
PMDF Programmer’s Reference Manual

Order Number: N-5303-66-NN-N

September 2015

This document describes the PMDF Application Program Interface (API) and callable SEND
facility for version 6.7 of the PMDF software.

Revision/Update Information: This manual supersedes the V6.6 PMDF Programmer’s
Reference Manual

Software Version: PMDF V6.7

Operating System and Version: Solaris SPARC V2.6, V8 or later; (SunOS V5.6, V5.8 or
later);

Red Hat Enterprise Linux 4 update 8 or later on x86; (or
other compatible Linux distribution)

OpenVMS VAX V6.1 or later;

OpenVMS Alpha V7.0 or later;

OpenVMS I64 V8.2 or later;

Windows 2003

Copyright ©2015 Process Software, LLC.
Unpublished — all rights reserved under
the copyright laws of the United States

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in any form or by any means electronic,
mechanical, magnetic, optical, chemical, or otherwise without the prior written permission of:

Process Software, LLC
959 Concord Street
Framingham, MA 01701-4682 USA
Voice: +1 508 879 6994; FAX: +1 508 879 0042
info@process.com

Process Software, LLC (‘‘Process’’) makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any
particular purpose. Furthermore, Process Software reserves the right to revise this publication and to
make changes from time to time in the content hereof without obligation of Process Software to notify
any person of such revision or changes.

Use of PMDF, PMDF-DIRSYNC, PMDF-FAX, PMDF-LAN, PMDF-MR, PMDF-MSGSTORE, PMDF-
MTA, PMDF-TLS, PMDF-X400, PMDF-X500, PMDF-XGP, and/or PMDF-XGS software and associated
documentation is authorized only by a Software License Agreement. Such license agreements specify
the number of systems on which the software is authorized for use, and, among other things, specifically
prohibit use or duplication of software or documentation, in whole or in part, except as authorized by
the Software License Agreement.

Restricted Rights Legend

Use, duplication, or disclosure by the government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in

Technical Data and Computer Software clause at DFARS 252.227-7013
or as set forth in the Commercial Computer Software —

Restricted Rights clause at FAR 52.227-19.

The PMDF mark and all PMDF-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries and are
used under license.

AlphaMate is a registered trademark of Motorola, Inc.

ALL-IN-1, Alpha AXP, AXP, Bookreader, DEC, DECnet, HP, I64, IA64, Integrity, MAILbus,
MailWorks, Message Router, MicroVAX, OpenVMS, Pathworks, PSI, RMS, TeamLinks,
TOPS-20, Tru64, TruCluster, ULTRIX, VAX, VAX Notes, VMScluster, VMS, and WPS-
PLUS are registered trademarks of Hewlett-Packard Company.

cc:Mail is a trademark of cc:Mail, Inc., a wholly-owned subsidiary of Lotus
Development Corporation. Lotus Notes is a registered trademark of Lotus
Development Corporation.

AS/400, CICS, IBM, Office Vision, OS/2, PROFS, and VTAM are registered trademarks
of International Business Machines Corporation. CMS, DISOSS, OfficeVision/VM,
OfficeVision/400, OV/VM, and TSO are trademarks of International Business Machines
Corporation.

RC2 and RC4 are registered trademarks of RSA Data Security, Inc.

dexNET is a registered trademark of Fujitsu Imaging Systems of America, Inc. Ethernet is a registered trademark of Xerox Corporation.

FaxBox is a registered trademark of DCE Communications Group Limited. GIF and ‘‘Graphics Interchange Format’’ are trademarks of CompuServe,
Incorporated.

InterConnections is a trademark of InterConnections, Inc. InterDrive is a registered trademark of FTP Software, Inc.

LANmanager and Microsoft are registered trademarks of Microsoft Corporation. Memo is a trade mark of Verimation ApS.

MHS, Netware, and Novell are registered trademarks of Novell, Inc. LaserJet and PCL are registered trademarks of Hewlett-Packard Company.

PGP and Pretty Good Privacy are registered trademarks of Pretty Good Privacy, Inc. Jnet is a registered trademark of Wingra, Inc.

Attachmate is a registered trademark and PathWay is a trademark of Attachmate
Corporation.

Pine and Pico are trademarks of the University of Washington, used by
permission.

PostScript is a registered trademark of Adobe Systems Incorporated. Solaris, Sun, and SunOS are trademarks of Sun Microsystems, Inc.

SPARC is a trademark of SPARC International, Inc. TCPware and MultiNet are registered trademarks of Process Software.

UNIX is a registered trademark of UNIX System Laboratories, Inc. TIFF is a trademark of Aldus Corporation.

Gold-Mail is a trademark of Data Processing Design, Inc. Copyright (c) 1990-2000 Sleepycat Software. All rights reserved.

libedit/editline is Copyright (c) 1992, 1993, The Regents of the University of California.
All rights reserved.

Contents

PREFACE ix

CHAPTER 1 THE PMDF API 1–1
1.1 INTRODUCTION TO THE API ROUTINES 1–1

1.2 ENQUEUING MESSAGES 1–2

1.3 DEQUEUING MESSAGES 1–4

1.4 MULTIPLE MESSAGE ENQUEUE AND DEQUEUE CONTEXTS 1–7

1.5 USAGE FROM MULTI-THREADED PROCESSES 1–7

1.6 MESSAGE HEADER STRUCTURES 1–7

1.7 PROGRAMS THAT RUN INDEFINITELY 1–10
1.7.1 OpenVMS Considerations 1–11
1.7.2 UNIX & Windows Considerations 1–11

1.8 WRITING OUTPUT FROM A CHANNEL PROGRAM 1–12

1.9 DEBUGGING PROGRAMS AND LOGGING MESSAGING ACTIVITY 1–12

1.10 REQUIRED PRIVILEGES 1–12
1.10.1 OpenVMS Systems 1–12
1.10.2 UNIX Systems 1–13
1.10.3 Windows Systems 1–13

1.11 COMPILING AND LINKING PROGRAMS 1–13

1.12 EXAMPLES OF USING THE API ROUTINES 1–14
1.12.1 Enqueuing a Simple Message 1–15
1.12.2 Dequeuing Messages 1–17
1.12.3 Dequeuing & Re-enqueuing Messages 1–24
1.12.4 Dequeuing & Returning Messages 1–31

1.13 API ROUTINE DESCRIPTIONS 1–36
1.13.1 Summary of Routines 1–36
1.13.2 Order Dependencies 1–39
1.13.3 Strings Passed To and From the API 1–41
1.13.4 Routine Descriptions 1–42

