DHCP server using CNFNET, by typing (oG et AR o

You can configure the following items:

e Enable or disable the DHCP server.

e Set the debug logging level.

e Set the debug log file name.

e Include the date in the log file or not.

e Log debug messages to OPCOM or not.

See the DHCP configuration description in the Installation and Configuration Guide.

Verifying the DHCP Configuration
Whenever you modify the configuration file, it is good practice to verify the syntax by entering the
following NETCU command:

ETCU SHOW DHCP4 /VERIFY[=(config=<config-file>)]
IEN [/OUTPUT=<output-file>]

This command causes the DHCP server to run enough to read and parse the configuration file. The
DHCP server displays a copyright notice and a message for each syntax error encountered. If the DHCP
server displays only the copyright notice, the configuration file has no syntax errors.

The CONFIG option optionally specifies where the configuration file is. If you do not specify the
CONFIG option, the DHCP server reads the default configuration file TCPWARE : DHCPD . CONF.

The /0UTPUT qualifier optionally sends command output to the specified file.

Reloading the DHCP Configuration

If you modify TCPWARE : DHCPD. CONF after starting the DHCP server, reload the DHCP
configuration by restarting the DHCP server by using @TCPWARE : RESTART DHCP4. When the
DHCP server restarts, it rereads the configuration file.

Upgrading to DHCP V4 from DHCP V3

Versions of TCPware prior to 6.1 provided both DHCP V4 and a legacy DHCP V3 implementation.
DHCP V3 has been deprecated since TCPware 5.9, and is no longer provided. If you’re still running the
legacy DHCP V3 server, an easy upgrade path is available.

The DHCP V3 and V4 configuration files are substantially similar. Any changes that are needed can be
made by hand, or alternatively by an automated conversion program (described below). The biggest
changes between the DHCP V3 server configuration file and the DHCP V4 server configuration file are
in the areas of Dynamic DNS Updates (DDNS) and Failover. This is due to the fact that in DHCP V3,
DDNS and Failover are Process Software implementations, and in DHCP V4, they are the ISC
implementations. Other changes in DHCP V4 are:

e Process Software's Host Name Generation function is no longer available. In DHCP V4, various
evaluation functions can be used in the configuration file to ask the server to create a host name.

e The configuration file statement allow/deny ras-servers has been removed. This
statement was deprecated in a previous release and has been removed altogether in DHCP V4.

The DHCP V3 server lease file is most likely not going to be able to be read by the DHCP V4 server. It
may be able to be read if you are using a simple configuration. It will definitely not be able to be read if
you are using DDNS or failover. In most cases, you should expect that when you upgrade to DHCP V4,
you will lose the entire database of leases. In that case, all DHCP clients will have to obtain new leases.
To avoid conflicts, it is recommended that prior to the upgrade, the length of leases being given out by
the DHCP server be made very short, so that all leases expire during the changeover. You may also want
to consider initially using a different range of addresses after the upgrade to doubly ensure that the
DHCP V4 server does not attempt to give out leases for IP addresses that are still in use.

Using the DHCP3 to DHCP4 conversion program

The DHCP3 to DHCP4 conversion program (TCPWARE : DHCP3TO4 . EXE) will convert information in
the deprecated DHCP3 configuration to the DHCP4 format. It reads the configuration and boot file and
produces a single file with an equivalent DHCP4 configuration. Comments are NOT preserved. The

program takes two parameters — the input (DHCP3) configuration file and the output (DHCP4)
configuration file.

The default values for the parameters are TCPWARE : DHCPD . CONF and DHCPD4 . CONF (created in the
local directory, if not specified to be elsewhere). It will look for the TCPWARE : DHCPD. BOOT file to
determine if failover is configured and convert the failover information as well. The lease file is not
converted, so it is still necessary to have a quiet period when changing to DHCP4 from DHCP3.

Slldhcp3tod4 :== $tcpware:dhcp3to4
Elldhcp3to4 [tcpware:dhcpd.conf]

[dhcpd4 . conf]

It is recommended that you check the configuration with DHCPD4 before attempting to use it:

Slldhcpd4 :== $tcpware:dhcpd4
Sldhcpd4 -t -cf dhcpd4.conf]

Introducing the Configuration File

TCPware supplies a template DHCP configuration file that contains comments and a number of
examples to help you enter information for your hosts. The template DHCP configuration file is located
at TCPWARE : DHCPD4 CONF.TEMPLATE.

Using this template as a guide, create a DHCP configuration file at TCPWARE : DHCPD . CONF (with any
text editor) containing the entries you need for your network and hosts. The dhcpd. conf file is a free-
form ASCII text file. The file may contain extra tabs and new lines for formatting purposes and
comments may be placed anywhere within the file (except within quotation marks). Comments begin
with the # character and end at the end of the line. Keywords in the file are case-insensitive.

Note: Whenever changes are made to the dhcpd. conf file, the DHCP server must be restarted.

The file consists of a list of statements specify which fall into two categories: parameters and
declarations.

Parameters

Parameter statements always specify one of the following:

e How to do something (for example, how long a lease to offer)

e Whether to do something (for example, should the DHCP server provide addresses to unknown
clients)

e What parameters to provide to the client (for example, use gateway 10.177.244.7)

Global parameters are at the beginning of the file. Some examples of global parameters are the
organization's domain name and the addresses of the name servers (if they are common to the entire
organization).

It is legal to specify host addresses in parameters as domain names rather than as numeric IP addresses.
If a given hostname resolves to more than one IP address (for example, if that host has two ethernet
interfaces), then where possible both addresses are supplied to the client.

Both the shared-network statement and the subnet statement can have parameters.

The most obvious reason for having subnet-specific parameters is that each subnet, of necessity, has its
own router, for example:

option routers 10.254.239.1;

Note that the address is specified numerically; this is not required. If you have a different domain name
for each interface on your router, it is appropriate to use the domain name for that interface instead of
the numeric address. However, there may be only one domain name for all a router's IP addresses, and it
would not be appropriate to use that name here.

Parameters starting with the opt i on keyword correspond to actual DHCP options. Parameters that do
not start with the opt i on keyword either control the behavior of the DHCP server (for example, how
long a lease the DHCP server will give out), or specify client parameters that are not optional in the
DHCP protocol (for example, server—-name and filename).

Each host can have host-specific parameters. These could include such things as the:

e Hostname option
e Name of afile to upload (the £ilename parameter)
e Address of the server from which to upload the file (the next-server parameter)

In general, any parameter can appear wherever parameters are allowed, and will be applied according to
the scope in which the parameter appears.

All parameters must be specified first before you can specify any declarations that depend on those
parameters. Parameters should be set inside declarations so they can be set on a per-subnet or a per-host
basis.

Declarations

Declarations are used to:

e Describe the topology of the network.

e Describe clients on the network.

e Provide addresses that can be assigned to clients.

e Apply a group of parameters to a group of declarations.

Declarations about network topology include the subnet and the shared-network declarations.

For every subnet to be served, and for every subnet connected to the DHCP server, there must be one
subnet declaration. This declaration tells the DHCP server how to recognize that an address is on that
subnet. A subnet declaration is required for each subnet even if no addresses are dynamically
allocated on that subnet.

There are different declarations required for different situations. The following are the basic declarations
in a configuration file.

e For clients with dynamically assigned addresses, a range declaration must appear within the
subnet declaration, or within a poo1 declaration.

e For clients with statically assigned addresses, or for installations where only known clients will
be served, each client must have a host declaration.

e |f parameters are to be applied to a group of declarations that are not related strictly on a per-
subnet, class, or pool basis, the group declaration can be used.

Some installations have physical networks allowing more than one IP subnet to operate. For example, if
your site has a requirement that 8-bit subnet masks be used, but a department with a single physical
ethernet network expands beyond 254 nodes, you may have to run two 8-bit subnets on the same
ethernet until a new physical network is added. In this case, you can enclose the subnet declarations
for the two networks in a shared-network declaration.

Note that even when the shared-network declaration is absent, an empty one is created by the server to
contain the subnet (and any scoped parameters included in the subnet). For practical purposes, this
means that "stateless” DHCP clients, which are not tied to addresses (and therefore subnets) will receive
the same configuration as stateful ones.

Some sites may have departments that have clients on more than one subnet. It may be desirable to offer
those clients a uniform set of parameters that are different than what would be offered to clients from
other departments on the same subnet.

e For clients declared explicitly with host declarations, enclose the declarations in a group
declaration using the parameters that are common to that department.

e For clients with dynamically assigned addresses, group parameter assignments by network
topology. Alternately, host declarations can provide parameters and if they have no fixed-address
parameter, the clients get an address dynamically assigned. See the example below.

e class declarations and conditional declarations may be used may be used to group parameter
assignments based on information the client sends.

When a client is to be booted, its boot parameters are determined by consulting the following scopes in
this order:

Client’s host declaration (if any).

Group declaration (if any) that enclosed the host declaration.
Subclass declaration for the subclass the client belongs to (if any).
Class declaration for the class the client belongs to (if any).

Pool declaration that the assigned IP address comes from (if any).
Subnet declaration for the subnet on which the client is booting.
Shared-network declaration (if any) containing that subnet.
Top-level parameters that may be specified outside of any declaration.

© Nk wDdPE

Each of these declarations itself appears within a lexical scope, and all declarations at less specific
lexical scopes are also consulted for client option declarations. Scopes are never considered twice, and if
parameters are declared in more than one scope, the parameter declared in the most specific scope is the
one that is used.

When searching for a host declaration, the DHCP server looks for one with a fixed-address parameter
that matches the subnet or shared network on which the client is booting. If no such entry is found, it
looks for an entry with no fixed-address parameter.

Example
Imagine that you have a site with a lot of NCD X-Terminals. These terminals come in a variety of

models, and you want to specify the boot files for each model. You could have host declarations for
each server and group them by model:

group {
filename "Xncdl9r";
next-server ncd-booter;
host ncdl { hardware ethernet 0:c0:c3:49:2b:57; }
host ncd4 { hardware ethernet 0:c0:c3:80:fc:32; }
host ncd8 { hardware ethernet 0:c0:c3:22:46:81; }

o

group {
filename "Xncdl9c";
next-server ncd-booter;
host ncd2 { hardware ethernet 0:c0:c3:88:2d:81; }
host ncd3 { hardware ethernet 0:c0:c3:00:14:11; }

}

group {
filename "XncdHMX";
next-server ncd-booter;
host ncdl { hardware ethernet 0:c0:c3:11:90:23; }
host ncd4 { hardware ethernet 0:c0:c3:91:a7:8; }
host ncd8 { hardware ethernet 0:c0:c3:cc:a:8f; }

Dynamic Address Allocation

Address allocation is done when a client is in the INIT state and has sent a DHCPDISCOVER message.
When the DHCP server is looking for an IP address to allocate to a client, it checks first

e if the client has an active lease on an IP address, or
e if the client has an expired lease on an IP address that has not been reassigned.

It then follows these rules:

e |f alease was found but the client is not permitted to use it, then the lease is freed (if it was not
expired already).

e Ifno lease is found or a lease was found and the client is not permitted to use the address, then
the server looks for an address that is not in use and that the client is permitted to have among the
list of address pools on the client’s subnet.

e If no addresses are found that can be assigned to the client, then no response is sent to the client.

e If an address is found that the client is permitted to have, then the address is allocated to the
client.

Note that IP addresses that have never been assigned are chosen over those that have previously been
assigned to other clients. If an address is found that the client is permitted to have, and that has never
been assigned to any client before, the address is immediately allocated to the client. If the address is
available for allocation but has been previously assigned to a different client, the server will keep
looking in hopes of finding an address that has never been assigned to a client.

Note also that the DHCP server generates the list of available IP addresses from a hash table. This
means that the addresses are not sorted in any order. It is not possible to predict or control the order in
which the DHCP server allocates IP addresses.

Renewing
If the client thinks it has a valid lease and sends a DHCPREQUEST to initiate or renew that lease, the

server has three choices. It can

e Ignore the DHCPREQUEST.
e Send a DHCPNAK, telling the client to stop using the address.
e Send a DHCPACK, telling the client to use the address.

If the server finds the requested address and that address is available to the client, the server sends a
DHCPACK.

If the address is no longer available or the client is not permitted to have it, the server sends a
DHCPNAK.

If the server knows nothing about the address, the server remains silent. However, if the address is
incorrect for the network segment to which the client is attached and the server is authoritative for that
segment, the server sends a DHCPNAK.

Fixed Addresses
There may be a host declaration matching the client's identification. If that host declaration contains a

fixed-address declaration that lists an IP address that is valid for the network segment to which the
client is connected. In this case, the DHCP server will never do dynamic address allocation. In this case,
the client is required to take the address specified in the host declaration. If the client sends a
DHCPREQUEST for some other address, the server will respond with a DHCPNAK.

Address Pools

pool declarations let you have different allocation policies for different address allocation pools. A
client may be denied access to one pool, but be allowed access to another pool on the same network
segment.

A pool declaration is used to specify how a group of addresses should be treated differently than
another group of addresses, even if they are on the same network segment or subnet.

For example, you can provide a large set of addresses assigned to DHCP clients that are known to your
DHCP server, while at the same time providing a small set of addresses that are available for unknown
clients. If you have a firewall, you can arrange for addresses from one pool to have access to the
Internet, while addresses in another pool do not have access to the Internet. The following example
illustrates how you could set up a pair of pool declarations.

subnet 10.0.0.0 netmask 255.255.255.0 {
option routers 10.0.0.254;

Unknown clients get this pool.

pool {
option domain-name-servers bogus.example.com;
max—-lease-time 300;
range 10.0.0.200 10.0.0.253;

allow unknown-clients;

}

Known clients get this pool.
pool {
option domain-name-servers nsl.example.com, ns2.example.com;
max-lease-time 28800;
range 10.0.0.5 10.0.0.199;
deny unknown-clients;

}
}

You can also set up entirely different subnets for known and unknown clients. This is possible because
address pools exist at the level of shared networks, so address ranges within pool declarations can be on
different subnets, if they are on the same shared network.

Pool Permit Lists

The above example shows that address pools can have permit lists. A permit list controls which clients
are allowed access to the address pool and which clients are not allowed access. Each entry in a permit
list is introduced with the a11ow or deny keyword. The following table describes the four possibilities

for eligibility to addresses from the address pool.

If a pool has... Then...

a permit list Only those clients that match specific entries on the permit list are eligible
for addresses from the pool.

a deny list Only those clients that do not match any entries on the deny list are eligible
for addresses from the pool.

both a permit listanda Only clients that match the permit list and do not match the deny list are
deny list eligible for addresses from the pool.

neither a permit list nor a All clients are eligible for addresses from the pool.
deny list

range declarations that appear outside of poo1 declarations in the same shared-network are grouped
into two pools: one which allows all clients for range statements with the dynamic-bootp keyword
and one which denies dynamic BOOTP clients for range statements without the dynamic-bootp
keyword.

As described in the Dynamic Address Allocation section, the DHCP server checks each IP address pool
in sequence to see if the client is permitted to use it, in response to both DHCPDISCOVER and
DHCPREQUEST messages. The DHCP server checks both the address pool permit lists and the relevant
in-scope allow and deny statements. If the client is allowed to use the pool, the server chooses an
available address from that pool (if any) and tentatively assigns that address to the client.

See below for the recognized allow and deny statements. They can be used to permit or refuse access to
known or unknown clients, members of a class, dynamic BOOTP clients, or all clients.

IP Address Conflict Prevention

The DHCP server checks IP addresses to see if they are in use before allocating them to clients. It does
this by sending an ICMP Echo request message (ping) to the IP address being allocated. If no ICMP
Echo reply is received within a second, the address is assumed to be free. This is only done for leases
that have been specified in range statements, and only when the lease is thought by the DHCP server
to be free — that is, the DHCP server or its failover peer has not listed the lease as in use.

If a response is received to an ICMP Echo request, the DHCP server assumes that there is a
configuration error — that the IP address is in use by some host on the network that is not a DHCP client.
It marks the address as abandoned and will not assign it to clients.

If a DHCP client tries to get an IP address, but none are available, but there are abandoned IP addresses,
then the DHCP server will attempt to reclaim an abandoned IP address. It marks one IP address as free,
and then does the same ICMP Echo request check described previously. If there is no answer to the
ICMP Echo request, the address is assigned to the client.

The DHCP server does not cycle through abandoned IP addresses if the first IP address it tries to reclaim
is free. Rather, when the next DHCPDISCOVER comes in from the client, it will attempt a new
allocation using the same method described here and will typically try a new IP address.

Lease Lengths

DHCP leases can be assigned almost any length from zero seconds to infinity. What lease length makes
sense for any given subnet, or for any given installation, will vary depending on the kinds of hosts being
served.

For example, in an office environment where systems are added from time to time and removed from
time to time, but move relatively infrequently, it might make sense to allow lease times of a month or
more. In a final test environment on a manufacturing floor, it may make more sense to assign a
maximum lease length of 30 minutes — enough time to go through a simple test procedure on a network
appliance before packaging it up for delivery.

It is possible to specify two lease lengths: the default length that will be assigned if a client doesn't ask
for any particular lease length, and a maximum lease length. These are specified as clauses to the subnet
command, for example:

subnet 10.252.197.0 netmask 255.255.255.0 {
range 10.252.197.10 10.252.197.107;
default-lease-time 600;
max-lease-time 7200;

}

This subnet declaration specifies a default lease time of 600 seconds (ten minutes), and a maximum
lease time of 7200 seconds (two hours). Other common values would be 86400 (one day), 604800 (one
week) and 2592000 (30 days). Note that each subnet need not have the same lease.

Reserved Leases

It's often useful to allocate a single address to a single client, in approximate perpetuity. Host
statements with fixed-address clauses exist to a certain extent to serve this purpose, but because
host statements are intended to approximate a static configuration, they suffer from not being referenced
in a litany of other server services, such as dynamic DNS, failover, 'on events' and so forth.

If a standard dynamic lease, as from any range statement, is marked reserved, then the server will only
allocate this lease to the client it is identified by (by client identifier or hardware address). In practice,
this means that the lease follows the normal state engine, enters ACTIVE state when the client is bound
to it, expires, or is released, and any events or services that would normally be supplied during these
events are processed normally, as with any other dynamic lease. The only difference is that failover
servers treat reserved leases as special when they enter the FREE or BACKUP states — each server
applies the lease into the state it may allocate from — and the leases are not placed on the queue for
allocation to other clients. Instead they may only be found by client identity. The result is that the lease
is only offered to the returning client.

Note: Care should be taken to ensure that the client only has one lease within a given subnet that it
is identified by.

Leases may be set 'reserved’ through the infinite-is-reserved configuration option. Leases
marked 'reserved' are effectively treated the same as leases marked 'bootp'.

Client Classing

You can separate clients into classes, treating each client differently depending on what class it is in. To
separate clients into classes, use conditional statements (see the Conditional Behavior section) or a
match statement within a c1ass declaration. You can specify a limit on the total number of clients
within a particular class or subclass that may hold leases at one time using the 1ease l1imit
statement. You can specify automatic subclassing based on the contents of the client packet using the
spawn with Statement.

To add clients to classes based on conditional evaluation, write a conditional statement to match the
clients you want in the class. Then, put an add statement in the conditional’s list of statements. For
example, to identify requests coming from Microsoft Windows RAS servers:

if substring (option dhcp-client-identifier, 1, 3) = "RAS" {

add "ras-clients";

}

An equivalent way to do this is to specify the conditional expression as a matching expression in the
class statement. For example:

class "ras-clients" {
match if substring (option dhcp-client-identifier, 1, 3) = "RAS";
}

Note: Whether you use matching expressions or add statements (or both) to classify clients, you
must write a class declaration for any class that you use.

If you want no match statement and no in-scope statements for a class, the declaration looks like this,
for example:

class "ras-clients" {

}

Important! The add statement adds the client to the class after the address assignment has been
completed. This means the client will not be affected by pool permits related to that class if the
client is a member of a class due to an add statement.

Subclasses

In addition to classes, you can declare subclasses. A subclass is a class having the same name as a
regular class but with a specific submatch expression that is hashed for quick matching. It is quicker to
find five subclasses within one class than it is to find five classes with match expressions. The following
example illustrates how to code for subclasses:

class "allocation-class-1" {

match pick-first-value (option dhcp-client-identifier, hardware);
}
class "allocation-class-2" {

match pick-first-value (option dhcp-client-identifier, hardware);

}

subclass "allocation-class-1" 1:0:0:cd4:aa:29:44;
subclass "allocation-class-1" 1:8:0:2b:4c:39:ad;
subclass "allocation-class-2" 1:8:0:2b:a9%:cc:e3;

subnet 10.0.0.0 netmask 255.255.255.0 {
pool {
allow members of "allocation-class-1";
range 10.0.0.11 10.0.0.50;
}
pool {
allow members of "allocation-class-2";
range 10.0.0.51 10.0.0.100;
}
}

The data following the class name in the subclass declaration is a constant value used in matching
the match expression for the class. During class matching, the server evaluates the match expression and
looks up the result in the hash table. If a match is found, the client is considered a member of both the
class and the subclass.

You can specify subclasses with or without scope (i.e., statements). In the above example, the sole
purpose of the subclass is to allow some clients access to one address pool, while other clients are given
access to the other pool. Thus, these subclasses are declared without any statements (scope). If you
wanted to define different parameter values for some clients, you would declare those subclasses with
SCopes.

For example: if you had a single client needing some configuration parameters, while most did not, you
might write the following subclass declaration for that client:

subclass "allocation-class-2" 1:08:00:2b:al:11:31 {
option root-path "samsara:tcpware:alphapc";

filename "tcpware:netbsd.alphapc-diskless";

}

In these examples, subclassing is being used to control address allocation on a per-client basis. However,
it is possible to use subclassing in ways that are not specific to clients. For example, you can use the
value of the vendor-class-identifier option to determine what values to send in the vendor-
encapsulated-options option. See the Vendor Encapsulated Options section.

Note: If you are using match hardware, the hardware address is preceded by the hardware type. In
this example, the 1 : indicates Ethernet.

Per-Class Limits on Dynamic Address Allocation

The number of clients in a class that can be assigned leases can be limited. This limiting makes it
difficult for a new client in a class to get an address. Once a class has reached its limit, the only way a
new client in that class can get a lease is for an existing client to relinquish its lease, either by

e letting it expire, or
e sending a DHCPRELEASE packet.

The following example illustrates how to specify classes with lease limits.

class "limited-1" {
lease limit 4;

}

This produces a class in which a maximum of four members may hold leases at one time.

Spawning Classes

It is possible to declare a spawning class. A spawning class is a class that automatically produces
subclasses based on what the client sends. The reason that spawning classes were created was to make
it possible to create lease-limited classes on the fly. For example, if you want to provide clients at a
particular site with more than one IP address, but do not want to provide these clients with their own
subnet, nor give them an unlimited number of IP addresses from the network segment to which they are
connected, you can create a spawning class and use lease limits.

Many cable modem head-end systems can be configured to add a Relay Agent Information option to
DHCP packets when relaying them to the DHCP server. These systems typically add a circuit ID or

remote ID option that uniquely identifies the customer site. The following example illustrates how to
write a class declaration to take advantage of these relay agent options to create lease limited classes on
the fly:

class "customer" {
match if exists agent.circuit-id;
spawn with option agent.circuit-id;
lease limit 4;

}

With this class declaration, whenever a request comes in from a customer site, the circuit ID option is
checked against the class's hash table.

e |If a subclass matches the circuit ID, the client is classified in that subclass.
e If no subclass matches the circuit ID, a new subclass is created and logged in the
dhcpd. leases file and the client is classified in the new subclass.

Once a client is classified, it is treated according to the rules of the class; as in the example above, being
subjected to the per-site limit of four leases.

Note: The use of the subclass spawning mechanism is not restricted to relay agent options. This
example is given only because it is a straightforward one.

Combining Match, Match-If, and Spawn

In some cases, it may be useful to use one expression to assign a client to a particular class, and a second
expression to put it into a subclass of that class. This can be done by combining the match if and
spawn with statements, or thematch if and match statements. For example:

class "jr-cable-modems" {
match if option dhcp-vendor-identifier = "jrcm";
spawn with option agent.circuit-id;
lease limit 4;

}

class "dv-dsl-modems" {
match if option dhcp-vendor-identifier = "dvdsl";
spawn with option agent.circuit-id;
lease limit 16;

This allows you to have two classes that both have the same spawn with expression without getting
the clients in the two classes confused with each other.

Events

There are three kinds of events that can happen regarding a lease, and it is possible to declare statements
that occur when any of these events happen. These events are:

e the commit event, when the server has made a commitment of a certain lease to a client
e the release event when the client has released the server from its commitment
e the expiry event when the commitment expires

To declare a set of statements to execute when an event happens, you must use the on statement,
followed by the name of the event, followed by a series of statements to execute when the event
happens, enclosed in braces.

Conditional Behavior

The DHCP server can be configured to perform conditional behavior depending on the packets it
receives.

Conditional behavior is specified using the i f statement and the e1lse or e1lsif statements. A
conditional statement can appear anywhere that a regular statement can appear and can enclose one or
more such statements. The following is an example of a conditional statement.

if option dhcp-user-class = "accounting" {
max-lease-time 17600;
option domain-name "accounting.example.org";
option domain-name-servers nsl.accounting.example.org,
ns2.accounting.example.org;
} elsif option dhcp-user-class = "engineering" ({
max-lease-time 17600;
option domain-name "engineering.example.org";
option domain-name-servers nsl.engineering.example.org,
ns2.engineering.example.org;
} else {
max-lease-time 600;
option domain-name "misc.example.org";
option domain-name-servers nsl.misc.example.org,
ns2.misc.example.org;

Both the i f statement and the e1s1 f continuation statement take expressions that, when evaluated,
produce a boolean result. See the Expressions section for more information.

e |f the expression evaluates to true, then the statements enclosed in braces following the i f
statement are executed. All subsequent e1sif and else clauses are skipped.

e If the expression evaluates to false, then the statements enclosed in braces following the i f
statement are not executed and each subsequent e1s1 f clause is checked until an e1s1if clause
is encountered that evaluates to true.

e |Ifsuchanelsif clause is found, then the statements in braces following it are executed. Any
subsequent e1sif and else clauses are skipped.

e Ifallthe if and elsif clauses are checked but none of their expressions evaluate to true, then
if there is an e1se clause, then the statements enclosed in braces following the e1se clause are
evaluated.

Note: Boolean expressions that evaluate to null are treated as false in conditionals.

Dynamic DNS Updates (DDNS)

The DHCP server can perform dynamic updates to DNS using DNS's dynamic updating functionality
(DDNS). Within the configuration files, you can define how you want the updates to be done.

Note: Be sure to configure your name server to allow updates from the DHCP server, see Chapter
3, Domain Name Services.

DDNS in DHCP

This section describes how DDNS is implemented in the DHCP server.
The following statements in the DHCP server configuration file are related to dynamic updating:

e ddns-updates flag;

e ddns-update-style { interim | none };
e do-forward-updates flag;

e ddns-hostname name;

e ddns-domainname name;

e ddns-rev-domainname name;

e update-static-leases flag;

e allow/deny/ignore client-updates;

e update-conflict-detection flag;

e update-optimization flag;

The DNS update scheme implemented by DHCP is called the interim DHCP-DNS interaction draft
update mode. In future versions of ISC DHCP, an update mode will be implemented based on the
standardized RFCs which came from these drafts.

Use the ddns-update-style interim statementto enable the interim update mode. To turn on
DDNS updates, use the statement ddns-updates on. The ddns-updates Statement can be at the
top of the dhcpd. conf file or inside a shared-network or subnet declaration or other scope.

DHCP Interim Update Mode

Updating A and PTR Records

With the interim update mode, the DHCP server does not necessarily always update both the A and the
PTR records. By default, forward (A record) updates are enabled. They can be disabled by setting the
do-forward-updates parameter to of £ or false. In this case, the DHCP server never attempts to
update the client’s A record, and only attempts to update the PTR record if the client supplies an FQDN
that should be placed in the PTR record using the FQDN option. If forward updates are enabled, then the
DHCP server honors the client-updates flag.

The FQDN option sent by the client may include a flag which indicates that the client wishes to update
its own A record. In that case, the server can be configured either to honor the client's intentions or
ignore them. This is done with the statement allow/deny/ignore client-updates. By default,
client updates are allowed.

If the server is configured to allow client updates, then if the client sends a fully-qualified domain name
in the FQDN option, the server will use that name to update the PTR record. For example, let us say that
the client is a visitor from the “radish.org” domain, whose hostname is “jdoe”. The server is for the
example.org domain. The DHCP client indicates in the FQDN option that its FQDN is
“jdoe.radish.org.”. It also indicates that it wants to update its own A record. The DHCP server therefore
does not attempt to set up an A record for the client, but does set up a PTR record for the IP address that
it assigns the client, pointing at jdoe.radish.org. Once the DHCP client has an IP address, it can update
its own A record, if the “radish.org” DNS server will allow it to do so.

If the server is configured not to allow client updates or if the client doesn't want to do its own update,
the server performs the update of the A record.

The server must determine a host name for the client. It first looks for a ddns-hostname
configuration option and uses that if it is present. If no such option is present, the server looks for a
valid hostname in the FQDN option sent by the client. If one is found, it is used. Otherwise, if the client
sent a host-name option, that is used. Otherwise, if there is a host declaration that applies to the client,
the name from that declaration is used (the name can be specified via the host-name option, or by
enabling the use-host-decl-names parameter). If none of these applies, the server will not have a
hostname for the client and will not be able to do a DNS update.

Note that in the configuration file, ddns-hostname or the host-name option can be defined such that
the server will generate a host name. See the Expressions section for more information.

The server then chooses a domain name for the client. By default, the server uses its own domain name.
If desired, the domain name may be specified in the configuration file by using the option domain-
name statement, or the ddns-domainname parameter. For the PTR record, the domain name is by
default in-addr.arpa. If desired, this domain name may be specified in the configuration file by
using the ddns-rev-domainname parameter.

The domain name is appended to the host name that it chose for the client. The server then updates both
the A and PTR record.

After doing the DDNS updates, if the ignore client-updates directive is used, then the server
sends a response in the DHCP packet, using the FQDN option, that implies to the client that it should
perform its own updates if it chooses to do so. With deny client-updates, aresponse is sent
which indicates the client may not perform updates.

Conflict Detection

With the interim scheme, a method is used that allows more than one DHCP server to update the DNS
database without accidentally deleting A records that shouldn't be deleted nor failing to add A records
that should be added. The scheme works as follows:

When the DHCP server issues a client a new lease, it creates a text string that is an MD5 hash over the
DHCP client's identification. The update adds an A record with the name the server chose and a TXT
record containing the hashed identifier string. If this update succeeds, the server is done.

If the update fails because the A record already exists, then the DHCP server attempts to add the A
record with the prerequisite that there must be a TXT record in the same name as the new A record, and
that TXT record's contents must be equal to the hashed identifier. If this update succeeds, then the client
has its A record and PTR record. If it fails, then the name the client has been assigned (or requested) is

in use and can't be used by the client. At this point the DHCP server gives up trying to do a DNS update
for the client until the client chooses a new name.

This conflict detection can be disabled by setting the update-conflict-detection parameter to
of f or false inthe configuration file. In this case, the server skips the TXT file check and instead
simply tears down any previous binding to install the new binding without question.

Update Optimization

Because each DNS update involves a round trip to the DNS server, there is a cost associated with doing
updates even if they do not actually modify the DNS database. As a result, the DHCP server tracks
whether or not it has updated the record in the past (this information is stored on the lease) and does not
attempt to update records that it thinks it has already updated.

This optimization can be disabled by setting the update-optimization parameter to of f or
false in the configuration file. If the update-optimization parameter is false for a given client, the
server will attempt a DNS update for that client each time the client renews its lease. This will allow the
DNS to heal from database inconsistencies more easily, but the cost is that the DHCP server must do
many more DNS updates. We recommend leaving this optimization enabled, which is the default. If this
parameter is not specified, or is set to t rue, the DHCP server will only update when the client
information changes, the client gets a different lease, or the client's lease expires.

Static Leases

By default, the server does not do DDNS updates for static assignments — that is, if the IP address is
specified ina fixed-address statement in a host declaration. The update-static-leases
flag, if enabled, causes the DHCP server to do DNS updates for a client even if it is being given a static
assignment. It is not recommended because the DHCP server has no way to tell that the update has been
done, and therefore will not delete the record when it is not in use. Also, the server must attempt the
update each time the client renews its lease, which could have a significant performance impact in
environments that place heavy demands on the DHCP server.

DNSSEC
This section describes how DDNS security (DNSSEC) is implemented in the DHCP server.

The following statements in the DHCP V4 server configuration file are related to DNSSEC:

e key
e zone

The use of these statements is described here. They are also listed in the DHCP Statements section.

When you set your name server up to allow updates from the DHCP server, you may be exposing it to
unauthorized updates. To avoid this, you should use TSIG signatures — a method of cryptographically
signing updates using a shared secret key. If you protect the secrecy of this key, your updates should
also be secure. Note, however, that the DHCP protocol itself provides no security, and that clients can
therefore provide information to the DHCP server which the DHCP server will then use in its updates,
with the constraints described previously.

Name Server Configuration

The name server must be configured to allow updates for any zone that the DHCP server will be
updating. For example, let us say that clients in the example.org domain are assigned addresses on the
10.10.17.0/24 subnet. In that case, you need a key declaration for the TSIG key you will be using, and
also two zone declarations — one for the zone containing A records that are updated and one for the
zone containing PTR records. For the TCPware DNS server, you can use something like the following.
Note that you may also wish to enable logging of DNS updates in your name server (not shown here).

key DHCP UPDATER ({
algorithm HMAC-MD5.SIG-ALG.REG.INT;
secret pRP5FapFoJ95JELO6sv4PQ==;
bi
zone "example.org" {
type master;
file "example org.hosts";
allow-update { key DHCP UPDATER; };
i
zone "17.10.10.in-addr.arpa” {
type master;
file "17 10 10 inaddr arpa.hosts";
allow-update { key DHCP UPDATER; };
i

DHCP Server Configuration

You also must configure your DHCP server to do updates to these zones. To do so, you need to add
something like the following to your dhcpd. conf file:

key DHCP UPDATER {
algorithm HMAC-MD5.SIG-ALG.REG.INT;
secret pRP5FapFoJ95JEL06sv4PQ==;

i

zone EXAMPLE.ORG. {
primary 127.0.0.1;

key DHCP UPDATER;

}

zone 17.127.10.in-addr.arpa. {
primary 127.0.0.1;
key DHCP UPDATER;

}

The primary statement specifies the IP address of the name server whose zone information is to be
updated. In addition to the primary statement, you may also specify secondary statements. The
secondaries provide for additional addresses for name servers to be used if the primary does not respond.
The number of name servers the DDNS code will attempt to use before giving up is limited and is
currently set to three.

Note that the zone declarations must correspond to authority records in your name server — in the above
example, there must be SOA records for example.org. andfor 17.10.10.in-addr.arpa..

For example, if there were a subdomain foo.example.org with no separate SOA, you could not write a
zone declaration for foo.example.org. Also keep in mind that zone names in your DHCP configuration
should end in a dot (.); this is the preferred syntax but not required. (If you do not end your zone name
in a dot, the DHCP server will figure it out.) Also note that in the DHCP configuration, zone names are
not encapsulated in quotes the way they are in the name server configuration.

Using dnssec-keygen

TCPware comes with a program for generating secret keys called dnssec-keygen. To use
dnssec-keygen:

SMkeygen :== $tcpware:dnssec-keygen.exe
Sllkeygen -a HMAC-MD5 -b 128 -n USER DHCP UPDATER

You must use the keyboard to create entropy, since your system is lacking
/dev/random (or equivalent)

start typing:

At this point, start typing at the keyboard to generate a random input. dnssec-keygen will display
dots until it is done, at which point it will display the following:

stop typing.
Kdhcp updater-157-27654

The last line is the name of the files that it created in your current directory which contain the generated
key:

Sltype KDHCP UPDATER-157-27654.*

DISK: [DEV]KDHCP UPDATER-157-27654.KEY;1

dhcp updater. IN KEY 0 3 157 8k+pa57JEGylQUXkOv33VA==
DISK: [DEV]KDHCP UPDATER-157-27654.PRIVATE; 1

Private-key-format: v1.3
Algorithm: 157 (HMAC MDS5)
Key: 8k+pab7JEGylQUXkOv33VA==
Bits: AAA=

Created: 20140220172314
Publish: 20140220172314
Activate: 20140220172314

Take the key in the Key : line and use it in your named. conf and dhcpd. conf files as the value for
the secret in the key statement.

Upgrading DDNS from DHCP V3 to DHCP V4

If you have a legacy DHCP V3 server that is configured to do Dynamic DNS updates and you are
upgrading to DHCP V4, the mapping from DHCP V3 DDNS statements to DHCP V4 DDNS statements

is as follows.