PMDFABORTMESSAGE 1–43
PMDFABORTPROGRAM 1–44
PMDFADDHEADERLINE 1–46
PMDFADDRECIPIENT 1–48
PMDFADDRESSDISPOSE 1–51
PMDFADDRESSGET 1–52
PMDFADDRESSGETPROPERTY 1–54
PMDFADDRESSPARSELIST 1–56
PMDFALIASNOEXPANSION 1–58
PMDFCANCELCALLBACK 1–59
PMDFCLOSELOGFILE 1–60
PMDFCLOSEQUEUECACHE 1–61
PMDFCOPYMESSAGE 1–62
PMDFDATABASEADDENTRY 1–64
PMDFDATABASECLOSE 1–68
PMDFDATABASEDELETEENTRY 1–69

iii

Contents

PMDFDATABASEGETENTRY 1–71
PMDFDEBUG 1–74
PMDFDECODEMESSAGE 1–76
PMDFDEFERMESSAGE 1–79
PMDFDELETEHEADERLINE 1–81
PMDFDEQUEUEEND 1–83
PMDFDEQUEUEINITIALIZE 1–84
PMDFDEQUEUEMESSAGE 1–85
PMDFDEQUEUEMESSAGEEND 1–86
PMDFDISPOSECHANNELCOUNTERS 1–88
PMDFDISPOSEHEADER 1–89
PMDFDONE 1–90
PMDFENQUEUEINITIALIZE 1–91
PMDFENQUEUEMESSAGE 1–92
PMDFGETADDRESSPROPERTY 1–94
PMDFGETBLOCKSIZE 1–97
PMDFGETCHANNELCOUNTERS 1–98
PMDFGETCHANNELNAME 1–103
PMDFGETDATETIME 1–106
PMDFGETENVELOPEID 1–108
PMDFGETERRORTEXT 1–110
PMDFGETHOSTNAME 1–112
PMDFGETMESSAGE 1–114
PMDFGETMESSAGEID 1–116
PMDFGETPOSTMASTERADDRESS 1–118
PMDFGETRECIPIENT 1–120
PMDFGETRECIPIENTFLAGS 1–123
PMDFGETUNIQUESTRING 1–125
PMDFGETUSERNAME 1–127
PMDFINITIALIZE 1–129
PMDFLOG 1–131
PMDFMAPPINGAPPLY 1–133
PMDFMAPPINGLOAD 1–136
PMDFOPTIONDISPOSE 1–138
PMDFOPTIONGETINTEGER 1–139
PMDFOPTIONGETREAL 1–141
PMDFOPTIONGETSTRING 1–143
PMDFOPTIONREAD 1–145
PMDFQUEUECACHEEND 1–147
PMDFQUEUECACHEGETENTRY 1–148
PMDFREADFAILURELOG 1–152
PMDFREADHEADER 1–154
PMDFREADLINE 1–155
PMDFREADTEXT 1–157
PMDFRECEIPTCONTROL 1–159
PMDFRECIPIENTDISPOSITION 1–162
PMDFRETURNMESSAGE 1–165
PMDFREWINDMESSAGE 1–168
PMDFSETCALLBACK 1–169
PMDFSETENVELOPEID 1–171
PMDFSETLIMITS 1–173
PMDFSETMUTEX 1–175
PMDFSETRECIPIENTFLAGS 1–178
PMDFSETRECIPIENTTYPE 1–180
PMDFSETRECEIPTADDRESSES 1–182
PMDFSTARTMESSAGEBODY 1–184
PMDFSTARTMESSAGEENVELOPE 1–185

iv

Contents

PMDFSTARTMESSAGEHEADER 1–187
PMDFWRITEDATE 1–188
PMDFWRITEFROM 1–189
PMDFWRITEHEADER 1–191
PMDFWRITELINE 1–192
PMDFWRITESUBJECT 1–194
PMDFWRITETEXT 1–196

CHAPTER 2 CALLABLE SEND 2–1
2.1 SENDING A MESSAGE 2–1

2.1.1 Envelope & Header "From:" Address 2–2
2.1.2 To:, Cc:, and Bcc: Addresses 2–2
2.1.3 Message Headers & Content 2–3

2.2 WRITING OUTPUT FROM A CHANNEL PROGRAM 2–4

2.3 REQUIRED PRIVILEGES 2–4

2.4 COMPILING AND LINKING PROGRAMS 2–5

2.5 EXAMPLES OF USING CALLABLE SEND 2–5
2.5.1 Sending a Simple Message 2–5
2.5.2 Specifying an Initial Message Header 2–7
2.5.3 Multiple Recipients, FAX Addresses, and Per Address

Status Messages 2–10
2.5.4 Using an Input Procedure 2–15

2.6 SUMMARY OF PMDF_send ITEM CODES 2–17

2.7 PMDF_send ROUTINE DESCRIPTION 2–21
PMDF_send 2–22

APPENDIX A ERROR CODES A–1

GLOSSARY Glossary–1

INDEX

EXAMPLES
1–1 Sample Mail Message File 1–3
1–2 Enqueuing a Message (Pascal) 1–15
1–3 Enqueuing a Message (C) 1–15
1–4 Output of Examples 1–2 and 1–3 1–16
1–5 Message Dequeuing (Pascal) 1–18
1–6 Message Dequeuing (C) 1–21
1–7 Output of Examples 1–5 and 1–6 1–24
1–8 Message Dequeuing & Re-enqueuing (Pascal) 1–25
1–9 Message Dequeuing & Re-enqueuing (C) 1–28
1–10 Dequeuing & Returning Messages (Pascal) 1–32
1–11 Dequeuing & Returning Messages (C) 1–33
1–12 Output of Examples 1–10 and 1–11 1–34
2–1 Sending a Simple Message (Pascal) 2–5

v

Contents

2–2 Sending a Simple Message (C) 2–6
2–3 Output of Examples 2–1 and 2–2 2–7
2–4 Specifying an Initial Message Header (Pascal) 2–8
2–5 Specifying an Initial Message Header (C) 2–8
2–6 Input File Used in Examples 2–4 and 2–5 2–9
2–7 Output of Examples 2–4 and 2–5 2–10
2–8 Multiple Addresses (Pascal) 2–11
2–9 Multiple Addresses (C) 2–13
2–10 Address Status Messages Produced by Examples 2–8 and 2–9 2–14
2–11 Using an Input Procedure (Pascal) 2–15
2–12 Using an Input Procedure (C) 2–16

FIGURES
1–1 Sample Header Structure 1–9
1–2 Calling Precedence for the API Message Enqueue Routines 1–40
1–3 Calling Precedence for the API Message Dequeue Routines 1–41

TABLES
1–1 Routines Included in the PMDF API 1–36
1–2 String Size Constants Used by the API 1–42
1–3 Properties of the Address phrase <@otherhost:user@host> 1–55
1–4 Database Symbolic Names and Values 1–65
1–5 Channel Counters List Entry 1–100
1–6 Envelope To: Address NOTARY Flags 1–124
1–7 PMDF_queue_cache_get_entry Item Codes 1–150
1–8 Disposition Values for Use with PMDF_recipient_disposition 1–163
2–1 PMDF_send Item Code Summary 2–18

vi

Preface

Purpose of This Manual

This manual describes the PMDF Application Program Interface (API) and callable
SEND facility. While this document is primarily intended for system programmers
writing mail software, system managers wanting to become more familiar with the inner
workings of PMDF may also benefit from a casual reading of this manual. Readers are
assumed to be familiar with PMDF and the electronic messaging standards it employs.1

This manual does not provide a description of PMDF suitable for end users. Non-
privileged users cannot use the routines described in this manual as most PMDF
operations require sufficient privileges to access messages in the PMDF message queues
as well as to create PMDF processing jobs.

Overview of This Manual

This manual describes two distinct interfaces. The first, called simply ‘‘the PMDF
API’’, is a low-level interface which can be used to both enqueue and dequeue PMDF
messages. The second interface, referred to as ‘‘callable SEND’’, is a single, high-level
routine which can be used to submit (i.e., enqueue) messages to the PMDF mail system.

Programmers writing code to merely send mail will probably find callable SEND
sufficient for their needs. Programmers wanting to write gateways or channels should
use the PMDF API. Both interfaces may be used simultaneously.