Note that in DHCP V3 the default is to not do DDNS updates, while in DHCP V4 the default is to do
them. Similarly, the DHCP V3 default is to not create the A record, while the DHCP V4 default is to
create it.

DHCP V3 DHCP V4

allow/deny dynamic-update; ddns-updates flag;
ddns-update-style {interim|none};

allow/deny update-A-record; do-forward-updates flag;
allow/denyl/ignore client-updates;

allow/deny name-by-client; see above for how host names are determined
invalid-ddns-chars {fail |
discard | replace [“chars”]};

Host Name Generation

Some DHCP clients require that the server send them a host name. The DHCP server can generate a host
name if it cannot get the host name in another way. This host name is sent to the client and is combined
with the domain name to create the Fully Qualified Domain Name (FQDN) required for dynamic DNS
updates. See the Dynamic DNS Updates (DDNS) section.

To enable the DHCP server to generate host names, specify in the configuration file an option
host-name statement with a value formatted in a certain way, as described here. The option
host-name statement can be specified for example at the top level in a subnet statement, or in a
host statement.

You can specify the host name to generate either in the option host-name statement or the ddns-
hostname statement. You can use a combination of evaluation functions to tell the server how to
generate the name. See the Expressions section for more information on available evaluation functions.

See the DHCP Interim Update Mode section for a description of when it looks at ddns-hostname
statement and when it looks at the option host-name statement to determine the host name. If it
does execute either statement, it will generate a host name as specified by the expressions in the value.

For example:
option host-name = concat (“DHCP-“, binary-to-ascii(10,8,””,leased-address);
ddns-hostname = concat (“DHCP-“, binary-to-ascii(10,8,””,leased-address):;

These statements in dhcpd. conf generate a host name consisting of the string DHCP- followed by the
ASCII version of the IP address that was leased out to the client by the DHCP server. It uses the data
expressions concat, binary-to-ascii, and leased-address.

You can use the following keys to specify what you want the generated host name to look like. The
generated host name can contain parts of the host's IP address, client ID, and/or MAC address, plus any
characters that are valid for the host—-name option. The key values are as follows. You can include
more than one in the same host-name value.

Note: Some of these do not by themselves generate a unique identifier.

Key Meaning
A First byte of the host's IP address.
5B Second byte of the host's IP address.

5C Third byte of the host's IP address.

o°
w)

Fourth byte of the host's IP address.

o°
(ag)

Host part of the host's IP address.
Example: for address 10.24.25.201 with subnet mask 255.255.0.0, the key would return 6601.

I Client Identifier sent by the host.

-1 Client ID as above, except that hyphens (-) are used to separate each byte.

M MAC address of the host.

5-M MAC address of the host, as above, except that hyphens (-) are used to separate each byte.

SN Host name sent by the client, if any. If none, “Host”.

5P Printable characters from the client ID. For example: if the client ID was 0174657374, the 01 is
thrown away and the resulting hostname is “test”.

$S Subnet part of the host's IP address.
Example: for address 10.24.25.201 with subnet mask 255.255.0.0, the key would return 102400.

=S Subnet part of the host's IP address, as above, except that hyphens (-) are used to separate each

byte. For example: 10-24-0-0.

You can intersperse string constants such as hyphens between key definitions. However, if the generated
host name exceeds 63 characters, it is truncated. Here is an example host-name statement:

option host-name "Host%H-%-S";

For a lease pool defined with an address range of 192.168.11.7 through 192.168.11.10 and a subnet
mask of 255.255.255.0, the DHCP server generates the following host names:

Host7-192-168-11-0
Host8-192-168-11-0
Host9-192-168-11-0
Host10-192-168-11-0

The %N key allows you to use the host name as sent by the client (option 12) and then add something
unique to it to generate a unique name. For example, if multiple clients all send the name "dilbert" you
can make them unique by appending the MAC (hardware) address, as follows:

deny name-by-client;
option host-name "$N-%M";

This would generate the host name "dilbert-010203040506" for a client with hardware address
01:02:03:04:05:06.

Configuration File Declarations and
Parameters

This section lists and describes the declarations and parameters you can use in a configuration file.

This section does not include DHCP Failover related configuration file statements. (See the Failover
Configuration File Statements section).

Allow and Deny Statements

Use the allow and deny and ignore statements to control the behavior of the DHCP server.
The allow and deny keywords have different meanings depending on the context.

e Inapool context, use allow and deny to set up access lists for address allocation pools.

e In anon-pool context, the i gnore keyword can be used in place of the deny keyword to
prevent logging of denied requests.

e In other contexts, use these keywords to control general server behavior with respect to clients
based on scope.

Allow and Deny Outside of Pool Declarations

These allow, deny, and ignore statements work the same way whether the client is sending a
DHCPDISCOVER or a DHCPREQUEST message: an address is allocated to the client (either the old
requested address or a new address), and then, that address is tested to see if it is okay for the client to
have it.

If the client requested it, and it is not okay, the server sends a DHCPNAK message. Otherwise, the
server does not respond to the client. If it is okay to give the address to the client, the server sends a
DHCPACK message.

These are not recommended for use inside pool declarations. See the Pool Permit Lists section for an
important note.

The following table lists the available a11ow and deny statements.

Statement

allow unknown-clients;
deny unknown-clients;
ignore unknown-clients;

allow bootp;
deny bootp;
ignore bootp;

allow booting;
deny booting;
ignore booting;

allow declines;
deny declines;
ignore declines;

Description

Use the unknown-clients flag to tell the DHCP server
whether to dynamically assign addresses to unknown clients.
An unknown client is one that does not have a host
declaration.

The default is to a11ow dynamic address assignments to
unknown clients.

The use of this option outside of pool declarations is now
deprecated. If you are trying to restrict access on your network
to known clients, you should deny unknown clients inside of
your address pool.

Use the bootp flag to tell the DHCP server to respond to
BOOTP queries or to not respond to BOOTP queries. The
default is to a11ow BOOTP queries.

Use the boot ing flag to tell the DHCP server whether to
respond to queries from a particular client. This keyword only
has meaning inside of a host declaration. The default is to
allow booting. If it is disabled for a particular client, that
client will not be able to get an address from the DHCP server.

The DHCPDECLINE message is used by DHCP clients to
indicate that the lease the server has offered is not valid. When
the server receives a DHCPDECLINE for a particular address,
it normally abandons that address, assuming that some
unauthorized system is using it. Unfortunately, a malicious or
buggy client can, using DHCPDECLINE messages, completely
exhaust the DHCP server's allocation pool. The server will
reclaim these leases, but while the client is running through the
pool, it may cause serious thrashing in DNS, and it will also
cause the DHCP server to forget old DHCP client address
allocations.

allow duplicates;
deny duplicates;

allow leasequery;
deny leasequery;

allow dhcpinform;
deny dhcpinform;

The declines flag tells the DHCP server whether or not to
honor DHCPDECLINE messages. If itis setto deny or
ignore in a particular scope, the DHCP server will not
respond to DHCPDECLINE messages.

Host declarations can match client messages based on the
DHCP Client Identifier option or based on the client's network
hardware type and MAC address. If the MAC address is used,
the host declaration will match any client with that MAC
address — even clients with different client identifiers. This
doesn't normally happen, but is possible when one computer
has more than one operating system installed on it — for
example, Microsoft Windows and Linux.

The duplicates flag tells the DHCP server that if a request
is received from a client that matches the MAC address of a
host declaration, any other leases matching that MAC address
should be discarded by the server, even if the UID is not the
same. This is a violation of the DHCP protocol, but can prevent
clients whose client identifiers change regularly from holding
many leases at the same time. By default, duplicates are
allowed.

The 1easequery flag tells the DHCP server whether or not
to answer DHCPLEASEQUERY packets. The answer to a
DHCPLEASEQUERY packet includes information about a
specific lease, such as when it was issued and when it will
expire. By default, the server will not respond to these packets.

Use the dhcpinform flag to tell the DHCP server to respond
to DHCPINFORM messages or to not respond. The default is
to al1low DHCPINFORM messages for authoritative subnets,
and to deny DHCPINFORM messages for non-authoritative
subnets.

allow client-updates; The client-updates flag tells the DHCP server whether or

deny client-updates;

not to honor the client's intention to do its own update of its A

record. This is only relevant when doing interim DNS updates.

Allow and Deny in Pool Declarations

This section lists and describes the available allow and deny statements that can be used in pool

declarations.

See the Pool Permit Lists section for discussion, defaults, and important notes.

Statement

allow unknown-clients;
deny unknown-clients;

allow members of “class—-name”;

deny members of “class-name”;

allow dynamic bootp clients;
deny dynamic bootp clients;

allow all clients;
deny all clients;

allow after time;
deny after time;

Description

Use unknown clients to allow or prevent allocation
from this pool to any client that has no host declaration.

Use members of “class” toallow or prevent
allocation from this pool to any client that is a member of
the named class.

Use dynamic bootp clients toallow or prevent
allocation from this pool to any BOOTP client.

Useall clients toallow or prevent allocation from
this pool to all clients. You can use this, for example,
when you want to write a pool declaration but you want
to hold it in reserve; or when you want to renumber your
network quickly, and thus want the server to force all
clients that have been allocated addresses from this pool
to obtain new addresses immediately when they next
renew their leases.

If specified, this statement either allows or prevents
allocation from this pool after a given date. This can be
used when you want to move clients from one pool to
another. The server adjusts the regular lease time so that
the latest expiry time is at the given time plus min-
lease-time. Ashort min-lease-time enforcesa

DHCP Statements

step change, whereas a longer min-Ilease-time
allows for a gradual change. time is either seconds
since epoch, or a UTC time string e.g. 2007/08/24
09:14:32 or a string with time zone offset in seconds e.g.
2007/08/24 11:14:32 -7200

This section lists and describes the remaining declarations and parameters that can be specified in the

DHCP server configuration file.

Statement

adaptive-lease-time-threshold
percentage;

add “class—-name”;

always-broadcast flag;

Description

When the number of allocated leases within a pool rises
above the percentage given in this parameter, the DHCP
server decreases the lease length for new clients within this
pool to min-lease-time seconds. Clients renewing
already valid (long) leases get at least the remaining time
from the current lease. Since the leases expire faster, the
server may either recover more quickly or avoid pool
exhaustion entirely. Once the number of allocated leases
drop below the threshold, the server reverts back to normal
lease times. Valid percentages are between 1 and 99.

Use the add statement to add a client to the class whose
name is specified in class-name.

Because this statement executes after IP address allocation
is completed, class membership caused by this statement
cannot be used in the address allocation process.

Use the always-broadcast parameter to cause the
DHCP server to always broadcast its responses. This
feature is to handle clients who do not set the broadcast flag
in their requests and yet require a broadcast response. We

always-reply-rfcl048 flag;

authoritative;
not authoritative;

recommend you restrict the use of this feature to as few
clients as possible.

Some BOOTP clients expect RFC 1048-style responses, but
do not follow RFC 1048 rules when sending their requests.
You can determine if a client is having this problem if it is
not getting the options you have configured for it, and if
you see in the server log the message " (non-rfc1048)"
printed with each BOOTREQUEST that is logged.

If you want to send RFC 1048 options to this kind of client,
setthe always-reply-rfcl1048 parameter in that
client's host declaration. The DHCP server responds with an
RFC 1048-style vendor options field. This flag can be set in
any scope, and affects all clients covered by that scope.

When the DHCP server receives a DHCPREQUEST
message from a DHCP client requesting a specific IP
address, the DHCP protocol requires that the server
determine whether the IP address is valid for the network to
which the client is attached. If the address is not valid, the
DHCP server should respond with a DHCPNAK message,
forcing the client to acquire a new IP address.

To make this determination for IP addresses on a particular
network segment, the DHCP server must have complete
configuration information for that network segment.
Unfortunately, it is not safe to assume that DHCP servers
are configured with complete information. Therefore, the
DHCP server normally assumes that it does not have
complete information, and thus is not sufficiently
authoritative to safely send DHCPNAK messages as
required by the protocol.

This default assumption should not be true for any network
segment that is in the same administrative domain as the
DHCP server. For such network segments, the

boot-unknown-clients flag;

class “class—-name”
{[statements] [declarations]}

authoritative statement should be specified, so that
the server sends DHCPNAK messages as required by the

protocol. If the DHCP server receives requests only from

network segments in the same administrative domain, you
can specify the authoritative statement at the top of
the configuration file (in the global scope).

If the boot-unknown-clients parameter is present
and has a value of false or off, then clients for which there
is no host declaration will not be allowed to obtain IP
addresses. If this statement is not present or has a value of
true or on, then clients without host declarations will be
allowed to obtain IP addresses, as long as those addresses
are not restricted by allow and deny statements within their
pool declarations.

This declaration groups clients together based on
information they send. A client can become a member of a
class in the following ways:

e through an add statement
e based on the class’s matching rules
e because the client matches a subclass of that class

class—-name is the name of the class and is used in:

e add statements

e members of permit statements

e subclass declarations for subclasses of the
named class

When a packet is received from a client, every class
declaration is examined for amatch, match if,or
spawn Statement. That statement is checked to see if the
client is a member of the class.

ddns-domainname name;

ddns-hostname name;

ddns-rev-domainname name;

ddns-update-style
none] ;

[interim |

The class declaration statements are lease limit,
match, match if,and spawn with.

Use the ddns-domainname parameter to specify the
domain name to be appended to the client’s host name to
form a fully qualified domain name (FQDN) for DDNS.
See Dynamic DNS Updates (DDNS).

Use the ddns-hostname parameter to specify the
hostname to be used in setting up the client's A and PTR
records for DDNS. If no ddns-hostname is specified
in scope, then the server derives the hostname
automatically. See Dynamic DNS Updates (DDNS).

Use the ddns-rev-domainname parameter to specify
the domain name that will be appended to the client's
reversed IP address to produce a name for use in the client's
PTR record. By default, this is "in-addr.arpa.”, but the
default can be overridden here.

The reversed IP address to which this domain name is
appended is always the IP address of the client, in dotted
quad notation, reversed — for example, if the IP address
assigned to the client is 10.17.92.74, then the reversed IP
address is 74.92.17.10. So a client with that IP address
would, by default, be given a PTR record of
10.17.92.74.in-addr.arpa.

Use the ddns-update-style parameter to turn on
DDNS updates and specify the update style. The only
supported update style is interim. To turn off DDNS
updates, set ddns-update-style to none (the
default). This parameter is only meaningful in the outer
scope — at the top of the DHCPD . CONF file. There is no
way to set ddns-update-style to different values for
different clients.

ddns-updates flag;

db-time-format [default
locall;

default-lease-time time;

delayed-ack count;

The ddns-updates parameter controls whether or not
the server will attempt to do a DNS update when a lease is
confirmed. Set thisto of £ if the server should not attempt
to do updates within a certain scope. The ddns-updates
parameter is on by default. To disable DNS updates in all
scopes, it is preferable to use the ddns-update-style
statement, setting the style to none.

The DHCP server software outputs several timestamps
when writing leases to persistent storage. The db-time-
format parameter selects one of two output formats:
default or local. The default format prints the day, date,
and time in UTC, while the 1ocal format prints the
system seconds-since-epoch, and provides the day and time
in the system time zone in a comment

time is the length (in seconds) that the DHCP server
assigns to a lease if the requesting client did not ask for a
specific amount of time for the lease to be active. The
infinite lease value is infinite. The default is 43200
seconds (12 hours).

You should set the value of default-lease-time no
larger than the value of max-lease-time.

The delayed-ack parameter works with the max-ack-
delay parameter. Use the delayed-ack parameter to
specify an integer value from 0 to 65535 (default 28)
representing the maximum number of replies that the server
can queue up pending transmission until after a database
commit event. If this number is reached, a database commit
is done (representing a performance penalty), and the
replies are transmitted in a batch. This preserves the
RFC2131 direction that "stable storage™ be updated prior to
replying to clients. If it happens at any point that there are
no incoming requests into the DHCP server (and so the

do-forward-updates flag;

dynamic-bootp-lease-cutoff
date;

server is temporarily idle), the commit is made at that time
and any queued replies are transmitted.

The do-forward-updates parameter instructs the
DHCP server as to whether it should attempt to update a
DHCP client's A record when the client acquires or renews
a lease. This statement has no effect unless DNS updates
are enabled and ddns-update-style isset to
interim. Forward updates are enabled by default. If this
statement is used to disable forward updates, the DHCP
server will never attempt to update the client's A record,
and will only ever attempt to update the client's PTR record
if the client supplies an FQDN (fully qualified domain
name) that should be placed in the PTR record, using the
fgdn option. If forward updates are enabled, the DHCP
server will still honor the setting of the client-
updates flag.

Use the dynamic-bootp-lease-cutoff parameter
to set the ending time for all leases dynamically assigned to
BOOTP clients. By default, the DHCP server assigns
infinite leases to all BOOTP clients because they do not
have any way of renewing leases, and do not know that
their leases could expire. However, it may make sense to
set a cutoff date for all BOOTP leases. For example, the
end of a school term, or the time at night when a facility is
closed and all machines are required to be powered off.

date should be the date all assigned BOOTP leases will
end. The date is specified in the form:

W YYYY/MM/DD HH:MM:SS

w is the day of the week, from 0 (Sunday) to 6 (Saturday).
YYYY is the year, including the century.

dynamic-bootp-lease-length
length;

filename “file—-name”;

fixed-address address
[,..,address];

MM is the number of the month, from 01 to 12.
DD is the day of the month, counting from 01.
HH is the hour, from 00 to 23.

MM is the minute, from 00 to 59.

5SS is the second, from 00 to 59.

The time is always in Greenwich Mean Time, not local
time.

Use the dynamic-bootp-lease-length parameter
to set the length of leases dynamically assigned to BOOTP
clients. You may be able to assume that a lease is no longer
in use if its holder has not used BOOTP or DHCP to get its
address within a certain time period. The length of the time
period is your judgment call.

Specify 1ength in seconds. The infinite lease value is 0. If
a BOOTP client reboots during a timeout period, the lease
duration is reset to Iength so a BOOTP client that boots
frequently never loses its lease. This parameter should be
adjusted with extreme caution. The default is an infinite
lease.

Use the i 1ename parameter to specify the name of the
initial boot file that is to be loaded by a client. The file-
name should be recognizable to whatever file transfer
protocol the client can be expected to use.

To make a static IP address assignment for a client, the
client must match a host declaration, as described later. In
addition, the host declaration must contain a fixed-
address statement. A fixed-address Statement
specifies one or more IP addresses or domain names that
resolve to IP addresses. If a client matches a host
declaration, and one of the IP addresses specified in the
host declaration is valid for the network segment to which

get-lease-hostnames flag;

group {[parameters]
[declarations]}

the client is connected, the client is assigned that IP
address.

A static IP address assignment overrides a dynamically
assigned IP address that is valid on that network segment.
That is, if a new static mapping for a client is added after
the client has a dynamic mapping, the client cannot use the
dynamic mapping the next time it tries to renew its lease.
The DHCP server will not assign an IP address that is not
correct for the network segment to which the client is
attached and will not override a valid dynamic mapping for
one network segment based on a static mapping that is valid
on a different network segment.

You can specify a domain name instead of an IP address in
a fixed-address statement. However, you should do
this only for long-lived domain name records — the DHCP
server only looks up the record on startup. So, if the record
changes while the server is running, the server continues to
use the record’s former value.

Use the get-1lease-hostnames parameter to tell the
DHCP server to look up the domain name corresponding to
each address in the lease pool and use that address for the
DHCP hostname option.

If f1agistrue, the lookup is done for all addresses in the
current scope.

If f1ag is false (the default), lookups are not done.

Use the group declaration to apply one or more
parameters to a group of declarations. You can use it to
group hosts, shared networks, subnets, or other groups.

hardware hardware-type
hardware-address;

host name {[parameters]
[declarations]}

Use the hardware parameter inside a host statement to
specify the network hardware address of a BOOTP or
DHCP client.

hardware-type must be the name of a physical
hardware interface type. Ethernet, Token-Ring, and
FDDI are the only recognized types.

The hardware-address should be a set of hexadecimal
octets (numbers from 0 through ff) separated by colons (:).

The host declaration provides information about a
particular client.

name should be a unique name, but a specific meaning is
not required. If the use-host-decl-names flag is
enabled, name is sent in the host-name option if no
host-name option is specified.

host declarations match DHCP or BOOTP clients based
on either the client's hardware address or the dhcp-
client-identifier option that the client sends.
BOOTP clients do not normally send a dhcp-client-
identifier option. So, you must use the hardware
address for all clients that might send BOOTP protocol
requests.

The host declaration has three purposes: to assign a static
IP address to a client, to declare a client as "known", and to
specify a scope in which statements can be executed for a
specific client.

if boolean-expression {

[statements] }

(
[
[

elsif boolean-expression {

statements] }]

else {

[statements]

}

]

You can make the DHCP server treat some DHCP clients
differently from others if host declarations exist for those
clients. Any request coming from a client that matches a
host declaration is considered to be from a "known"
client. Requests that do not match any host declaration are
considered to be from "unknown™ clients. You can use this
knowledge to control how addresses are allocated.

It is possible to write more than one host declaration for a
client. If you want to assign more than one static address to
a given client, you can either specify more than one address
in the fixed-address Statement or you can write
multiple host declarations.

Multiple host declarations are needed if the client has
different requirements (scopes) on different subnets. For
each IP address that requires a different scope, one host
declaration should exist. A client can be in the scope of
only one host declaration at a time. host declarations
with static address assignments are in scope for a client
only if one of the address assignments is valid for the
network segment to which the client is connected. If you
want to boot a client using static addresses on some
subnets, and using dynamically assigned addresses on other
subnets, you need to write a host declaration with no
fixed-address statement. There can be only one such
host declaration per client. Its scope is used whenever
that client receives a dynamically assigned address.

The 1 f statement conditionally executes statements based
on the values the client sends or other information. See the
Conditional Behavior section for more information.

include “filename”;

infinite-is-reserved flag;

key key—-name |
algorithm algorithm;
secret key;

}i

lease-file—-name name;

lease limit Iimit;

local-port port;

The include statement is used to read in the specified
file, and process the contents of the included file as if they
were in the configuration file directly.

Ifthe infinite-is-reserved parameter is set to on
the server automatically marks as reserved leases which are
allocated to clients who requested an infinite lease time.
The default is of .

The key statement specifies the secret key and algorithm to
use for DNSSEC.

The lease-file-name parameter in the configuration
file can be used to specify the name of the lease file. The
default is TCPWARE : DHCPD . LEASES. This parameter
must appear at the outer scope — at the top of the
configuration file.

This statement causes the DHCP server to limit the number
of members of a class that can hold a lease at any one time.
This limit applies to all addresses the DHCP server
allocates in the class, not just addresses on a particular
network segment.

If a client is a member of more than one class with lease
limits, the server assigns the client an address based on
either class.

If a client is a member of one or more classes with limits
and one or more classes without limits, the classes without
limits are not considered.

The 1local-port parameter can be used to specify a
different port for the DHCP server to listen on, other than
the default port of 67.

match data-expression;

match if boolean-expression;

max—-ack-delay microseconds;

max—-lease-time time;

min-lease-time time;

data-expression is evaluated using the contents of a
client’s request. If it returns a value that matches a subclass
of the class in which the mat ch statement appears, the
client is considered a member of both the subclass and the
class.

boolean-expression is evaluated when the server
receives a packet from the client. If it is true, the client is
considered a member of the class. The boolean-
expression may depend on the contents of the packet
the client sends.

The max-ack-delay parameter works with the
delayed-ack parameter (see description above). Use the
max-ack-delay parameter to specify the length of time
that replies are allowed to queue up awaiting a database
commit event. The value is in microseconds, from 0 to
4,294,967,295, with a default of 250,000 (1/4 of a second).

Use the max-1ease-time parameter to assign the
maximum amount of time (in seconds) to a lease. The only
exception to this is Dynamic BOOTP lease lengths because
they are not specified by the client and are not limited by
this maximum. The infinite lease value is infinite. The
default is 86,400 seconds (24 hours).

You should set the value of max-1ease-time at least as
large as default-lease-time.

Use the min-1lease-time parameter to assign the
minimum length in seconds to a lease. The infinite lease
value is infinite. The default is the smaller of 300
seconds or the value of max-lease-time.

min-secs seconds;

next—-server name;

one-lease-per-client flag;

min-lease-time should be less than or equal to
default-lease-time and max—-lease-time.

Use the min-secs parameter to assign the minimum
amount of time (in seconds) it takes for the DHCP server to
respond to a client’s request for a new lease.

The number of seconds is based on what the client reports
in the secs field of the requests it sends. The maximum
value is 255 seconds. Usually, setting this to one second
results in the DHCP server not responding to the client's
first request, but always responding to the client’s second
request.

You can use the min-secs statement to set up a
secondary DHCP server to never offer an address to a client
until the primary server has been given a chance to do so. If
the primary server is down, the client binds to the
secondary server; otherwise, clients should always bind to
the primary. Note that this does not, by itself, permit a
primary server and a secondary server to share a pool of
dynamically-allocatable addresses.

Use the next-server parameter to specify the host
address of the server from where the client will load the
initial boot file (specified in the £i 1ename statement).

name should be a numeric IP address or a domain name.
The DHCP server’s IP address is used if no next -
server parameter applies to a given client.

Use the one-lease-per-client parameter to have
the server free any other leases the client holds when the
client sends a DHCPREQUEST for a particular lease.

option

option name code code =
definition;

option space space-name
options];

ping-check flag;

This presumes the client has forgotten any lease not
mentioned in the DHCPREQUEST. For example, the client
has only a single network interface and it does not
remember leases it is holding on networks to which it is not
currently attached. Neither of these assumptions is
guaranteed or provable, so use caution in the use of this
statement.

This statement specifies actual DHCP protocol options to
send to the client. The option statement is described in
the next section.

This statement assigns a name and a type to an option
code. See the Defining New Options section for more
information.

This statement specifies a new option space. This
declaration must precede all definitions for options in the
space being specified. space-name should be the name
of the option space. Option space names include:
dhcp (the default), agent, and server.

If an option name is specified without an option space, it is
assumed the name refers to an option in the dhcp option
space. For example, the option names dhcp.routers
and routers are equivalent.

When the DHCP server is considering dynamically
allocating an IP address to a client, it first sends an ICMP
Echo request (a ping) to the address being assigned. It
waits for a second, and if no ICMP Echo response has been
heard, it assigns the address. If a response is heard, the
lease is abandoned, and the server does not respond to the
client.

ping-retries count;

ping-timeout time;

pool {[permit 1ist][range
declaration] [statements]}

range [dynamic-bootp] low-

address

[high-address];

This ping check introduces a default one-second delay in
responding to DHCPDISCOVER messages, which can be a
problem for some clients. The length of delay may be
configured using the ping-timeout parameter.

A value of false or of £ turns pinging off.

This parameter defines the number of times the DHCP
server pings an IP address before it concludes that the
address is not in use. The default is 1.

This parameter defines the time (in seconds) that ping
should wait for a response. The default is 1 second.

This statement specifies an address pool from which IP
addresses can be allocated. This pool can be customized to
have its own permit list to control client access and its own
scope to declare pool-specific parameters. You can put
pool declarations within subnet declarations or within
shared-network declarations. You can use the range
declaration to specify the addresses in a particular pool.

For subnet declarations: specified addresses must be
correct within the poo1 declaration within which it is
made.

For shared-network declarations: specified addresses
must be on subnets that were previously specified within
the same shared-network declaration.

For any subnet on which addresses are assigned
dynamically, there must be at least one range declaration.
The range declaration specifies that the server may
allocate to DHCP clients every address, from 1ow-

remote-port port;

requested-options-only flag;

address to high-address. You can specify a single
IP address by omitting high-address.

All IP addresses in the range should be on the same subnet.
If the range declaration appears within a subnet
declaration, all addresses should be on the declared subnet.
If the range declaration appears within a shared-
network declaration, all addresses should be on subnets
already declared within the shared-network
declaration.

You may specify the dynamic-bootp flag if addresses
in the specified range can be dynamically assigned to both
BOOTP and DHCP clients.

The remote-port parameter can be used to specify a
different port for the DHCP server to send to clients at,
other than the default port of 68. Changing the remote port
is not recommended.

Use the requested-options-only parameter to send
just the options requested by the client. To send a specific
set of options, set requested-options-only to
true and specify the dhcp-parameter-request-
1ist option.

The following sends only the subnet-mask, routers,
and domain-name-servers options to the client
(assuming they are defined in the configuration file):

host restricted {
hardware ethernet 01:02:03:04:05:06;
option dhcp-parameter-request-list 1,3,6;

server—-identifier hostname;

server—name name;

shared-network {[parameters]
[declarations]};

requested-options-only true;

}

We recommend you restrict the use of this feature to as few
clients as possible.

The server-identifier parameter is equivalent to the
dhcp-server-identifier option. See the dhcp-
server-identifier option for more information.

Use the server-name parameter to inform the client of
the server’s name from which it is booting. name should be
the name provided to the client.

Use this declaration to inform the DHCP server that some
IP subnets share the same physical network. Declare all
subnets in the same shared network within a shared-
network declaration.

parameters specified in the shared-network declaration
will be used when booting clients on those subnets unless
parameters provided at the subnet or host level override
them. If more than one subnet in a shared network has
addresses available for dynamic allocation, those addresses
are collected into a common pool. There is no way to
specify which subnet of a shared network a client should
boot on.

name should be the name of the shared network. Make the
name descriptive as it will be used when printing debugging
messages. It can have the syntax of a valid domain name
(although it will never be used as such), or can be any
arbitrary name enclosed in quotation marks.

site-option-space option-
space;

spawn with data-expression;

stash-agent-options flag;

The site-option-space parameter can be used to
determine from what option space site-local options will be
taken. This can be used in much the same way as the
vendor-option-space parameter. Site-local options
in DHCP are those options whose numeric codes are greater
than 224.

These options are intended for site-specific uses, but are
frequently used by vendors of embedded hardware that
contains DHCP clients. Because site-specific options are
allocated on an ad-hoc basis, it is quite possible that one
vendor's DHCP client might use the same option code that
another vendor's client uses, for different purposes. The
site-option-space parameter can be used to assign a
different set of site-specific options for each such vendor,
using conditional evaluation.

data-expression must evaluate to a non-null value for
the server to look for a subclass of the class that matches
the evaluation.

If such a subclass exists, the client is considered a member
of both the subclass and the class.

If no such subclass exists, one is created and recorded in the
lease database, and the client is considered a member of the
new subclass as well as the class.

If the stash-agent-options parameter is true for a
given client, the server will record the relay agent
information options sent during the client's initial
DHCPREQUEST message when the client was in the
SELECTING state and behave as if those options are
included in all subsequent DHCPREQUEST messages sent
in the RENEWING state. This works around a problem

subclass “class-name” class-

data;
subclass “class—-name” class-
data {

[statements]

}

subnet subnet-number netmask
netmask
{ [parameters] [declarations]}

with relay agent information options, which is that they
usually not appear in DHCPREQUEST messages sent by
the client in the RENEWING state, because such messages
are unicast directly to the server and not sent through a
relay agent.

This statement specifies a subclass of the class named by
class—-name. class—-data should be either

e atext string enclosed in quotes, or
e alist of bytes expressed in hexadecimal, separated
by colons.

Clients match subclasses after evaluating the match or
spawn with statements in the class declaration for
class-name. If the evaluation matches class-data
the client is a member of the subclass and the class.

This declaration contains information specific to a subnet.

The information communicates the following to DHCP:

e Enough information for DHCP to determine if an IP
address is on that subnet.

e What the subnet-specific parameters are.

e What addresses may be dynamically allocated to
clients booting on that subnet.

Use the range declaration to specify what addresses are
available to be dynamically allocated to clients booting on
the subnet.

Two things are required to define a subnet:

e The subnet-number
e The netmask

update-conflict-detection
flag;

update-optimization flag;

update-static-leases flag;

The subnet-number and the netmask entry are an IP
address or domain name that resolves to the subnet-
number or the netma sk of the subnet being described.
The subnet-number and the netmask are enough to
determine if any given IP address is on the specified subnet.

A netmask must be given with every subnet
declaration. If there is any variance in subnet masks at a
site, use a subnet-mask option statement in each
subnet declaration to set the desired subnet mask. The
subnet-mask option statement overrides the subnet
mask declared in the subnet statement.

DDNS: If the update-conflict-detection
parameter is t rue, the server will perform standard
DHCID multiple-client, one-name conflict detection. If the
parameter has been set to false, the server will skip this
check and instead simply tear down any previous bindings
to install the new binding without question. The default is
true.

DDNS: If the update-optimization parameter is
false for a given client, the server will attempt a DNS
update for that client each time the client renews its lease,
rather than only attempting an update when it appears to be
necessary. This will allow the DNS to heal from database
inconsistencies more easily, but the cost is that the DHCP
server must do many more DNS updates. We recommend
leaving this option enabled, which is the default. If this
parameter is not specified, or is t rue, the DHCP server
will only update when the client information changes, the
client gets a different lease, or the client's lease expires.

DDNS: The update-static-leases parameter, if
enabled, causes the DHCP server to do DNS updates for
clients even if those clients are being assigned their IP
address using a fixed-address statement — that is, the client

use-host-decl-names flag;

use-lease-addr-for-default-
route flag;

is being given a static assignment. It is not recommended
because the DHCP server has no way to tell that the update
has been done, and therefore will not delete the record
when it is not in use. Also, the server must attempt the
update each time the client renews its lease, which could
have a significant performance impact in environments that
place heavy demands on the DHCP server.

If the use-host-decl-names parameter is true, the
name provided for each host declaration is given to the
client as its hostname. The default is false. For example,

group {

use-host-decl-names on;

host joe {
hardware ethernet 08:00:2b:4c:29:32;
fixed-address joe.example.com;

}

}

is equivalent to

host joe {
hardware ethernet 08:00:2b:4c:29:32;
fixed-address joe.example.com;
option host-name “joe”;

}

An option host-name statement within a host
declaration overrides the use of the name in the host
declaration.

If the use-lease-addr-for-default-route
parameter is true in a given scope, the IP address of the
lease being assigned is sent to the client instead of the value
specified in the routers option (or sending no value at
all). This causes some clients to ARP for all IP addresses,

vendor-option-space option-
space;

zone zone-name {

)i

primary ip-address;
secondary ip-address;

[
[

key key-name;

]

]

which can be helpful if your router is configured for proxy
ARP. The use of this feature is not recommended.

If use-lease-addr-for-default-routeis
enabled and an option routers statement are both in
scope, use-lease-addr-for-default-route is
preferred.

Use the vendor-option-space statement to instruct
the server to construct a vendor-encapsulated-
options option using all the defined options in the option
space. If no vendor-encapsulated-options option
is defined, the server sends this option to the client, if
appropriate.

DDNS: The zone statement provides information to the
server about the DNS zones that it might be updating via
DDNS. This statement is required if you are using
DNSSEC (using DNSSEC is recommended).

The zone-name must correspond to the name of the
actual zone to be updated, for example “example.org.” or
“17.10.10.in-addr.arpa.” (without the quotes). Note that the
zone specified must have an SOA record.

The primary and secondary keywords specify the IP
addresses of the primary and secondary name servers for
the zone. Up to three name servers may be specified.

The key keyword is used to provide the secret key to be
used by DNSSEC. The key-name is the name of a key
statement in the configuration file which contains that
information.

Expressions

The DHCP server can evaluate expressions while executing statements. The DHCP server’s expression
evaluator returns the following types:

e A boolean, atrue or false (on or off) value.

e Aninteger, a 32-bit quantity that may be treated as signed or unsigned, depending on the
context.

e Astring of data, a collection of zero or more bytes. Any byte value is valid in a data string — the
DHCP server maintains a length rather than depending on a NUL termination.

Expression evaluation is performed when a request is received from a DHCP client. Values in the packet
sent by the client can be extracted and used to determine what to send back to the client. If the
expression refers to a field or option in the packet for which there is no value, the result is null. Null
values are treated specially in expression evaluation. A Boolean expression that returns a null value is
considered false. A data expression that returns a null value generally results in the statement using the
value not having any effect.

Expressions can be used to set the value of a DHCP server parameter or an option, for example based on
some value that the client has sent. To do this, you can use expression evaluation. To assign the result of
an evaluation to a parameter or option, use the following syntax in your configuration file:

parameter-or-option = expression;
The following example asks the DHCP server to create a host name for the client:

option host-name = concat (“DHCP-“, binary-to-ascii(10,8,””,leased-address);
ddns-hostname = concat (“DHCP-“, binary-to-ascii (10,8,””,leased-address);

These statements in dhcpd. conf generate a host name consisting of the string “DHCP-" followed by
the ASCII version of the IP address that was leased out to the client by the DHCP server. It uses the data
expressions concat, binary-to-ascii, and leased-address, described below.