This manual consists of two chapters:

Chapter 1, The PMDF API, describes the low-level interface routines used for
enqueuing and dequeuing messages to and from PMDF’s message queues.
Chapter 2, Callable Send describes the high-level interface routine used to send
(enqueue) mail messages.

Printed copies of this manual can be obtained from Process Software, LLC:

Process Software, LLC
959 Concord Street
Framingham, MA 01701 USA
+1 508 879 6994
+1 508 879 0042 (FAX)
sales@process.com

1 Generally speaking, RFCs 822, 1123, and 2045–2049.

ix

1 The PMDF API

The PMDF Application Program Interface (API) is composed of the routines described in this chapter.
The API can be used to submit to or remove messages from PMDF’s message queues. The act of
submitting a message to a message queue is called enqueuing while removing a message from a
queue is called dequeuing. User interfaces1 enqueue messages in order to send mail; while programs
that interface with other networks and mail systems dequeue messages to remove them from the
queues. Some intermediate processing programs, such as document converters, can both dequeue
and enqueue messages.

Note: The callable SEND interface can be used simultaneously with the PMDF API routines.

1.1 Introduction to the API Routines
Each routine in the PMDF API has two calling formats: a Pascal-style format and a

C-style format. The only difference between the two is the mechanism used to pass string
data: the Pascal-style format uses string descriptors, the C-style format uses pointers to
strings. All routines return VMS-style status codes - if the low bit is set, the routine was
successful. The strings returned by the C-style routines are null-terminated, but strings
passed in to those routines need not be.

The API routines fall into three classes: routines to enqueue a message, routines
to dequeue a message, and miscellaneous routines which typically query or set PMDF
states. The use of the enqueue and dequeue routines is discussed at length in Sections
1.2 and 1.3.

A working knowledge of RFC 8222 and the relevant sections of RFC 11233 is essential
to programmers writing software which will create electronic mail messages with PMDF.
Programmers interested in creating MIME-compliant messages should also familiarize
themselves with RFCs 2045 and 2046.4

Note that channel programs written using the API should always use the PMDFlog
routine to write output to the channel log file.

1 User interfaces that send mail are generally referred to as User Agents (UAs).
2 A copy of RFC 822, Standard for the Format of ARPA Internet Text Messages can be found in the RFC subdirectory of the

PMDF documentation directory, PMDF_ROOT:[DOC.RFC] on OpenVMS or /pmdf/doc/rfc on UNIX and NT.
3 A copy of RFC 1123, Internet Host Requirements — Application and Support can be found in the RFC subdirectory of the

PMDF documentation directory.
4 A copy of these RFCs can be found in the RFC subdirectory of the PMDF documentation directory.

1–1

The PMDF API
Enqueuing Messages

1.2 Enqueuing Messages
Messages are introduced to the PMDF mail system by enqueuing them. Each

enqueued message contains two required pieces and one optional piece: the message
envelope, the message header, and the optional message body. The contents of the first
two pieces, envelope and header, must be provided by the program using the API. The
third piece, the message body, is optional - a message does not need to contain a body.
Briefly, these three pieces are as follows:

• Envelope: The message envelope contains the envelope From: address and the list
of envelope To: addresses. The envelope is created by PMDF when the message
is enqueued; the addresses to be placed in the envelope must conform to RFC 822.
Note that in the message envelope no distinction is made between To:, Cc:, and
Bcc: addresses. Consequently, the envelope To: addresses are often referred to as
simply envelope recipient addresses.

Programs should treat the message envelope as an opaque structure and rely
solely upon the PMDF API routines to read and write information from and to the
envelope. The format of the envelope is subject to change; the API routines insulate
programmers from such changes.

The routines PMDFstartMessageEnvelope, PMDFsetRecipientType, and PMD-
FaddRecipient are used to specify the message envelope.

• Header: The message header contains RFC 822-style header lines. The program
enqueuing the message has nearly complete control over the contents of the header
and can specify as many or as few header lines as it sees fit. The only header lines
which a program using the API must explicitly generate are the From: and Date:
header lines. If the From: header line is omitted, PMDF will construct it from the
envelope From: address. Note that this may not always be appropriate.5 If the
Date: header line is omitted, PMDF will supply it as well as a Date-warning:
header line. These two header lines can be generated with PMDFwriteFrom and
PMDFwriteDate.

When the message is enqueued, PMDF will do its best to supply any mandatory
header lines that are missing. PMDF will also take measures to ensure that the
contents of the header lines conform to any relevant standards.

Any addresses appearing in the message header should conform to RFC 822.

The header is typically written line-by-line with the PMDFwriteLine or PMDFwrite-
Text routines. It may also be built up and output with the header structure manipu-
lation routines described in Section 1.6. The routines PMDFwriteFrom, PMDFwrite-
Date, and PMDFwriteSubject can be used to write From:, Date:, and Subject:
header lines. Using information supplied via the routines PMDFstartMessageEn-
velope and PMDFaddRecipient, PMDF will generate the From: and To: header
lines automatically as well as any necessary Cc: and Bcc: header lines.

• Body: The optional message body contains the content of the message. As with the
message header, the program enqueuing the message has nearly complete control
over the contents of the message body. The only exception to this is when the message
is structured with multiple parts or requires encoding (e.g., contains binary data, lines

5 For instance, when mail is addressed to a mailing list which specifies an Errors-to: address, then the Errors-
to: address should be used as the envelope From: address. In this case, it is not appropriate to derive the header
From: line from the envelope From: address.

1–2

The PMDF API
Enqueuing Messages

requiring wrapping, etc.). In such cases, PMDF will ensure that the message body
conforms to the MIME standard (RFC 2045–2049).

Message body lines are written with PMDFwriteLine or PMDFwriteText and read
with PMDFreadLine or PMDFreadText.

Enqueued messages are ASCII text files located in the PMDF queue directories. 6

A sample message is shown in Example 1–1. The essential pieces in that example are:
the message envelope, 1 ; the message header, 2 ; and the message body, 3 .

Example 1–1 Sample Mail Message File

m;GONZALO@EXAMPLE.COM 1
ALONSO@EXAMPLE.COM

Date: Sat, 4 May 2012 18:04 EDT 2
From: Gonzalo <GONZALO@EXAMPLE.COM>
To: King Alonso <ALONSO@EXAMPLE.COM>
Subject: Walking

Alonso, 3
By’r lakin, I can go no further, sir;
My old bones ache: here’s a maze trod indeed

Through forth-rights and meanders! By your patience,
I needs must rest me.

Gonzalo

Note: Do not attempt to directly access messages in the PMDF message queues. Always use
the API routines (or callable SEND) to access PMDF messages. The file structure of
messages in PMDF’s message queues is subject to change. In addition, site specific
constraints can be placed on messages in various queue directories (e.g., message size,
encoding, character set usage, etc.). The API routines automatically handle constraints
and other issues.

The steps required to enqueue one or more messages are as follows:

1. Initialize PMDF resources and data structures with PMDFinitialize.

2. Initialize the PMDF enqueuing subsystem with PMDFenqueueInitialize.

3. For each message to enqueue, perform the following steps:

a. specify the message envelope with PMDFstartMessageEnvelope and PMDFad-
dRecipient;

b. specify the message header with PMDFstartMessageHeader, PMDFwriteFrom,
PMDFwriteDate, PMDFwriteSubject, and PMDFwriteLine;

c. specify the message body with PMDFstartMessageBody and PMDFwriteLine;
and

d. submit the message with PMDFenqueueMessage.