Boolean Expressions
The following are the boolean expressions supported by DHCP.

boolean-expression-1 and The and operator evaluates to true if both boolean expressions

boolean-expression-2 evaluate to true. The and operator evaluates to false if either
boolean expression does not evaluate to true. If either of the
boolean expressions is null, the result is null.

boolean-expression-1 or The or operator evaluates to true if either of the boolean
lean- on-2 .
boolean-expression expressions evaluate to true. The or operator evaluates to false

if both of the boolean expressions evaluate to false. If either of
the boolean expressions is null, the result is null.

data-expression-1 = The equals (=) operator compares the results of evaluating two

data-expression-2 data expressions, evaluating to true if they are the same;
evaluating to false if they are not. If one of the expressions is
null, the result is null.

data-expression-1 != The not-equals (! =) operator compares the results of evaluating

data-expression-2 two data expressions, evaluating to true if they are not the
same; evaluating to false if they are. If one of the expressions is
null, the result is null.

exists option-name The exists expression evaluates to true if the specified
option exists in the incoming DHCP packet.

known The known expression evaluates to true if the client whose
request is being processed is known; that is, if the client has a
host declaration.

not boolean-expression The not operator evaluates to true if the boolean expression
evaluates to false. The not operator evaluates to false if the
boolean expression evaluates to true. If the boolean expression
evaluates to null, the result is null.

static The static expression evaluates to true if the lease assigned
to the client whose request is being processed is derived from a
static address assignment.

Data Expressions
The following are the expressions supported by DHCP that return a data string.

binary-to-ascii numeric-exprl, numeric-expr2, data-exprl,and data-

° b :
(numeric-expril, expr2 are all evaluated as expressions and the results of those
numeric-exprz,

data-exprl, data-expr2) e€valuations are used as follows.

The binary-to-ascii operator converts the binary data in
data-exprZ2into an ASCII string, using data-exprl asa
separator. How the conversion is done is controlled by numeric-

exprl and numeric-expr2.

numeric-expr]l specifies the base to convert into. Any value 2
through 16 is supported. For example, a value of 10 would produce
decimal numbers in the result.

numeric-expr2 specifies the number of bits in data-expr2 to treat
as a single unit. The value can be 8, 16, or 32.

This example converts the binary value of an IP address into its
dotted decimal equivalent:

binary-to-ascii (10, 8, ".", 168364039)

The result would be the string "10.9.8.7".

colon-separated hexadecimal A list of hexadecimal octet values, separated by colons, may be

list specified as a data expression. A single hexadecimal number,
appearing in a context where a data string is expected, is interpreted
as a data string containing a single byte.

concat (data-exprl, .., The dataexpressions data-exprl through data-exprN are

data-exprN) evaluated and the results of each evaluation are concatenated in the
sequence that the subexpressions are listed. If any subexpression
evaluates to null, the result of the concatenation is null.

config-option option- The config-option operator returns the value for the specified
name option that the server has been configured to send.

encode-int
(numeric-expr, width)

gethostname

hardware

host-decl-name

pick-first-value
(data-exprl
[,.. data—-exprN]

lcase

(data-expr)

numeric-expr IS evaluated and encoded as a data string of the
specified width, in network byte order (with the most significant
byte first). If numeric-expr evaluates to null, the result is null.

The gethostname function returns a data string whose contents
are a character string, the results of calling gethostname () on the
local system with a size limit of 255 bytes (not including NULL
terminator).

The hardware operator returns a data string whose first element is
the type of the network interface indicated in the packet being
processed, and whose subsequent elements are the client’s link-layer
address.

If there is no packet, or if the RFC 2131 h1len field is invalid, the
result is null.

Supported hardware types are: ethernet (1), token-ring (6),
fddi (8)

The host-decl-name function returns the name of the host
declaration that matched the client whose request is being processed,
if any. If no host declaration matched, the result is the null value.

The pick-first-value function takes any number of data
expressions as its arguments. Each expression is evaluated, starting
with the first in the list, until an expression is found that does not
evaluate to a null value. That expression is returned, and none of the
subsequent expressions are evaluated. If all expressions evaluate to a
null value, the null value is returned.

The 1case function returns the result of evaluating data-expr
converted to lower case. If data-expr evaluates to null, then the
result is also null.

leased-address

option option-name

packet (offset, length)

reverse (numeric-exprl,
data-expr2)

substring (data-expr,
offset, length)

In any context where the client has been assigned an IP address, this
data expression returns that IP address.

The option operator returns the contents of the specified option in
the packet to which the server is responding.

The packet operator returns the specified portion of the packet
being considered. The packet operator returns a value of null
where no packet is being considered. offset and length are
applied to the contents of the packet as in the substring operator.
The link-layer, IP, and UDP headers are not available.

numeric-exprl and data-expr2 are evaluated. The result of
data-exprZ is reversed in place, using chunks of the size
specified in numeric-exprl.

For example, if numeric-exprl evaluatesto 4 and data-
expr2 evaluates to 12 bytes of data, the reverse expression
evaluates to 12 bytes of data constructed in the following way:

1. the last 4 bytes of the input data,
2. followed by the middle 4 bytes,
3. followed by the first 4 bytes.

The substring operator evaluates the data expression and returns
the substring of the result of that evaluation that starts o fset bytes
from the beginning and continues for 1ength bytes. offset and
Ilength are numeric expressions.

If data-expr, offset, or length evaluates to null, the result is
null.

If offset is greater than or equal to the length of the evaluated
data, a zero-length data string is returned.

If 1ength is greater than the remaining length of the evaluated data
after of fset, a data string containing all data from of fset to the
end of the evaluated data is returned.

suffix (data-expr, The suf fix operator evaluates data-expr and returns the last
length) length bytes of that evaluation. Zength is a numeric expression.

If data-expror 1ength evaluates to null, the result is null.

If 1ength evaluates to a number greater than the length of the
evaluated data, the evaluated data is returned.

“text” A text string, enclosed in quotes, may be specified as a data
expression. The string returns the text between the quotes, encoded
in ASCII.

The backslash (\) character is treated specially, as in C
programming:

e \t means TAB,

e \r means carriage return

e \n means newline

e \b means bell

e any octal value can be specified with \ nnn, where nnn is
any positive octal number less than 0400

e any hexadecimal value can be specified with \xnn, where
nn is any positive hexadecimal number less than or equal to
Oxff

ucase (data-expr) The ucase function returns the result of evaluating data-expr
converted to upper case. If data-expr evaluates to null, then the
result is also null.

Numeric Expressions
Numeric expressions evaluate to an integer. In general, the precision of numeric expressions is at least
32 bits. However, the precision of such integers may be more than 32 bits.

extract-int (data- The extract-int operator extracts an integer value in network

expr, width) byte order after evaluating data-expr. width is the width in bits
(8, 16, or 32) of the integer to extract. If the evaluation of data-
expr does not provide an integer of the specified size, a value of null
IS returned.

number number can be any numeric value between zero and the maximum
representable size.

Action Expressions

log ([priority,] data-expr) The log expression may be used to write a message
(specified via data-expr) to the DHCP server debug log
file and/or OPCOM (depending on how the server was
configured via TCPWARE : CNFNET). The optional
prioritycanbe: fatal, error, info, Or debug.

DHCP Options

The Dynamic Host Configuration protocol allows the client to receive options from the DHCP server
describing the network configuration and various services that are available on the network. When
configuring the DHCP server, options must often be declared. The syntax for declaring options, and the
names and formats of the options in the default DHCP option space that can be declared, are below.

DHCP option statements always start with the keyword option, followed by an option name, followed
by option data. Only options needed by clients must be specified.

An option name is an optional option space name followed by a period (.) followed by the option name.
The default option space is dhcp. There are other predefined option spaces, for example, agent and
server. You can also define option spaces of your own. See the sections Relay Agent Information
Option and Defining New Options in this chapter.

Option data comes in these formats:

e The ip-address data type can be entered either as an explicit IP address (e.g.,

239.254.197.10) or as a domain name (e.g., haagen.isc.org). When entering a domain name, be
sure that the domain name resolves to the single IP address.

e The int32 and uint32 data types specify signed and unsigned 32-bit integers.

e Theintl6 anduint16 data types specify signed and unsigned 16-bit integers.

e The int8 and uint8 data types specify signed and unsigned 8-bit integers. Unsigned 8-bit
integers are also sometimes referred to as octets.

e The domain-name data type specifies a domain name, which must not be enclosed in double

quotes. This data type is not used for any existing DHCP options. The domain name is stored
just as if it were a text option.

e The domain-1ist datatype specifies a list of domain names, enclosed in double quotes, and
separated by commas. For example, "example.com", "foo.example.com".

e The string data type specifies an NVT ASCII string. It must be enclosed in quotation marks.
For example, option domain-name “isc.org”;

e The f1lag data type specifies a boolean value. Booleans can be either true (ON) or false (OFF).
You can use TRUE and FALSE, or ON and OFF.

e The data-string data type specifies either an NVT ASCII string enclosed in quotation
marks, or a series of octets specified in hexadecimal, separated by colons. For example, option

dhcp-client-identifier “CLIENT-FOO”; oroption dhcp-client-
identifier 43:4c:49:54:2d:46:4f:4f;

Strings and data-strings when enclosed in quotation marks can contain normal C-type characters such as
“\t” for a tab.

If the option value is a list (such as for the routes option), you must list them in the configuration file in
the order you want the client to use the values. The DHCP server does not re-order them.

Also, option data may be specified using an expression that returns a data string (see the Expressions
section). The syntax is

option option-name = data-expression;

Standard DHCP Options
This section describes the standard DHCP options. Italicized items indicate user input items.

Note: All options can be specified with the dhcp option space listed explicitly. For example:

option dhcp.bootfile-name “bootfile.lis”;

Option

option all-subnets-local flag;

option arp-cache-timeout uint32;

option bcms-controller-address
ip-address [, ip-address ..];

option bcms-controller—-names
domain-1ist;

option bootfile-name string;

option boot-size uintlé;

option broadcast-address ip-
address;

Description

Use this option to indicate whether to assume all
subnets of the client’s IP network use the same MTU
as the client’s subnet.

ON means assume all subnets share the same MTU.
OFF means assume some subnets have smaller MTUSs.

Use this option to identify the timeout (in seconds) for
ARP cache entries.

This option configures a list of IPv4 addresses for use
as Broadcast and Multicast Controller Servers
("BCMS").

This option contains the domain names of local
Broadcast and Multicast Controller Servers ("BCMS")
controllers which the client may use.

Use this option to identify a bootstrap file. If this
option is supported by the client, it should have the
same effect as the £i1ename declaration. BOOTP
clients are unlikely to support this option. Some DHCP
clients support it; others require it.

Use this option to specify the length in 512-octet
blocks of the client’s default boot image.

Use this option to identify the broadcast address in use
on the client’s subnet. See STD 3 (RFC 1122), section
3.2.1.3 for legal values for broadcast addresses.

option cookie-servers

ip-address [, ip-address ...];

option default-ip-ttl uint$8;

option default-tcp-ttl uint$;

option default-url data-string;

option dhcp-client-identifier
data-string;

option dhcp-max-message-size
uintlé;

option dhcp-parameter-request-
list uint8[,uint8...];

option domain-name-servers
ip-address [, ip-address ...];

Use this option to list RFC 865 cookie servers in order
of preference.

Use this option to identify the default time-to-live the
client should use on outgoing datagrams.

Use this option to identify the default TTL to use when
sending TCP segments. The minimum value is 1.

The format and meaning of this option is not described
in any standards document, but is claimed to be in use
by legacy Apple products. It is not known what clients
may reasonably do if supplied with this option. Use at
your own risk.

Use this option to specify a DHCP client identifier only
in a host declaration. The DHCP server uses it to
locate the host record by matching against the client
identifier.

Use this option to specify the maximum length DHCP
message that the client is able to accept. Use this
option in the DHCP configuration file to supply a value
when the client does not.

Use this option with caution. Make sure that the client
can accept a message of the specified size.

The client uses this option to request that the server
return certain options. Use this option in the DHCP
configuration file to override the client's list, or to
supply a list when the client does not. The value is a
list of valid DHCP option codes as listed in RFC 2132.

Use this option to list Domain Name System (STD 12,
RFC 1035) name servers in order of preference.

option domain-name string;

option domain-search domain-1list;

option extensions-path string;

option finger-server
ip-address [, ip-address ...];

option font-servers
ip-address [, ip-address ...];

option host-name string;

option ieee802-3-encapsulation
flag;

option ienll6-name-servers
ip-address [, 1ip-address ...];

Use this option to identify the domain name the client
should use when resolving hostnames via the Domain
Name System.

The domain-search option specifies a 'search list'
of Domain Names to be used by the client to locate
not-fully-qualified domain names. The difference
between this option and historic use of the domain-
name option for the same ends is that this option is
encoded in RFC1035 compressed labels on the wire.

Use this option to indicate the path-name of a file the
client should load containing more options.

Use this option to list the finger servers in order of
preference.

Use this option to list X Window System Font servers
in order of preference.

Use this option to name the client. The name may or
may not be qualified with the local domain name. It is
preferable to use the domain-name option to specify
the domain name. See RFC 1035 for character set
restrictions.

If the interface is an Ethernet, use this option to
indicate whether the client uses Ethernet Version 2
(RFC 894) or IEEE 802.3 (RFC 1042) encapsulation.

OFF means use RFC 894 encapsulation.
ON means use RFC 1042 encapsulation.

Use this option to list IEN 116 name servers in order of
preference.

option impress-servers
ip-address [, ip-address ..

option interface-mtu uintlé6;

option ip-forwarding flag;

option irc-server
ip-address [, 1p-address ...

option log-servers
ip-address [, ip-address ...

option lpr-servers
ip-address [, 1p-address ...

option mask-supplier flag;

option max-dgram-reassembly
uintlé;

option merit-dump string;

L1

Use this option to list Imagen Impress servers in order
of preference.

Use this option to identify what MTU value to use on
this interface. The minimum legal value is 68.

Use this option to indicate if the client should
configure its IP layer for packet forwarding.

ON means disable forwarding.
OFF means enable forwarding.

Use this option to list the IRC servers in order of
preference.

Use this option to list MIT-LCS UDP log servers in
order of preference.

Use this option to list RFC 1179 line printer servers in
order of preference.

Use this option to indicate whether or not the client
should respond to subnet mask requests using ICMP.

ON means do not respond to subnet mask requests.
OFF means respond to subnet mask requests.

Use this option to indicate the maximum size datagram
the client should be prepared to reassemble. The
minimum legal value is 576.

Use this option to indicate the path-name of a file to
which the client’s core image should be dumped in the
event of a client crash. The path is formatted as a
character string using the NVT ASCII character set.

option mobile-ip-home-agent
ip-address [, ip-address ...];

option nds-context string;

option nds-servers
ip-address [, ip-address...];

option nds-tree-name data-string;

option netbios-dd-server

ip-address [, ip-address ...];

option netbios-name-servers
ip-address [, ip-address ...];

option netbios-node-type uint$§;

option netbios-scope data-string;

Use this option to list mobile IP home agents in order
of preference. Usually there will be only one agent.

Use this option to identify the initial NDS context the
client should use.

Use this option to list Novell Directory Services
servers in order of preference.

Use this option to name the NDS tree the client will be
contacting.

Use this option to list RFC 1001/1002 NetBIOS
Datagram Distribution servers in order of preference.

Use this option to list RFC 1001/1002 NetBIOS Name
Server name servers in order of preference.

NetBIOS is the same as WINS.

Use this option to configure configurable NetBIOS
over TCP/IP clients as described in RFC 1001/1002.
The value is a single octet identifying the client type.

Possible node types are:

1 B-node: Broadcast—No WINS

2 P-node: Peer—WINS only

4 M-node: Mixed—Broadcast, then WINS
8 H-node: Hybrid—WINS, then Broadcast

Use this option to specify the NetBIOS over TCP/IP
scope parameter for the client as specified in RFC
1001/1002. See RFC1001, RFC1002, and RFC1035 for
character-set restrictions.

option netinfo-server-address
ip-address [, ip-address ..];

option netinfo-server-tag string;

option nis-domain string;

option nis-servers
ip-address [, ip-address ...];

option nisplus-domain string;

option nisplus-servers
ip-address [, ip-address ...];

option non-local-source-routing
flag;

option nntp-server
ip-address [, ip-address ...];

The netinfo-server-address option has not
been described in any RFC, but has been allocated (and
is claimed to be in use) by legacy Apple products. It's
hard to say if this is the correct format, or what clients
might be expected to do if values were configured. Use
at your own risk.

The netinfo-server-tag option has not been
described in any RFC, but has been allocated (and is
claimed to be in use) by legacy Apple products. It's
hard to say if this is the correct format, or what clients
might be expected to do if values were configured.
Use at your own risk.

Use this option to specify the client’s NIS (Network
Information Services) domain. Use the NVT ASCII
character set to define the domain character string.

Use this option to list NIS servers in order of
preference.

Use this option to specify the client's NIS+ domain.
Use the NVT ASCII character set to define the domain
character string.

Use this option to list NIS+ servers in order of
preference.

Use this option to indicate if the client should
configure its IP layer to allow forwarding of datagrams
with non-local source routes.

ON means disable forwarding.
OFF means enable forwarding.

Use this option to list NNTP servers in order of
preference.

option ntp-servers
ip-address [, ip-address ...];

Use this option to list NTP (RFC 1035) servers in order
of preference.

The name of the NetWare/IP domain that a NetWare/IP

option nwip-domain data-string;

option nwip-suboptions data-
string;

option path-mtu-aging-timeout
uint32;

option path-mtu-plateau-table
uintlé [, uintlé ...];

option perform-mask-discovery
flag;

option policy-filter
ip-address ip-address

[, ip-address ip-address ...];

client should use.

A sequence of suboptions for NetWare/IP clients — see
RFC2242 for details. Normally this option is set by
specifying specific NetWare/IP suboptions — see the
NetWare/IP Suboptions The NetWare/IP Sub-
optionssection for more information.

Use this option to specify the timeout to use (in
seconds) when aging path MTU values that were
discovered by the mechanism defined in RFC 1191.

Use this option to specify a table of MTU sizes to use
when performing path MTU discovery as defined in
RFC 1191. The table is a list of 16-bit unsigned
integers. You must list them in order from smallest to
largest. The minimum MTU value cannot be smaller
than 68.

Use this option to indicate whether or not the client
should perform subnet mask discovery using ICMP.

ON means do not perform mask discovery.
OFF means perform mask discovery.

Use this option to indicate the policy filters for non-
local source routing. The filters consist of IP addresses
and masks that indicate which destination/mask pairs
to use when filtering incoming source routes.

option pop-server
ip-address [, ip-address ...];

option resource-location-servers
ip-address [, ip-address ...];

option root-path string;

option router-discovery flag;

option routers
ip-address [, ip-address ...];

option router-solicitation-
address ip-address;

option slp-directory-agent flag
ip-address [, ip-address ..];

The client should discard any source routed datagram
whose next-hop address does not match one of the
filters. See RFC 1122 for more information.

Use this option to list POP3 servers in order of
preference.

Use this option to list RFC 887 Resource Location
servers in order of preference.

Use this option to specify the path-name that contains
the client’s root disk. The path is formatted as a
character string using the NVT ASCII character set.

Use this option to indicate whether or not the client
should solicit routers using the router discovery
mechanism defined in RFC 1256.

ON means do not perform router discovery.
OFF means perform router discovery.

Use this option to list IP addresses for routers on the
client’s subnet, listing the routers in order of
preference.

Use this option to identify the address where the client
transmits router solicitation requests.

This option specifies two things: the IP addresses of
one or more Service Location Protocol Directory
Agents, and whether the use of these addresses is
mandatory. If the flag is true, the SLP agent should
just use the IP addresses given. If the value is false,
the SLP agent may additionally do active or passive
multicast discovery of SLP agents (see RFC2165 for
details).

option slp-service-scope flag [

string];

option smtp-server

ip-address [, ip-address ...

option static-routes
ip-address ip-address

[, ip-address ip-address ...

Please note that in this option and the s1p-
service-scope option, the term "SLP Agent" is
being used to refer to a Service Location Protocol
agent running on a machine that is being configured
using the DHCP protocol. Note that some companies
may refer to SLP as NDS. If you have an NDS
directory agent whose address you need to configure,
the slp-directory-agent option should work.

The Service Location Protocol Service Scope Option
specifies two things: a list of service scopes for SLP,
and whether the use of this list is mandatory. If the
flag is t rue, the SLP agent should only use the list of
scopes provided in this option; otherwise, it may use its
own static configuration in preference to the list
provided in this option.

The text string should be a comma-separated list of
scopes that the SLP agent should use. It may be
omitted, in which case the SLP Agent will use the
aggregated list of scopes of all directory agents known
to the SLP agent.

Use this option to list SMTP servers in order of
preference.

Use this option to specify a list of static routes that the
client should install in its routing cache. If there are
multiple routes to the same destination, you should list
them in descending order of priority.

The routes are made up of IP address pairs. The first
address is the destination address; the second address is
the router for the destination.

option streettalk-directory-
assistance-server ip-address [,
ip-address ...]1;

option streettalk-server
ip-address [, ip-address ...];

option subnet-mask ip-address;

option swap-server ip-address;

option tcp-keepalive-garbage
flag;

option tcp-keepalive-interval
uint32;

The default route (0.0.0.0) is an illegal destination for a
static route. Use the routers option to specify the
default route.

This option cannot be used with classless IP routing
since it does not include a subnet mask.

Use this option to list the StreetTalk Directory
Assistance (STDA) servers in order of preference.

Use this option to list the StreetTalk servers in order of
preference.

Use this option indicate the client’s subnet mask as per
RFC 950. If no subnet mask option is in scope, the
DHCP server uses the subnet mask from the subnet
declaration on which the address is being assigned. If a
subnet mask option is in scope for the address being
assigned, it overrides the subnet mask specified in the
subnet declaration.

Use this option to identify the IP address of the client’s
swap Server.

Use this option to indicate whether the client sends
TCP keep-alive messages with an octet of garbage for
compatibility with older implementations.

ON means do not send a garbage octet.
OFF means send a garbage octet.

Use this option to indicate the interval (in seconds) the
client TCP waits before sending a keep-alive message
on a TCP connection. The time is specified as a 32-bit
unsigned integer.

option tftp-server-name string;

option time-offset int32;

option time-servers
ip-address [, ip-address ...];

option trailer-encapsulation
flag;

option uap-servers string;

0 (zero) means do not generate keep-alive messages
unless requested by an application.

Use this option to identify a TFTP server. If this option
is supported by the client, it should have the same
effect as the server—-name declaration. BOOTP
clients are unlikely to support this option. Some DHCP
clients support it; others require it.

Use this option to specify the offset of the client’s
subnet (in seconds) from Coordinated Universal Time
(UTC). Use negative numbers for west of UTC and
positive numbers for east of UTC.

Use this option to list RFC 868 time servers in order of
preference.

Use this option to indicate if the client negotiates the
use of trailers (RFC 893) when using the ARP
protocol.

ON means do not use trailers.
OFF means use trailers.

This option specifies a list of URLSs, each pointing to a
user authentication service that is capable of processing
authentication requests encapsulated in the User
Authentication Protocol (UAP). UAP servers can
accept either HTTP 1.1 or SSLv3 connections. If the
list includes a URL that does not contain a port
component, the normal default port is assumed (i.e.,
port 80 for HTTP and port 443 for HTTPS). If the list
includes a URL that does not contain a path
component, the path /uap is assumed. If more than
one URL is specified in this list, the URLs are
separated by spaces.

option vendor-encapsulated-
options data-string;

option vivso data-string;

option www-server

ip-address [, 1p-address ...

option x-display-manager
ip-address [, ip-address ..

Relay Agent Information Option

.1

Use this option to specify vendor-specific information.
See the Vendor Encapsulated Options section.

The vivso option can contain multiple separate

options, one for each 32-bit Enterprise ID. Each

Enterprise-ID discriminated option then contains
additional options whose format is defined by the
vendor who holds that ID.

This option is usually not configured manually, but
rather is configured via intervening option definitions.
See the Vendor Encapsulated Options section.

Use this option to list WWW servers in order of
preference.

Use this option to list the systems running X Window
System Display Manager in order of preference.

A relay agent can add a series of encapsulated options to a DHCP packet when relaying that packet to
the DHCP server. The server can make address allocation decisions (or whatever decisions it wants)
based on these options. The server returns these options in any replies it sends through the relay agent.
The relay agent can use the information in these options for delivery or accounting purposes.

The relay agent option has the following sub-options. To reference these options in the DHCP server,
specify the option space name agent, followed by a period, followed by the option name.

Note: It is not useful to specify these options to be sent.

option agent.circuit-id
data-string;

The circuit-id sub-option encodes an agent-local
identifier of the circuit from whicha DHCP client-to-

server packet was received. It is intended for agents who
will use it in relaying DHCP responses back to the proper
circuit. The format of this option is defined to be vendor-
dependent.

option agent.remote-id The remote-id sub-option encodes information about the

data-string; remote host end of a circuit. Examples include the
following: caller ID information, username information,
remote ATM address, and cable modem ID. This is an
opaque object that is administratively guaranteed to be
unique to a particular remote end of a circuit.

option agent.DOCSIS-device- The DOCSIS-device-class sub-option is intended to convey

SIESS LRUmESE information about the host endpoint, hardware, and
software, that either the host operating system or the DHCP
server may not otherwise be aware of (but the relay is able
to distinguish). This is implemented as a 32-bit field (4
octets), each bit representing a flag describing the host in
one of these ways. So far, only bit zero (being the least
significant bit) is defined in RFC3256. If this bit is set to
one, the host is considered a CPE Controlled Cable Modem
(CCCM). All other bits are reserved.

option agent.link-selection The link-selection sub-option is provided by relay agents to

ip-address; inform servers what subnet the client is actually attached to.
This is useful in those cases where the giaddr (where
responses must be sent to the relay agent) is not on the same
subnet as the client. When this option is present in a packet
from a relay agent, the DHCP server will use its contents to
find a subnet declared in the configuration, and from here
take one step further backwards to any shared network the
subnet may be defined within. The client may be given any
address within that shared network, as normally
appropriate.

The Client FQDN Suboptions

The client FQDN option is sent from the client to the server. Then in the response, the server constructs
a reply FQDN option. Due to the complexity of the client FQDN option format, it has been implemented
as a sub-option space rather than a single option. Its components should not be specified in the server

configuration file. It is constructed by the server itself based on information it has when it formats a
reply to send to the client.

The configuration file can reference these options by specifying the option space name "fgdn",
followed by a period, followed by the option name.

option
flag;

option
flag;

option

option
option

option

fgdn

fgdn.

fgdn.

fgdn.
fgdn.

fgdn.

.no-client-update

server-update

encoded flag;

rcodel uint$8;
rcode?2 uint$8;

fgdn string;

option fgdn.hostname
(never set)

When the client sends this, if it is true, it means the client
will not attempt to update its A record. When sent by the
server to the client, the server is telling the client that the
client should not update its own A record.

When the client sends this to the server, it is requesting
that the server update its A record. When sent by the
server, it is telling the client that the server has updated
(or is about to update) the client's A record.

If true, this indicates that the domain name included in the
option is encoded in DNS wire format, rather than as
plain ASCII text. The client normally sets this to false if
it doesn't support DNS wire format in the FQDN option.
The server should always send back the same value that
the client sent.

These options specify the result of the updates of the A
and PTR records, respectively, and are only sent by the
DHCP server to the DHCP client. The values of these
fields are those defined in the DNS protocol specification.

Specifies the domain name that the client wishes to use.
This can be a fully-qualified domain name, or a single
label. If there is no trailing dot in the name, it is not fully-
qualified, and the server will generally update that name
in some locally-defined domain.

This option should never be set, but it can be read back
using the option and config-option operators in
an expression, in which case it returns the first label in the
fgdn.fgdn suboption - for example, if the value of

fgdn.fgdnis"foo.example.com.", then
fgdn.hostname will be "foo".

option fgdn.domainname This option should never be set, but it can be read back

(never set) using the option and config-option operators in
an expression, in which case it returns all labels after the
first label in the £gdn . £gdn sub-option — for example, if
the value of £fgdn . fgdn is "foo.example.com.",
then £fgdn .domainname will be "example.com.".
If this sub-option value is not set, it means that an
unqualified name was sent in the £gdn option, or that no

fgdn option was sent at all.

The NetWare/IP Sub-options
RFC2242 defines a set of encapsulated options for Novell NetWare/IP clients. To use these options in

the DHCP server, specify the option space name, "nwip", followed by a period, followed by the option
name. The following options can be specified:

option nwip.nsqg-broadcast flag; |[ftrue, the client should use the NetWare Nearest
Server Query to locate a NetWare/IP server. The
behavior of the Novell client if this sub-option is false,
or is not present, is not specified.

option nwip.preferred-dss This sub-option specifies a list of up to five IP
ip-address [, ip-address.]; addresses, each of which should be the IP address of a
NetWare Domain SAP/RIP server (DSS).

option nwip.nearest-nwip-server This sub-option specifies a list of up to five IP
hpragtress |, aprattress - addresses, each of which should be the IP address of a
Nearest NetWare IP server.

option nwip.autoretries uint8; Specifies the number of times that a NetWare/IP client
should attempt to communicate with a given DSS
server at startup.

option nwip.autoretry-secs Specifies the number of seconds that a Netware/IP

uint$§; client should wait between retries when attempting to
establish communications with a DSS server at startup.

option nwip.nwip-1-1 uint8§; If true, the NetWare/IP client should support
NetWare/IP version 1.1 compatibility. This is only
needed if the client will be contacting Netware/IP
version 1.1 servers.

option nwip.primary-dss Specifies the IP address of the Primary Domain

ip-address; SAP/RIP Service server (DSS) for this NetWare/IP

domain. The NetWare/IP administration utility uses
this value as primary DSS server when configuring a
secondary DSS server.

Defining New Options
You can define new options with the DHCP server. Each DHCP option has the following:

e A name, used by you to refer to the option.
e A code, a number used by the DHCP server to refer to the option.
e A structure, describing what the contents of the option look like.

To define a new option, choose a name that is not in use for any other option. For example, you cannot
use "host-name" because the DHCP protocol already defines a host-name option. You should refer
to the options listed in this chapter as these are all the DHCP options in use by TCPware. If an option
name doesn't appear here, you can use it, but it's probably a good idea to put some kind of unique string
at the beginning so you can be sure that future options don't take your name.

After choosing a name, choose a code. For site-local options, all codes between 224 and 254 are
reserved for site-local DHCP options, so you can use any one of these.

The structure of an option is the format in which the option data appears. The DHCP server supports a
few simple types: for example, integers, booleans, strings, and IP addresses. The server also supports the
ability to define arrays of single types or arrays of fixed sequences of types. The syntax for declaring
new options is:

option new-name code new-code = definition ;

The values of new-name and new-code are the name and the code you have chosen for the new
option. The definition is one of the following simple option type definitions.

boolean option new-name code new-code = boolean ;

An option of type boolean is a flag with a value of either ON (true) or OFF
(false). For example:

option use-zephyr code 224 = boolean;
option use-zephyr on;

integer option new-name code new-code = sign integer width ;

The sign token should either be blank, unsigned, or signed. The width
can be 8, 16 or 32, referring to the number of bits in the integer. For example, a
definition of the sql-connection-max option and its use:

option sgl-connection-max code 192 = unsigned integer 16;
option sgl-connection-max 1536;

ip-address option new-name code new-code = ip-address ;

An option of type ip-address can be expressed either as a domain name or as
an explicit IP address. For example:

option sgl-server-address code 193 = ip-address;
option sgl-server-address sgl.example.com;

text option new-name code new-code = text ;

An option of type text encodes an ASCII text string. For example:

option sgl-default-connection-name code 194 = text;
option sgl-default-connection-name "PRODZA";

string

domain-list

encapsulation

option new-name code new-code = string ;

An option of type string is a collection of bytes. It can be specified either as
quoted text, like the text type, or as a list of hexadecimal octets separated by
colons whose values must be between 0 and FF. For example:

option sgl-identification-token code 195 = string;
option sgl-identification-token 17:23:19:a6:42:ea:99:7c:22;

option new-name code new-code = domain-list [compressed];

An option whose type is domain-1ist is an RFC1035-formatted (on the wire,
"DNS Format™) list of domain names, separated by root labels. The optional
compressed keyword indicates if the option should be compressed relative to
the start of the option contents (not the packet contents).

When in doubt, omit the compressed keyword. When the software receives an
option that is compressed and the compressed keyword is omitted, it will still
decompress the option (relative to the option contents field). The keyword only
controls whether or not transmitted packets are compressed.

option new-name code new-code = encapsulate identifier;

An option whose type is encapsulate will encapsulate the contents of the
option space specified in identifier. Examples of encapsulated options in the
DHCP protocol include the vendor-encapsulated-options option, the
netware-suboptions option and the relay-agent-information
option. For example:

option space local;

option local.demo code 1 = text;

option local-encapsulation code 225 = encapsulate local;
option local.demo "demo";

array Options can contain arrays of any of the above types except for the text and the
string types. For example:

option kerberos-servers code 200 = array of ip-address;
option kerberos-servers 10.20.10.1, 10.20.11.1;

records Options can contain data structures consisting of a sequence of data types,
sometimes called a record type. For example:

option contrived-001 code 231 =
{ boolean, integer 32, text };
option contrived-001 on 1772 "contrivance";

It is also possible to have options that are arrays of records. For example:

option new-static-routes code 201 = array of {
ip-address, ip-address, ip-address, integer 8 };
option static-routes
10.0.0.0 255.255.255.0 net-0-rtr.example.com 1,
10.0.1.0 255.255.255.0 net-l-rtr.example.com 1,
10.2.0.0 255.255.224.0 net-2-0-rtr.example.com 3;

Vendor Encapsulated Options
The DHCP protocol defines the vendor-encapsulated-options option. This allows vendors to

define their own options that will be sent encapsulated in a standard DHCP option.

The format of all of these options is either a chunk of opaque data, or an actual option buffer just like a
standard DHCP option buffer.

The DHCP protocol also defines the Vendor Identified Vendor Sub Options option (“VIVSO”).The
VIVSO option differs in that it contains options that correspond to vendor Enterprise-ID numbers
(assigned by IANA), which then contain options according to each vendor’s specifications. You will
need to refer to your vendor’s documentation in order to form options to their specification.

You can send one of these options to clients in one of two ways.

The first way is to define the data directly, using a text string or a colon-separated list of hexadecimal
values. To send a simple chunk of data, provide a value for the option in the right scope. For example:

option vendor-encapsulated-options
2:4:AC:11:41:1:
3:12:73:75:6e:64:68:63:70:2d:73:65:72:76:65:72:31:37:2d:31:
4:12:2f£:65:78:70:6f£:72:74:2f:72:6f:6f£:74:2£:69:38:36:70:63;

The second way of setting the value of these options is to have the DHCP server generate a vendor-
specific options buffer. To do this, you must do four things: define an option space, define some options
in that option space, provide values for them, and specify that this option space should be used to
generate the relevant option.

To define a new option space to store vendor options, use the option space statement. The syntax
of the statement is:

option space name [[code width n] [length width n] [hash size n] 1;

Where the numbers following code width, length width, and hash size respectively identify
the number of bytes used to describe option codes, option lengths, and the size in buckets of the hash
tables to hold options in this space (most option spaces use 1-byte codes and lengths, which is the
default).

The code and length widths are used in the DHCP protocol — you must configure these numbers to
match the applicable option space you are configuring. They each default to 1. Valid values for code
widths are 1, 2 or 4. Valid values for length widths are 0, 1 or 2. The hash size defaults depend upon the
code width selected, and may be 254 or 1009. Valid values range between 1 and 65535. Note that the
higher you configure this value, the more memory will be used.

It is considered good practice to configure a value that is slightly larger than the estimated number of
options you plan to configure within the space.

The name of the option space can be used in option definitions. For example:

option space SUNW code width 1 length width 1 hash size 3;
option SUNW.server-address code 2 = ip-address;

option SUNW.server-name code 3 = text;

option SUNW.root-path code 4 = text;

option space ISC code width 1 length width 1 hash size 3;
option ISC.sample code 1 = text;

option vendor.ISC code 2495 = encapsulate vivso-sample;
option vendor-class.ISC code 2495 = text;

option ISC.sample "configuration text here";

option vendor-class.ISC "vendor class here";

Once you have defined an option space and the format of some options, you can set up scopes that
define values for those options and when to use them. For example, suppose you want to handle two
different classes of clients. Using the option space definition in the previous example, you can send
different option values to different clients based on the vendor-class-identifier option that the
clients send, as follows:

class "vendor-classes" {
match option vendor-class-identifier;

}
option SUNW.server-address 172.17.65.1;

option SUNW.server-name "sundhcp-serverl7-1";
option vivso-sample.sample “Hello world!”;
subclass "vendor-classes" "SUNW.Ultra-5 10" {
vendor-option-space SUNW;
option SUNW.root-path "tcpware: [sparc]";
}

subclass "vendor-classes" "SUNW.i86pc" {
vendor-option-space SUNW;
option SUNW.root-path "tcpware: [1i86pc]";
}

Regular scoping rules apply. This lets you define values that are global in the global scope, and define
values that are specific to a particular class in the local scope.

The vendor-option-space declaration indicates that in that scope the vendor-
encapsulated-options option should be constructed using the values of all the options in the
SUNW option space.

Note that the VIVSO option can have multiple vendor definitions all at once (even transmitted to the
same client), so it is not necessary to configure it this way.

DHCP Lease Format

The DHCP server keeps a persistent database of leases it has assigned. This database is a free-form
ASCII file containing a series of lease declarations. Every time a lease is acquired, renewed, or released,;
its new value is recorded at the end of the lease file. So, if more than one declaration appears for a given
lease, the last one in the file is the current one.

In order to prevent lease the file from becoming arbitrarily large, from time to time the DHCP server
creates a new dhcpd. leases file from its in-memory lease database. Once this file has been written
to disk, the old file is renamed dhcpd. leases old, and the new file is renamed dhcpd. leases.
If the system crashes in the middle of this process, whichever dhcpd. leases file remains will
contain all the lease information, so there is no need for a special crash recovery process.

Declarations

The primary declaration that is used in the dhcpd. leases file is the 1ease declaration.

lease ip-address { statements... }

Each lease declaration includes the client’s leased IP address. The statements within the braces define
the duration of the lease and to whom it is assigned.

The following table describes the statements the DHCP server puts into a lease file.

If DHCP failover is in use, the lease file will also contain failover-related statements. See the failover
sections of this chapter for more information.

Lease Statement Description

abandoned; Records that the DHCP server saw the IP address in use
on the network when it was thought to be free. The DHCP
server detects active addresses with ping tests or "DHCP
decline™ messages from DHCP clients.

binding state state; Indicates the current lease state and what state the lease
REEKE DRG] SECES STEEEE will move to when the current state expires. If failover is
not in use, the state will be either active or free.

client-hostname “hostname”; Records the host name if the client sends one using the
host-name option.

ddns-text; Records the value of the client’s TXT identification
record.

ddns-fwd-name; Records the name the server used to update the client’s A
record.

ddns-client-fqdn; Records the name the client said it was using to update its

own A record.

ddns-rev-name; Records the name the server used to update the client’s
PTR record. The name to which the PTR record points
will be either ddns-fwd-name or ddns-client-
fgdn.

bootp; Indicates the address was leased to a BOOTP client.

ends date;

hardware hardware-type
mac-address;

on events { statements.. };

option agent.circuit-id string;
option agent.remote-id string;

reserved;

set variable = value;

starts date;

uid client-identifier;

Records the end time of a lease. Lease dates are specified
by the DHCP server as described in the Lease Date
Format section.

Specifies the hardware type and the MAC address as a
series of hexadecimal octets, separated by colons.

Records a list of statements to be executed if the given
event occurs. Possible events are release and expiry.
If multiple events are specified, they are separated by the
vertical bar character.

Records the circuit ID and remote ID options sent by the
relay agent, if the relay agent uses the relay agent
information option.

Indicates that the lease is reserved. See the Reserved
Leases Reserved Leasessection.

Sets the value of a variable on the lease. For example, the
vendor-class-identifier variable is used to record the
client-supplied Vendor Class Identifier option. Other
variables that are set are related to DDNS.

Records the start time of a lease. Lease dates are specified
by the DHCP server as described in the Lease Date
Format section.

Records the client identifier used by the client to acquire
the lease. Clients are not required to send client
identifiers, and this statement only appears if the client
did in fact send one. Client identifiers are frequently an
ARP type (for example, 1 for ethernet) followed by the
MAC address, just like in the hardware statement, but this
is not required.

The client identifier is recorded as a colon-separated
hexadecimal list or as a quoted string. If it is recorded as

a quoted string and it contains one or more non-printable
characters, those characters are represented as octal
escapes — a backslash character followed by three octal
digits.

Lease Date Format
Lease file dates are specified in one of two ways, depending on the configuration value for the db-

time-format parameter. Ifitissetto default, then the date fields appear as follows:
weekday yvear/month/day hour:minute:second

The weekday is present to make it easier for a human to tell when a lease expires — it is specified as a
number from zero to six, with zero being Sunday. Weekday is ignored on input. The year is specified
with the century, so it should generally be four digits except for really long leases. The month is
specified as a number starting with 1 for January. The day of the month is likewise specified starting
with 1. The hour is a number between 0 and 23, the minute a number between 0 and 59, and the
second also a number between 0 and 59.

Default format lease times are specified in Universal Coordinated Time (UTC), not in the local time
zone.

If the db-time-format parameter is configured to 1ocal, then the date fields appear as follows:

epoch seconds-since-epoch;
day-name month-name day-number hour:minutes:seconds year

The seconds-since-epoch is as according to the system's local clock (often referred to as "UNIX
time™). The pound symbol (#) supplies a comment that describes what actual time this is according to
the system's configured time zone, at the time the value was written. It is provided only for human
inspection.

If a lease will never expire, date is displayed as never instead of an actual date.

Working with DHCP Leases

The DHCP server requires that a lease database be present before it will start. Before starting the DHCP
server for the first time, make sure there is a TCPWARE : DHCPD . LEASES file. If it doesn’t exist, create
an empty one.

In order to prevent the lease database from growing without bound, the file is rewritten from time to
time. First, a temporary lease database is created and all known leases are dumped to it. Then, the old

lease database is renamed TCPWARE : DHCPD . LEASES OLD. Finally, the newly written lease database
is moved into place.

Be aware of the following situation: if the DHCP server process is killed or the system crashes after the
old lease database has been renamed but before the new lease database has been moved into place, the
TCPWARE : DHCPD.LEASES file disappears. The DHCP server will refuse to start. Do not create a new
lease file when this happens. If you do, you will lose all your old bindings. Instead, rename

TCPWARE : DHCPD.LEASES OLD to TCPWARE : DHCPD.LEASES, restoring the old, valid lease file,
and then start the DHCP server. This guarantees that a valid lease file will be restored.

Abandoned Leases

Abandoned leases are reclaimed automatically. When a client asks for a new address, and the server
finds that there are no addresses available, it checks to see if there are any abandoned leases. The server
allocates the oldest abandoned lease. The standard procedures for checking for lease address conflicts
are still followed, so if the abandoned lease's IP address is still in use, it is re-abandoned.

If a client requests an abandoned address, the server assumes that the address was abandoned because
the lease file was corrupted, and that the client is the machine that responded when the lease was pinged,
causing it to be abandoned. In that case, the address is immediately assigned to the requesting client.

Static Leases
Leases that are given to clients for statically assigned IP addresses are treated differently than those for
dynamically assigned IP addresses. An address is statically assigned by using a host declaration with a

fixed-address statement.

Static lease information is not saved by the DHCP server. This means that they are not recorded in the
lease file (DHCPD.LEASES). If your configuration uses only statically assigned IP addresses, you will
not see any entries in the lease file.

This also means that NETCU SHOW DHCP4 commands do not have any lease information to display
for static assignments.

e For SHOW DHCP/IP ADDRESS, statically assigned IP addresses are not supported.

e For SHOW DHCP/SUBNET and /LEASES, statically assigned IP addresses are not shown.

e For SHOW DHCP/ALL, /HARDWARE ADDRESS, and /CLIENT IDENTIFIER, and in the
dump file produced by /CONFIGURATION, statically assigned IP addresses are identified as a
static assignment and no lease information is shown.

e For SHOW DHCP/POOLS, statically assigned IP addresses are not included in the pool or subnet
statistics.

DNS dynamic updates are supported only partially for static assignments. When the lease is granted, the
appropriate A and PTR resource records are added automatically. However, since the lease information
is not saved, the DHCP server does not delete the DNS entries when the lease expires or is released.

Registering Clients While the DHCP
Server is Running

The DHCP server can register and unregister clients without having to restart the server. host
declarations and subclass declarations can be added or removed from the running server using add
and remove commands in an update file, by default TCPWARE : DHCPD . UPDATES.

The commands that can be placed into the update file are described in section Update File Statements
below.

You would use host declarations if you are controlling access to IP addresses via allow/deny
unknown-clients statements in your DHCPD.CONF configuration file. You would use subclass
statements if you are controlling access to IP address pools using classes configured with the match
statement and using pools with allow/deny members of class statements.

Note: The registration or unregistration of a client via the update file only affects the running
server. The host and subclass declarations must also be added to the DHCPD . CONF configuration
file.

You tell the DHCP server to execute the commands in the update file using the NETCU UPDATE
DHCP4 command:

Slnetcu update dhcp4

A different file name can optionally be specified:

Slinetcu update dhcp4/filename=mydir:dhcpd.updates

You can verify the syntax of the update file before sending it to the DHCP server by using the NETCU
SHOW DHCP4/VERIFY command:

Slnetcu show dhcp4/verify=(update[=filename])

If the update file name is not specified, the file TCPWARE : DHCPD.UPDATES is read. Note that the
configuration file is read in before the update file. A different configuration file can be specified using
the CONFIG option:

Slnetcu show dhcp4/verify=(config=filename,update[=filename])

You can check the DHCP server and see if a given host or subclass is known, for example to see if you
need to add it, using the following netcu commands:

Slnetcu show dhcp4/isknown host hw-addr-or-client-id
Slnetcu show dhcp4/isknown subclass class-name subclass-data

Update File Statements

This table describes the commands you can use in an update file.

Statement Description

add host Registers a client by adding the specified host declaration. The host declaration
is in the same format as in the configuration file. This makes the specified
hardware address and/or client identifier "known".

add host name { [statements] }

Note that static IP address assignments can be added by specifying the
fixed-address statement in the host declaration.

add subclass Registers a client by adding the specified subclass to the specified class. The
class must be declared in the DHCPD.CONF configuration file. The subclass
declaration is the same format as in the configuration file. This adds the
specified subclass value as a member of the specified class.

add subclass "class—-name" subclass-data;
add subclass "class—-name" subclass-data {
[statements]

}

delete host Un-registers a client by removing the specified host declaration. The host is
specified by hardware address or client identifier. This makes the
specified host "unknown". Note that all host declarations that match the
hardware address or client identifier are deleted.

delete host hw-addr-or-client-id;

delete subclass Un-registers a client by removing the specified subclass from the specified
class. This makes the specified subclass no longer a member of the class.

delete subclass "class—-name" subclass-data;

Examples:

add host fred {
hardware ethernet 01:02:03:04:05:06;
fixed-address 10.9.8.7;
option routers 10.9.8.1;

}
add host wilma {
option dhcp-client-identifier "wilma-cid";
}
delete host 01:02:03:04:05:06;
delete host "wilma-cid";

add subclass "gold" 01:01:02:03:04:05:06 {
option host-name "fred";

}

add subclass "silver" "wilma-cid";
delete subclass "gold" 01:01:02:03:04:05:06;
delete subclass "silver" "wilma-cid";

DHCP Failover

Introduction
Since a DHCP server is responsible for the network's IP management, it can also be a potential point of
network failure if it becomes unavailable. Using multiple servers with non-overlapping IP address pools

is one way to provide limited fault-tolerance. For example: imagine a network with two DHCP servers.
Server A has an address range of 100 IP addresses. Server B has a range of 50 different addresses. Both
servers have a non-overlapping range of addresses. When a node broadcasts for an address, both servers
respond, each offering an address from its own distinct range. Upon receiving both offers, the node
chooses one. Typically, the response that reaches the node first is selected. In this case, Server A's.
When Server B determines its offer is not needed, it returns the offered address to its own range,
allowing it to be offered again.

If one of the servers is down, the other server continues to service the nodes. Now, instead of having two
offers, each new node has only one offer, from the remaining server. Nodes that received their lease
from the unavailable server attempt to reconnect with it. If the unavailable server does not respond in
time, the nodes then attempt to get a new address from a new server. The other server can then offer an
address from its own range. So, even though one server is down, the DHCP clients continue to function
with the other server.

Note: The two DHCP servers in this scenario operate without any communications or data sharing
between them. Each server works as a standalone server.

Process Software takes the use of multiple servers to another level by offering DHCP Failover. DHCP
Failover allows a secondary DHCP server to back up the primary DHCP server with the addition of
taking into account network failure. This strategy ensures that clients can reliably log into their corporate
network and know they will be able to connect to corporate resources. In failover mode, the primary and
the backup DHCP servers share a common IP address lease pool.

The failover protocol defines a primary server role and a secondary server role. There are some
differences in how primaries and secondaries act, but most of the differences simply have to do with
providing a way for each peer to behave in the opposite way from the other. One server must be
configured as primary, and the other must be configured as secondary, but it doesn't matter much which
one is which.

The primary and secondary DHCP servers both give out and renew leases during normal operations.
Each server will have about half of the available IP addresses in the pool at any given time for
allocation. If one server fails, the other server will continue to renew leases out of the pool, and will
allocate new addresses out of the roughly half of available addresses that it had when communications
with the other server were lost.

Configuring DHCP Failover

To configure your DHCP servers to use failover, perform the following steps:

1.
2.

Choose one system to be the Primary and a second system to be the Secondary.

Determine the IP addresses of the Primary and Secondary systems. If a system has more than one
IP address, choose one to use for DHCP failover messages.

On the Primary system:

Add a failover peer declaration to the dhcpd. conf configuration file with the keyword
primary and other parameters, and add failover peer references to each address pool for which
you want to do failover. See DHCP Failover Configuration Statements for more information.

On the Secondary system:

Add a failover peer declaration to the dhcpd. conf configuration file with the keyword
secondary and other parameters, and add failover peer references to each address pool for
which you want to do failover.

If you don't already have a configuration file, write a configuration file containing the subnets,
shared networks, IP address ranges, hosts, etc, that reflect your network and the hosts you want
the DHCP server to service. Include any DHCP failover parameters as needed (see Failover
Configuration File Statements).

Preferably, the configuration files on the Primary and the Secondary server systems should be
the same. To help ensure that the configuration file is valid for both systems, make sure it
contains a subnet statement for every subnet that either the Primary or the Secondary system
has a network interface on.

Note that you can write the failover peer declaration directly in the configuration file, or
you can write it in a separate file and use the include statement to include this file in the main
configuration file. This latter method is preferred because it allows both the primary and
secondary to use the same main configuration file, avoiding configuration mismatches.

Copy the configuration file to the TCPWARE directory on both the Primary and the Secondary
systems.

Make sure that both the Primary and the Secondary systems have lease files in the TCPWARE
directory. If the lease file does not exist, create an empty one.

Run the DHCP server on both the Primary and the Secondary systems. The two servers will
establish communications with each other and you're in business!

Failover Configuration File Statements

In order to configure failover in DHCP, you need to write a failover peer declaration that
configures the failover protocol, and you need to include peer references in each pool declaration for
which you want to do failover. You do not have to do failover for all pools on a given network segment.
You must not tell one failover partner it's doing failover on a particular address pool and tell the other it
is not. You must not have any common address pools on which you are not doing failover. A pool
declaration that utilizes failover would look like this:

pool {
failover peer "foo";
pool specific parameters

J 8

For safety, we recommend that you either do failover or don't do failover, but don't do any mixed pools.
Also, we recommend that you use the same master configuration file for both servers, and have a
separate file for each failover partner that contains that partner’s peer declaration and includes the
master file. This will help you to avoid configuration mismatches.

A basic sample dhcpd. conf file for a primary server might look like this:

failover peer "foo" {
primary;
address pri.example.com;
port 519;
peer address sec.example.com;
peer port 520;
max-response-delay 60;
max-unacked-updates 10;
mclt 3600;
split 128;
load balance max seconds 3;

}

include "tcpware:dhcpd.master";

The following table lists the statements that can appear in the failover peer declaration:
Failover Peer Statement Description
primary Or secondary Determines whether the server is the primary server or the

secondary server in the failover partnership. Only one may be
specified on a given system.

address ip-address;

peer address ip-address;

port port-number;

peer port port-number;

max-response-delay
seconds;

max-unacked-updates
count;

mclt seconds;

primary;
secondary;

Specifies the IP address or DNS name upon which the server
should listen for connections from its failover peer. Also, the value
to use for the DHCP Failover Protocol server identifier. Required.

Specifies the IP address or DNS name to which the server should
connect to reach its failover peer for failover messages.

Specifies the TCP port on which the server should listen for
connections from its failover peer. Optional. The default is 647.

Specifies the TCP port to which the server should connect to reach
its failover peer for failover messages. Optional. The default is
647.

Tells the DHCP server how many seconds may pass without
receiving a message from its failover peer before it assumes that
connection has failed. This number should be small enough that a
transient network failure that breaks the connection will not result
in the servers being out of communication for a long time, but
large enough that the server isn't constantly making and breaking
connections. Required.

Tells the failover peer how many BNDUPD (bind update)
messages it can send before it receives a BNDACK (bind ack)
from the local system. Required.

Defines the Maximum Client Lead Time. It is required on the
primary, and optional on the secondary. This is the length of time
for which a lease may be renewed by either failover peer without
contacting the other. The longer you set this, the longer it will
take for the running server to recover IP addresses after moving
into partner-down State. The shorter you set it, the more load
your servers will experience when they are not communicating. A
value of 3600 seconds is reasonable.

split index;

hba colon-separated-hex-
list

Specifies the split between the primary and secondary for the
purposes of load balancing. Whenever a client makes a DHCP
request, the DHCP server runs a hash on the client identification,
resulting in a value from 0 to 255. This is used as an index into a
256-bit field. If the bit at that index is set, the primary is
responsible. If the bit at that index is not set, the secondary is
responsible. The split value determines how many of the
leading bits are set to one. So, in practice, higher split values will
cause the primary to serve more clients than the secondary. Lower
split values, the converse is true. Legal values are between 0 and
255, of which the most reasonable is 128 (a 50/50 split).

Cannot be specified in the secondary. The primary must specify
either split or hba, but not both.

Specifies the split between the primary and secondary as a bitmap
rather than a cutoff (as sp1it does), which theoretically allows
for finer-grained control. In practice, there is probably no need
for such fine-grained control, however. An example hba
statement:

hba
ff.ff:ff:ff:ff:ffff:fffffffffffffffff1:
00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00;

This is equivalenttoa split 128; statement, and identical.
The following example is also equivalent to a split of 128, but is
not identical:

hba
aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:
aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aa:aac:aa;s

They are equivalent, because half the bits are set to 0, half are set
to 1 (Oxa is 1010 binary) and consequently this would roughly
divide the clients equally between the servers. They are not

load balance max seconds
seconds;

auto-partner-down
seconds;

pool balance statements

identical, because the actual peers this would load balance to each
server are different for each example.

You must only have split or hba defined in the primary, never

both. For most cases, the fine-grained control that hba offers isn't
necessary, and sp1it should be used. Cannot be specified in the

secondary.

Allows you to configure a cutoff after which load balancing is
disabled. The cutoff is based on the number of seconds since the
client sent its first DHCPDISCOVER or DHCPREQUEST
message, and only works with clients that correctly implement the
secs field. We recommend setting this to something like 3 or 5.
The effect of this is that if one of the failover peers gets into a
state where it is responding to failover messages but not
responding to some client requests, the other failover peer will
take over its client load automatically as the clients retry.

Instructs the server to initiate a timed delay upon entering the
communications-interrupted state (out of contact with
the failover peer). At the conclusion of the timer, the server will
automatically enter the partner-down state. See the DHCP
Failover Partner-Down State section for more information.

A zero value (the default) disables the auto-partner-down feature,
and any positive value indicates the time in seconds to wait before
automatically entering partner-down.

See the DHCP V4 Pool Balancing section for information about
pool balancing.

max—-lease-misbalance percentage;
max—-lease-ownership percentage;
min-balance seconds;

max—-balance seconds;

DHCP Pool Balancing
The DHCP server evaluates pool balance on a schedule, rather than on demand as leases are allocated
(which was the old approach).

In order to understand pool balance, some elements of its operation first need to be defined. First, there
are free and backup leases. Both of these are referred to as free-state leases. The states free
and backup are “the free states” for the purpose of this discussion. The difference is that only the
primary may allocate from free leases unless under special circumstances, and only the secondary may
allocate backup leases.

When pool balance is performed, the only plausible expectation is to provide a 50/50 split of the free-
state leases between the two servers. This is because no one can predict which server will fail,
regardless of the relative load placed upon the two servers, so giving each server half the leases gives
both servers the same amount of failure endurance. Therefore, there is no way to configure any different
behavior, outside of some very small windows described shortly.

The first thing calculated on any pool balance run is a value referred to as 1ts, or "Leases To Send".
This, simply, for the primary is the difference in the count of free and backup leases, divided by two.
For the secondary, it is the difference in the backup and free leases, divided by two. The resulting value
is signed: if it is positive, the local server is expected to hand out leases to regain a 50/50 balance. If it
IS negative, the remote server would need to send leases to balance the pool. Once the 1ts value
reaches zero, the pool is perfectly balanced (give or take one lease in the case of an odd number of total
free-state leases).

The current approach is still something of a hybrid of the old approach, marked by the presence of the
max-lease-misbalance parameter. This parameter configures what used to be a 10% fixed value
in earlier versions: if 1ts is less than the number that are £ ree plus the number that are backup
times the max-1lease-misbalance percentage, then the server will skip balancing a given pool (it
won't bother moving any leases, even if some leases "should™" be moved).

The meaning of this parameter is also somewhat overloaded, however, in that it also governs the
estimation of when to attempt to balance the pool (which may then also be skipped over). The oldest
leases in the free and backup states are examined. The time they have resided in their respective queues
is used as an estimate to indicate how much time it is probable it would take before the leases at the top
of the list would be consumed (and thus, how long it would take to use all leases in that state). This
percentage is directly multiplied by this time, and fit into the schedule if it falls within the min-
balance and max-balance configured values. The scheduled pool check time is only moved in a
downwards direction, it is never increased. Lastly, if the 1ts is more than double this number in the
negative direction, the local server will ‘panic' and transmit a Failover protocol POOLREQ (pool
request) message, in the hopes that the remote system will be woken up into action.

Once the 1ts value exceeds the max-1ease-misbalance percentage of total free-state leases as
described above, leases are moved to the remote server. This is done in two passes:

In the first pass, only leases whose most recent bound client would have been served by the remote
server —according to the Load Balance Algorithm (see split and hba parameters above) — are given
away to the peer. This first pass will happily continue to give away leases, decrementing the 1t s value
by one for each, until the 1t s value has reached the negative of the total number of leases multiplied by
the max-lease-ownership percentage. So, it is through this value that you can permit a small
misbalance of the lease pools — for the purpose of giving the peer more than a 50/50 share of leases in
the hopes that their clients might someday return and be allocated by the peer (operating normally).
This process is referred to as “MAC Address Affinity”, but this is somewhat misnamed: it applies
equally to DHCP Client Identifier options. Note also that affinity is applied to leases when they enter
the state free from expiredor released. In this case also, leases will not be moved from free
to backup if the secondary already has more than its share.

The second pass is only entered into if the first pass fails to reduce the 1ts underneath the total number
of free-state leases multiplied by the max-1ease-ownership percentage. In this pass, the oldest
leases are given over to the peer without second thought about the Load Balance Algorithm, and this
continues until the 1t s falls under this value. In this way, the local server will also happily keep to
itself a small percentage of the leases that would normally load balance.

So, the max-1lease-misbalance value acts as a behavioral gate. Smaller values will cause more
leases to transition states to balance the pools over time, higher values will decrease the amount of
change (but may lead to pool starvation if there's a run on leases).

The max-lease-ownership value permits a small (percentage) skew in the lease balance of a
percentage of the total number of free-state leases.

Finally, the min-balance and max-balance parameters make certain that a scheduled rebalance
event happens within a reasonable timeframe (not to be thrown off by, for example, a 7-year-old free
lease).

Plausible values for the max-1lease-misbalance and max—-lease-ownership percentages lie
between 0 and 100, inclusive, but values over 50 are indistinguishable from one another (once Its
exceeds 50% of the free-state leases, one server must therefore have 100% of the leases in its respective
free state). It is recommended to select a max-1lease-ownership value that is lower than the value
selected for the max-lease-misbalance value. max-lease-ownership defaults to 10, and
max—-lease-misbalance defaults to 15.

Plausible values for the min-balance and max-balance times (in seconds) range from 0 to (2%%)-1,
but default to values 60 and 3600 respectively (to place balance events between 1 minute and 1 hour).

Failover Lease File Statements
The statements listed in this section have been added to the DHCP lease file for failover. These are in
addition to the DHCP lease file statements listed above.

DHCP Failover Lease Statements

Statement Description

tstp date; The time the peer has been told the lease expires.

tsfp date; The lease expiry time that the peer has acknowledged.
atsfp date; The actual time sent from the failover partner.

cltt date; The client’s last transaction time.

binding state state; When the DHCP server is not configured to use Failover, the

next binding state state; gy possible binding states are active or free. With

failover, additional states are added, including the backup
state, which indicates that the lease is available for allocation
by the secondary.

failover peer state Records the state of the primary and secondary failover
partners.

failover peer “name” state {
my state state at date;
partner state state at date;
mclt seconds;

}s

The states of the peer named name is recorded in this
declaration. Both the state of the running server (my state) and
the other failover partner (partner state) are recorded. The
following states are possible:

unknown-state, partner-down, normal,
communications-interrupted, resolution-
interrupted, potential-conflict, recover,
recover—-done, shutdown, paused, startup.

The mc1t records the Maximum Client Lead Time (from the
configuration file).

DHCP Failover Partner-Down State

It is possible during a prolonged failure to tell the remaining DHCP failover peer that the other server is
down, in which case the remaining server will (over time) reclaim all the addresses the other server had
available for allocation, and begin to reuse them. This is called putting the server into the partner-down
state.

Be careful about transitioning a failover server to partner-down state. The partner-down and
communications-interrupted states are intentionally distinct because there do exist situations where a
failover server can fail to communicate with its peer, but still has the ability to receive and reply to
requests from DHCP clients. Partner-down state permits the server to allocate leases from the partner's
free lease pool after the mc 1t timer expires. This can be dangerous if the partner is in fact operating at
the time (the two servers will give conflicting bindings).

It is also possible to get into this kind of dangerous situation: you put one server into the partner-down
state, and then that server goes down, and the other server comes back up. The other server does not
know that the first server was in the partner-down state, and may issue addresses previously issued by
the other server to different clients, resulting in IP address conflicts. Before putting a server into
partner-down state, therefore, make sure that the other server will not restart automatically.

Also, the automat ic partner-down feature should be used only with extreme caution. In general, it
should be only be used at sites where the failover servers are directly connected to one another, such as
by a dedicated hardwired link ("a heartbeat cable™). In other cases, the network manager should verify
that the failover partner is really down and not coming back any time soon before putting a failover
server into partner-down state manually.

When the down server comes back online, it automatically detects that it has been offline and requests a
complete update from the server that was running in the partner-down state, and then both servers
resume normal processing.

Transitioning to Partner-Down State
There are three ways that you can transition the DHCP server to partner-down state:

1. The server may transition to partner-down state automatically based on the auto-partner-
down parameter of the failover peer Statement

If the above parameter is specified in the configuration file, the DHCP server transitions to
partner-down state automatically after it has been in communications-interrupted state for the
specified time.

2. You can put the DHCP server into Partner Down state using the following NETCU command:

Slnetcu set dhcp4/partnerdown

3. You can edit the DHCP lease file and specify that the server should be in partner-down state.

Edit the last failover peer state declaration in the lease file to setmy state to
partner-down, for example: (note that it is only required to set the my state value)

failover peer “name” state {
my state partner-down;
partner state state at date;

}

The next time the DHCP server is restarted, it will be in partner-down state. You can restart the
DHCP server by shutting down the server with the NETCU STOP/DHCP4 command. NETCP
automatically restarts the DHCP server.

Failover Server Restart

When a server starts that has not previously communicated with its failover peer, it must establish
communications with its peer and synchronize with it before it can serve clients. This can happen either
because you have just configured your DHCP servers to perform failover for the first time, or because
one of your failover servers has failed catastrophically and lost its database.

The initial recovery process is designed to ensure that when one failover peer loses its database and then
resynchronizes, any leases that the failed server gave out before it failed will be honored. When the
failed server starts up, it notices that it has no saved failover state, and attempts to contact its peer.

When it has established contact, it asks the peer for a complete copy of its peer's lease database. The
peer then sends its complete database, and sends a message indicating that it is done. The failed server
then waits until mc1t has passed, and once mc1t has passed both servers make the transition back into
normal operation. This waiting period ensures that any leases the failed server may have given out
while out of contact with its partner will have expired.

While the failed server is recovering, its partner remains in the partner-down state, which means that it
is serving all clients. The failed server provides no service at all to DHCP clients until it has made the
transition into normal operation.

In the case where both servers detect that they have never before communicated with their partner, they
both come up in this recovery state and follow the procedure just described. In this case, no service will
be provided to DHCP clients until mc1t has expired.

Sample DHCPD.CONF File

The following is a sample DHCPD . CONF file.

#
TCPWARE:DHCPD.CONF -- sample DHCP configuration file
#

option definitions common to all supported networks...

option domain-name “fugue.com”;

option domain-name-servers toccato.fugue.com;

default-lease-time 43200;

option subnet-mask 255.255.255.0;

option time-offset 18000;

use-host-decl-names on;

Shared network declaration is used to group subnets which share the same
physical network together. The name is specified so that the shared
network can be referred to in log messages --

it serves no other function.

Note: You must have a subnet declaration for the subnet that the DHCP
server system is on even if you don’t want any address pool for the same
subnet (or multiple subnets if the system is multi-homed).
shared-network FUGUE {

option definitions common to this shared network.

option subnet-mask 255.255.255.224;

default-lease-time 600;

max—lease-time 7200;

H= = S S S S S

One of the two IP subnets that share this physical network

Address ranges can be specified for each subnet attached to a shared
network. Since these subnets share the same physical network, addresses
are pooled together, and assignments are made without regard to the
actual subnet. If the optional dynamic-bootp keyword is given in the
address range declaration, then addresses in that range can be assigned
either with the DHCP protocol or the BOOTP protocol; otherwise, only
DHCP clients will have addresses allocated from the address range.

H= S S S S S S S S

Note that each IP subnet can have its own options specific to that

subnet. Options that are not specified in the subnet are taken from the
shared network (if any) and then from the global option list.
subnet 204.254.239.0 netmask 255.255.255.224 {

range 204.254.239.10 204.254.239.20;

option broadcast-address 204.254.239.20;

option routers prelude.fugue.com;

—

The other subnet that shares this physical network
subnet 204.254.239.32 netmask 255.255.255.224 {
range dynamic-bootp 204.254.239.42 204.254.239.52;
option broadcast-address 204.254.239.31;
option routers snarg.fugue.com;

—

Subnets can have no pooled ip addresses.
subnet 10.10.10.0 netmask 255.255.255.0 {
}

IP subnets that are alone on their physical wire should be declared by
themselves. The DHCP server still refers to them as shared networks in
log messages, but this is simply an artifact of the underlying data
structure.

Note that options can be specified in the subnet declaration that
supersede the global options specified earlier.

subnet 192.5.5.0 netmask 255.255.255.224 {

range 192.5.5.26 192.5.5.30;

option domain-name-servers bb.home.vix.com, gw.home.vix.com;
option domain-name “vix.com”;

option routers 192.5.5.1;

option subnet-mask 255.255.255.224;

option broadcast-address 192.5.5.31;

default-lease-time 600;

max—-lease-time 7200;

H = S S S S

}
Hosts that require special configuration options can be listed in host
statements. If no address is specified, the address will be allocated
dynamically (if possible), but the host-specific information will still
come from the host declaration.
host passacaglia {

hardware ethernet 0:0:c0:5d:bd:95;

filename “vmunix.passacaglia”;

server—-name “toccato.fugue.com”;

}
Fixed IP addresses can also be specified for hosts. These addresses
should not also be listed as being available for dynamic assignment.
Hosts for which fixed IP addresses have been specified can boot using
BOOTP or DHCP. Hosts for which no fixed address is specified can only be
booted with DHCP, unless there is an address range on the subnet to
which a BOOTP client is connected which has the dynamic-bootp flag set.
host fantasia {

hardware ethernet 08:00:07:26:c0:a5;

}

fixed-address fantasia.fugue.com;

If a DHCP or BOOTP client is mobile and might be connected to a variety
of networks, more than one fixed address for that host can be specified.
Hosts can have fixed addresses on some networks, but receive dynamically
allocated address on other subnets; in order to support this, a host
declaration for that client must be given which does not have a fixed
address. If a client should get different parameters depending on what
subnet it boots on, host declarations for each such network should be
given. Finally, if a domain name is given for a host’s fixed address and
that domain name evaluates to more than one address, the address
corresponding to the network to which the client is attached, if any,
will be assigned.

ost confusia {

hardware ethernet 02:03:04:05:06:07;

fixed-address confusia-1.fugue.com, confusia-2.fugue.com;
filename “vmunix.confusia”;

server—-name “toccato.fugue.com”;

host confusia {

}

hardware ethernet 02:03:04:05:06:07;
fixed-address confusia-3.fugue.com;
filename “vmunix.confusia”;
server—-name “snarg.fugue.com”;

host confusia {

}

hardware ethernet 02:03:04:05:06:07;
filename “wvmunix.confusia”;
server—-name “bb.home.vix.com”;

Do not allow this one to boot

host host2
hardware ethernet aa:cc:04:00:33:11;
deny booting;

}

Some other examples

host hostl {

option dhcp-client-identifier “hostl”;
fixed-address 10.10.11.101, 10.11.22.101;

5. Serial Link Interfaces: PPP
and SLIP

Introduction

This chapter describes the serial link interfaces available with TCPware. There are two types of serial
link interfaces:

e Point-to-Point Protocol (PPP)
e Serial Line IP (SLIP)

Point-to-Point Protocol Interface

TCPware supports the Point-to-Point Protocol (PPP) so that you can send IP datagrams over serial links,
including LAT or modem connections.

PPP is an enhancement to the nonstandard Serial Line IP (SLIP) interface (see Serial Line IP Interface).
PPP provides self-contained error detection and automatically negotiated header compression. It also
provides authentication through the Password Authentication Protocol (PAP) which you can set using
PPPD command options.

You configure PPP on the TCPware host using the PPPD command and its options at the DCL prompt
or aggregated in an options file. You do not need to configure PPP using the configuration procedure
(cNENET) or Network Control Utility (NETCU) commands.

Implementation
PPP is a standard (as Internet STD 51, or RFC 1661) for transporting multiprotocol datagrams over
serial point-to-point links. PPP is composed of three parts:

¢ A method to encapsulate multiprotocol datagrams over serial links.

e An extensible Link Control Protocol (LCP) to establish, configure, and test the data link
connection.

e A family of Network Control Protocols (NCPs, such as the IP Control Program and the
authentication protocols) to establish and configure the different network layer protocols.

You need TCP/IP and application software at each end of the PPP link. One end can be TCPware, while
the other end (known as the peer) can be any PPP client implementation. The below diagram shows a
typical PPP network.

| | host ¥ host
192.168.95.2 | 192.1658.34 .2

:::::::::::::::::::::::':_-':-' PPP :::::::::::::::::::::::::::

Metwork

.................. 192.163.21.0 :::::::::::::::::::::;é:é_

host host

Because PPP lines are point-to-point connections, with TCPware you have the option to configure PPP
lines as network lines or as unnumbered interface lines. The advantage to unnumbered interface lines is
that you do not need to assign them IP addresses.

TCPware supports both dedicated and dialup PPP lines. PPP is common with line speeds from 14.4 to
28.8 kilobits per second (Kb/s).

PPP is implemented as a single program, PPPD, the PPP daemon, which runs as a foreign command.
The daemon is a process that:

e Runs between the terminal driver and IP driver.
e Negotiates PPP line configuration with a peer PPP node.
e Establishes the PPP connection between the specified serial line and TCPware.

There is one PPPD process for each physical connection.

You control PPP through PPPD command line options, which you can add to an options file
(TCPWARE : PPPOPTIONS. DAT).

Before Configuring PPP Lines

Before you begin configuring PPP lines:

e You must setthe TTY ALTYPAHD system parameter larger than its default value. This avoids
losing characters. The higher the line speed, the higher you should set this parameter. For most
applications, 1024 is appropriate.

TTY ALTYPAHD is not a dynamic parameter. If you use SYSGEN to change it, you must reboot
the system for the change to take effect.

e The MAXBUF system parameter must be at least twice the maximum transmission unit (MTU) of
the PPP line plus 134. The default MTU for PPP lines is 1500 bytes; therefore, MAXBUF must be
at least 3134. Increase MAXBUF if necessary. MAXBUF is dynamic. If you use SYSGEN to
change it, you do not need to reboot the system for the change in value to take effect.

e Determine the speed of your serial line or modem. You may need to specify this line speed as a
PPPD command parameter.
e Make sure that the terminal device you specify is allocated to your current process.