6 Actually, PMDF-FAX and PMDF-X.400 messages are binary files.

1–3

The PMDF API
Enqueuing Messages

4. Deallocate PMDF resources and data structures with PMDFdone.

If no message body is to be supplied, then Step 3c can be omitted.

Prior to the PMDFenqueueMessage call, a message submission can be aborted at any
point in Step 3 by calling either PMDFabortMessage or PMDFdone. PMDFabortMessage
only aborts the specified message enqueue while allowing other messages to be enqueued.
PMDFdone both aborts all active message enqueues and deallocates PMDF resources,
which prevents any further enqueue attempts until PMDF is initialized again.

When calling PMDFstartMessageEnvelope, a channel name may be specified. The
message is then enqueued under the context of the specified channel (i.e., submitted as
though enqueued by that channel itself). Typically, the l (local) channel should be used.
If you are writing your own channel, then you should specify the name of your channel
as reported by PMDFgetChannelName. 7

If the message being enqueued is the result of dequeuing a message, then the
envelope identification can be copied over from the old message to the new with
PMDFgetEnvelopeId and PMDFsetEnvelopeId. Similarly, the NOTARY processing
flags should be copied with PMDFgetRecipientFlags and PMDFsetRecipientFlags.

Examples 1–2, 1–3, 1–8 and 1–9 all illustrate how to enqueue a message.

Note: On OpenVMS the special PMDF_* logicals used to specify the contents of specific header
lines and signature boxes are only supported for use with VMS MAIL and the PMDF SEND
utility. These logicals are ignored when messages are enqueued by mechanisms other
than VMS MAIL.

1.3 Dequeuing Messages
Messages stored in PMDF’s message queues are removed from those queues by

dequeuing them. This is typically done by channel programs.8 When a message is
dequeued, it is literally removed from PMDF’s message queues and, as far as PMDF is
concerned, no longer exists. This means that dequeuing a message relieves PMDF of
all further responsibility for the message—the responsibility is assumed to have been
passed on to another mailer, gateway, or user agent.

7 In some cases, it can be necessary to hard-code a channel name into a program or obtain the channel name by a means
other than PMDFgetChannelName. For example, the channel name for TCP/IP slave channels is specified at compile
time, and PhoneNet slave channels prompt for the name of the channel they are to process.

8 Channel programs comprise a broad class of programs that interface PMDF to other networks, mail systems (MTAs),
and user agents (UAs). Gateways are an example of channel programs: channel programs which gateway or otherwise
transport mail out of PMDF do so by dequeuing messages and are sometimes referred to as master channels; channel
programs which gateway or otherwise transport mail into PMDF do so by enqueuing messages and are sometimes referred
to as slave channels. Channel programs can also perform intermediate roles by dequeuing messages from one message
queue and requeuing them to another while processing the message at the same time (e.g., converting the message body
from one format to another).

1–4

The PMDF API
Dequeuing Messages

The message queue serviced by a program is determined from ‘‘out-of-band’’ infor-
mation. For instance, under OpenVMS the queue to be serviced is determined through
the PMDF_CHANNEL logical whose translation value gives the name of the channel to ser-
vice. On UNIX and NT, the channel name is given by the PMDF_CHANNEL environment
variable.

The steps taken to dequeue messages are as follows:

1. Initialize PMDF resources and data structures with PMDFinitialize.

2. Initialize the PMDF dequeuing subsystem with PMDFdequeueInitialize.

3. Process all pending messages for the channel by repeatedly executing the following
steps:

a. Access a message with PMDFgetMessage. This step also reads the envelope
From: address from the accessed message.

b. Process the accessed message. The following steps are used to read the currently
accessed message:

i. the envelope To: addresses and processing flags are read by repeatedly
calling PMDFgetRecipient and PMDFgetRecipientFlags;

ii. the message header lines are read by repeatedly calling PMDFreadLine
or PMDFreadText until the first blank line is encountered, or by calling
PMDFreadHeader to read the entire header at once; and

iii. the message body is read by repeatedly calling PMDFreadLine or PMDFread-
Text.

iv. any message delivery failure log can be read with repeated calls to PMDF-
readFailureLog.

c. Set the disposition of each envelope To: address with repeated calls to
PMDFrecipientDisposition.

d. Dequeue the message with PMDFdequeueMessageEnd.

4. Close the message dequeuing subsystem with a call to PMDFdequeueEnd.

5. Deallocate PMDF resources and data structures with a call to PMDFdone.

Note that the message is not actually dequeued until the very last processing step,
3d. This is very important: it keeps mail from being lost if the channel program fails
unexpectedly, the system crashes, or other unexpected disasters occur. The message
processing involved in Step 3 can be almost anything. The processing can even involve
re-enqueuing the message to another channel as illustrated in Examples 1–8 and 1–9.

When the disposition of each envelope To: address is determined, it should be
reported to PMDF by calling PMDFrecipientDisposition. The recognized dispositions
are given in the description of the PMDFrecipientDisposition routine and are
repeated below.

1–5

The PMDF API
Dequeuing Messages

Symbolic name Value Description

PMDF_DISP_DEFERRED 1 Recipient address processing has failed because of a temporary
problem (e.g., network down, remote host unreachable, mailbox
busy, etc.); defer processing of this address until later.

PMDF_DISP_DELIVERED 2 Recipient address was successfully delivered; generate a delivery
status notification if required.

PMDF_DISP_FAILED 3 Recipient address processing has failed because of a permanent
problem (e.g., invalid recipient address, recipient over quota, etc.);
no further delivery attempts should be made for this address.
Generate a non-delivery notification if required.

PMDF_DISP_RELAYED 4 Recipient address was forwarded to another address or
gatewayed into a non-NOTARY mail system. The message’s
NOTARY information was preserved - there is no need to
generate a ‘‘relayed’’ notification message.

PMDF_DISP_RELAYED_FOREIGN 5 Recipient address was forwarded to another address or
gatewayed to a non-NOTARY mail system. The message’s
NOTARY information was not preserved - generate a ‘‘relayed’’
notification message if required.

PMDF_DISP_RETURN 6 For this recipient, return the message as undeliverable; generate
a non-delivery notification if required.

When PMDFdequeueMessageEnd is called, the resulting processing depends upon
the disposition of the envelope To: recipient addresses as reported with
PMDFrecipientDisposition. If all recipient addresses have a permanent disposition
(PMDF_DISP_DELIVERED, PMDF_DISP_FAILED, PMDF_DISP_RELAYED,
PMDF_DISP_RELAYED_FOREIGN, or PMDF_DISP_RETURN), then any required notifica-
tions are generated and the message is permanently removed from the processing queue.
If all recipients are to be deferred PMDF_DISP_DEFERRED, then no notifications are gen-
erated and the message is left in the queue for later re-processing. If some recipients
have a permanent disposition while others were deferred, then

1. Notifications are generated for those recipients with permanent dispositions and
requiring notifications,

2. A new message is enqueued for just those recipients who were deferred, and

3. The original message is removed from the processing queue.

If the program needs to abort message processing, it should call PMDFdequeueMes-
sageEnd with a value of true (1) for the defer argument to that routine. This will leave
the message in the processing queue for later re-processing.

In the loop represented by Step 3, PMDFgetMessage will repeatedly return each
message in the current queue that requires processing until there are no more messages
to be processed. Each message in the queue will only be presented once; i.e., a job will
not repeatedly see a message that it has deferred. Multiple jobs can simultaneously run
and process the same message queue: PMDF will automatically prevent two or more jobs
from simultaneously processing the same message. When PMDFgetMessage is called, the
accessed message is locked so that no other jobs can access that message. The message
is unlocked when PMDFdequeueMessageEnd is called, or when the job exits (abnormally
or otherwise).