PPPD Command

You configure PPP lines on your local system using the PPPD command at the DCL prompt and
specifying the appropriate options. You start PPPD as a foreign command as follows:

When you start PPPD, it either begins sending PPP packets to the specified terminal device to start
negotiating, or waits for PPP packets to arrive, depending on the options specified on the command
line. When negotiation is complete and IP is up, you can tell if the PPP device is configured by using the
NETCU command SHOW NETWORK:

SEINETCU SHOW NETWOR

TCPware (R) for OpenVMS Internet Network Information:

Line Local Address Subnet Mask MTU Xmits FErrs Recvs Errs RBU
PPP-0 192.168.142.57 255.255.255.0 1500 1 0 1 0 0
LPB-0 127.0.0.1 255.0.0.0 04512 74 0 74 0 0

The PPP line shows up as PPP-n, the n starting with 0 and incrementing for each new line.
A PPP session is terminated in one of the following ways:

e |If you enter the NETCU STOP/IP command for the PPP line
e The peer terminates the PPP session

e The serial line is hung up (for modem lines)

e The PPPD process is stopped

The PPPD process either ends or listens on the line for more incoming PPP packets, depending on the
command line option used. PPP also ends when it cannot agree on the option negotiation during startup.

By default, PPPD creates a detached process to which it hands over the terminal device. To execute
PPPD in foreground mode, use the ~-DETACH (or ~-NODETACH) option with the PPPD command. (Note
that special privileges apply to a detached process. See the ~-DETACH option in the PPPD command
reference for details.) The name of the detached process is PPP terminal-device-name.

The TCPWARE : PPPOPTIONS . DAT file can contain any option you can specify on the PPPD
command line. Options in the file have precedence over the options on the command line. The options
file can contain any of the PPPD options, separated with spaces or tabs. You can specify options in
multiple lines, as in the following example:

NETMASK 255.255.252.0 ASYNCMAP 0
NAME FLOWERS.EXAMPLE.COM
AUTH +PPP

You can specify command files in four different PPPD options, as described in the below table.

Option Description

CONNECT file Sets the terminal device through the specified command file
DISCONNECT file Resets the terminal device through the specified command file
IPUP file The specified file executes when IP is started over PPP

IPDOWN file The specified file executes when IP over PPP is shut down

The command file associated with the CONNECT and DI SCONNECT options must return an exit status
to PPPD with the EXTT command. PPPD waits for the script to finish and terminates if the return status
is not successful (the status code is an odd number). The command files are provided with the device
name as the P1 parameter. You can use a dialup scripting program such as KERMIT.

The TPUP and T PDOWN options are executed asynchronously so that PPPD does not wait for their
completion. They are provided with the following command parameters:

Parameter Description
P1 Interface name (such as PPP-0)

P2 Terminal device (suchas TTA3:)

P3 Local IP address
P4 Remote IP address

P5 (Optional) String specified with the TPPARAM option

Configuring PPP Links

The PPPD command line parameter and options shown in the below table control the PPP link
configuration and specify the basic characteristics of the PPP link.

Option Description

device-name Terminal device, such as TTA3
ASYNCMAP map Bit map of characters to escape
CRTSCTS Uses hardware flow control
ESCAPE xx,yy, ... Escape character definitions
MRU n Maximum Receive Unit (MRU)

See the Command Reference section in this chapter for details on each option.

By default, PPPD starts sending out configuration requests to the peer to establish a connection, and
terminates when the connection shuts down, negotiation fails, or the peer does not respond within a set
timeout period. You can change this course of action using the options shown in the below table.

Option Description
PASSIVE |nitiates negotiation but waits passively for the peer to respond if that fails

SILENT Passively waits until the PPP packet arrives

PERSIST After the PPP connection is terminated, waits for a new connection without exiting (in the
case of a dial-out, reestablishes the connection by redialing)

Authentication
PPPD provides sufficient access control. You can provide legitimate users PPP access to a server
machine, without fear of compromising the security of the server or the network it is on. This access

control is available as a combination of the following:

e The TCPWARE: PPPOPTIONS.DAT file, where you can place options to require authentication

when running PPPD.
e Password Authentication Protocol (PAP) secrets files where you can restrict the set of IP
addresses for individual users

PPPD's default action is to agree to authenticate if requested, and not to require authentication from the
peer. However, PPPD does not agree to authenticate itself with a particular protocol if it has no secrets it
can use to do so.

You can change this behavior with the command line options shown in the below table:

Option Description
AUTH Peer authenticates (any authentication)
+PAP Peer authenticates with PAP

-PAP Do not agree to authenticate with PAP

Using the Password Authentication Protocol

The Password Authentication Protocol (PAP) provides a simple method for the peer to establish its
identity. PAP uses a two-way handshake with a simple name and password combination. This
handshake occurs only on establishing the initial PPP link.

PAP is not a strong authentication method. Passwords go over the circuit as clear text, and there is no
protection from playback or repeated trial and error attacks.

Note: You can optionally authenticate using the user/password combination in the OpenVMS UAF
file by option 1ogin.

Using the Challenge Handshake Authentication

Protocol

The Challenge Handshake Authentication Protocol (CHAP) is a stronger method than PAP of
authenticating the PPP link, and is the preferred method. A CHAP secret (password) is encrypted, and
you can repeat authentication periodically during the session using different challenge values.

Authentication Files

Authentication information is stored in the TCPWARE : PPPPAP . DAT file for PAP authentication or the
TCPWARE: PPPCHAP. DAT file for CHAP authentication. The contents of these files are used both for
authenticating incoming peer hosts and authenticating the local host to remote peers. You can use the
TCPWARE: PPPSECRET . TEMPLATE file as a template for both, since the format for both is identical.

The following example shows a PPP . DAT entry that authenticates the local host to a peer:

TCPWARE:PPP.DAT

#

local/user name server name secret/password [address restriction]

__
skat lear SecretString 198.168.142.57

Both files are multi-columned text files. Comment lines in PPP . DAT start with the pound sign (#). Each
line consists of three fields with additional optional fields, as follows:

fieldl field?2 field3 optional-fields

White space separates the fields. You can use the asterisk (*) wildcard in the first and second fields.
Optional fields can contain lists of authorized peer IP addresses. If the optional field is omitted, any IP
address is allowed.

The fields have different meanings for PAP and CHAP authentication, and its direction, as given in the
below table:

PAP authentication of incoming peer:

fieldl field2 field3 optional

local-username peer-hostname user-password

PAP authentication of local host to peer:

fieldl field2 field3 optional

peer-username peer-hostname user-password

CHAP authentication of local host to peer:

fieldl field2 field3 optional
peer-hostname local-hostname CHAP-secret-string
fieldl field2 field3 optional
local-hostname peer-hostname CHAP-secret-string

Modifying Authentication Names
You can use several PPPD command line options to modify names used in authentication. These options
are shown below:

Option Description
DOMAIN d Appends the domain name d to the local hostname
NAME n Sets the local hostname to n

REMOTENAME n Sets the assumed remote hostname to n

USEHOSTNAME Uses the system-specified local host name

USER u Sets the username to u for PAP

IP Addresses

The parameter and options shown below are related to configuring IP addresses.

Parameter or option Description

local-IP-address:remote-IP-address | ocal and remote IP addresses; either can be omitted

-IP Disables IP address negotiation
NETMASK n Sets the interface mask to n
NOIPDEFAULT Disables use of the local IP address as the default

It is usually not necessary to specify the IP addresses. By default, each peer uses its default IP address if
it knows it.

Incoming Dialup Lines

Perform these steps to set up an incoming dialup PPP line:

1. Create a login account for the PPP site using the OpenVMS AUTHORIZE utility. This should be
a captive account and must have OPER privileges.

2. Create a LOGIN. COM file for this account. The TCPWARE : PPPLOGIN. TEMPLATE file is
available. Below is a sample LOGIN. coM file for an unnumbered interface:

ON WARNING THEN LOGOUT

IF (F$TRNLNM("TCPWARE_NETCP_MBX") .EQS. "") THEN GOTO NOTCPWARE
PPPD :== STCPWARE:PPPD

TT = FSTRNLNM ("TT")

WRITE SYSSOUTPUT "Starting PPP..."

DEFINE/USER SYSSERROR NLAO:

DEFINE/USER SYSSOUTPUT NLAO:

PPPD PROXYARP :192.168.95.12 'TT' -DETACH

WRITE SYSSOUTPUT "Shutting down PPP..."

EXTIT

NOTCPWARE :

WRITE SYSSOUTPUT "$PPP-F-NOTACT, TCPware not active"
LOGOUT

Uy Ux Ur Ur Ur O Oy Oy > O Uy Uy Oy

Once you set up the account and login file, the remote site dials the OpenVMS system and logs in as the
PPP user to establish the connection. The login command file automatically configures the PPP line.

Create a separate account and LOGIN. CcOM file for each remote PPP site.

Note: Unlike TCPware's SLIP implementation, this account can remain logged in during the PPP
session. You can use ordinary OpenVVMS user accounting to charge the user for the PPP
connection. If you prefer to free up login sessions, you can remove the ~-DETACH option.

Routing

The options shown below are related to configuring routes.

Option Description

DEFAULTROUTE Uses the remote host as the default gateway

-IP Disables IP address negotiation

NETMASK n Sets the interface mask to n

PROXYARP Starts the line as an unnumbered interface and enables proxy ARP
-PROXYARP Disables proxy ARP

Traditional Numbered Interfaces
The below diagram shows a sample internet consisting of three networks: Ethernet network

192.168.95.0, PPP network 192.168.21.0, and Ethernet network 192.168.34.0.

Ethernet network Ethernet network

192.168.95.0 192.168.34.0

host hogt
| 192 18 95 2 192.168.34.2 =

PPP
192.168.95 1 Network 19216834 1
192.168.21.0
Gateway A ,,——1-__, Gateway B
192.168.21 1 192.166.21.2

host hogt L]

| 192 16595 3 192.168.34 .3

Each gateway has an internet address for each network to which it connects. In this example, PPP
network 192.168.21.0 is set up so that networks 192.168.95.0 and 192.168.34.0 can communicate.

Initiate the PPP link from local host 192.168.95.1 to peer 192.168.34.1 as follows:

SEPPPD 192.168.21.1:192.168.21.2 NETMASK 255.255.255.0 TTA2

Perform a similar command on local host 192.168.34.1. You must also set up routing through the
established connection. To do so in this setup, create a command file with the following contents for
Gateway B, and use the PPPD I PUP option to specify the command file:

SMRUN TCPWARE:NETCU ADD ROUTE 192.168.34.0 192.168.21.1 /NETWOR

Unnumbered Interfaces
In the case of a single host connection over a PPP line to a network, you may not be able to dedicate a

separate network number to the connection. This requires you to use an unnumbered interface. The
below diagram shows such a scenario.

| host 7 host i
19216895 2 [192168.34.2 =1
SI—IP Network
Gateway A Gateway B
192.168.21.0
|| host g host 1
192.168.95.3 | 192166.34.3 8

Here is how you would set up the connection on host 192.168.34.1.

SEPPPD 192.168.34.1:192.168.34.4 NETMASK 255.255.255.0 PROXYARP TTA2

The PROXYARP option lets host 192.168.34.1 respond to Address Resolution Protocol (ARP) requests
for the remote host's address. In this way, other hosts on the 192.168.34.0 network can send any packets
addressed to 192.168.34.2. This is known as "proxy ARP" and keeps you from having to add the host
routes on all other hosts in network 192.168.34.0.

The PROXYARP option does the following:

e Starts the PPP interface as unnumbered
e Enables proxy ARP for the remote node
e Adds a host route to the remote node through the PPP interface

TCP/IP Header Compression

PPPD also provides the option to compress TCP/IP headers using the Van Jacobson (VJ) header
compression algorithm. Compression is enabled unless you for some reason want to disable it. The
options shown below are related to TCP/IP header compression.

Option Description
-vJ Disables VVJ compression
-VJCCOMP Disables VVJ Connection ID compression

VJ-MAX-SLOTS n Sets the number of VVJ connection slots to n

Command Reference

The following pages include the command reference for the PPPD command. The options include
parameters and options (some with arguments). Parameters and options are listed alphabetically.

Frequently used parameters and options include:

PPPD

Provides the basic Link Control Protocol (LCP), authentication support, and a Network Control Protocol
(NCP) for establishing and configuring the IP Control Protocol (IPCP). Parameters and options are listed
alphabetically for reference.

Requires OPER and PHY _10 privileges. Requires READALL privilege if secret files are used. Requires
TMPMBX, DETACH, and SHARE privileges for running in detached mode.

Format
PPPD [parameters | options]

Parameters
device-name

Communicates over the named device. If no device name is given, or the name of the controlling
terminal is given, PPPD uses the controlling terminal.

local-IP-address:remote-IP-address

Sets the local or remote interface IP addresses. Either one may be omitted. The IP addresses can be
specified with a hostname or in decimal dot notation (such as 150.234.56.78). The default local address
is the (first) IP address of the system (unless the NOIPDEFAULT option is given). The remote address is
obtained from the peer if not specified in any option. Thus, in simple cases, this option is not required. If
a local and/or remote IP address is specified with this option, PPPD does not accept a different value
from the peer in the IPCP negotiation, unless the TPCP-ACCEPT-LOCAL or IPCP-ACCEPT-
REMOTE options are given, respectively.

Options
-AC
Disables address/control compression negotiation (default).

-ALL
Disables requesting or allowing negotiation of any options for LCP and IPCP (uses the default values).

-AM
Disables ASYNCMAP negotiation (uses the default ASYNCMAP, which is to escape all control
characters).

ASYNCMAP map
-AS map

Sets the async character map to map, which describes which control characters cannot be successfully
received over the serial line. The peer is requested to send these characters as a two-byte escape
sequence. The argument is a 32-bit hex number with each bit representing a character to escape. Bit 0
(00000001) represents the character 0x00; bit 31 (80000000) represents the character 0x1 £ (Ctrl/_). If
multiple ASYNCMAP options are given, the values are OR’d together. If no ASYNCMAP option is
given, no async character map will be negotiated for the receive direction; the peer should then escape
all control characters.

AUTH
Requires the peer to authenticate itself before allowing network packets to be sent or received.

CONNECT command-file
Uses a DCL command file to set up the serial line. If used with -D, debug output is logged in the
command-file.LOG file.

CRTSCTS
Uses hardware flow control (RTS/CTS) to control the flow of data on the serial port. If you use neither
CRTSCTS nor —-CRTSCTS, the hardware flow control setting for the serial port is unchanged.

-CRTSCTS
Disables hardware flow control (RTS/CTS) on the serial port. If you use neither CRTSCTS nor -
CRTSCTS, the hardware flow control setting for the serial port is unchanged.

DEBUG
-D
Enables debugging.

DEFAULTROUTE
Adds a default route to the system routing tables, using the peer as the gateway, when IPCP negotiation
is successfully completed. This entry is removed when the PPP connection breaks.

-DEFAULTROUTE
Disables the defaultroute option. If you want to prevent users from creating default routes with

PPPD, place this option in the TCPWARE : PPPDOPTIONS. DAT file,

-DETACH
-NODETACH

Executes PPPD in foreground mode. Normally, PPPD creates a detached process to which it hands over
the terminal device. To start in detached mode, PPPD requires the DETACH privilege, along with
TMPMBX and SHARE privileges if you are using your login device as a PPP device. -DETACH and -
NODETACH are identical.

DISCONNECT command-file

Runs the DCL command file after PPPD terminates the link. This command file could issue commands
to the modem to hang up, if hardware modem control signals were not available. If used with -D, debug
output is logged in the command-file.LOG file.

DNS address
Identifies the primary Domain Name System (DNS) name server. If omitted, PPPD uses the first name
server specified by the TCPWARE NAMESERVERS logical, set up through the DNS configuration.

DOMAIN d

Appends the domain name d to the local host name for authentication purposes. For example, if
gethostname () returns the name IRIS, but the fully qualified domain name is
IRIS.EXAMPLE.COM, you would use the DOMATIN option to set the domain to EXAMPLE.COM.

ESCAPE xx,yy,...

Escapes the specified characters on transmission (regardless of whether the peer requests them to be
escaped with its async control character map). Specify the characters to be escaped as a list of hex
numbers separated by commas. Note that you can specify almost any character for the ESCAPE option,

unlike the ASYNCMAP option that only lets you specify control characters. The characters that cannot be
escaped are those with hex values 0x20 through 0x3f, and 0x5e.

FILE file
Reads options from a file.

-IP
Disables IP address negotiation. If used, you must specify the remote IP address with an option on the
command line, or in the TCPWARE : PPPOPTIONS. DAT file.

IPCP-ACCEPT-LOCAL
Accepts the peer's interpretation of the local IP address, even if the local IP address was specified in an
option.

IPCP-ACCEPT-REMOTE
Accepts the peer's interpretation of its (remote) IP address, even if the remote IP address was specified
in an option.

IPCP-MAX-CONFIGURE n
Sets the maximum number of IPCP configure-request transmissions to n (default 10).

IPCP-MAX-FAILURE n
Sets the maximum number of IPCP configure-NAKS returned before starting to send configure-Rejects
instead to n (default 10).

IPCP-MAX-TERMINATE n
Sets the maximum number of IPCP terminate-request transmissions to n (default 3).

IPCP-RESTART n
Sets the IPCP restart interval (retransmission timeout) to n seconds (default 3).

IPPARAM string
Provides an extra parameter to the TPUP and TPDOWN command file scripts. If used, the string supplied

becomes the fifth parameter to those scripts.

IPUP command-file
Executes the specified command file when IP over PPP starts up, asynchronously, so that PPPD does not
wait for the file's completion. Provided with the following command parameters:

Command Parameter Description

P1 Interface name (such as PPP-0)

P2 Terminal device (suchas TTA3:)

P3 Local IP address

P4 Remote IP address

P5 (Optional) String specified with the TPPARAM option

If used with -D, debug output is logged in the command-file.LOG file.

IPDOWN command-file
Executes the specified file when IP over PPP shuts down, asynchronously, so that PPPD does not wait

for the file's completion. Provided with the following command parameters:

Command Parameter Description

Pl Interface name (such as PPP-0)
P2 Terminal device (suchas TTA3:)
P3 Local IP address

P4 Remote IP address

P5 (Optional) String specified with the TPPARAM option

If used with -D, debug output is logged in the command-file.LOG file.

KDEBUG n
Enables debugging of the low-level interface with the IP and terminal driver. The argument n is a

number that is the sum of the following values:

Value Description

1 Enable general debug messages

2 Request that the contents of received PPP packets be printed

4 Request that the contents of transmitted PPP packets be printed
8 Request that raw data be received from the serial device

16 Request that raw data be transmitted to the serial device

LCP-ECHO-FAILURE n
Presumes the peer is dead if n LCP echo-requests are sent without receiving a valid LCP echo-reply. If

this happens, PPPD terminates the connection. Requires a non-zero value for the LCP-ECHO-
INTERVAL parameter. Use this option to enable PPPD to terminate after the physical connection
breaks (such as when the modem hangs up) in situations where no hardware modem control lines are
available.

LCP-ECHO-INTERVAL n
Sends an LCP echo-request frame to the peer every n seconds. Normally the peer should respond to the

echo-request by sending an echo-reply. You can use this option with the LCP-ECHO-FAILURE option
to detect when the peer is no longer connected.

LCP-MAX-CONFIGURE n

Sets the maximum number of LCP configure-request transmissions to n (default 10).

LCP-MAX-FAILURE n
Sets the maximum number of LCP configure-NAKS returned before starting to send configure-Rejects
instead to n (default 10).

LCP-MAX-TERMINATE n
Sets the maximum number of LCP terminate-request transmissions to n (default 3).

LCP-RESTART n
Sets the LCP restart interval (retransmission timeout) to n seconds (default 3).

LOGIN
Uses the system password database for authenticating the peer using PAP.

-MN
Disables magic number negotiation. With this option, PPPD cannot detect a looped-back line.

MRU n

Sets the MRU (Maximum Receive Unit) value to n for negotiation. The peer is requested to send
packets of no more than n bytes. The minimum value is 128 and the default is 1500; 296 is
recommended for slow links (40 bytes for the TCP/IP header plus 256 bytes of data).

-MRU
Disables MRU negotiation. PPPD uses the default MRU value of 1500 bytes.

MTU n

Sets the MTU (Maximum Transmit Unit) value to n. Unless the peer requests a smaller value through
MRU negotiation, PPPD requests that the IP layer send data packets of no more than n bytes through the
PPP network interface.

NAME n
Sets the name of the local system for authentication purposes to n.

NBDNS address
Identifies the primary NetBIOS name server.

NETMASK n
Sets the interface netmask to n, a 32-bit netmask in "decimal dot™ notation (such as 255.255.252.0).

NOIPDEFAULT

Disables the default action when no local IP address is specified, which is to determine (if possible) the
local IP address from the hostname. With this option, the peer must supply the local IP address during
IPCP negotiation (unless you explicitly specify it on the command line, or in the

TCPWARE : PPPDOPTIONS. DAT file).

+PAP
Requires the peer to authenticate itself using PAP.

-PAP
Disables authentication using PAP.

PAP-MAX-AUTHREQ n
Sets the maximum number of PAP authenticate-request transmissions to n (default 10).

PAP-RESTART n
Sets the PAP restart interval (retransmission timeout) to n seconds (default 3).

PAP-TIMEOUT n
Sets the maximum time that PPPD waits for the peer to authenticate itself with PAP to n seconds (0
means no limit).

PASSIVE

-P

Enables the "passive™ option in the LCP. With this option, PPPD attempts to initiate a connection; if it
does not receive a reply from the peer, it waits passively for a valid LCP packet from the peer (instead of
exiting, as it does without this option).

-PC
Disables protocol field compression negotiation (the default).

PERSIST
Disables exiting after a connection is terminated. Instead, tries to reopen the connection.

PROXYARP
Adds an entry to this system's ARP (Address Resolution Protocol) table with the IP address of the peer
and the Ethernet address of this system. This also starts the PPP interface as an unnumbered interface.

-PROXYARP
Disables the PROXYARP option. If you want to prevent users from creating proxy ARP entries with

PPPD, place this option in the TCPWARE : PPPDOPTIONS. DAT file,

REMOTENAME n
Sets the assumed name of the remote system for authentication purposes to n.

SDNS address
Identifies the secondary DNS name server. If omitted, PPPD uses the first name server specified by the
TCPWARE NAMESERVERS logical, set up through Domain Name Services configuration.

SILENT
Disables transmitting LCP packets to initiate a connection until a valid LCP packet is received from the
peer.

SNBDNS address
Identifies the secondary NetBIOS name server.

USEHOSTNAME
Enforces the use of the hostname as the name of the local system for authentication purposes (overrides

the NAME option).

USER u
Sets the username to use to authenticate this machine with the peer using PAP to u.

-vJ
Disables negotiation of VVan Jacobson style TCP/IP header compression (the default is to negotiate
TCP/IP header compression).

-VJCCOMP

Disables the connection-ID compression option in VVan Jacobson style TCP/IP header compression.
With this option, PPPD does not omit the connection-ID byte from Van Jacobson compressed TCP/IP
headers, nor request the peer to do so.

VJ-MAX-SLOTS n
Sets the number of connection slots to be used by the Van Jacobson TCP/IP header compression and
decompression code to n, which must be between 2 and 16 (inclusive).

Troubleshooting PPPD

PPPD provides two types of debugging information:

e Trace outputto SYSSOUTPUT
e OPCOM messages

By default, PPPD generates OPCOM messages for fatal errors, such as a failure to open the IP interface
or insufficient privileges. In normal running operation, you should not see any OPCOM message. If you
have a problem getting PPPD to work, first search for the OPCOM messages for PPPD.

You can also specify the DEBUG option. This enables the PPPD process to print out informational
messages to SYSSOUTPUT. Define SYSSOUTPUT to the appropriate log file before invoking the PPPD
server (or you can invoke PPPD interactively and output to the terminal). You must specify -DETACH
to use this option.

When you specify the DEBUG (or -D) option, it debugs at level 5, which is to display up to warning and
significant events. For more informational and debugging information, you can raise the debug level up
to 7 by defining the logical TCPWARE PPPD DEBUG LEVEL.

For a detached process, or if you prefer, you can also raise the message level for OPCOM messages. By
default, it is set to 4 to report fatal and error messages. You may want to raise it to 5 to monitor the
significant events in PPPD, or even higher for more detail by defining the logical
TCPWARE PPPD OPCOM LEVEL.

If you get the OPCOM messages:

$TCPware PPPD-E-setting terminal device failed with error 0x2C4
$TCPware PPPD-E-PPP device initialization failed with error 0x2C4
$SYSTEM-F-DEVACTIVE, device is active,

Make sure that the device-name indicated on the PPPD command line is allocated to the current
process before starting PPPD.

Serial Line IP Interface

Use serial Line IP (SLIP) when you need to route TCP/IP traffic over a serial line instead of an Ethernet
cable. You most commonly use SLIP to connect systems on two Ethernet networks some distance apart.

You need TCP/IP and application software at each end of the SLIP link. One end can be TCPware,
while the other end can be a SLIP implementation such as HP-UX or Linux. The below diagram shows a
typical SLIP network.

host i host

| 192168.95.2 | 192188342 1
::::::::::::::::::::::::_-:; SLIPNQ‘WO[I(::::::::iiiiiiii::iiiii..-:.
Gateway A Gateway B
192.168.21.0
| host i host o
192.168%.3 | 192768.34.3 |

Because SLIP lines are point-to-point connections, with TCPware you have the option to configure SLIP
lines as network lines or as unnumbered interface lines.

TCPware supports both dedicated and dialup SLIP lines. Configure dedicated (hard-wired) SLIP lines
during network configuration. Configure dialup SLIP lines as you need them, as described in this
chapter. SLIP is common with line speeds from 1200 bits per second (bps) to 19.2 Kbps.

NETCP (not IPDRIVER) does the 1/0O to the terminal device to send and receive datagrams. NETCP
uses the IPDRIVER External Interface to do this.

SLIP Line Identification

You can use any standard OpenVMS terminal device as a SLIP line. Unlike other line ID controller
numbers, the SLIP line ID is not related to the actual device name. CNFNET prompts you for the actual
device name during TCPware configuration.

The START/IP command I1ine-specific-information parameter provides the OpenVMS
device name for the SLIP line. If you omit this parameter, TCPware assumes that the
TCPWARE SLIP nsystem logical (where n is the controller number) defines the device.

The maximum number of SLIP lines you can configure for one TCPware host is 256. You can define
lines SLIP-0 through SLIP-255. If you try to define a SLIP line with a larger number in CNFNET,
the message $TCPWARE CNENET-E-INVLINE, invalid line appears.

Before Configuring SLIP Lines

Before you begin configuring SLIP lines:

You must set the TTY ALTYPAHD system parameter larger than its default value. This avoids
losing characters. The higher the line speed, the higher you should set this parameter. For most
applications, 1024 is appropriate.

TTY ALTYPAHD is notadynamic parameter. If you use SYSGEN to change it, you must reboot
the system for the change to take effect.

The MAXBUF parameter must be at least twice the maximum transmission unit (MTU) of the
SLIP line, plus 144. The default MTU for SLIP lines is 1006 bytes; therefore, MAXBUF must be
at least 2156. Increase MAXBUF if necessary. MAXBUF is dynamic. If you use SYSGEN to change
it, you do not need to reboot the system for the change in value to take effect.

Configuring SLIP Lines

To configure TCPware for SLIP:

1.

If you plan to use a dedicated SLIP line, enter its line ID, host name, internet address, and
terminal device name in response to the applicable prompts in CNFNET.

You can use any valid OpenVMS terminal device as a SLIP line. CNFNET prompts you for the
actual device name. Make sure that the network number portion of the SLIP line's internet
address is unique if you use the /UNNUMBERED interface flag.

For dedicated SLIP lines, you may want to create the TCPWARE : SLIP_SETUP.COM file. The
network startup command procedure (TCPWARE : STARTNET) executes this command
procedure, if it exists, before using the SLIP lines.

SLIP_ SETUP.COM should contain the commands necessary to configure the terminal devices
for proper operation. Typically, it would include SET TERMINAL commands to set the baud
rate and other terminal characteristics.

For SLIP line speeds higher than 1200 bps, enable the alternate type-ahead buffer (ALTYPEAHD)
characteristic for the terminal. Enter the following command for each SLIP terminal at the DCL
prompt or in the SLIP SETUP.COM file:

SET TERMINAL /ALTYPEAHD /PERMANENT device

For both dedicated and dialup SLIP lines, set up routing information so that TCP/IP traffic routes
properly over the SLIP link. The SLIP link should either have a unique network number or be
unnumbered.

You can give TCPware routing information either in the Network Control Utility (NETCU), by
editing the TCPWARE : ROUTING. COM file to include appropriate NETCU commands, or

through GATED. For example, enter the following commands on each SLIP terminal at the DCL
prompt or in the SLIP SETUP.COM file (for dedicated lines):

ADD ROUTE /NETWORK network-address /GATEWAY gateway-address
ENABLE FORWARDING

NETCU entries remain active until TCPware shuts down. Updating the ROUTING. CcOM file with
these commands makes them permanent. Do not use this method if using GateD to configure
routes. To use GateD to configure routes, include a static statement for each of the routes in
the TCPWARE : GATED. CONF file. (See the next section.)

Sample SLIP Link

The below diagram shows a sample internet consisting of three networks: Ethernet network
192.168.95.0, SLIP network 192.168.21.0, and Ethernet network 192.168.34.0.

Ethernet network Ethernet network
192.168.95.0 192.168.34.0
host 5 host i
| 192168952 | 192.168.34.2 =
SLIP — i
92,168,951 Network 152.168.54 .1
192.168.21.0

Gateway A

Gateway B

host " host
[192168953 | 152.168.34.3

Each gateway has an internet address for each network to which it connects. In this example, you can do

the following to set up SLIP network 192.168.21.0 so that networks 192.168.95.0 and 192.168.34.0 can
communicate:

e At each TCPware host in network 192.168.95.0 (on the Gateway A side), set the local gateway
host address:

SET GATEWAY 192.168.95.1

e Do the same for each host in network 192.168.34.0 (on the Gateway B side):

SET GATEWAY 192.168.34.1

e At Gateway A, add the route through Gateway B's SLIP network address:

ADD ROUTE /NETWORK 192.168.34.0 /GATEWAY 192.168.21.2
ENABLE FORWARDING

e At Gateway B, add the route through Gateway A's SLIP address:

ADD ROUTE /NETWORK 192.168.95.0 /GATEWAY 192.168.21.1
ENABLE FORWARDING

Note: You can also define the default gateway by responding to prompts during the network
configuration procedure. See Chapter 3, Configuring the TCP/IP Core Environment, in the
TCPware Installation & Configuration Guide.

You can also configure the SLIP route using GateD. Include the following statements in the
GATED. CONF files instead of the ADD ROUTE commands in ROUTING.COM:

static

{ 192.168.34.0 gateway 192.168.21.2 ;} ;
static

{ 192.168.95.0 gateway 192.168.21.1 ;} ;

Sample Unnumbered SLIP Link

In the case of a single host connection over a SLIP line to a network, you may not be able to dedicate a
separate SLIP address to the connection on the network end. This requires you to use an unnumbered
interface. The below diagram shows such a scenario.

Ethernet network
192.168.34.0

host
192 168.34 .2

host
192.168.34 .4

Sateway B
192.168.34 .1

host

Here is how you would set up the connection on host 192.168.34.4:
SET GATEWAY 192.168.34.1
Here is how you would set up the connection at Gateway B for host 192.168.34.2:

START/IP /UNNUMBERED SLIP-0 192.168.34.1
ADD ROUTE 192.168.34.4 SLIP-0
ENABLE FORWARDING /ARP

You need the /UNNUMBERED qualifier with the START /TP command. The ENABLE FORWARDING
command with the /ARP qualifier lets host 192.168.34.1 respond to Address Resolution Protocol (ARP)
requests for the remote host's address. In this way, other hosts on the 192.168.34.0 network can send any
packets addressed to new-remote-ip-addr to Gateway B. This is known as "proxy ARP" and
keeps you from having to add the host route on all other hosts in network 192.168.34.0.

You can also set up unnumbered interfaces on both ends of the SLIP connection. You must use ENABLE
FORWARDING, but you cannot use proxy ARP with unnumbered interfaces, and you have to add routes
on all other nodes in the network.

Incoming Dialup SLIP Lines

Perform these steps to set up an incoming dialup SLIP line:

1. Create a login account for the SLIP site using the OpenVMS AUTHORI ZE utility. This should be
a captive account and must have either OPER privilege or have been granted the
TCPWARE CONTROL rights identifier. TCPWARE CONTROL requires the software password
file, PSW_*.DAT, to have at least read access for the TCPWARE CONTROL rights identifier.

2. Create a LOGIN. COM file for this account. A template file is available in
TCPWARE : SLIPLOGIN. COM. The below example shows an unnumbered interface example.

In the example, a user is dialing in from a PC configured to use an address of 192.168.95.124. The
Ethernet interface on the OpenVMS system is configured with an address of 192.168.95.12.

ON WARNING THEN LOGOUT

IF (FSTRNLNM ("TCPWARE NETCP MBX") .EQS. "") THEN GOTO EXIT
NETCU := STCPWARE:NETCU

TT = FSTRNLNM ("TT")

DEFINE/USER SYSSERROR NLAO:

DEFINE/USER SYSSOUTPUT NLAO:

NETCU START/IP/UNNUMBERED SLIP-1 192.168.95.12 'TT'
IF ($STATUS .NE. 1) THEN GOTO EXIT

NETCU ADD ROUTE 192.168.95.124 SLIP-1

NETCU ENABLE GATEWAY/ARP

EXIT:

LOGOUT

U U Ur Ux U O Ur Uy O O Uy O

Once you set up the account and login file, the remote site simply dials up the OpenVMS system and
logs in as the SLIP user to establish the connection. The login command file automatically configures
the SLIP line.

Make sure to create a separate account and LOGIN.CoOM file for each remote SLIP site.

Outgoing Dialup SLIP Lines

To set up an outgoing dialup SLIP line:

1.
2.
3.

6.

Allocate the terminal device you wish to use. Enter:

Set the terminal characteristics (such as the baud rate) using SET TERMINAL commands.

Use SET HOST/DTE, KERMIT, or some other utility to dial the remote system and log in as the
SLIP user.

If the remote end successfully starts the SLIP line, exit SET HOST/DTE or KERMIT.

Start the outgoing SLIP line. Enter:

SEINETCU START/IP SLIP-unit internet-address terminal

e SLIP-unit -isthe controller number of the SLIP line you want to assign (this number
is for identification only and must be unique). You can use an asterisk (*) as a wildcard
value, which assigns the lowest unused line ID to the SLIP interface (starting with
SLIP-0), and also defines the TCPWARE LINE (global) symbol to be that interface.
(See the START/IP command in the NETCU Command Reference, Chapter 2, NETCU
Commands.)

e internet-address - is the internet address of the local host for the SLIP network.

e terminal - isthe terminal device name.

You can also add any of the NETCU START/IP qualifiers supported for SLIP lines on the
NETCU START/IP line.

The following is a sample outgoing SLIP line startup command:

NETCU START/IP SLIP-0 192.168.95.6 TXA7

Deallocate the terminal device. Enter: 1n)¥:Nf¥eley-Uy il L-F = R T-B

The SLIP line is now ready to use.

Disconnecting SLIP Lines

To disconnect a SLIP line, enter:

SEINETCU STOP/IP SLIP-uni

Note: TCPWare automatically removes the SLIP line from the network configuration if you
configure the terminal device as a modem line with hang-up enabled, and you lose the phone line
for any reason.

Full XON/XOFF Flow Control

The /FLAGS=FLOWCONTROL qualifier with the START /I P command configures the OpenVMS
terminal device for full XON/XOFF control (READSYNC, HOSTSYNC, and TTSYNC). This means that
you can use high speed modems that support compression and reliable data transfer modes. In addition,
when OpenVMS terminal devices use full flow control, they do not need to use the alternate type-ahead
buffer.

When you use /FLAGS=FLOWCONTROL qualifier with the START /I P command, TCPware configures
the SLIP line to run a modified SLIP protocol. The modified SLIP protocol maps the characters shown
below. Note that all numeric values are in octal.

Character name... Has ASCII value... With mapped character sequence...

SLIP End of packet 300 333 334
SLIP Escape 333 333 335
XON 021 333 336
XON + 200 221 333 337
XOFF 023 333 340

XOFF + 200 223 333 341

RFC 1055, A Nonstandard for Transmission of IP Datagrams over Serial Lines: SLIP, defines the SLIP
End-of-Packet and Escape characters, but does not define the XON/XOFF character mapping. TCPware
uses this character mapping only when you specify /FLAGS=FLOWCONTROL.

Note: Only use /FLAGS=FLOWCONTROL when the other end of the SLIP line connects to a
system running TCPware, and if you configure it to use this option.

Qualifiers with SLIP Lines

The START/IP command supports a number of other qualifiers that you can use with SLIP lines. For
details, see Chapter 2 in the NETCU Command Reference.

Compressed SLIP
Use compressed SLIP (CSLIP) to compress the TCP/IP headers only (and not the data) over the SLIP
line.

You can set CSLIP options in NETCU for the serial line to either compress all TCP/IP headers or to
compress them if it receives a compressed header from the peer. Use the /FLAGS qualifier for the
START/IP command, as follows:

This Command... Specifies that the serial line should compress...

/FLAGS=COMPRESSED gl|l TCP/IP headers.

/FLAGS=RUTOENABLE TCP/IP headers only if the peer sends compressed TCP/IP headers.

Troubleshooting SLIP
Access error messages help by entering ARSI T I e S T 2]

Also keep the following in mind:

e If you are not running TCPware on both ends of the SLIP connection, avoid using XON/XOFF
flow control with SLIP. If you have a modem that uses XON/XOFF, disable that mechanism.

e |If SLIP performance is poor, check that you configured the terminal to use the alternate type-

ahead buffer (using RN Vaey NP NS T RPN IINGONEY), and that you adjusted

the SYSGEN TTY ALTYPAHD parameter.

6. Cluster Alias Failover

Introduction

This chapter describes how to implement cluster alias failover for your VMS cluster.

Cluster alias failover allows you to set up an alias node to provide continued connection in case a system
fails. The alias accepts incoming connection requests in a VMS cluster for a server if the servicing node
goes down. Use cluster alias failover primarily for NFS over UDP, but you can also use it for other
TCP/IP protocols such as FTP or TELNET.

For cluster alias failover to work properly, make sure that you have the same set of directories exported
from each VMS cluster node. If it works effectively, cluster alias failover allows users to continue
working productively if cluster nodes go down.

How It Works

Each VMS cluster node has a unique internet address. With cluster alias failover, you can assign a
common secondary internet address, or alias. This alias is always an Internet address and never a name.
This same secondary address is given to each VMS cluster node that handles connection requests and is
recognized as a local address as shown below.

Cluster node 1 Cluster node 2 Cluster node 3 Cluster node 4
— — — —
=d . = . =4 [=d
[1 &
— % = % — ® — #
o= oo =" naugong — 0o =
"Sericing node” Cluster node 2, 3 and 4 queued far
Haolds cluster rersource lock. cluster resource lock.
Address 223.42.95.101 added Adds address 192.168.3.101 when
Handles connection reguests. acquiring lock.

Secondary address = 192.168.3. 1071

One of the nodes accepts the OpenVMS cluster-wide resource lock, adds the alias, and handles the
incoming connection requests. Other VMS cluster nodes are also assigned the alias queue for the

resource lock. If the servicing node goes down (or you shut down TCPware on it), the system releases
the resource lock. One of the queued VMS cluster nodes acquires the resource lock and adds the
secondary address.

CAUTION! Do not use cluster alias addresses as Domain Name Services addresses.

Setting It Up

Use the ADD SECONDARY command as described in the NETCU Command Reference to set up cluster
failover. For example:

INKQIADD SECONDARY 192.168.3.101

The address 192.168.3.101 becomes the local alias address for the interface.

You can include the /CLUSTER LOCK qualifier with the ADD SECONDARY command. This qualifier
instructs the VMS cluster node to accept the OpenVVMS cluster-wide resource lock before adding the
secondary address. If another node in the VMS cluster holds the lock, the node queues for the lock and
adds the address when it acquires it.

Use the REMOVE SECONDARY command as described in the NETCU Command Reference to remove
an alias added through ADD SECONDARY. If the system holds a cluster lock, use the /ABORT qualifier
to force removal of the secondary address.

Be sure to add the ADD SECONDARY command to the TCPware ROUTING.COM file so that it can
take effect each time you start TCPware.

Limitations

There is no concept of a primary node with cluster alias failover. The alias address only moves to
another address when the active servicing node goes down. The alias does not go back to the original
servicing node when it comes back up.

You can move the alias address to a particular node by issuing the REMOVE SECONDARY /ABORT
command in NETCU.

/. Managing SNMP Services

Introduction

This chapter explains the following Simple Network Management Protocol (SNMP) information:

e Linksand traps

e Management Information Base (MIB)

e Configuring the SNMP Services

e Maintaining the SNMP configuration file

e Extendible MIB support

e SNMP Multiplexing (SMUX) peers support
e Agent X peers support

e Logfile

SNMP Services allows network management stations to obtain timely information about the network
activities of OpenVMS server hosts. The information describes such things as routing, line status, the
volume of network traffic, and error conditions.

Links

In SNMP, network communication lines are called links. When counting the number of IP datagrams
sent and received over most links, the SNMP agent returns the same numbers that are available through
the SHOW NETWORKS command in TCPware's Network Control Utility (NETCU). These numbers
indicate how many datagrams TCPware delivers.

Traps

A trap is an unsolicited message the SNMP agent sends to a management station to inform it that a
change in the network occurred. The management station is responsible for diagnosing and monitoring
any reported problems. For example, the SNMP agent sends traps to tell the management stations which
communication lines are running and which are down.

The SNMP agent sends traps only to clients configured to receive traps, as defined in the SNMP agent
configuration file (SNMPD. CONF). The SNMP agent supports all traps defined in the SNMP protocol,
except EGP-Neighbor-Loss, Warm-Start, and Enterprise-Specific.

TCPware initially enables all supported traps. If for any reason you may want to disable them, you can
do so by editing the SNMP agent configuration file. The changes take effect the next time you start the
agent.

SNMP clients can enable or disable Authentication Failure Traps while the SNMP agent is running.
These clients must have READ-WRITE community access, as described in the MIB Access Rules
section.

Management Information Base

A Management Information Base (MIB) is a collection of network management data residing on the
SNMP agent host. The network management station reads and writes MIB data to the agent. Related
types of data in the MIB are in groups. Each piece of data within a group is a management object.

All management objects in a MIB are coded in ASN.1. Any authorized clients can access data in the
MIB by using the SNMP Get and GetNext requests.

MIB-II is the MIB version for TCP/IP implementations. The SNMP agent supports all management
objects defined in MIB-I1, except those in the External Gateway Protocol (EGP) Group.

The below diagram shows an SNMP client and agent exchanging MIB data.

SMNMP Client TCPware SMNMP agent
infarmation Management
requests i
4 - Information Base
Netwoark Group management objects
Management

Group management objects

System

MIB data Group managément objects

MIB Access Rules

Two kinds of rules restrict access to the MIB:

e Community access profiles
e The access mode assigned to each management object —- NONE, READ-ONLY, READ-WRITE,
and WRITE-ONLY. The SNMP protocol standard determines the access mode.

The network administrator assigns each SNMP agent and client to at least one community. A
community consists of SNMP agents and clients that have the same access profile, or collection of rules
that determine whether community members can:

e Read or write MIB data
e Receive traps

You define access profiles in the SNMP agent configuration file.

Clients with READ-WRITE community access can alter the values of certain management objects in the
MIB.

MIB Groups

The below table summarizes the information in each MIB group.

See also RFC 1213, Management Information Base for Network Management of TCP/IP-based
Internets: MIB-II, for complete information on each MIB group.

Group Contains objects... Which...

System sysDescr Provide information about the agent host, such as the
sysUpTime domain name, geographic location, and the name of a
sysContact
sysName contact person.
sysLocation
sysServices

Interfaces ifNumber Provide generic information about each network
igiii interface, such as the speed, administrative status, and
i fIndex the maximum size of transmission units. Count the
ifDescr number of data errors, and the number of packets sent
ifType and received. Contain the Interfaces Table.
ifMtu
ifSpeed
ifPhysAddress
ifAdminStatus
ifOperStatus
ifLastChange
ifInOctets

ifInUcastPkts

Address
Translation
(AT)

1ifInNUcastPkts
ifInDiscards
ifInErrors
ifInUnknownProtos
1ifOutOctets
1ifOutUcastPkts
1fOutNUcastPkts
ifOutDiscards
ifOutErrors
ifOutQLen
ifSpecific

atTable
atEntry
atIfIndex
atPhysAddress
atNetAddress

ipForwarding
ipDefaultTTL
ipInReceives
ipInHdrErrors
ipInAddrErrors
ipForwDatagrams
ipInUnknownProtos
ipInDiscards
ipInDelivers
ipOutRequests
ipOutDiscards
ipOutNoRoutes
ipReasmTimeout
ipReasmReqgds
ipReasmOKs
ipReasmFails
ipFragOKs
ipFragFails
ipFragCreates
ipAddrTable
ipAddrEntry
ipAdEntAddr
ipAdEntIfIndex
ipAdEntNetMask
ipAdEntBcastAddr

ipAdEntReasmMaxSize

ipRouteTable
ipRoute Entry
ipRouteInfo
ipRouteIfIndex
ipRouteMetricl
ipRouteMetric?2

Map the network (IP) address to the physical address.

Count the number of datagrams sent, received, in
error, discarded, fragmented, and reassembled.
Contain the IP Address Table, IP Routing Table, and
IP Address Translation Table.

ICMP

TCP

ipRouteMetric3
ipRouteMetric4
ipRouteNextHop
ipRouteType
ipRouteProto
ipRouteAge
ipRouteMask
ipRouteMetrich
ipRouteInfo
ipNetToMediaTable
ipNetToMediaEntry
ipNetToMediaIFIndex

ipNetToMediaPhyAddress
ipNetToMediaNetAddress

ipNetToMediaType
ipRoutingDiscards

icmpInMsgs
icmpInErrors
icmpInDestUnreachs
icmpInTimeExcds
icmpInProbs
icmpInSrchQuenchs
icmpInRedirects
icmpInEchos
icmpInEchoReps
icmpInTimestamps
icmpInTimestampReps
icmpInAddrMasks
icmpInAddrMaskReps
icmpOutMsgs
icmpOutErrors
icmpOutDestUnreachs
icmpOutTimeExcds
icmpOutParmProbs
icmpOutSrcQuenchs
icmpOutRedirects
icmpOutEchos
icmpOutEchoReps
icmpOutTimestamps
icmpOutTimestampReps
icmpOutAddrMasks
icmpOutAddrMaskReps

tcpRtoAlgorithm
tcpRtoMin
tcpRtoMax
tcpMaxConn
tcpActiveOpens
tcpPassiveOpens

Count the number of ICMP messages sent, received,
and in error. Also, count source quenches, redirects,
and timestamps.

Count the number of active opens, passive opens, and
failed attempts. Also, contain the TCP Connection
Table.

UDP

SNMP

tcpAttemptFails
tcpEstabResets
tcpCurrEstab
tcpInSegs
tcpOutSegs
tcpRetransSegs
tcpConnTable
tcpConnEntry
tcpConnState
tcpConnLocalAddress
tcpConnlLocalPort
tcpConnRemAddress
tcpConnRemPort
tcpInkErrs
tcpOutRsts

udpInDatagrams
udpNoPorts
udpInErrors
udpOutDatagrams
udpTable
udpEntry
udpLocalAddress
udpLocalPort

snmpInPkts
snmpOutPkts
snmpInBadVersions
snmpInBadCommunityNames
snmpInBadCommunityUses
snmpInASNParseErrs
snmpInTooBigs
snmpInNoSuchNames
snmpInBadValues
snmpInReadOnlys
snmpInGenkErrs
snmpInTotalRegVars
snmpInTotalSetVars
snmpInGetRequests
snmpInGetNexts
snmpInSetRequets
snmpInGetResponses
snmpInTraps
snmpOutTooBigs
snmpOutNoSuchNames
snmpOutBadValues
snmpOutGenkrrs
snmpOutGetRequests
snmpOutGetNexts
snmpOutSetRequests

Count the number of datagrams sent and received.
Also, contain the UDP Listener Table.

Count the number of packets sent and received,

invalid community names, and invalid version
numbers, and SNMP errors. Also, count the number of
requests, responses, and traps sent and received.

snmpOutGetResponses
snmpOutTraps
snmpEnableAuthenTraps

Configuring SNMP Services

To configure SNMP services, follow these steps:

1. Invoke the CNFNET procedure by entering the following command at the DCL prompt:

FM(TCPWARE : CNENET SNMP

2. Edit the SNMP configuration file, as described in the next section.
3. Restart TCPware or SNMP.

Configuration File

The SNMP configuration file is SNMPD . CONF. The TCPWARE ROOT directory includes this file.
The SNMP configuration file defines:

e Values for a subset of MIB management objects.

e Clients and communities who can access the SNMP agent.

e MIB access privileges for each client and community.

e Authentication Failure, Link Up, and Link Down traps' status.
e AgentX peer details

e SMUX peer details

The COMMUNITY, SMUX PEER, and AGENTX PEER statements in the SNMPD . CONF file can take an
optional mask after the internet address. The mask should be separated from the internet address with a
/ (slash). Valid values are from 0 to 32, with 32 being the default. Even though the TRAPS community
will accept a mask, it is not currently used.

COMMUNITY OURNET 192.168.1.10 write !implied /32
COMMUNITY OURMGR 192.168.1.0/24 read

Note: after editing the configuration, stop and restart the SNMP agent so that the changes can
take effect.

If you do not edit the configuration file, the SNMP agent uses default values.

File Format

Follow these guidelines when entering data in the SNMP configuration file:

Allow one line for each item.

Enter information in any order; in upper- or lowercase.

Enter variable string information (i d-stringand contact-name) in upper- or lowercase,
depending on the operating system. Some SNMP clients in your network (such as those running
UNIX) may require information in a specific case.

Place quotation marks (" ™) around strings that contain spaces or that occupy more than one
line in the file.

Use a pound sign (#) or an exclamation point (!) to denote comments. SNMP ignores all
information following these characters. It treats the pound sign and exclamation point like
regular characters if they appear within quotation marks (").

Values for MIB Objects

To define the values of several MIB objects in the SNMP configuration file, use the corresponding
keywords listed in the table below.

MIB object name... Has keyword...
system.sysDescr SYSDESCR
system.sysContact SYSCONTACT
system.sysLocation SYSLOCATION

if.ifTable.ifEntry.ifDescrandif.ifTable.ifEntry.ifSpeed INTERFACE

system.sysServices SYSSERVICES

The following paragraphs explain how you define each item.

SYSDESCR [id-string]
The id-string should include the full name of the hardware, operating system, and networking

software. For example:
SYSDESCR "AlphaServer 8400, VMS V7.3, Process Software TCPwarefor OpenVMS"

If you omit the i d-string, TCPware tries to obtain this information from your current system. If the
attempt fails, the default is System description is unknown.

SYSCONTACT [contact-name]
The contact-name specifies the person to contact for the host, and how you can contact this person

(such as by mailbox address). For example:
SYSCONTACT "John Smith, X 1234, smith@example.com"

The defaultis System contact is unknown at this time.

SYSLOCATION [system-location |
The system-Iocation specifies the geographical location of the host. For example:

SYSLOCATION "959 Concord Street, Framingham, MA"

The default is: System location is unknown at this time.

INTERFACE [line-id line-speed description]
The 1ine-id specifies the line identification for the IP layer network device. The 1ine-speed

specifies the line speed in bits per second. The description specifies the manufacturer's name,
product name, and hardware version for the interface. For example:

INTERFACE gna-1 10000000 "DELQA Ethernet Controller Version 1.0"

If you do not enter a description, TCPware tries to obtain one from your current system. If the attempt
fails, the default is xxxxxxxx, 0, Unknown.

SYSSERVICES services-set-number
The SNMP agent uses a default value of 72 for this MIB object. You can override this value in the

configuration file. RFC 1213, Management Information Base for Network Management of TCP/IP-
based Internets: MIB-I1, explains how to calculate the value of services-set-number.

Community Parameters

The SNMP configuration file must contain the following information for each client permitted access to
the SNMP agent:

COMMUNITY community-name internet-address[/mask] type

community-name Specifies the name of the community to which the client belongs. This
parameter is case-sensitive.

internet-address Specifies the client's internet address.

If you enter 0.0.0.0, any address can use the community.

mask Specifies the number of bits in the internet address that must match the
specified address. The default value is 32.

type Defines the access profile as one of the following:

e READ-ONLY - The client can retrieve data from the MIB on this host

e READ-WRITE - The client can retrieve data from and write data to the
MIB on this host

e TRAPS - The client will receive all enabled traps

COMMUNITY public 0.0.0.0 isdefined as READ-ONLY if no other communities are defined.
The below example shows some community parameters defined in the configuration file.

community northeast 192.168.4.56 READ-ONLY
community northeast 192.168.220.1 READ-WRITE
community southwest 192.168.23.1 READ-WRITE
community southwest 192.168.23.1 TRAPS

e Client 192.168.4.56 in the northeast community has READ-ONLY access to the MIB, while
client 192.168.220.1 in the same community has READ-WRITE access.

e Client 192.168.23.1 belongs to the southwest community. This community has READ-
WRITE access to the MIB and trap information will be sent to this client.

Disabling Traps

All traps that the SNMP agent supports are initially enabled. You can disable traps by editing the
configuration file. These changes take effect the next time you start the agent. The below table shows
how to disable traps.

Disable this trap... By entering...

Authentication Failure no-auth-traps

Link Up no-link-traps

Link Down no-link-traps

Note: SNMP clients can enable or disable the Authentication Failure Trap while the SNMP agent
IS running. These clients must have READ-WRITE community access.

Generating Traps
To generate an SNMP trap, define the symbol:

SMTRAP GEN :== $TCPWARE:TRAP GE
Then type:

SQTRAP GEN ENTERPRISE GENERIC TRAP SPECIFIC TRA
[TRAP SPECIFIC VALUES....]

enterprise Identifies the location in the MIB tree that this trap pertains to. An
example would be: 1.3.6.1.4.105.3, denoting a location in Process
Software's portion of the MIB tree.

generic trap An integer representing the generic trap value.
specific_trap An integer representing the specific trap value.

trap specific values Arbitrary strings separated by spaces that are passed to the agent
receiving the trap as octet strings.

The TRAP_GEN program uses the trap community definitions in the TCPWARE : SNMPD. CONF file to
determine where to send the trap.

By default, traps are sent out of the first interface configured on the system. To use a different interface,
use the hostid parameter in the configuration file:

HOSTID ip-address
HostId 192.168.1.5

The HOSTID parameter is used to specify the IP address to use when sending traps on a system with
multiple interfaces. The IP address specified in the HOSTID statement is checked against the addresses
configured on the system.

V2TRAPS
The SNMP agent sends SNMP v1 traps by default. To change to sending SNMP v2 traps by default

include V2TRAPS in the configuration file.

Recelving Traps

TCPware also provides a program that will listen for traps and format them for display. In order to
invoke this program, run TCPWARE : TRAP_LISTEN. It prompts for an optional file to log information
to (default is the terminal) and the port number to listen on (default is 162).

SNMP Multiplexing Peers

The SNMP Multiplexing (SMUX) protocol is an SNMP subagent extension protocol. Each subagent or
peer registers a MIB subtree with the SNMP agent. Requests for objects residing in a registered MIB
subtree are passed from the SNMP agent using the SMUX protocol to the subagent. The subagent passes
the results of an SNMP query back to the SNMP agent. The practical limit to the number of peers is 30.

The SNMP server only accepts SMUX connections from peers listed by IP address in the SNMPD . CONF
file.

To enable SMUX support, answer Yes to the appropriate question in @TCPWARE : CNENET SNMP.

SMUX_PEER ip-address [/mask]
The SNMP agent listens on TCP port 199 for peer connections, while the connection to the SNMP client

is over UDP port 161, with traps sent over UDP port 162. Multiple peers registering the same subtree are
each assigned a priority, and the agent can send multiple variables in a single request. The SMUX
protocol is described in RFC 1227. The mask specifies the number of bits in the internet address that
must match the specified address. The default value is 32.

SNMP Agent Extensibility (AgentX)
Peers

The AgentX protocol is an SNMP subagent extension protocol. Each subagent or peer registers a MIB
subtree with the SNMP agent. Requests for objects residing in a registered MIB subtree are passed from
the SNMP agent using the AgentX protocol to the subagent. The subagent passes the results of an
SNMP query back to the SNMP agent.

The SNMP agent listens on TCP port 705 for subagent connections. The AgentX framework consists of
a single processing entity called the master agent. This master agent, available on the standard transport
address, sends and receives SNMP protocol messages in an agent role but has little or no direct access to
management information. While some of the AgentX protocol messages appear similar in syntax and
semantics to the SNMP, remember that AgentX is not SNMP. Refer to RFCs 2741 and 2742 for
complete AgentX information. The SNMP server only accepts AgentX connections from peers listed in
the SNMPD . CONF file. To enable AgentX support, answer Yes to the question “Do you want to
activate the SNMP AgentX service on this host?”in @TCPWARE:CNENET SNMP.

Then add AGENTX PEER ip-address to the SNMPD. CONF file.

AGENTX_PEER ip-address [/mask]
The SNMP server only accepts AgentX connections from peers listed by IP address in the
SNMPD . CONF file. Use the following syntax in the file:

AGENTX PEER ip-address

If you are developing an AgentX subagent and need to debug the packets being exchanged with the
SNMP Agent, then define /system TCPWARE SNMP DEBUG 0%X40000 before starting
SNMP.

Private MIB Application Program
Interface

In addition to SMUX and AgentX, TCPware’s SNMP agent supports subagents serving private MIBs
through an application programming interface (API1). Under this scheme, anyone willing to have their
private MIBs served by TCPware’s SNMP agent should develop a shareable image that exports the APIs
in them in addition to the routines they may need for accessing the MIB variables. The SNMP API
routines are described in Chapter 10 of the Programmer's Reference, SNMP Extensible Agent API
Routines.

SNMP Log File

When the SNMP agent starts up, it creates a log file called TCPWARE : SNMPSERVER . LOG. This file
contains information about the activities of the SNMP agent, such as:

e The time the agent starts up and shuts down.

e When SMUX peers open or close a connection, and register or de-register a MIB tree.
e Any errors found in the SNMP configuration file.

e Any errors that occur when the agent is running.

Reloading the SNMP Configuration Without
Rebooting

To reload the SNMP configuration:

SM(TCPWARE : RESTART SNMP

Performing SNMP Functions with TCPware

You can display SNMP information with the NETCU SHOW SNMP MIB VARIABLE command. See
the sHOwW SNMP command in the TCPware NETCU Command Reference for information about this
command.

Template Configuration File

SNMP services provides a TEMPLATE SNMPD. CONF file in TCPWARE COMMON: [TCPWARE] that
you can use as a basis:

SNMP Agent (SNMPD) Configuration File (template)

I
I
!
! System description: sysdescr <id string>
! Typically the id string would include:
! VAX cpu model (such as MicroVAX II, VAX 8650, etc)
! VMS and version number

! "Process Software, TCPware for OpenVMS Version 8.3"

I

sysdescr "place system description string here"

I

! System Contact: syscontact <contact name>

I

syscontact "place name, phone number, and mail address of administrator
here"

I

! System Location: syslocation <location>

I

syslocation "place system location information here"

|
Line Interfaces Information: interface <line-id><line speed>
<description>
Note: You usually need not define these. SNMPD provides good defaults.

|
|
|
!
!interface una-0 10000000 "DEC DELUA Ethernet controller"
|
! Communities:

! community <community name><internet address><READ-ONLY |READ-

! WRITE | TRAPS>

|

community readers 1.2.3.4 READ-ONLY

community netman 223.95.45.3 READ-WRITE

community nettraps 223.49.45.3 TRAPS

|

! To disable authentication traps, remove the "!" from the following line.
!'no-auth-traps

|

! To disable link status traps,
'no-link-traps

|

! SMUX Peers:

! SMUX PEER <ip-address>
SMUX PEER 1.2.5.4

SMUX PEER 1.0.5.6

|

! Agent X Peers:

! AGENTX PEER <ip-address>
AGENTX PEER 127.0.0.1
AGENTX PEER 192.168.1.1

remove the "!" from the following line.

8. X.25 Interface

CAUTIONI! This chapter used to document TCPware’s X.25 interface for the VAX platform,
which has been deprecated and is no longer available.

9. Routing and GateD

Introduction

This chapter describes TCPware's multiple gateway routing support, including how to set up routing and
forwarding, and how to configure the Gateway Routing Daemon (GateD).

Multiple Gateway Support

All hosts and gateways on a network store routing information, usually including a list of default
gateway addresses.

The TCPware routing table contains a list of default gateway addresses. TCPware always uses the first
gateway address on the list unless it is marked as possibly being down. In this case, TCPware rotates the
address of the gateway that is possibly down to the end of the list. TCPware then uses the next gateway
address in the list, regardless of its state.

If all gateways are marked as being possibly down, TCPware uses all the addresses in rotation. This
minimizes the number of datagrams sent to suspicious gateways and maintains stability when more than
one gateway is available.

Router or Link Failure
When a router fails, the host detects that it is sending packets into a "black hole.” The host detects this in
approximately one minute. The host:

1. Marks that entry in the gateway address list as possibly being down.
2. Rotates that gateway address entry to the end of the list.
3. Uses the next gateway address, which is now the first entry in the list.

When a link fails, the router connected to that link redirects TCPware to use another router for that
destination. TCPware does this using ICMP redirects.

Router or Link Recovery

When a router recovers, TCPware reverts to that router only if told to do so through a redirect for a
specific destination. The acting router issues the redirect only if the original route has a better
bandwidth, delay, and hop metric for the intended destination.

The system does not issue a redirect if the links between both routing paths are the same speed. In this
case, TCPware continues to use the new router until:

e You reenter the gateway address using the Network Control Utility (NETCU).
e The new router fails.

When a link recovers, TCPware discards the dynamic route set by the ICMP redirect and switches back
to the original router.

Static Routing

This section explains how to configure specific routes using Network Control Utility (NETCU)
commands.

Routing Guidelines

When setting up routing, consider the following guidelines:

e Most routes should be network routes rather than host routes. This prevents the routing table
from becoming too large.

e Define a default gateway using the NETCU SET GATEWAY command (see the NETCU
Command Reference). Use the default gateway when sending a datagram to a host that is not on
a local network and for which no other route is known.

e You can set up routing so that TCPware executes your routing commands at startup. Enter the
NETCU routing commands in the TCPWARE : ROUTING.COM file. CNFNET creates this file
during network configuration (see the following sections).

e If using GateD to configure routes, use GateD exclusively. Do not combine GateD routing with
static routing set up in NETCU, as with ADD ROUTE. Route settings in the GATED . CONF file
may conflict with settings in the static ROUTING.COM file.

Example 1

The below diagram shows a local network connected to an internet through a gateway. Each host runs
TCPware.

The gateway has an internet address for each network to which it connects.

other network s

10.1.0.1
Gatewa y
10.2.0.1
Ethernet % % % %
M Alpha A Alpha
host host host host

The easiest way to set up routing in this case is to define the gateway as the default gateway. To do this,
perform one of the following tasks:

e Define the default gateway at each host by responding to prompts during TCPware's network
configuration procedure (CNFNET).

e Enter the following NETCU command at the DCL prompt on each host:

SENETCU SET GATEWAY 10.2.0.1

Example 2

The below diagram shows a sample internet consisting of three networks: Ethernet network
192.168.95.0, SLIP network 192.168.21.0, and Ethernet network 192.168.34.0.

Ethernet network Ethernet network

192.168.95.0 192.168.34.0
host host
| 192 1RA.45 2 192.168.34 .2
192.168.95. 1 SLIP 192.168.34. 1
Network
Gateway A 192.168.21.0 Gateway B
192 168.21 .1 192 168.21.2
host host]
192 16295 3 192.168.34 3

Each gateway has an internet address for each network to which it connects. This is how the networks
are set up:

At each TCPware host in network 192.168.95.0, set the local gateway host address:

ETCU SET GATEWAY 192.168.95.1

At each TCPware host on network 192.168.34.0, set the local gateway host address:

SEINETCU SET GATEWAY 192.168.34.1

At Gateway A, add the route through Gateway B's SLIP network address:

ETCU ADD ROUTE 192.168.34.0 192.168.21.2 /NETWORK /GATEWAY]
ETCU ENABLE FORWARDIN

At Gateway B, add the route through Gateway A's SLIP address:

SEINETCU ADD ROUTE 192.168.95.0 192.168.21.1 /NETWORK /GATEWAY]
SEINETCU ENABLE FORWARDIN

You can also define the default gateway by responding to prompts during the network configuration
procedure (CNFNET). See Chapter 3, Configuring the TCP/IP Core Environment, in the Installation &
Configuration Guide.

Forwarding

Forwarding, if enabled using NETCU ENABLE FORWARDING, allows IPDRIVER to route (forward)
datagrams between the available networks as needed.

IPDRIVER routes datagrams between networks when you enable forwarding, and there is a known route
to the datagram's destination internet address. TCPware allows fragmentation of the routed datagram.

IPDRIVER transmits an Internet Control Message Protocol (ICMP) redirect message to the source
internet address of the datagram if it routes the datagram over the same source network interface.

If you enable forwarding and ARP mode, TCPware responds to ARP requests for any nonlocal internet
address for which it has a defined route. This is proxy ARP. The following example shows enabling
forwarding in ARP mode:

SENETCU ENABLE FORWARDING/ARP

TCPware does not forward multicast datagrams.

Multicast Routing

When an application wants to send datagrams to a multicast internet address (Class D, 224.0.0.0 through
239.255.255.255) and the application does not specify a multicast interface, TCPware determines the
interface as follows:

1. If the routing table has a host route for the multicast address, TCPware uses the host route.

2. If the routing table has a default multicast route (a network route for 224.0.0.0), TCPware uses
the default multicast route.

3. Ifthe routing table has a default route, TCPware uses the default route.

4. Otherwise, TCPware uses the first multicast-capable interface it finds.

Using GateD

The Gateway Routing Daemon (GateD) manages multiple routing protocols, including the Routing
Information Protocol (RIP), Local Network Protocol (HELLO), Router Discovery Protocol, Open
Shortest Path First (OSPF) protocol, Exterior Gateway Protocol (EGP), and Border Gateway Protocol
(BGP).

Using GateD, the network administrator can control the flow of routing information through a
configuration language. Once you start GateD, it makes routing decisions based on the data gathered by
the routing protocols. If routing using GateD, use GateD exclusively.

Note: If you want the system to function as a gateway, you must enable forwarding for it (using
the ENABLE FORWARDING command in NETCU).

GateD allows you to control importing and exporting routing information by:

e Individual protocol

e Source and destination Autonomous System (AS)
e Source and destination interface

e Previous hop router

e Specific destination address

You can assign preference levels for different combinations of imported routing information by using a
flexible masking capability. In TCPware, the name of the GateD process is TCPware GateD.

GateD Configuration File

TCPware stores GateD configuration information in the TCPWARE : GATED . CONF file. You must
create this file before you can use GateD. For details on GateD configuration, see GateD Configuration
Statements.

GateD Route Selection

GateD determines the "best" route using preference values set for each protocol or peer. Each route has a
single associated preference value, even though you can set preferences at many places in the

GATED. CONF file. The last (or most specific) preference value is the one GateD uses. Some protocols
have a secondary preference, sometimes called a "tie-breaker."

The factors GateD uses in determining "best" routes include:

e The route with the numerically smallest pre ference value is preferred.

e For two routes with equal preferences, the route with the numerically smallest preference?2
(the "tie-breaker") is preferred.

e Arroute learned from an interior gateway protocol is preferred over a route learned from an
exterior gateway protocol. Least preferred is a route learned indirectly by an interior protocol
from an exterior protocol.

e If Autonomous System (AS) path information is available, it helps determine the most preferred
route:

o Aroute with an AS path is preferred over one without an AS path.

o Ifthe AS paths and origins are identical, the route with the lower metric is preferred.
o A route with an AS path origin of interior protocol is preferred over one with an origin of
exterior protocol. Least preferred is an AS path with an unknown origin.
o A route with a shorter AS path is preferred.
e If both routes are from the same protocol and AS, the one with the lower metric is preferred.
e The route with the lowest numeric next-hop address is used.

Preference values range from 0 to 255. The below table summarizes the default preference values for
routes learned in various ways.

Default preference value Is defined by ... statement

0 interface

10 ospf

20 gendefault (internally generated default)

30 redirect

40 kernel (routes learned using the socket route)
60 static

90 hello

100 rp

110 (point-to-point interfaces)

120 interfaces (routes to interfaces that are down)
130 aggregate/generate

150 ospf (AS external)

170 bgp

200 egp

Starting and Stopping GateD

After creating the TCPWARE : GATED . CONF file, you need to stop and restart GateD. Follow these
steps:

1. Log in as the system manager.

2. Stop the GateD process by entering:
3. Restart the GateD process by entering:

See the Installation & Configuration Guide, Chapter 6, Starting and Testing TCPware, for details on the
STARTNET.COM and SHUTNET . COM command procedures.

GateD NETCU Commands

Use the NETCU commands in the below table to manage the GateD process. To use these commands,
you need OPER or SYSPRYV privilege. See the NETCU Command Reference, Chapter 2, NETCU
Commands.

Command Description

CHECK GATED CONFIG Checks a GateD configuration file for syntax errors
DUMP GATED STATE Dumps the state of the GateD process to a file
LOAD GATED CONFIG Loads a GateD configuration file

SET GATED TRACE Controls tracing in GateD

SHOW GATED TRACE Shows tracing in GateD

SHOW OSPEF ADVERTISE Shows OSPF link state advertisements

SHOW

SHOW

SHOW

SHOW

SHOW

SHOW

SHOW

SHOW

SHOW

SHOW

STOP/GATED

OSPF

OSPF

OSPF

OSPF

OSPF

OSPF

OSPF

OSPF

OSPF

RIP

AS

DESTINATIONS

ERRORS

HOPS

INTERFACES

LOG

NEIGHBORS

ROUTING

STATE

TOGGLE GATED TRACING

UPDATE GATED INTERFACES

Shows the AS external database entries

Shows the list of destinations and their indices

Shows the OSPF error log

Shows the set of next hops for the OSPF router queried
Shows all configured interfaces for OSPF

Shows the cumulative OSPF log of input/output statistics
Shows all OSPF routing neighbors

Shows the OSPF routing table

Shows the link state database (except AS Externals)
Queries Routing Information Protocol (RIP) gateways
Stops the GateD process

Toggles tracing in GateD

Rescans the GateD network interfaces

GateD Configuration Statements

The GateD configuration file is TCPWARE : GATED . CONF. This file must be present for the GateD
process to run. The structure of the GateD configuration language is similar to C. The configuration file
consists of statements terminated by a semicolon (;). Statements consist of tokens separated by a space.
This structure simplifies identification of the associated parts of the configuration.

You can include comment lines either by beginning them with a pound sign (#) or delimiting them with
slash asterisk (/*) and asterisk slash (* /). The configuration file consists of the following sections,
which reflect the order in which the statements, if used, must appear:

Directives ($directory, %include)

Statements traceoptions
options
interfaces

Definitions @ autonomous-system
routeid
martians

Protocols rip
help redirect router-discovery server/client

bgp
ospf

Static routes static

Control import
export

aggregate
generate

Directives

Directive statements include:

%directory
%include

Directive statements provide special instructions to the parser. They do not relate to the protocol
configuration and can occur anywhere in GATED . CONF. They also end in a new line instead of a
semicolon (;) like the other statements.

Format

%directory "directory"
Defines the directory where the include files go if you do not fully specify directory as part of the

filename in the $include statement. Does not actually change the current directory, but simply applies
the directory prefix.

%include "filename"
Identifies an include file. GateD includes the contents of the file in GATED . CONF at the point where the

$include appears. If you do not fully specify the filename, it is relative to the directory defined in
$directory. The $include directive causes GateD to parse the specified file completely before
resuming. You can nest up to ten levels of include files.

traceoptions

The traceoptions statement controls tracing options. You can configure GateD tracing options at
many levels. These include file specifications, control options, and global and protocol-specific tracing
options.

Lower levels of statements inherit tracing options from the next higher level, unless overridden.

Format
traceoptions ["tracefile" [replace] |[size sizelk | m] files files]]
[nostamp] traceoptions [except traceoptions] | none ;

Options and Parameters
"tracefile"

File to receive tracing information. If this filename is not fully specified, GateD creates it in the
directory where you started GateD.

replace
Replaces an existing file. The default is to append to an existing file.

size size[k | m] files files
Limits the maximum size, in k or m or the files indicated, of the trace file (the minimum is 10k). When
the file reaches size, GateD creates a new version.

nostamp
Control option which means not to prepend a timestamp to all trace lines. The default is to prepend a
timestamp.

traceoptions
Specific to each protocol statement. Note that these global options may not apply to all protocols.

except traceoptions

Disables more specific trace options after enabling broader ones.

none

Turns off all tracing for the protocol or peer.

Option
adv

all

general

iflist

normal
parse
policy
route
State

symbols

task

timer

Description
For debugging: traces the allocation and freeing of policy blocks.

Turns on the general, normal, policy, route, state, task, and timer
options.

Shorthand for specifying both the normal and route options.

Traces reading of the kernel interface. Useful to specify this with the

-t option on the command line since the first interface scan occurs before reading the
configuration file.

Traces normal protocol occurrences (abnormal protocol occurrences are always traced).
For debugging: traces the lexical analyzer and parser.