1–6

The PMDF API
Dequeuing Messages

Generally, programs which perform dequeue processing do not run indefinitely
but rather exit after processing all messages in a specific queue. If it’s necessary to
write a program that never exits and does dequeue processing, then PMDFdequeueEnd,
PMDFcloseQueueCache, PMDFcloseLogFile should be called after looping over every
message in a message queue. When it’s time to try processing the message queue again,
PMDFdequeueInitialize should be called before the first PMDFgetMessage call.

Examples 1–5, 1–6, 1–8, 1–9, 1–10, and 1–11 all illustrate message dequeue
processing.

1.4 Multiple Message Enqueue and Dequeue Contexts
All of the message enqueue and dequeue routines make use of context variables.

Each context variable is used to keep track of a single ‘‘thread’’ of message enqueue or
dequeue operations. By using multiple context variables, a program can manage and
perform several simultaneous message enqueue and dequeue operations. While each
enqueue context controls only a single message submission, each dequeue context can
control an entire series of message dequeues (e.g., with a single dequeue context all
message for a given channel can be processed and dequeued).

1.5 Usage from Multi-threaded Processes
With the exception of the PMDFdatabase routines, the PMDF API and underlying

routines are re-entrant and thread-safe. Multithreaded routines that will be using the
PMDF API must call PMDFsetMutex before calling any other API routines, including
PMDFinitialize. The PMDFsetMutex routine provides PMDF with routines to create,
lock, unlock, and dispose of thread mutexes. See the description of PMDFsetMutex for
further details.

For each PMDF database, a single per-process read context is maintained by PMDF.
Because of this, any sequence of chained PMDFdatabaseGetEntry calls must not be in-
terrupted by other threads accessing the same database. Any interruption will disrupt
the read state. A chained sequence is one that starts with a PMDF_DATABASE_GET_FIRST
or PMDF_DATABASE_GET_FIRST_ROOT access followed by
PMDF_DATABASE_GET_NEXT or PMDF_DATABASE_GET_NEXT_ROOT access to find subse-
quent, related entries.

Note that access to the PMDF queue cache database is thread safe.

1.6 Message Header Structures
A message header structure is used to store a collection of header lines. The

stored header lines can be output by PMDFwriteHeader to one or more messages being
enqueued, and altered with PMDFaddHeaderLine or PMDFdeleteHeaderLine.

1–7

The PMDF API
Message Header Structures

A header structure can be created in one of two ways:

1. While dequeuing a message, the header lines of that message can be read into a
header structure with PMDFreadHeader. In this case, PMDFreadHeader creates
a header structure, reads header lines into it, and then returns a pointer to the
structure. The structure can then be used with any of the other header routines.

2. By calling PMDFaddHeaderLine to add a header line to a non-existent header
structure. In this case, pass a value of zero to PMDFaddHeaderLine for the header
argument. PMDFaddHeaderLine will allocate and initialize the header structure,
add the specified header line to it, and then return the address of the header structure
in the header argument.

Neither of these routines actually returns the structure itself but merely a pointer to the
structure (e.g., the address in memory of the structure). This pointer can then be passed
to the other header routines. When you are done using a header, it should be disposed
of with PMDFdisposeHeader. This releases the memory allocated to the structure.

The header structure is an array of pointers to header line structures whose format
is described below. Each entry in the array describes a particular type of header line. The
HL_ constants defined in the API include files are indices into this array.9 For instance,
suppose that the message header of Example 1–1 is read with PMDFreadHeader and
stored in a header structure pointed at by the pointer variable HEADER. Then the header
structure would appear as shown in Figure 1–1.

After reading in a message header with PMDFreadHeader, a program can ‘‘probe’’ to
see which header lines were specified in that message header. This is done by checking
to see if the corresponding entry in the header structure array is zero (null) or not.
For instance, if HEADER[HL_REPLY_TO] is zero, then no Reply-to: header line was
present in the message header. From C, the ith entry in a header structure would be
referenced using the syntax (*hdr)[i]; e.g.,

(*hdr)[HL_DATE]->line

From Pascal, use hdr^[i]; e.g.,

hdr^[HL_DATE]^.line

The routine display_header_lines in Examples 1–8 and 1–9 illustrates how to walk
through a header structure.

The format of a header line structure is shown in Figure 1–1. (There are actually
four header line structures shown in that figure.) Each header line structure has three
fields, which are as follows:

9 These constants are defined in the files apidef.h and apidef.pen. The C header file apidef.h is located in the
PMDF_COM: directory on OpenVMS and the /pmdf/include directory on UNIX and NT. The Pascal environment
file apidef.pen is located in the PMDF_EXE: directory on OpenVMS.

1–8

The PMDF API
Message Header Structures

Figure 1–1 Sample Header Structure

LINE
A pointer to the header line. The header line is a null-terminated character string
of length LINE_LENGTH bytes. The quotes shown surrounding each header line in
Figure 1–1 are not part of the header line; they are used to indicate that a character
string is being depicted.

LINE_LENGTH
A signed longword (4 bytes) containing the length of the character string pointed at by
LINE. This length does not include the null terminator at the end of the string.

NEXT_LINE
A pointer to any additional header line structures describing header lines of the same
type. When zero, indicates that no additional header lines of the same type exist.

1–9

The PMDF API
Message Header Structures

The NEXT_LINE field is the mechanism which enables more than one header line of
a given type (e.g., Received:, Comments:, Keywords:, etc.) to be stored in a header
structure. For instance, if two Comments: header lines are stored in a header structure,
then the first one is accessed with

HEADER[HL_COMMENTS]->LINE

and the second one with

HEADER[HL_COMMENTS]->NEXT_LINE->LINE

Each entry in the header structure array is actually a pointer to a linked list of header
lines. Each header line in a given list is of the type corresponding to the index in the
header structure array. That is, each header line in the linked list HEADER[HL_x] is of
type HL_x. The order in which the header lines appear in the linked list are the order
in which they were added to the header structure: the first header line in the list is
the first one added, the second one is the second one added, and so on. Header lines
added to a structure by PMDFreadLine are added in the order that they are read from
a message header. Thus, the first Received: line in a header is the first one added by
PMDFreadLine, the second Received: line the second one added, and so forth.

1.7 Programs that Run Indefinitely
Special attention must be given to programs that can run indefinitely. An example of

such a program might be a server that continually listens for incoming mail connections
and enqueues any received mail to PMDF. The following discussion is concerned with
such programs. Programs which run and merely submit a few messages, loop over a
queue of messages and then exit, or user interfaces should not take the steps described
in this section.a

When PMDFinitialize is called, site-specific configuration information is loaded.
The life span of this information usually far exceeds the running time of a program that
uses it. However, this isn’t the case for a program that can run for weeks or months.
When PMDF configuration information changes, these programs need to be made aware
of the change so that they can reload this information. Subsequent calls to PMDFdone
and PMDFinitialize will not accomplish this task: a program must exit and restart in
order to ensure that all configuration information is reloaded.