Traces how protocol and user-specified policy apply to routes imported and exported.
Traces routing table changes for routes installed by the protocol or peer.

Traces state machine transitions in the protocols.

Traces symbols read from the kernel at startup. The only useful way to specify this level of
tracing is to use the -t option on the command line, since GateD reads the symbols from
the kernel before parsing the configuration file.

Traces system interface and processing associated with the protocol or peer.

Traces timer usage by the protocol or peer.

options
The options statements let you specify some global options. If used, options must appear before any
other type of configuration statement in GATED . CONF.

Format
options [nosend]
[noresolv]
[gendefault [preference value] [gateway host]]
[syslog [upto] loglevel]
[mark time] ;

Options and Parameters
nosend

Does not send packets. Makes it possible to run GateD on a live network to test protocol interactions,
without actually participating in the routing protocols. You can examine the packet traces in the GateD
log to verify that GateD functions properly. Most useful for RIP and HELLO. Does not yet apply to
BGP, and not useful with EGP and OSPF.

noresolv
Does not resolve symbolic names into IP addresses. By default, GateD uses the gethostbyname ()

and getnetbyname () library calls that usually use the Domain Name System (DNS) instead of the
host’s local host and network tables. If there is insufficient routing information to send DNS queries,
GateD deadlocks during startup. Use this option to prevent these calls.

Note: When you use this option, symbolic names cause configuration file errors.

gendefault [preference value] [gateway host]

nogendefault

Creates a default route with the special protocol default when a BGP or EGP neighbor is up. You can
disable this for each BGP/EGP group with the nogendefault option. By default, this route has a

preference value of 20. This route is normally not installed in the kernel forwarding table; it is only

present for announcement to other protocols. The gateway option installs the default route in the
kernel forwarding table with a next hop of the gateway defined.

Note: Using more general options is preferred to using gendefault. (See aggregate for details
on the generate statement.)

syslog [upto] loglevel

Amount of data GateD logs to OPCOM. OpenVMS systems map UNIX syslog logging levels to
OPCOM severity levels. The defaultis syslog upto info. The mapping of syslogto OPCOM
logging levels appears in Mapping of UNIX syslog Levels to OpenVMS OPCOM Severity Levels.

mark time
GateD sends a message to the trace log at the specified t ime interval. Can be one method of

determining if GateD is still running.

syslog log level Is equivalent to OPCOM level...

emerg FATAL

alert FATAL

crit FATAL

err ERROR

warning WARNING
notice INFORMATIONAL

info (defaulty INFORMATIONAL

debug INFORMATIONAL

Example
generate a default route when peering with an EGP or BGP neighbor:

#
options gendefault ;

Interfaces

An interface is the connection between a router and one of its attached networks. Specify a physical
interface by interface name, IP address, or domain name. Multiple reference levels in the configuration
language let you identify interfaces using wildcards (only the device driver part of the name, to match
any unit number), interface type names, or addresses.

Format
Interfaces
{
options
[strictinterfaces]
[scaninterval time] ;
interface 1ist
[preference value]
[down preference value]
[passive]
[simplex]
define address
[broadcast address] | [pointtopoint address]
[netmask mask]
[multicast] ;

}i

Options Clause

options
[strictinterfaces]
[scaninterval time] ;

strictinterfaces
Makes it a fatal error to use reference interfaces not present when you start GateD or that are not part of

the de fine parameter. Normally, GateD issues a warning message and continues.

scaninterval time

Sets how often GateD scans the kernel interface list for changes. The default is every 15 seconds on
most systems, and 60 seconds on systems that pass interface status changes through the routing socket
(such as BSD 4.4).

Interface Clause
Sets interface options on the specified interfaces. A list can consist of interface names, domain names,

numeric addresses, or the value a11. Include one or more interface names, including wildcard names
(without a number) and those that can specify more than one interface or address.

There are three ways to reference an interface:

By wildcard Only the device driver part of the name, to match any unit number.
By name Combined device driver and unit number of an interface.

By address IP address or domain name (if resolving to one address only).

There are four types of interfaces allowed:

Loopback Must have the address 127.0.0.1. Packets from a loopback interface go back to
the originator. Also used for reject and blackhole routes (not supported in
TCPware). The interface ignores any net mask. It is useful to assign an
additional address to the loopback interface that is the same as the OSPF or BGP
router 1D; this allows routing to a system based on router 1D that works if some
interfaces are down.

Broadcast Multiaccess interface capable of physical level broadcast, such as Ethernet,
Token-Ring, and FDDI. A broadcast interface has an associated subnet mask and
broadcast address. The interface route to a broadcast network is a route to the
complete subnet.

Point-to-point Tunnel to another host, usually on some sort of serial link. A point-to-point
interface has a local address and a remote address. The remote address must be
unique among the interface addresses on a given router. Many point-to-point
interfaces and up to one non point-to-point interface must share the local address.
This conserves subnets as you do not need any when using this technique. If you
use a subnet mask on a point-to-point interface, only RIP version 1 and HELLO
use it to determine which subnets propagate to the router on the other side of the
point-to-point interface.

Nonbroadcast Multiaccess but not capable of broadcast, such as frame relay and X.25. This type
multiaccess of interface has a local address and a subnet mask.
(NBMA)

preference value

Sets the preference for routes to this interface when it is up and GateD determines it to function
properly. The default preference value is 0. While the preference statement is optional, it is
strongly recommended that you set an explicit preference value if you do use it.

down preference value
Sets the preference for routes to this interface when GateD determines that it does not function properly,
but the kernel does not indicate that it is down. The default down preference value is 120.

passive

Does not change the preference of the route to the interface if determined not to function properly from
lack of routing information. GateD checks this only if the interface actively participates in a routing
protocol.

simplex

The interface does not recognize its own broadcast packets. Some systems define an interface as simplex
with the IFF SIMPLEX flag. On others, the configuration defines it. On simplex interfaces, packets
from the local host are assumed to have been looped back in software and are not used to indicate that
the interface functions properly.

Define Clause

Interfaces
{
define address
[broadcast address] | [pointtopoint address]
[netmask mask]
[multicast] ;
} o
Defines interfaces not present when starting GateD so that the configuration file can reference them
when using options strictinterfaces.

broadcast address
Makes the interface broadcast-capable (for Ethernet or Token-Ring) and specifies the broadcast address.

pointtopoint address

Makes the interface point-to-point (such as SLIP or PPP) and specifies the address on the local side of
the interface. The first address in the de fine statement references the host on the remote end of the
interface.

An interface not defined as broadcast or pointtopoint must be nonbroadcast multiaccess
(NBMA), such as for an X.25 network.

netmask mask
Subnet mask to use on the interface. Ignored on point-to-point interfaces.

multicast
Makes the interface multicast-capable.

Examples
1. This example sets the interface as passive.

do not mark interface 192.168.95.41 as down,
even 1f there is no traffic:

i

interfaces{

interface 192.168.95.41 passive ;

b}

2. This example shows the interface statements used with the rip statement (see the rip description).
Users would receive RIP packets only from interfaces sva-0 and sva-1, but not from £za-0, and
sva-1 would be the only one that could send them.

rip yes {
interface all noripin noripout ;
interface sva ripin

interface sva-1 ripout ;

b8

Definition Statements

Definition statements include:

autonomoussystem
routerid
martians

Definition statements are general configuration statements that relate to all of GateD or at least to more
than one protocol. You must use these statements for any protocol statements in the configuration file.

Format
autonomoussystem ASnumber [loops number];
An autonomous system (AS) is a set of routers under a single technical administration, using an internal

protocol and common metrics to route packets within the AS, and an external protocol to route packets
to other ASs. The Network Information Center (NIC) assigns AS numbers.

The autonomoussystem statement sets the AS number of the router. You require this option if using
BGP or EGP. The 1oops option is only for protocols supporting AS paths, such as BGP. It controls the
number of times this AS can appear in an AS path, and defaults to 1.

routerid host ;

A router ID is an IP address used as a unique identifier assigned to represent a specific router, usually
the address of an attached interface. The routerid statement sets the router ID for the BGP and OSPF
protocols. The default is the address of the first interface GateD encounters. The address of a non-point-
to-point interface is preferred over the local address of a point-to-point interface, and an address on a
loopback interface that is not the loopback address (127.0.0.1) is most preferred.

martians
{
host host [allow] ;
network [allow] ;
network mask mask [allow] ;
network masklen number [allow] ;
default [allow] ;
} o
The martians statement defines a list of invalid addresses, called martians, that the routing software
ignores. Sometimes a misconfigured system sends out obviously invalid destination addresses. The

statement allows additions to the list of martian addresses. (See Route Filtering for details on
specifying ranges.)

You can also use the a11ow parameter to explicitly allow a subset of an otherwise disallowed range.

Example
This example shows the use of all three definition statements, autonomoussystem, routerid,

and martians.

use AS number 249:

#

autonomoussystem 249 ;

#

set the router

ID number:

#

routerid 192.168.95.41 ;
#

prevent routes to
0.0.0.26 from ever being accepted:
#

martians {

host 0.0.0.26 ;

i

Route Filtering
You can filter routes by matching a certain set of routes by destination, or by destination and mask. Use
route filterson martians, import, and export statements.

The action taken when no match is found depends on the context. For example, import and export route
filters assume an a11 reject ; atthe end of a list. A route matches the most specific filter that
applies. Specifying more than one filter with the same destination, mask, and modifiers generates an
error.

Format

network [exact | refines | allow]
network mask mask [exact | refines]
network masklen number [exact | refines]
all

default

host host

Options and Parameters
network

Destination network IP address. You can use one of the following options:

exact Destination mask must match the supplied mask exactly.
Used to match a network, but no subnets or hosts of that network.

refines Destination mask must be more specified (Ilonger) than the filter mask.
Used to match subnets or hosts of a network, but not the network.

allow See the martians definition statement.

mask mask
Destination network mask.

masklen number
Length of the destination network mask.

all
Entry matches anything. Equivalentto 0.0.0.0 mask 0.0.0.0.

default
Matches the default route. To match, the address must be the default address and the mask must be all
zeros. Equivalentto 0.0.0.0 mask 0.0.0.0 exact. (Notvalid for martians statements.)

host host

Matches the specific host. To match, the address must match exactly the specified host, and the network
mask must be a host mask (all 1s). Equivalent to host mask 255.255.255 exact. (Not valid
formartians statements.)

rp

GateD supports the Routing Information Protocol (RIP). RIP is a distance-vector protocol for
distributing routing information at the local network level of the Internet. In distance-vector routing,
each router transmits destination addresses and costs to its neighbors (computers communicating over

RIP).

RIP versions 1 and 2 are the most commonly used interior protocol. RIP selects the route with the lowest
metric as the best route. The metric is a hop count representing the number of gateways through which
data must pass to reach its destination. The longest path that RIP accepts is 15 hops. If the metric is
greater than 15, a destination is considered unreachable and GateD discards the route. RIP assumes the
best route uses the fewest gateways, that is, the shortest path, not taking into account congestion or delay
along the way.

RIP uses two types of packets: requests and responses.

Requests. A request asks for information about specific destinations or for all destinations. RIP can send
requests when a router:

e Comes up
e Receives timed-out information about a destination

If a request fails to specify a destination, RIP assumes the router requests information about all
destinations.

Responses. Responses contain destination and cost pairs. RIP sends responses under the following three
conditions:

e Inresponse to a request
e When information changes; for example, cost information
e At set intervals; for example, reporting the destination to each neighbor every 30 seconds

RIP discards the destination and cost information if a neighbor fails to report the distance to a
destination after a certain time interval.

RIP IP Addresses. RIP version 1 contains no provision for passing around a mask. RIP infers the mask
based on whether the address is class A, B, or C. Sometimes there are special cases when the inferred
mask differs from class A, B, or C. For example:

e When you use RIP with a subnet (in this case the routers must know the subnet mask for a
particular network number)

e When the system updates RIP with an address reported as 0.0.0.0, RIP considers this address as a
default destination with a mask of 0.0.0.0

e When the system updates RIP with bits set in the host portion of the address, RIP assumes the
address refers to a host with a mask of 255.255.255.255

With RIP version 2, you can specify the network mask with each network in a packet.

Configuring RIP. You configure RIP in the GATED. CONF file using a GateD protocol statement that
enables or disables RIP. The syntax of the rip statement is as follows, with the parameters described
next:

Format
rip vyes | no | on | off
[{
[no]broadcast ;
nocheckzero ;
preference value ;
defaultmetric metric ;
query authentication [none | [[simple | md5] password]];
interface 1list
[[no]ripin] [[no]ripout]
[metricin metric]
[metricout metric] ;
[version 1] | [version 2 [multicast | broadcast]]
[[secondary] authentication [none | [[simple | md5] password]]];
trustedgateways 1list ;
sourcegateways 1ist ;
traceoptions options ;

Yo

Options and Parameters
yes | on (default)
no | off

When enabled on a host, RIP listens in the background to routing updates. When enabled on a gateway,
RIP supplies routing updates. Enabled by default.

broadcast ;

Broadcasts RIP packets regardless of the number of interfaces present. Useful when propagating static
routes or routes learned from another protocol into RIP. In some cases, using broadcast When only one
network interface is present can cause data packets to traverse a single network twice. The default for
more than one interface.

nobroadcast ;
Does not broadcast RIP packets on attached interfaces even if there is more than one. If you use the

sourcegateways parameter, routes are still unicast directly to that gateway. The default for a single
interface.

nocheckzero ;
Does not make sure that reserved fields in incoming RIP version 1 packets are zero. Normally RIP

rejects packets whose reserved fields are zero.

preference value ;
Sets the preference for routes learned from RIP. A preference specified in import policy can override

this. The default preference value is 100.

defaultmetric metric ;

Metric used when advertising routes learned from other protocols. Choice of values requires that you
explicitly specify a metric in order to export routes from other protocols into RIP. A metric specified in
export policy can override this. The default metricis 16.

query authentication ;
Authentication required of query packets that do not originate from routers. The default is none.

Interface Clause

rip vyes | no | on | off
[{
[no]broadcast ;
nocheckzero ;
preference value ;
defaultmetric metric ;
query authentication [none | [[simple | md5] password]] ;
interface 1ist
[[no]ripin] [[no]lripout]
[metricin metric]
[metricout metric] ;
[version 1] | [version 2 [multicast | broadcast]]
[[secondary] authentication [none | [[simple | md5] password]] ;
trustedgateways 1ist ;
sourcegateways 1ist ;
traceoptions options ;

b1

Controls various attributes of sending RIP on specific interfaces. (See the interfaces statement for a
description of 11ist.) Note that if there are multiple interfaces configured on the same subnet, only the
first one on which RIP output is configured sends the RIP updates. This limitation is required because of
the way the UNIX kernel operates. A future GateD release will hopefully remove this limitation. The
default 1ist valueisall.

ripin (default)

noripin

Use ripin explicitly when using noripin on a wildcard interface descriptor. The noripin option
ignores RIP packets received over the specified interfaces.

ripout (default)
noripout
Use ripin explicitly when using noripout on a wildcard interface descriptor. The noripin does

not send RIP packets over the specified interfaces.

metricin metric

RIP metric to add to incoming routes before they are installed in the routing table. Makes the router
prefer RIP routes learned using the specified interfaces less than those learned from other interfaces. The
default is the kernel interface metric plus 1. If using this as the absolute value, the kernel metric is not
added.

metricout metric
RIP metric to add to routes sent over the specified interface(s). Makes other routers prefer other sources
of RIP routes over this router. The default metric value is 0.

version 1 (default)
Sends RIP version 1 packets over the specified interface(s).

version 2 [multicast | broadcast]

Sends RIP version 2 packets over the specified interfaces. If IP multicasting support is available on this
interface, the default is to send full version 2 packets. If multicasting is not available, version 1
compatible version 2 packets are sent. Options include:

multicast Multicasts RIP version 2 packets over this interface. (Default)

broadcast Broadcasts RIP version 1 compatible version 2 packets over this interface even if IP
multicasting is available

[secondary] authentication [none | [[simple | md5] password]]
Authentication type to use. Applies only to RIP version 2 and is ignored for RIP-1 packets. If you

specify a password, the authentication type defaults to simp1e. The password should be a quoted string
with 0 to 16 characters. If you specify secondary, this defines the secondary authentication. The default
iSauthentication none.

trustedgateways list
List of gateways from which RIP accepts updates (host names or IP addresses). If used, only updates
from the gateways in the list are accepted. The default 1ist valueis all.

sourcegateways list
List of routers to which RIP sends packets directly, not through multicasting or broadcasting. If used,
only updates from the gateways in the list are accepted. The default 1ist valueis a1l.

traceoptions options

RIP-specific trace options:
packets All RIP packets, or packets [detail] sendor [detail] recv (detail provides

a more verbose format to provide more details; if used, detail must come before send
or recv)

request RIP information request packets, such as REQUEST, POLL and POLLENTRY

response RIP RESPONSE packets that actually contain routing information

hello

GateD supports the HELLO protocol. HELLO is an interior protocol that uses delay as the deciding
factor when selecting the best route. Delay is the round trip time between source and destination.
HELLO is not as widely used as when it was the interior protocol of the original 56-Kb/sec NSFNET
backbone and used between LSI-11 ("fuzzball™) routers. Because of this, HELLO is disabled by default.

By default, HELLO, like RIP, uses the kernel interface metric set by the i fconfig command to
influence metrics added to routes as they are installed in the routing table (metricin). Since the kernel
interface metric is in hops, it must be translated into HELLO’s millisecond metric. For the translation
scheme, see the HELLO Hops-to-Metrics Translation table below.

Translate to Translate to Translate to
This many this This many this This many this
Hops HELLO Hops HELLO Hops HELLO
metric metric metric

0 0 6 713 12 75522

1 100 7 1057 13 11190

2 148 8 1567 14 16579

3 219 9 2322 15 24564

4 325 10 3440 16 3000

5 481 11 5097

You configure HELLO in the GATED.CONF file using a GateD protocol statement that enables or
disables HELLO.

When enabled, HELLO assumes nobroadcast when only one interface exists. HELLO assumes
broadcast when more than one interface exists.

Format
hello vyes | no | on | off

[{

[no]broadcast ;
preference value ;
defaultmetric metric ;
interface 1ist
[[no]helloin]
[[no]Jhelloout]
[metricin metric]
[metricout metric] ;
trustedgateways 1ist ;
sourcegateways list ;
traceoptions options ;

Y1 o

Options and Parameters
yes | on or no | off (default)
When enabled on a host, HELLO listens in the background for routing updates. When enabled on a

gateway, HELLO supplies routing updates. Disabled by default.

broadcast ;
nobroadcast ;
The broadcast option broadcasts HELLO packets regardless of the number of interfaces present.

Useful when propagating static routes or routes learned from another protocol into HELLO. In some
cases, using broadcast when only one network interface is present can cause data packets to traverse
a single network twice. The default for more than one interface.

The nobroadcast option does not broadcast HELLO packets on attached interfaces, even if there is
more than one. If you use the sourcegateways parameter, routes are still unicast directly to that
gateway. The default for a single interface.

preference value ;
Preference for routes learned from HELLO. A preference specified in import policy can override this.

The default preference value is 90.

defaultmetric metric ;

Metric used when advertising routes learned from other protocols. Requires you to explicitly specify a
metric in order to export routes from other protocols into HELLO. A metric specified in export policy
can override this. The default metric is 30000.

interface list

[[mno]helloin]

[[no]helloout]

[metricin metric]

[metricout metric] ;
Controls various attributes of sending HELLO on specific interfaces. (See interfaces statement for a
description of 1ist.) Note that if there are multiple interfaces configured on the same subnet, only the
first interface that has HELLO output configured sends the HELLO updates. This limitation is required
because of the way the UNIX kernel operates. A future GateD release will hopefully remove this
limitation. The default interface 1ist valueisall.

helloin (default)
nohelloin
Use helloin explicitly when using nohelloin on a wildcard interface descriptor. The

nohelloin option ignores HELLO packets received over the specified interfaces.

helloout (default)
nohelloout

Use helloout explicitly when using nohelloout on a wildcard interface descriptor. The
nohelloout option does not send HELLO packets over the specified interfaces.

metricin metric

HELLO metric to add to incoming routes before GateD installs them in the routing table. Makes this
router prefer HELLO routes learned from other interfaces over those from the specified interface(s). The
default is the kernel interface metric plus one. If using this as the absolute value, GateD does not add the
kernel metric to the routing table.

metricout metric
HELLO metric to add to routes that are sent over the specified interface(s). Makes other routers prefer
other sources of HELLO routes over this router. The default metric out metric value is 0.

trustedgateways list
List of gateways from which HELLO accepts updates (host names or IP addresses). If used, HELLO
accepts only updates from the gateways in the list. The default 1ist valueis all.

sourcegateways list
List of routers to which HELLO sends packets directly, not through multicasting or broadcasting. If

used, HELLO accepts only updates from the gateways in the list. The default 1ist valueisall.

traceoptions packets
All HELLO packets, or packets [detail] send oOr [detail] recv (detail provides a more

verbose format to provide more details; if used, detail must come before send or recv).

icmp
On systems without the BSD routing socket, GateD listens to ICMP messages received by the system.
Processing of ICMP redirect messages is handled by the redirect Statement.

Currently the only reason to specify the i cmp statement is to be able to trace the ICMP messages that
GateD receives.

Format
icmp { traceoptions options ; }

Options and Parameters
traceoptions options ;

ICMP tracing options (which you can modify with detail and recv) are as follows:

packets All ICMP packets received
redirect Only ICMP Redirect packets received
routerdiscovery Only ICMP Router Discovery packets received

info Only ICMP informational packets, which include mask request/response, info
request/response, echo request/response and timestamp request/response

error Only ICMP error packets, which include time exceeded, parameter problem,
unreachable and source quench

redirect

GateD controls whether ICMP redirect messages can modify the kernel routing table. If disabled, GateD
only prevents a system from listening to ICMP redirects. By default, ICMP redirects are enabled on
hosts, and disabled on gateways that run as RIP or HELLO suppliers.

You configure ICMP redirect handling in the GATED . CONF file using a GateD protocol statement.

Format
redirect vyes | no | on | off

[{
preference value ;
interface 1list [[no]Jredirects] ;
trustedgateways 1ist ;

Y17

Options and Parameters

yes | on

no | off

Enabled by default on hosts. Disabled by default on gateways running as RIP or HELLO suppliers.

preference value
Preference for routes learned from a redirect. The default preference value is 30.

interface list [[no]redirects]
Enables and disables redirects interface by interface. (See interfaces for a description of 1ist.) The

default interface 11ist valueis all. The possible parameters are:

redirects May be necessary when you use noredirects on a wildcard interface descriptor.
(Default)

noredirects |gnores redirects received over the specified interface(s). The default is to accept
redirects on all interfaces.

trustedgateways list

List of gateways from which redirects are accepted (host names or addresses). By default, all routers on
the shared network(s) are trusted to supply redirects. If used, only redirects from the gateways in the list
are accepted. The default 1ist valueisall.

routerdiscovery server

The Router Discovery Protocol is an IETF standard protocol used to inform hosts of the existence of
routers without having hosts wiretap routing protocols such as RIP. Use it in place of, or in addition to,
statically configured default routes in hosts.

The protocol is in two parts, the server that runs on routers and the client that runs on hosts (see the next
statement). GateD treats these much like two separate protocols that you can enable only one at a time.

The Router Discovery Server runs on routers and announces their existence to hosts. It does this by
periodically multicasting or broadcasting a Router Advertisement to each interface on which it is
enabled. These Router Advertisements contain a list of all router addresses on a given interface and their
preference for use as a default router.

Initially these Router Advertisements occur every few seconds, then fall back to occurring every few
minutes. In addition, a host may send a Router Solicitation to which the router will respond with a
unicast Router Advertisement (unless a multicast or broadcast advertisement is due momentarily).

Each Router Advertisement contains an Advertisement Lifetime field indicating how long the advertised
addresses are valid. This lifetime is configured such that another Router Advertisement is sent before the
lifetime expires. A lifetime of zero indicates that one or more addresses are no longer valid.

On systems supporting IP multicasting, the Router Advertisements are sent to the all-hosts multicast
address 224.0.0.1 by default. However, you can specify broadcast. When Router Advertisements are
being sent to the all-hosts multicast address, or an interface is configured for the limited-broadcast
address 255.255.255.255, all IP addresses configured on the physical interface are included in the Router
Advertisement. When the Router advertisements are being sent to a net or subnet broadcast, only the
address associated with that net or subnet is included.

Note: Do not miX routerdiscovery server and routerdiscovery client
statements in the GATED . CONF file or you may get unintended results. You should also include
preference statements inthe interfaces and routerdiscovery Statements whenever
possible.

Format
routerdiscovery server vyes | no | on | off
[{

traceoptions state ;

interface 1ist

[minadvinterval time]

[maxadvinterval time]

[lifetime time] ;
address 1list

[advertise] | [ignore]
[broadcast] | [multicast]
[ineligible] | [preference value] ;

31

Note: Interface must be mentioned in the “Interface” directive.

Options and Parameters

yes | on

no | off

Enables or disables Router Discovery Protocol Server.

traceoptions state

The state is the only trace option, which traces the state transitions. The Router Discovery Server does
not directly support packet tracing options; tracing of router discovery packets is enabled through the
icmp statement described in the icmp statement section.

interface list

Parameters that apply to physical interfaces. Note a slight difference in convention from the rest of
GateD: interface specifies just physical interfaces, while address specifies protocol (in this case,
IP) addresses.

maxadvinterval time

Maximum time allowed between sending broadcast or multicast Router Advertisements from the
interface. Must be no less than 4 and no more than 30:00 (30 minutes). The defaultis 10:00 (10
minutes).

minadvinterval time

Minimum time allowed between sending unsolicited broadcast or multicast Router Advertisements from
the interface. Must be no less than 3 seconds and no greater than maxadvinterval. The default is
0.75 X maxadvinterval.

lifetime time
Lifetime of addresses in a Router Advertisement. Must be no less than maxadvinterval and no

greater than 2 : 30: 00 (two hours, thirty minutes). The default is 3 X maxadvinterval.

address 1list
Parameters that apply to the specified set of addresses on this physical interface. Note a slight difference
in convention from the rest of GateD: inter face specifies just physical interfaces while address is

protocol (in this case, IP) addresses.

advertise (default)
ignore
The advertise keyword includes the specified addresses in Router Advertisements. The ignore

keyword does not.

broadcast

multicast

The broadcast keyword includes the given addresses in a broadcast Router Advertisement because
this system does not support IP multicasting, or some hosts on an attached network do not support IP
multicasting. It is possible to mix addresses on a physical interface such that some are included in a
broadcast Router Advertisement and some are included in a multicast Router Advertisement. This is the
default if the router does not support IP multicasting.

The multicast keyword includes the given addresses in a multicast Router Advertisement. If the
system does not support IP multicasting, the address(es) is not included. If the system supports IP
multicasting, the default is to include the addresses in a multicast Router Advertisement if the given
interface supports IP multicasting. If not, the addresses are included in a broadcast Router
Advertisement.

preference value
ineligible

The preference keyword sets the preferability of the addresses as a default router address, relative to
other router addresses on the same subnet. A 32-bit, signed, two’s complement integer, with higher
values meaning more preferable. Note that hex 80000000 may only be specified as ineligible. The
default value is 0. Use a preference statement whenever possible.

The ineligible keyword assigns the given addresses a preference of hex 80000000, which means
that it is not eligible to be the default route for any hosts. This is useful when the addresses should not be
used as a default route, but are given as the next hop in an ICMP Redirect. This allows the hosts to
verify that the given addresses are up and available.

routerdiscovery client

A host listens for Router Advertisements through the all-hosts multicast address (224.0.0.2) if IP
multicasting is available and enabled, or on the interface’s broadcast address. When starting up, or when
reconfigured, a host may send a few Router Solicitations to the all-routers multicast address, 224.0.0.2,
or the interface’s broadcast address.

When a Router Advertisement with a non-zero lifetime is received, the host installs a default route to
each of the advertised addresses. If the preference is ineligible, or the address is not on an attached
interface, the route is marked unusable but retained. If the preference is usable, the metric is set as a
function of the preference such that the route with the best preference is used. If more than one address
with the same preference is received, the one with the lowest IP address will be used. These default
routes are not exportable to other protocols.

When a Router Advertisement with a zero lifetime is received, the host deletes all routes with next hop
addresses learned from that router. In addition, any routers learned from ICMP Redirects pointing to
these addresses will be deleted. The same happens when a Router Advertisement is not received to
refresh these routes before the lifetime expires.

Note: Do not miX routerdiscovery server and routerdiscovery client
statements in the GATED . CONF file or you may get unintended results. You should also include
preference statements inthe interfaces and routerdiscovery Statements whenever
possible.

Format
routerdiscovery client vyes | no | on | off
[{
traceoptions state ;
preference value ;
interface 1ist
[enable] | [disable]
[broadcast] | [multicast]
[quiet] | [solicit] ;
Y1

Options and Parameters
yes | on

no | off
Enables or disables the Router Discovery Protocol Client.

traceoptions state ;

The state is the only trace option, which traces the state transitions. The Router Discovery Server
does not directly support packet tracing options; tracing of router discovery packets is enabled through
the icmp statement described in the icmp statement section.

preference value ;
Preference of all Router Discovery default routes. Use a preference statement whenever possible.
Default is 55.

interface list

Parameters that apply to physical interfaces. Note a slight difference in convention from the rest of
GateD: interface specifies just physical interfaces. The Router Discovery Client has no parameters
that apply only to interface addresses.

enable (default)
disable
Either performs or does not perform Router Discovery on the specified interfaces.

broadcast
multicast

The broadcast keyword broadcasts Router Solicitations on the specified interfaces. This is the
default if IP multicast support is not available on this host or interface.

The multicast keyword multicasts Router Solicitations on the specified interfaces. If IP multicast is
not available on this host and interface, no solicitation is performed. The default is to multicast Router
Solicitations if the host and interface support it, otherwise Router Solicitations are broadcast.

solicit (default)

quiet

Either sends or does not send Router Solicitations on this interface, even though Router Discovery is
performed.

egp

GateD supports the Exterior Gateway Protocol (EGP). EGP is an exterior routing protocol that moves
routing information between Autonomous Systems (ASs). Unlike interior protocols, EGP propagates
only reachability indications, not true metrics. EGP updates contain metrics, called distances, which
range from 0 to 255. GateD only compares EGP distances learned from the same AS. EGP currently has
limited usage. By default, EGP is disabled.

Before EGP sends routing information to a remote router, it must establish an adjacency with that router.
This occurs by exchanging Hello and 1 Heard You (I-H-U) messages with that router. (Hello should not

to be confused with the HELLO protocol, or OSPF HELLO messages.) Computers communicating over
EGP are called EGP neighbors, and the exchange of Hello and I-H-U messages is known as acquiring a

neighbor.

Once you acquire a neighbor, the system polls it for routing information. The neighbor responds by
sending an update containing routing information. If the system receives a poll from its neighbor, it
responds with its own update packet. When the system receives an update, it includes routes from the
update into its routing database. If the neighbor fails to respond to three consecutive polls, GateD
assumes that the neighbor is down and removes the neighbor’s routes from its database.

You configure EGP in the GATED. CONF file using a GateD protocol statement.

Format
egp vyes | no | on | off
[{
preference value ;
defaultmetric metric ;
packetsize max ;
traceoptions options ;
group
[peeras ASnumber]
[localas ASnumber]
[maxup number
{
neighbor host
[metricout metric]
[preference value]
[preference2 value]
[ttl ttl]
[nogendefault]
[importdefault]
[exportdefault]
[gateway gateway]
[lcladdr local-address]
[sourcenet network]

[minhello | pl time]
[minpoll | p2 time]
[traceoptions options] ;
}i
Yo

Options and Parameters

yes | on

no | off (default)

Enables or disables EGP support. Disabled by default.

preference value ;
Preference for routes learned from EGP. A preference specified on the group or neighbor

statements or by import policy can override this. The default preference value is 200.

defaultmetric metric ;

Metric used when advertising routes over EGP. This choice of values requires you to explicitly specify a
metric when exporting routes to EGP neighbors. A metric specified on the neighbor or group
statements or in export policy can override this. The default metric is 255.

packetsize max ;

Maximum size of a packet that EGP expects to receive from this neighbor. If EGP receives a larger
packet, it is incomplete and EGP discards it. EGP notes the length of this packet and increases the
expected size to be able to receive a packet of this size. Specifying the parameter prevents the first
packet from being dropped. All packet sizes are rounded up to a multiple of the system page size. The
default packet size max value is 8192.

traceoptions options ;
Tracing options for EGP (can be overridden on a group or neighbor basis):

packets All EGP packets, or packets [detail] sendor [detail] recv (detail provides
a more verbose format to provide more details; if used, detail must come before send
or recv)

hello

EGP HELLO/I-HEARD-

U packets used to determine neighbor reachability

acquire EGP ACQUIRE/CEASE packets used to initiate and terminate EGP sessions

update

Group Clause

Group [peeras ASnumber] [localas ASnumber] [maxup number

{

b

neighbor host

[metricout metric]
[preference value]
[preference2 value]
[ttl ttl]
[nogendefault]
[importdefault]
[exportdefault]
[gateway gateway]
[lcladdr local-address]
[sourcenet network]
[minhello | pl time]
[minpoll | p2 time]
[traceoptions options]

EGP POLL/UPDATE packets used to request and receive reachability updates

.
4

EGP neighbors must be members of a group, which groups all neighbors in one AS. Parameters
specified in the group clause apply to all the subsidiary neighbors, unless explicitly overridden on a
neighbor clause. Any number of group clauses can specify any number of neighbor clauses. You
can specify any parameters from the neighbor subclause on the group clause to provide defaults for
the whole group (which you can override for individual neighbors).

The group clause is the only place to set the following attributes:

peeras ASnumber
AS number expected from peers in the group. Learned dynamically.

localas ASnumber
AS that GateD represents to the group. Usually only used when masquerading as another AS. Use is

discouraged. Set globally in autonomoussystem.

maxup number

Number of neighbors GateD should acquire from this group. GateD attempts to acquire the first maxup
neighbors in the order listed. If one of the first neighbors is not available, it acquires one farther down
the list. If after startup, GateD does manage to acquire the more desirable neighbor, it drops the less
desirable one. By default, GateD acquires all neighbors in the group.

Group Neighbor Clause
egp vyes | no | on | off
[{
preference value ;
defaultmetric metric ;
packetsize max ;
traceoptions options ;
group
[peeras ASnumber]
[localas ASnumber]
[maxup number
{
neighbor host
[metricout metric]
[preference value]
[preference?2 value]
[ttl ttl]
[nogendefault]
[importdefault]
[exportdefault]
[gateway gateway]
[lcladdr local-address]
[sourcenet network]
[Pl time | minhello]
[p2 time | minpoll]
[traceoptions options] ;
}i
Y1

Each neighbor subclause defines one EGP neighbor within a group. The only required part of the
subclause is the host argument, the symbolic host name or IP address of the neighbor.

metricout metric
Metric used for all routes sent to this neighbor. Overrides the default metric set in the egp statement and

any metrics specified by export policy, but only for this specific neighbor or group of neighbors.

preference value

Preference used for routes learned from these neighbors. Can differ from the default EGP preference set
in the egp statement, so that GateD can prefer routes from one neighbor, or group of neighbors, over
another. Import policy can explicitly override this.

preference2 value
Tie-breaker, in the case of a preference tie. The default value is 0.

ttl ttl

IPL time-to-live. Provided when attempting to communicate with improperly functioning routers that
ignore packets sent with a TTL 1. The default tt 1 for local neighbors is 1; the default for nonlocal
neighbors is 255.

nogendefault
Does not generate a default route when EGP receives a valid update from its neighbor. The default route
is only generated when you enable the gende fault option.

importdefault

Accepts the default route (0.0.0.0) if included in a received EGP update. For efficiency, some networks
have external routers announce a default route to avoid sending large EGP update packets. The default
route in the EGP update is ignored.

exportdefault
Includes the default route (0.0.0.0) in EGP updates sent to this EGP neighbor. Allows the system to
advertise the default route using EGP. Normally a default route is not included in EGP updates.

gateway gateway
Router on an attached network used as the next hop router for routes received from this neighbor if a
network is not shared with a neighbor. Rarely used.

lcladdr local-address

Address used on the local end of the connection with the neighbor. The local address must be on an
interface shared with the neighbor, or with the neighbor’s gateway when using the gateway option. A
session only opens when an interface with the appropriate local address (through which the neighbor or
gateway address is directly reachable) is operating.

sourcenet network

Network queried in the EGP Poll packets. If there is no network shared with the neighbor, specify one of
the networks attached to the neighbor. Also use to specify a network shared with the neighbor, other
than the one on which the EGP packets are sent. Normally not needed. The default is the network shared
with the neighbor’s address.

pl time orminhello

Minimum acceptable interval between the transmission of EGP HELLO packets. If the neighbor fails to
respond to three hello packets, GateD stops trying to acquire the neighbor. Setting a larger interval gives
the neighbor a better chance to respond. The minhello is an alias for the p1 value defined in the EGP
specification. The default t ime value is 30.

p2 time orminpoll

Time interval between polls to the neighbor. If three polls are sent without a response, the neighbor is
declared "down" and all routes learned from that neighbor are removed from the routing database. A
longer polling interval supports a more stable routing database but is not as responsive to routing
changes. The minpol1 is an alias for the p2 value defined in the EGP specification. The default time
valueis 120.

traceoptions options
Tracing options for this EGP neighbor, which are:

packets All EGP packets, or packets [detail] sendor [detail] recv (detail provides
a more verbose format to provide more details; if used, detail must come before send
or recv)

hello EGP HELLO/I-HEARD-U packets used to determine neighbor reachability

acquire EGP ACQUIRE/CEASE packets used to initiate and terminate EGP sessions

update | EGP POLL/UPDATE packets used to request and receive reachability updates

bgp

The Border Gateway Protocol (BGP) is an exterior routing protocol used to exchange routing
information between multiple transit Autonomous Systems (ASs) as well as between transit and stub
ASs. BGP is related to EGP but operates with more capability, greater flexibility, and less bandwidth
required. BGP uses path attributes to provide more information about each route. It maintains an AS
path, which includes the AS number of each AS the route transits, providing information sufficient to
prevent routing loops in an arbitrary topology. You can also use path attributes to distinguish between
groups of routes to determine administrative preferences. This allows greater flexibility in determining
route preference to achieve a variety of administrative ends.

BGP supports two basic types of sessions between neighbors—internal (sometimes called IBGP) and
external. Internal sessions run between routers in the same AS, while external sessions run between
routers in different ASs. When sending routes to an external peer, the local AS number is prepended to
the AS path. Hence routes received from an external peer are guaranteed to have the AS number of that
peer at the start of the path. Routes received from an internal neighbor do not generally have the local
AS number prepended to the AS path. Hence, these routes generally have the same AS path the route
had when the originating internal neighbor received the route from an external peer. Routes with no AS
numbers in the path may be legitimately received from internal neighbors; these indicate that the
received route should be considered internal to your own AS.

The BGP implementation supports three versions of the BGP protocol—versions 2, 3 and 4. BGP
versions 2 and 3 are similar in capability and function. They only propagate classed network routes, and
the AS path is a simple array of AS numbers. BGP version 4 propagates fully general address-and-mask
routes, and the AS path has some structure to represent the results of aggregating dissimilar routes.

External BGP sessions may or may not include a single metric, which BGP calls the Multi-Exit
Discriminator (MED), in the path attributes. For BGP versions 2 and 3 this metric is a 16-bit unsigned
integer; for BGP version 4 it is a 32-bit unsigned integer. In either case, smaller values of the metric are
preferred. Currently this metric only breaks ties between routes with equal preference from the same
neighbor AS. Internal BGP sessions carry at least one metric in the path attributes, which BGP calls the
LocalPref. The size of the metric is identical to the MED. For BGP versions 2 and 3, this metric is better
when its value is smaller; for version 4 it is better when it is larger. BGP version 4 sessions optionally
carry a second metric on internal sessions, this being an internal version of the MED. The use of these
metrics depends on the type of internal protocol processing specified.

BGP collapses routes with similar path attributes into a single update for advertisement. Routes received
in a single update are readvertised in a single update. The churn caused by the loss of a neighbor is
minimized, and the initial advertisement sent during peer establishment is maximally compressed. BGP
does not read information from the kernel message by message, but fills the input buffer. It processes all
complete messages in the buffer before reading again. BGP also does multiple reads to clear all

incoming data queued on the socket. This feature may cause other protocols to be blocked for prolonged
intervals by a busy peer connection.

All unreachable messages are collected into a single message and sent prior to reachable routes during a
flash update. For these unreachable announcements, the next hop is set to the local address on the
connection, no metric is sent, and the path origin is set to incomplete. On external connections the AS
path in unreachable announcements is set to the local AS; on internal connections the AS path is set to
zero length.

BGP implementation expects external peers to be directly attached to a shared subnet, and expects those
peers to advertise next hops that are host addresses on that subnet (although this constraint can be
relaxed by configuration for testing). For groups of internal peers, however, there are several alternatives
that can be selected by specifying the group type. Type internal groups expect all peers to be directly
attached to a shared subnet so that, like external peers, the next hops received in BGP advertisements
may be used directly for forwarding. Type routing groups instead determine the immediate next hops for
routes, by using the next hop received with a route from a peer as a forwarding address, and using this to
look up an immediate next hop in an IGP’s routes. Such groups support distant peers, but need to be
informed of the IGP whose routes they use to determine immediate next hops. Finally, type IGP groups
expect routes from the group peers not to be used for forwarding at all. Instead, they expect that copies
of the BGP routes are also received through an IGP, and that the BGP routes are only used to determine
the path attributes associated with the IGP routes. Such groups also support distant peers and also need
to be informed of the IGP with which they are running.

For internal BGP group types (and for test groups), where possible, a single outgoing message is built
for all group peers based on the common policy. A copy of the message is sent to every peer in the
group, with possible adjustments to the next hop field as appropriate to each peer. This minimizes the
computational load of running large numbers of peers in these types of groups. BGP allows
unconfigured peers to connect if an appropriate group was configured with an a1 1ow clause.

Format
bgp vyes | no | on | off
[{

preference value ;
defaultmetric metric ;
traceoptions options ;
group type
external peeras ASnumber
| internal peeras ASnumber
| igp peeras ASnumber proto proto
| routing peeras ASnumber proto proto interface I1ist
| test peeras ASnumber

allow

{
network
network mask mask
network masklen number
all
host host

o

peer host
[metricout metric]
[localas ASnumber]
[nogendefault]
[gateway gateway]
[preference value]
[preference2 value]
[lcladdr local-address]
[holdtime time]
[version number]
[passive]
[sendbuffer number]
[recvbuffer number]
[indelay time]
[outdelay time]
[keep [all | none]]
[analretentive]
[noauthcheck]
[noaggregatorid]
[keepalivesalways]
[v3asloopokay]
[nov4asloop]
[logupdown]
[ttl ttl]
[traceoptions options] ;

Y1

Options and Parameters

yes | on

no | off (default)

Enables or disables BGP support. Disabled by default.

preference value ;
Preference for routes learned from BGP. A preference specified on the group or peer statements, or

by import policy, can override this. The default preference value is 170.

defaultmetric metric ;
Metric used when advertising routes over BGP. A metric specified on the group or peer statements,
or in export policy, can override this. The default metricis 65535.

traceoptions options ;
Tracing options for BGP. May be overridden on a group or peer basis. The trace options are:

packets All BGP packets, or packets [detail] sendor [detail] recv [detail]

provides a more verbose format to provide more details; if used, detail must come
before send or recv).

open BGP OPEN packets used to establish a peer relationship
update BGP UPDATE packets used to pass network reachability information

keepalive BGP KEEPALIVE packets used to verify peer reachability

Group Type Clause

peeras
For group type, specify one of the following peeras options:

external peeras ASnumber |n the classic external BGP group, full policy checking is
applied to all incoming and outgoing advertisements. The
external neighbors must be directly reachable through one of the
machine’s local interfaces. No metric included in external
advertisements and the next hop is computed with respect to the
shared interface.

internal peeras ASnumber |nternal group operating where there is no IP-level IGP; for
example, an SMDS network or MILNET. All neighbors in this
group must be directly reachable over a single interface. All
next-hop information is computed with respect to this interface.
Import and export policy may be applied to group
advertisements. Routes received from external BGP or EGP
neighbors are readvertised with the received metric.

igp peeras ASnumber

routing peeras ASnumber

Internal group that runs in association with an interior protocol.
The IGP group examines routes the IGP exports, and sends an
advertisement only if the path attributes could not be entirely
represented in the IGP tag mechanism. Only the AS path, path
origin, and transitive optional attributes are sent with routes. No
metric is sent, and the next hop is set to the local address the
connection uses. Received internal BGP routes are not used or
readvertised. Instead, the AS path information is attached to the
corresponding IGP route and the latter is used for
readvertisement.

Since internal IGP peers are sent only a subset of the routes the
IGP exports, the export policy used is the IGP’s. There is no
need to implement the "don’t route from peers in the same
group™ constraint, since the advertised routes are routes that IGP
already exports.

Internal group that uses the routes of an interior protocol to
resolve forwarding addresses. A type routing group propagates
external routes between routers not directly connected, and
computes immediate next hops for these routes by using the
BGP next hop that arrived with the route as a forwarding address
to be resolved using an internal protocol’s routing information.

In essence, internal BGP is used to carry AS external routes,
while the IGP is expected to only carry AS internal routes, and
the latter is used to find immediate next hops for the former. The
next hop in BGP routes advertised to the type routing peers are
set to local address on BGP connection to those peers, as it is
assumed a route to this address is propagated over IGP.

e proto proto - Interior protocol used to resolve BGP
route next hops, and can be the name of any IGP in the
configuration.

e interface 1list -Optionally provides a list of
interfaces whose routes are carried over the IGP for
which third party next hops can be used instead.

test peeras ASnumber Extension to external BGP that implements a fixed policy using
test peers. Fixed policy and special case code make test peers
relatively inexpensive to maintain. Test peers do not need to be
on a directly attached network. If GateD and the peer are on the
same (directly attached) subnet, the advertised next hop is
computed with respect to that network; otherwise the next hop is
the local machine’s current next hop.

All routing information advertised by and received from a test
peer is discarded, and all BGP advertisable routes are sent back
to the test peer. Metrics from EGP- and BGP-derived routes are
forwarded in the advertisement; otherwise no metric is included.

Group Type Allow Clause
Allows peer connections from any addresses in the specified range of network and mask pairs.

Configure all parameters for these peers on the group clause. The internal peer structures are created
when an incoming open request is received, and destroyed when the connection is broken. (For details
on specifying the network/mask pairs, see Route Filtering.)

Group Type Peer Clause
Configures an individual peer. Each peer inherits all parameters specified on a group as defaults. You

can override these defaults using parameters explicitly specified in the peer subclause. Allows the
following parameters:

metricout metric
Primary metric on all routes sent to the specified peer(s). Overrides the default metric, a metric specified

on the group, and any metric specified by export policy.

localas ASnumber
AS that GateD represents to this group of peers. ASnumber is set globally in autonomoussystem.

nogendefault

Does not generate a default route when EGP receives a valid update from its neighbor. The default route
is generated only when enabling the gendefault option.

gateway gateway
If a network is not shared with a peer, specifies a router on an attached network used as the next hop

router for routes received from this neighbor. Not needed in most cases.

preference value
Preference used for routes learned from these peers. Can differ from the default BGP preference set in
the bgp statement, so that GateD can prefer routes from one peer, or group of peers, over others. Import

policy can explicitly override this.

preference2 value
In the case of a preference tie, can break the tie.

lcladdr local-address
Address used on the local end of the TCP connection with the peer. For external peers, the local address

must be on an interface shared with the peer or with the peer’s gateway when using the gateway
parameter. A session with an external peer only opens when an interface with the appropriate local
address (through which the peer or gateway address is directly reachable) is operating. For other types of
peers, a peer session is maintained when any interface with the specified local address is operating. In
either case, incoming connections are only recognized as matching a configured peer if they are
addressed to the configured local address.

holdtime time

BGP holdtime value to use when negotiating the connection with this peer, in seconds. According to
BGP, if GateD does not receive a keepalive, update, or notification message within the period specified
in the Hold Time field of the BGP Open message, the BGP connection is closed. The value must be
either O (no keepalives are sent) or at least 3.

version number

Version of the BGP protocol to use with this peer. If specified, only the specified version is offered
during negotiation. Currently supported versions are 2, 3, and 4. By default, the highest supported
version is used first, and version negotiation is attempted.

passive
Does not attempt active OPENS to this peer. GateD should wait for the peer to issue an open. By default,

all explicitly configured peers are active.

sendbuffer numberand recvbuffer number
Controls the amount of send and receive buffering asked of the kernel. The maximum number

supported is 65535 bytes, although many kernels have a lower limit. Not needed on normally
functioning systems. By default, the maximum supported is configured.

indelay timeand outdelay time
Dampens route fluctuations. The indelay is the amount of time a route learned from a BGP peer must

be stable before it is accepted into the GateD routing database. The outdelay is the amount of time a
route must be present in the GateD routing database before it is exported to BGP. Default t ime in both
cases is 0.

keep all
Retains routes learned from a peer even if the routes’ AS paths contain one of our exported AS numbers.

analretentive
Issues warning messages when receiving questionable BGP updates such as duplicate routes and/or

deletions of nonexistent routes. Normally these events are silently ignored.

noauthcheck
Communicates with an implementation that uses some form of authentication other than the normal

authentication field of all ones.

noaggregatorid
GateD should specify the routerid in the aggregator attribute as zero (instead of its routerid) in order

to prevent different routers in an AS from creating aggregate routes with different AS paths.

keepalivesalways

GateD should always send keepalives, even when an update could have correctly substituted for one.
Allows interoperability with routers that do not completely obey the protocol specifications on this
point.

v3asloopokay

By default, GateD does not advertise routes whose AS path is looped (that have an AS appearing more
than once in the path) to version 3 external peers. Setting this flag removes this constraint. Ignored when
set on internal groups or peers.

nov4asloop
Does not advertise routes with looped AS paths to version 4 external peers. Can be useful to avoid
advertising such routes to peer which would incorrectly forward the routes on to version 3 neighbors.

logupdown
Logs a message using syslog whenever a BGP peer enters or leaves ESTABLISHED state.

ttl ttl

Provided when attempting to communicate with improperly functioning routers that ignore packets sent
with a TTL 1. Not all kernels allow the TTL to be specified for TCP connections. The default ttl for
local neighbors is 1; the default for nonlocal neighbors is 255.

traceoptions options ;
Tracing options for this BGP neighbor include:

packets All BGP packets, or packets [detail] sendor [detail] recv (detail
provides a more verbose format to provide more details; if used, detail must come
before send or recv)

open BGP OPEN packets used to establish a peer relationship

update BGP UPDATE packets used to pass network reachability information

keepalive BGP KEEPALIVE packets used to verify peer reachability

ospf

Open Shortest Path First (OSPF) routing is a shortest-path-first (SPF) or link-state protocol. OSPF is an
interior gateway protocol that distributes routing information between routers in a single Autonomous
System (AS). OSPF chooses the least cost path as the best path. Suitable for complex networks with
many routers, OSPF provides equal cost multipath routing where packets to a single destination can be
sent over more than one interface simultaneously. In a link-state protocol, each router maintains a
database describing the entire AS topology, which it builds out of the collected link state advertisements
of all routers. Each participating router distributes its local state (that is, the router’s usable interfaces
and reachable neighbors) throughout the AS by flooding.

Each multiaccess network with at least two attached routers has a designated router and a backup
designated router. The designated router floods a link state advertisement for the multiaccess network
and has other special responsibilities. The designated router concept reduces the number of adjacencies
required on a multiaccess network.

OSPF lets you group networks into areas. Routing information passed between areas is abstracted,
which can significantly reduce routing traffic. OSPF uses four different types of routes, listed in order of
preference—intra-area, inter-area, type 1 external, and type 2 external. Intra-area paths have destinations
within the same area, while inter-area paths have destinations in other OSPF areas. AS External (ASE)
routes are routes to destinations external to the AS. Routes imported into OSPF as type 1 routes are
supposed to be from IGPs whose external metrics are directly comparable to OSPF metrics.

When making a routing decision, OSPF adds the internal cost of the AS Border router to the external
metric. Type 2 ASEs are used for EGPs whose metrics are not comparable to OSPF metrics. In this case,
GateD uses only the internal OSPF cost of the AS Border router in the routing decision.

From the topology database, each router constructs a tree of the shortest paths with itself as the root.
This shortest-path tree gives the route to each destination in the AS. Externally derived routing
information appears on the tree as leaves. The link-state advertisement format distinguishes between
information acquired from external sources and from internal routers, so that there is no ambiguity about
the source or reliability of routes. Externally derived routing information (for example, routes learned
from EGP or BGP) passes transparently through the AS and is separate from OSPF’s internally derived
data. Each external route can also be tagged by the advertising router, enabling a passing of additional
information between routers on the borders of the AS.

OSPF optionally includes type of service (TOS) routing and allows administrators to install multiple
routes to a given destination for each type of service (such as for low delay or high throughput.) A router
running OSPF uses the destination address and the TOS to choose the best route to the destination.

OSPF intra- and inter-area routes are always imported into the GateD routing database with a preference
of 10. It would be a violation of the protocol if an OSPF router did not participate fully in the area’s

OSPF, so it is not possible to override this. Although it is possible to give other routes lower preference
values explicitly, it is ill-advised to do so.

Hardware multicast capabilities are also used where possible to deliver link-status messages.

OSPF areas are connected by the backbone area, the area with identifier 0.0.0.0. All areas must be
logically contiguous and the backbone is no exception. To permit maximum flexibility, OSPF allows the
configuration of virtual links to enable the backbone area to appear contiguous when they are actually
not.

All routers in an area must agree on that area’s parameters. A separate copy of the link-state algorithm is
run for each area. Because of this, most configuration parameters are defined on a per area basis. All
routers belonging to an area must agree on that area’s configuration. Misconfiguration leads to
adjacencies not forming between neighbors, and routing information might not flow, or even loop.

Authentication. You can authenticate OSPF protocol exchanges. Authentication guarantees that routing
information is imported only from trusted routers, to protect the Internet and its users. There are two
authentication schemes available. The first uses a simple authentication key of up to eight characters and
is standardized. The second is still experimental and uses the MD5 algorithm and an authentication key
of up to 16 characters.

The simple password provides very little protection, because in many cases it is possible to easily
capture packets from the network and learn the authentication key. The experimental MD5 algorithm
provides much more protection, as it does not include the authentication key in the packet.

The OSPF specification currently specifies that you configure the authentication type per area with the
ability to configure separate passwords per interface. This was extended to allow configuration of
different authentication types and keys per interface. Also, you can specify both a primary and a
secondary authentication type and key on each interface. Outgoing packets use the primary
authentication type, but incoming packets may match either the primary or secondary authentication
type and key.

You configure OSPF in the TCPWARE : GATED . CONF file using a GateD protocol statement.

Format
ospf vyes | no | on | off
[{
defaults
{
preference value ;
cost cost ;
tag [as] tag ;
type 1 | type 2 ;
bod

exportlimit routes ;

exportinterval time ;
traceoptions options;
monitorauthkey key ;
monitorauth none | [simple | md5] authkey ;
backbone | area area
{
authtype 0 | authtype 1 | none | simple ;
stub [cost cost] ;
networks
{
network [restrict] ;
network mask mask [restrict] ;
network masklen number [restrict] ;
host host [restrict] ;
b
stubhosts
{ host cost cost ; } ;
interface 1ist [cost cost]
{ interface-parameters } ;
interface 1ist nonbroadcast [cost cost]
{
pollinterval time ;
routers
{
gateway [eligible] ;
}i
interface-parameters
b
/* Backbone only: */
virtuallink neighborid router-id transitarea area
{ interface-parameters } ;
b
Y1

Options and Parameters
yes | on
no | off
Enables or disables OSPF support.

defaults
Defaults used when importing OSPF ASE routes into the GateD routing table, and exporting routes from
the GateD routing table into OSPF ASEs, including:

preference value; How OSPF routes compete with routes from other protocols in the GateD
routing table. The default preference value is 150.

cost cost ; Used when exporting a non-OSPF route from the GateD routing table into
OSPF as an ASE. Export policy can explicitly override this. The default
costis 1.

tag [as] tag ; OSPF ASE routes have a 32-bit tag field that the OSPF protocol does not
use, but export policy can use it to filter routes. When OSPF interacts with
an EGP, you can use the tag field to propagate AS path information. In this
case you would specify the as keyword and the tag is limited to 12 bits of
information. The default tag value is 0.

type 1 or 2 ; Export policy can explicitly change and override the default here. The
default is type 1.

exportlimit routes ;
How many ASEs are generated and flooded in each batch. The default export limits routes value is

100.

exportinterval time ;
How often a batch of ASE link state advertisements are generated and flooded into OSPF. The default

export interval t ime value is 1 (once per second).

traceoptions options ;
In addition to the following OSPF specific trace flags, OSPF supports the state which traces interface

and neighbor state machine transitions:

lsabuild Link State Advertisement creation

spf Shortest Path First (SPF) calculations
lsatransmit Link State Advertisement (LSA) transmission
lsareceive L SA reception

state State transitions

Packet tracing options (which you can modify with detail, send, and recv):

hello | OSPF HELLO packets used to determine neighbor reachability

dd OSPF Database Description packets used in synchronizing OSPF databases
request QOSPF Link State Request packets used in synchronizing OSPF databases
lsu OSPF Link State Update packets used in synchronizing OSPF databases

ack OSPF Link State Ack packets used in synchronizing OSPF databases

monitorauthkey key ;

monitorauth none | [simple | md5] authkey ;

You can query the OSPF state using the ospf monitor utility, which sends nonstandard OSPF
packets that generate a text response from OSPF. If you configure an authentication key, the incoming
requests must match the specified authentication key. These packets cannot change OSPF state, but the
act of querying OSPF can expend system resources. Not authenticated by default.

Backbone/Area Clause Options and Parameters

backbone or area area

Configures each OSPF router into at least one OSPF area. If you configure more than one area, at least
one must be the backbone. Configure the backbone using the backbone keyword only; you cannot
specify it as area 0. The backbone interface can be a virtuallink.

Further parameters include:

authtype 0 or 1 or none or OSPF specifies an authentication scheme per area. Each

simple interface in the area must use this same authentication
scheme, although it can use a different authentication key.
0 is the same as none; 1listhesameas simple.

stub [cost cost] A stub area is one in which there are no ASE routes. Use
cost to inject a default route into the area with the
specified cost.

networks
{ network [restrict] ;

network mask mask [restrict] ;

network masklen number
[restrict];
host host [restrict] ; }

stubhosts { host cost cost

interface list cost cost
{interface-parameters}

’

4

}

The networks list describes the scope of an area. Intra-
area LSAs that fall within the specified ranges are not
advertised into other areas as inter-area routes. Instead,
the specified ranges are advertised as summary network
LSAs.

If you specify restrict, the summary network LSAs
are not advertised. Intra-area LSAs that do not fall into
any range are also advertised as summary network LSAs.
This option is very useful on well-designed networks in
reducing the amount of routing information propagated
between areas. The entries in this list are either networks,
or a subnetwork/mask pair.

The stubhosts list specifies directly attached hosts that
should be advertised as reachable from this router, and the
costs with which they should be advertised. Specify point-
to-point interfaces here on which it is not desirable to run
OSPF.

It is also useful to assign an additional address to the
loopback interface (one not on the 127 network) and
advertise it as a stub host. If this address is the same one
used as the router ID, it enables routing to OSPF routers
by router ID, instead of by interface address. This is more
reliable than routing to one of the router’s interface
addresses, which may not always be reachable.

Use this form of the interface clause (with the
optional cost value, and immediately followed by the
interface-parameters) to configure a broadcast
(which requires IP multicast support) or a point-to-point
interface. (See the interfaces statement for a
description of 1ist.) Each interface has a cost. The costs
of all the interfaces a packet must cross to reach a

destination are summed to get the cost to that destination.
The cost can be any non-zero value (the default is 1).

The following are the interface-parameters. You can specify them on any class of interface:

enable | disable ;

retransmitinterval time ;

transitdelay time ;
priority value ;
hellointerval time ;

routerdeadinterval time ;

authkey key ;

retransmitinterval time

transitdelay time

priority value

hellointerval time

routerdeadinterval time

authkey key

Number of seconds between link state advertisement retransmissions
for adjacencies belonging to this interface.

Estimated number of seconds required to transmit a link state update
over this interface. Takes into account transmission and propagation
delays and must be greater than 0.

Number between 0 and 255 specifying the priority for becoming the
designated router on this interface. When two routers attached to a
network both attempt to become designated router, the one with the
highest priority prevails. A router whose router priority is 0 is
ineligible to become designated router.

Length of time, in seconds, between Hello packets that the router
sends on the interface.

Number of seconds not hearing a router’s Hello packets before the
router’s neighbors will declare it down.

Used by OSPF authentication to generate and verify the
authentication field in the OSPF header. You can configure the
authentication key on a per-interface basis. Specify it using one to
eight decimal digits separated by periods, a one to eight byte
hexadecimal string preceded by 0x, or a one to eight character string
in double quotes.

The form of the interface clause with the nobroadcast option is for point-to-point interfaces
only. By default, OSPF packets to neighbors on point-to-point interfaces are sent using the IP multicast
mechanism. GateD detects this condition and falls back to using sending unicast OSPF packets to this
point-to-point neighbor.

If you do not want IP multicasting, because the remote neighbor does not support it, specify
nobroadcast to force the use of unicast OSPF packets. You can also use this option to eliminate
warnings when GateD detects the bug mentioned previously. (See the previous page for the
interface-parameters.)

Use this form of the interface clause to specify a nonbroadcast interface on a nonbroadcast multiaccess
(NBMA) media. Since an OSPF broadcast media must support IP multicasting, you must configure a
broadcast-capable media, such as Ethernet, that does not support IP multicasting as a nonbroadcast
interface. A nonbroadcast interface supports any of the standard interface clauses listed previously, plus
the following two that are specific to nonbroadcast interfaces:

pollinterval time Before adjacency is established with a neighbor, OSPF packets are sent
periodically at the specified poll interval.

routers gateway By definition, it is not possible to send broadcast packets to discover OSPF
neighbors on a nonbroadcast, so you must configure all neighbors. The list
includes one or more neighbors and an indication of their eligibility to
become a designated router.

virtuallink neighborid routerid transitarea area
{ interface-parameters } ;

For backbone only: Virtual links are used to establish or increase connectivity of the backbone area. The
neighborid is the router-1D of the other end of the virtual link. The transit area specified must also
be configured on this system. You can specify all standard interface parameters defined by the interface
clause previously described on a virtual link. (See the previous page for the interface-
parameters.)

static

The static statements define the static routes GateD uses. A single static statement can specify
any number of routes. These statements must occur after protoco1 Statements and before control
statements in GATED . CONF. Specify any number of stat ic statements, each containing any number
of static route definitions. You can override these routes with ones with better preference values.

Format
static
{
host host gateway list
| network [mask mask | masklen number] gateway list
| default gateway 1ist
[interface 1ist]
[preference value]
[retain]
[reject]
[blackhole]
[noinstall]

network [mask mask | masklen number]
interface interface
[preference value]
[retain]
[noinstall]

I4

Options and Parameters

host...gateway listordefault gateway list

Most general form of the static statement. Defines a static route through one or more gateways. Static
routes are installed when one or more of the gateways listed are available on directly attached interfaces.
If more than one eligible gateway is available, they are limited by the number of multipath destinations
supported.

The second form of the network mask. .. clause farther down in the statement is for primitive
support of multiple network addresses on one interface.

interface list
Gateways are valid only when they are on one of these interfaces.

preference value
Preference of this static route. Controls how this route competes with routes from other protocols. The
default value is 60.

retain

Prevent specific static routes from being removed. Normally GateD removes all routes except interface
routes from the kernel forwarding table during a graceful shutdown. Useful for ensuring that some
routing is available when GateD is down.

noinstall

Do not install the route in the kernel forwarding table when active, but make it still exportable to other
protocols. Normally the route with the lowest preference is installed there and is the route exported to
other protocols.

iImport

The control statements are:

import
export
aggregate
generate

Format
import [restrict | preference value]

The import statements control importing routes from routing protocols, and installing the routes in
GateD’s routing database. The format of an import Statement varies depending on the source
protocol. In all cases, you can specify one of two keywords to control how routes compete with other
protocols:

restrict Restrict the routes from the routing table. In some cases this means that the
routes are not installed in the routing table. In others, it means that they are
installed with a negative preference; this prevents them from becoming active
so that they will not be installed in the forwarding table or exported to other
protocols.

preference value Preference value used when comparing this route to other routes from other
protocols. The route with the lowest preference available at any given route
becomes the active route, is installed in the forwarding table, and can be
exported to other protocols. The individual protocols configure the default
preferences.

Importing Routes from BGP and EGP
You can control EGP importation by AS. Note that EGP and BGP versions 2 and 3 only support

propagating natural networks, so the host and default route filters are meaningless. BGP version 4
supports propagating any destination along with a contiguous network mask.

EGP and BGP both store any routes rejected implicitly by their not being mentioned in a route filter, or
explicitly if restrict appears in the routing table with a negative preference. A negative preference
prevents a route from becoming active, which prevents it from being installed in the forwarding table or
exported to other protocols. This removes the need to break and reestablish a session on reconfiguring if
changing the importation policy.

The syntax of the import statement for importing routes from BGP or EGP is any of the following:

import proto bgp | egp autonomoussystem ASnumber restrict ;
import proto bgp | egp autonomoussystem ASnumber
[preference value] {
route-filter [restrict | preference value] ; } ;
import proto bgp aspath ASpathregexp
origin any | [igp] [egp] [incomplete] restrict ;
import proto bgp aspath ASpathregexp
origin any | [igp] [egp] [incomplete]
[preference value] {
routefilter [restrict | preference value] ; } ;

The third and fourth variation of the import statements is for BGP only and supports controlling
propagation by using AS path regular expressions. An AS path is a list of ASs that routing information
passes through to get to a router, and an indicator of the origin of the AS path. Use this information to
set the preference of one path to a destination network over another. You do this by listing patterns
applied to AS paths when importing and exporting routes. Each AS that a route passes through prepends
its AS number to the beginning of the AS path.

Aspath Clause
The following aspath clause in the import Statement indicates that an AS matching the

ASpathregexp with the specified origin is matched. The parameters follow:

aspath ASpathregexp origin any | [igp] [egp] [incomplete]

Aspath Clause Regular Expression
ASpathregexp

Regular expression, with the alphabet as the set of AS numbers, consisting of one or more AS path
expressions, which are terms and operators. An AS path term (ASpathterm) consists of the following:

ASnumber Any valid AS system number, from 1 through 65534.
Matches any AS number.
(ASpathregexp) Parentheses group sub-expressions. An operator such as asterisk (*) or question

mark (?) works on a single element or on a regular expression enclosed in
parentheses.

Aspath Clause Operators
AS path operators consists of the following:

ASpathterm {m} Exactly m repetitions, where m is a positive integer.
ASpathterm {m, } m or more repetitions, where m is a positive integer.
ASpathterm {m, n} At least m and at most n repetitions, where m and n are both nonnegative

integers and m <= n.

ASpathterm * Zero or more repetitions (shorthand for {0, }).
ASpathterm + One or more repetitions (shorthand for {1, }).
ASpathterm ? Zero or one repetition (shorthand for {0, 1}).

ASpathterm | Matches either term.

ASpathterm

Remaining Import Statement Options
origin any | [igp] [egp] [incomplete]

Details the completeness of AS path information. An origin of igp indicates that the route was learned
from an interior routing protocol and is most likely complete. An origin of egp indicates that the route
was learned from an exterior routing protocol that does not support AS paths (EGP for example), and
that the path is most likely not complete. When the path information is definitely not complete, use
incomplete.

Importing Routes from RIP, HELLO, and Redirects
You can control importing RIP, HELLO, and Redirect routes by any protocol, source interface, or

source gateway. If using more than one, they are processed from most general (protocol) to most
specific (gateway). RIP and HELLO do not support preferences to choose between routes of the same
protocol; they use metrics instead. They also do not save rejected routes since they have short update
intervals.

The syntax of the import Statement for importing routes from RIP, HELLO, or redirects is either of the
following:

import proto <rip | hello | redirect
[interface list | gateway list]
restrict ;

import proto rip | hello | redirect
[interface list | gateway list]
[preference value]
{ routefilter [restrict | preference value] ; } ;

Importing Routes from OSPF
You can only control importing AS External (ASE) routes. OSPF intra- and inter-area routes are always

imported into the GateD routing table with a preference 0f 10. If using an ospftag, the import clause
only applies to routes with the specified tag.

You can only restrict importing OSPF ASE routes if functioning as an AS border router. Do this by
specifying an export ospfase clause. Specifying an empty export clause can restrict importing
ASEs, when no ASEs are exported.

Like the other interior protocols, you cannot use preference t0 choose between OSPF ASE routes;
OSPF costs accomplish this. Routes rejected by policy go into the table with a negative preference.

The syntax of the import statement for importing routes from OSPF is either of the following:
import proto ospfase [tag ospftag] restrict ;
import proto ospfase [tag ospftag]

[preference value]
{ routefilter [restrict | preference value] ; } ;

export

Format
export [restrict | metric metric]

The export statement controls which routes GateD advertises to other systems. Like import, the
export syntax varies slightly for each protocol. Both syntaxes are similar and the meanings of many
of the parameters are the same. The main difference is that while source information controls importing
routes, both destination and source information control exporting routes.

The outer portion of a given export statement specifies the destination of the routing information you
control. The middle portion restricts the sources. The innermost portion is a route filter used to select
individual routes.

One thing that applies in all cases is the specification of a metric. All protocols define a default metric
for routes exported. In most cases, this can be overridden at several levels of the export statement. The
most specific specification of a metric is the one applied to the route exported. The values you can
specify for a metric depend on the destination protocol the export Statement references:

restrict Do not export anything. If specified on the destination portion of the export
statement, it means not to export anything to this destination. If specified on
the source portion, it means not to export anything from this source. If
specified as part of a route filter, it means not to export the routes matching
that filter.

metric metric Metric used when exporting to the specified destination.

Exporting to EGP and BGP
The AS controls exporting to EGP and BGP, the same policy applied to all routers in the AS. EGP

metrics range from 0 through 255, with 0 the most attractive. BGP metrics are 16-bit unsigned quantities
(that range from 0 through 65535, inclusive with 0 the most attractive). While BGP version 4 actually
supports 32-bit unsigned quantities, GateD does not yet support this.

If you do not specify an export policy, only routes to attached interfaces are exported. If you specify any
policy, the defaults are overridden; you should explicitly specify everything you want exported. (Note
that EGP and BGP versions 2 and 3 only support the propagation of natural networks, so the host and
default route filters are meaningless. BGP version 4 supports the propagation of any destination along
with a contiguous network mask.)

The syntax of the export statement for exporting routes to EGP or BGP is either of the following:

export proto bgp | egp as ASnumber restrict ;
export proto bgp | egp as ASnumber [metric metric]
{ exportlist ; } ;

Exporting to RIP and HELLO
Any protocol, interface, or gateway can control exporting to RIP and HELLO. If you specify more than

one, they are processed from most general (protocol) to most specific (gateway). It is not possible to set
metrics for exporting RIP routes into RIP, or exporting HELLO routes into HELLO. Attempts to do this
are silently ignored.

If you do not specify an export policy, RIP and interface routes are exported into RIP and HELLO, and
interface routes are exported into HELLO. If you specify any policy, the defaults are overridden; it is
necessary to explicitly specify everything that should be exported.

RIP version 1 and HELLO assume that all subnets of the shared network have the same subnet mask, so
they are only able to propagate subnets of that network. RIP version 2 is capable of propagating all
routes, when not sending version 1 compatible updates.

To announce routes that specify a next hop of the loopback interface (static and internally generated
default routes) over RIP or HELLO, specify the metric at some level in the export clause. Just setting a
default metric is not sufficient. This is a safeguard to verify that the announcement is intended.

The syntax of the export statement for exporting routes to RIP or HELLO is either of the following:

export proto «rip | hello
[interface 1list | gateway list] restrict ;

export proto «rip | hello
[interface list | gateway list] [metric metric]
{ exportlist ; } ;

Exporting to OSPF

It is not possible to create OSPF intra- or inter-area routes by exporting routes from the GateD routing
table into OSPF. It is only possible to export from the GateD routing table into OSPF ASE routes. It is
also not possible to control the propagation of OSPF routes within the OSPF protocol.

There are two types of OSPF ASE routes, type 1 and type 2 (see the OSPF protocol configuration for
details on the two types). Specify the default type using the de faults subclause of the ospf clause.
You can override this with the export statement.

OSPF ASE routes also have the provision to carry a tag. This is an arbitrary 32-bit number you can use
on OSPF routers to filter routing information. (See the OSPF protocol configuration for details on OSPF
tags.) You can override the default tag specified by the ospf defaults clause with a tag specified
on the export statement.

The syntax of the export statement for exporting routes to OSPF is either of the following:
export proto osfpase [type 1 | 2] [tag ospf-tag] restrict ;

export proto osfpase [type 1 | 2] [tag ospf-tag]
[metric metric]
{ exportlist ; } ;

Exporting BGP and EGP Routes
You can specify BGP and EGP routes by source AS. You can export all routes by AS path. The syntax

of the proto statement for exporting BGP or EGP routes is either of the following:

proto bgp | egp autonomoussystem ASnumber restrict ;
proto bgp | egp autono