Also, a program which enqueues or dequeues messages will open the queue cache
database and possibly the PMDF log file, mail.log_current. Care must be taken
to ensure that these files are not left open during periods of inactivity. Leaving
these files open might block activities that require exclusive access to those files.
Programs which run indefinitely enqueuing or dequeuing messages should always call
PMDFcloseQueueCache, PMDFcloseLogFile, and, if doing message dequeue activity,
PMDFdequeueEnd before going idle. The queue cache and log file will be automatically
reopened when needed. The queue cache should not be closed while in the middle of
dequeue processing; i.e., PMDFcloseQueueCache should not be called while looping over
messages in a message queue with PMDFgetMessage. PMDFcloseQueueCache should

a User interfaces should specify false (0) for the ischannel argument to PMDFinitialize.

1–10

The PMDF API
Programs that Run Indefinitely

be called after PMDFgetMessage has returned a PMDF__EOF status and before again
calling PMDFdequeueInitialize.

1.7.1 OpenVMS Considerations
The PMDF RESTART command is used after a change to the PMDF configuration

to restart components of PMDF which run indefinitely. In addition, the PMDF
CACHE/CLOSE command is used to force components of PMDF to close the queue
cache database should they have it open. One such component of PMDF is BN_SLAVE.
This component is a slave channel program which runs as a detached process. It starts
running at system startup and continues to run, processing incoming BITNET mail, until
Jnet or the system is shut down. When configuration changes are made or the queue
cache needs to be rebuilt, a PMDF RESTART command is issued to inform BN_SLAVE
of this fact. BN_SLAVE then either exits and restarts or closes the queue cache database
at its earliest convenience.

The routine PMDFsetCallBack provides a communication path whereby a running
program can be notified when a PMDF RESTART, PMDF SHUTDOWN, or PMDF
CACHE/CLOSE command has been issued. When a RESTART or SHUTDOWN
command is issued, a running program should note this fact and, as soon as is
convenient, exit and restart or simply exit. In response to a CACHE/CLOSE command,
the queue cache should be closed as soon as it is convenient to do so. This is
accomplished with the PMDFcloseQueueCache routine. The cache will be reopened
automatically when it is again needed. This is generally done by PMDFenqueueMessage
and PMDFgetMessage. The queue cache should not be closed while in the middle of
dequeue processing; i.e., it should not be called while looping over messages in a message
queue. PMDFcloseQueueCache should be called after PMDFgetMessage has returned a
PMDF__EOF status and before again calling PMDFdequeueInitialize.

On OpenVMS systems, the communication path established by PMDFsetCallBack
is implemented using cluster-wide resource locks. Thus, PMDF RESTART and PMDF
SHUTDOWN commands issued anywhere on an OpenVMS cluster will be seen by all
users of PMDFsetCallBack throughout the cluster.

1.7.2 UNIX & Windows Considerations
On UNIX and Windows systems, the PMDFsetCallBack facility is non-functional.

Calls to it will merely return PMDF__OK without doing anything. Likewise for the
PMDFcancelCallBack routine.

Also on UNIX and Windows systems, the pmdf restart and shutdown commands
cannot be used to restart or shutdown site-supplied API clients. Such clients must supply
their own mechanism for being signalled to either restart or shutdown.

1–11

The PMDF API
Writing Output from a Channel Program

1.8 Writing Output from a Channel Program
The stdin, stdout, and stderr I/O destinations (SYS$INPUT, SYS$OUTPUT, and

SYS$ERROR) are all controlled by PMDF and will vary depending upon the context
under which a channel program has been invoked. As such, programs which will operate
as PMDF channels should use the PMDFlog routine to write information to their log
file. Such programs should never write output directly to stdout or stderr or other
generic I/O destinations (e.g., Pascal’s ‘‘output’’ or FORTRAN’s default output logical
unit). There’s no telling where such output might go: it might go to the job controller’s
log file, it might even go down a network pipe to a remote client or server.

Note that the channel log file is a different file than the PMDF log file; the PMDFlog
and PMDFcloseLogFile are unrelated routines.

1.9 Debugging Programs and Logging Messaging Activity
The API does provide some limited debugging facilities which can help in tracking

down unusual behavior. The routine PMDFdebug can be called to enable debugging output
for either enqueuing or dequeuing operations. On OpenVMS systems, all debugging
output is written to PMDF_OUTPUT if defined or to SYS$OUTPUT otherwise. On UNIX
and Windows systems, debugging output is written to stdout.

PMDFdebug should be called after either PMDFenqueueInitialize or PMDFde-
queueInitialize or both have been called.

Further debugging output can be enabled by setting OS_DEBUG=1 in the PMDF
option file.

Message enqueue and dequeue activities performed through the PMDF API (and
callable SEND) will be logged when the channels involved are marked with the logging
channel keyword.

1.10 Required Privileges
As should not be surprising, use of the PMDF API requires privileges. Indeed, were

privileges not required, then anyone could read messages out of PMDF’s message queues
and send fraudulent mail messages.

1.10.1 OpenVMS Systems
Dequeuing messages only requires privileges sufficient to open, read from, and write

to the queue cache database and to open, read from, rename, and delete files in the PMDF
message queue directories. Under OpenVMS, the queue cache database and the queue
directories are protected (s:rwed,o:rwed,g,w) with the files owned by the PMDF

1–12

The PMDF API
Required Privileges

account if one was created when PMDF was installed or owned by the SYSTEM account
otherwise.

Enqueuing messages requires privileges sufficient to create, open, read from, and
write to the queue cache database as well as to create subdirectories and files in the
PMDF message queue directories. In addition, under OpenVMS the SYSPRV and
CMKRNL privileges are required so that PMDF can submit any processing jobs required
to handle an enqueued message. Note that PMDF itself does not use these privileges:
they are required by the $SNDJBC system service call used to dispatch processing jobs.

Under OpenVMS, use of the PMDFsetCallBack routine requires SYSLCK privilege:
cluster-wide resource locks with blocking AST’s are used to signal, across a cluster,
whether or not the PMDF queue cache needs to be closed and if PMDF detached
processing jobs (e.g., BN_SLAVE) should exit and restart.

1.10.2 UNIX Systems
On UNIX systems, a program which will be enqueuing or dequeuing messages from

or to PMDF must be owned by the account pmdf and run by that account. If the program
is to be run by users other than pmdf, then it must have the setuid attribute.

1.10.3 Windows Systems
On Windows systems, a program which will be enqueuing or dequeuing messages

from or to PMDF must be owned by the Administrator account and run by that account.

1.11 Compiling and Linking Programs

OpenVMS Systems

To declare the API routines, data structures, HL_ constants, PMDF item codes, and
PMDF error codes, C programs should use the PMDF_COM:apidef.h header file and
Pascal programs should use the environment file PMDF_EXE:apidef.pen.

Linking programs to the API is accomplished with a link command of the form

$ LINK program,PMDF_EXE:pmdfshr_link.opt/OPT

where program is the name of the object file to link.

1–13

The PMDF API
Compiling and Linking Programs

Solaris Systems

To declare the API routines, data structures, HL_ constants, PMDF item codes, and
PMDF error codes, C programs should use the /pmdf/include/apidef.h header file.

Linking a C program to the API is accomplished with a link command of the form

% cc -R/pmdf/lib/ -L/pmdf/lib/ -o program program.c \
-lpmdf -lsocket -lintl -lnsl -lm -lldapv3

where program is the name of your program.

Note: If you are compiling your program with gcc, then the commands

% gcc -g -fPIC -c -o program.oprogram.c
% gcc -g -R/pmdf/lib/ -L/pmdf/lib/ -o program program.o \

-lpmdf -lsocket -lintl -lnsl -lm -lldapv3 \
-lpthread

should be used instead.

Windows Systems

To declare the API routines, data structures, HL_ constants, PMDF item codes, and
PMDF error codes, C programs should use the C:\pmdf\include\apidef.h header
file.

When linking programs to the API with the Microsoft C/C++ compiler, use the
switches

-mD -D_WIN32_WINNT=0x0400 C:\pmdf\bin\libpmdf.lib

1.12 Examples of Using the API Routines
Several example programs, written in Pascal and C, are provided in this section:

• Examples 1–2, 1–3, and 1–4 illustrate message enqueuing;

• Examples 1–5, 1–6, and 1–7 illustrate message dequeuing;

• Examples 1–8 and 1–9 illustrate a program which both dequeues and enqueues
messages; and

• Examples 1–10, 1–11, and 1–12 illustrate a program which dequeues and returns all
messages in its message queue.

The example routines shown in this section can be found, on OpenVMS systems,
in the directory PMDF_ROOT:[DOC.EXAMPLES]. On UNIX systems, the examples can be
found in the /pmdf/doc/examples directory.

Note: The example Pascal programs are intended for use on OpenVMS. To use them on UNIX
or NT, changes to the examples will be required.

1–14

The PMDF API
Examples of Using the API Routines

1.12.1 Enqueuing a Simple Message
The programs shown in Examples 1–2 and 1–3 demonstrate how to enqueue a simple

‘‘Hello world’’ message. The "From:" address associated with the message is that of the
process running the program; the "To:" address is the local SYSTEM account. The output
of these programs is given in Example 1–4. The callouts shown in the first two examples
produce the corresponding output shown in the third example.

Example 1–2 Enqueuing a Message (Pascal)

(* api_example1.pas -- Send a "Hello world!" message to SYSTEM *)

[inherit (’pmdf_exe:apidef’)] program example1;

type uword = [word] 0..65535;

var
nq_context : PMDF_nq;
user : packed array [1..ALFA_SIZE] of char;
user_len : uword;

function SYS$EXIT (%immed status : integer := %immed 1) : integer; extern;

procedure check (status : integer);

begin (* check *)
if not odd (status) then begin
if nq_context <> nil then PMDF_abort_message (nq_context);
SYS$EXIT (status);

end; (* if *)
end; (* check *)

begin (* example1 *)
nq_context := nil;
check (PMDF_initialize (false));
check (PMDF_get_user_name (user, user_len));
check (PMDF_enqueue_initialize);
check (PMDF_start_message_envelope (nq_context, ’l’,

substr (user, 1, user_len))); 1

check (PMDF_add_recipient (nq_context, ’system’, ’system’)); 2
check (PMDF_start_message_header (nq_context));
check (PMDF_write_from (nq_context, substr (user, 1, user_len))); 3

check (PMDF_write_date (nq_context)); 4

check (PMDF_write_subject (nq_context, ’Hello world!’)); 5
check (PMDF_start_message_body (nq_context));
check (PMDF_write_line (nq_context, ’Hello’)); 6

check (PMDF_write_line (nq_context, ’ world!’)); 7
check (PMDF_enqueue_message (nq_context));
check (PMDF_done);

end. (* example1 *)

Example 1–3 Enqueuing a Message (C)

Example 1–3 Cont’d on next page

1–15

The PMDF API
Examples of Using the API Routines

Example 1–3 (Cont.) Enqueuing a Message (C)

/* api_example2.c -- Send a "Hello world!" message to SYSTEM */

#include <stdlib.h>

#ifdef __VMS
#include "pmdf_com:apidef.h"
#else
#include "/pmdf/include/apidef.h"
#endif

PMDF_nq *nq_context = 0;

void check (int stat)
{
if (!(1 & stat)) {
if (nq_context) PMDFabortMessage (&nq_context);
exit (stat);

}
}

main ()
{
char user[ALFA_SIZE+1];
int user_len = ALFA_SIZE;

check (PMDFinitialize (0));
check (PMDFgetUserName (user, &user_len));
check (PMDFenqueueInitialize ());
check (PMDFstartMessageEnvelope (&nq_context, "l", 1, user, user_len)); 1

check (PMDFaddRecipient (&nq_context, "system", 6, "system", 6)); 2
check (PMDFstartMessageHeader (&nq_context));
check (PMDFwriteFrom (&nq_context, user, user_len)); 3

check (PMDFwriteDate (&nq_context)); 4

check (PMDFwriteSubject (&nq_context, "Hello world!", 12)); 5
check (PMDFstartMessageBody (&nq_context));
check (PMDFwriteLine (&nq_context, "Hello", 5)); 6

check (PMDFwriteLine (&nq_context, " world!", 8)); 7
check (PMDFenqueueMessage (&nq_context));
check (PMDFdone ());

}

Example 1–4 Output of Examples 1–2 and 1–3

Example 1–4 Cont’d on next page

1–16

The PMDF API
Examples of Using the API Routines

Example 1–4 (Cont.) Output of Examples 1–2 and 1–3

Received: from EXAMPLE.COM by EXAMPLE.COM (PMDF #1339) id
<01GP37SOPRW0A9KZFV@EXAMPLE.COM>; Sat, 4 May 2012 18:04:00 EDT
Date: 4 May 2012 18:04:00 -0400 (EDT) 4
From: STEPHANO@EXAMPLE.COM 3
Subject: Hello world! 5
To: system@EXAMPLE.COM 2
Message-id: <01GP37SOPRW2A9KZFV@EXAMPLE.COM>
X-Envelope-to: system
Content-type: TEXT/PLAIN; CHARSET=US-ASCII
Content-transfer-encoding: 7BIT

Hello 6
world! 7

1.12.2 Dequeuing Messages
Each of the two programs shown in Examples 1–5 and 1–6 constitutes a PMDF-

to-batch-SMTP channel which reads messages from a message queue, converting each
message to a batch SMTP format stored in a file on disk. If the conversion is successful,
then the message is dequeued and deferred otherwise. Sample output is given in
Example 1–7.

Note that these example programs always attempt to specify an envelope id in the
batch SMTP message they output. This is done for illustration purposes only. In general,
the code should check to see if the envelope id obtained with PMDFgetEnvelopeId is of
zero length. Only if it has non-zero length should it then be outputting an envelope id.

Note: It is important to remember to define the PMDF_CHANNEL logical (OpenVMS) or
environment variable (UNIX and Windows) to be the name of the channel (in lower
case) to be serviced by this program. Also, if experimenting from your own account, do
not leave this logical or environment variable defined while not experimenting — PMDF
can see it when you send mail and submit that mail as though it was enqueued by the
channel given by PMDF_CHANNEL. (This is a debugging feature.)

The following items of note are identified with callouts in each of the two programs:

1 In the event of an error, the current message being processed is deferred and the
program exits.

2 get_message is a routine which will return true (1) if PMDFgetMessage successfully
accesses a message or false (0) otherwise. If PMDFgetMessage returns any error
other than PMDF__EOF, then the check routine, 1 , is invoked.

3 read_line is a routine which will return true (1) if PMDFgetLine successfully reads
a line from a message or false (0) otherwise. If PMDFreadLine returns any error other
than PMDF__EOF, then the check routine, 1 , is invoked.

1–17

The PMDF API
Examples of Using the API Routines

4 open_outbound is a routine which opens an output file to which to write the batch
SMTP command. Output from PMDFgetUniqueString is used in generating the file
name.

5 notify is a routine which, builds an RFC 1891 NOTIFY= parameter based upon the
NOTARY flags for an envelope "To:" recipient.

6 PMDFinitialize is invoked with the ischannel argument true.

7 PMDFdequeueInitialize creates and initializes a message dequeue context.

8 Using the get_message routine, the program loops over all messages to be processed.

9 Using PMDFgetRecipient, the program loops over the envelope "To:" address list in
the currently accessed message.

1 0 The NOTARY flags for the current envelope "To:" recipient are obtained with
PMDFgetRecipientFlags.

1 1 The disposition of the envelope "To:" recipient address is passed back to PMDF.

1 2 Using the read_line routine, the program loops over the message header and body,
copying each line to the batch SMTP file.

1 3 Processing was successful; the processed message is dequeued.

1 4 All done processing messages; dispose of the message dequeue context.

Example 1–5 Message Dequeuing (Pascal)

(* api_example3.pas -- Dequeue a message and output it in batch SMTP format *)

[inherit (’pmdf_exe:apidef’)] program api_example3 (output);

type
uword = [word] 0..65535;
string = packed array [1..ALFA_SIZE] of char;
bigstring = packed array [1..BIGALFA_SIZE] of char;
vstring = varying [64] of char;

var
dq_context : PMDF_dq;
empty : varying [1] of char;
env_id, from_adr, host, orig_adr, to_adr : string;
env_id_len, from_adr_len, host_len,
orig_adr_len, to_adr_len, txt_len : uword;

nflags, stat : integer;
outbound_open : boolean;
outfile : text;
txt : bigstring;

Example 1–5 Cont’d on next page

1–18

The PMDF API
Examples of Using the API Routines

Example 1–5 (Cont.) Message Dequeuing (Pascal)

procedure check (stat : integer); 1

var reason : varying [20] of char;

begin (* check *)
if not odd (stat) then begin
writev (reason, ’Error ’, stat:0);
if dq_context <> nil then PMDF_defer_message (dq_context, true, reason);
if outbound_open then
close (file_variable := outfile, disposition := delete);

halt;
end; (* if *)

end; (* check *)

function get_message : boolean; 2

var msg_file : string; msg_file_len : uword;

begin (* get_message *)
stat := PMDF_get_message (dq_context, msg_file, msg_file_len,

from_adr, from_adr_len);
get_message := odd (stat);
if (not odd (stat)) and (stat <> PMDF__EOF) then check (stat);

end; (* get_message *)

function read_line : boolean; 3

begin (* read_line *)
stat := PMDF_read_line (dq_context, txt, txt_len);
read_line := odd (stat);
if (not odd (stat)) and (stat <> PMDF__EOF) then check (stat);

end; (* read_line *)

procedure open_outbound; 4

var
str : string;
str_len : uword;

begin (* open_outbound *)
check (PMDF_get_unique_string (str, str_len));
open (file_variable := outfile,

file_name := ’ZZ’ + substr (str, 1, str_len) + ’.00’,
history := NEW, record_length := 1024);

stat := status (outfile);
if stat >= 0 then begin
rewrite (outfile);
outbound_open := true;

end else begin
writeln (’Pascal file error ’, stat:0, ’; aborting’);
check (0);

end; (* if *)
end; (* open_outbound *)

Example 1–5 Cont’d on next page

1–19

The PMDF API
Examples of Using the API Routines

Example 1–5 (Cont.) Message Dequeuing (Pascal)

function notify (nflags : integer) : vstring; 5

var str : vstring;

procedure add (bit : integer; toadd : varying [len] of char);
begin (* add *)
if 0 <> uand (nflags, bit) then begin
if length (str) = 0 then str := ’ NOTIFY=’ else str := str + ’,’;
str := str + toadd;

end; (* if *)
end; (* add *)

begin (* notify *)
str := ’’;
add (PMDF_RECEIPT_NEVER, ’NEVER’);
add (PMDF_RECEIPT_FAILURES, ’FAILURE’);
add (PMDF_RECEIPT_DELAYS, ’DELAY’);
add (PMDF_RECEIPT_SUCCESSES, ’SUCCESS’);
notify := str;

end; (* notify *)

begin (* api_example3 *)
empty := ’’;
dq_context := nil;
outbound_open := false;
check (PMDF_initialize (true)); 6
check (PMDF_get_host_name (host, host_len));
check (PMDF_dequeue_initialize (dq_context)); 7

while get_message do begin 8
check (PMDF_get_envelope_id (dq_context, env_id, env_id_len));
open_outbound;
writeln (outfile, ’EHLO ’, substr (host, 1, host_len));
writeln (outfile, ’MAIL FROM:<’, substr (from_adr, 1, from_adr_len), ’>’,

’ ENVID=’, substr (env_id, 1, env_id_len));
while odd (PMDF_get_recipient (dq_context, to_adr, to_adr_len, 9

orig_adr, orig_adr_len)) do begin
check (PMDF_get_recipient_flags (dq_context, nflags)); 1 0

writeln (outfile, ’RCPT TO:<’, substr (to_adr, 1, to_adr_len), ’>’,
’ ORCPT=’, substr (orig_adr, 1, orig_adr_len),
notify (nflags));

check (PMDF_recipient_disposition (dq_context, nflags, 1 1

PMDF_DISP_DELIVERED,
substr (to_adr, 1, to_adr_len),
substr (orig_adr, 1, orig_adr_len), empty));

end; (* while *)

Example 1–5 Cont’d on next page

1–20

The PMDF API
Examples of Using the API Routines

Example 1–5 (Cont.) Message Dequeuing (Pascal)

writeln (outfile, ’DATA’);
while read_line do begin 1 2

if txt_len > 0 then if txt[1] = ’.’ then write (outfile, ’.’);
writeln (outfile, substr (txt, 1, txt_len));

end; (* while *)
writeln (outfile, ’.’);
writeln (outfile, ’QUIT’);
close (outfile); outbound_open := false;
check (PMDF_dequeue_message_end (dq_context, false, empty)); 1 3

end; (* while *)
check (PMDF_dequeue_end (dq_context)); 1 4

check (PMDF_done);
end. (* api_example3 *)

Example 1–6 Message Dequeuing (C)

/* api_example4.c -- Dequeue a message and output it in batch SMTP format */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef __VMS
#include "pmdf_com:apidef.h"
#else
#include "/pmdf/include/apidef.h"
#endif

typedef char string[ALFA_SIZE+1];

string filename, from_adr, txt;
int outbound_open, txt_len;
PMDF_dq *dq_context = 0;
FILE *outfile;

void check (int stat) 1
{
char reason[20];
if (!(1 & stat)) {
sprintf (reason, "Reason %d", stat);
if (dq_context) PMDFdeferMessage (&dq_context, 1, reason, strlen (reason));
if (outbound_open) {
fclose (outfile);
remove (filename);

}
if (!stat) exit (0);
else exit (stat);

}
}

Example 1–6 Cont’d on next page

1–21

The PMDF API
Examples of Using the API Routines

Example 1–6 (Cont.) Message Dequeuing (C)

int get_message (void) 2
{

string msg_file;
int from_adr_len, msg_file_len, stat;

from_adr_len = msg_file_len = ALFA_SIZE;
stat = PMDFgetMessage (&dq_context, msg_file, &msg_file_len,

from_adr, &from_adr_len);
if (!(1 & stat) && stat != PMDF__EOF) check (stat);
return (1 & stat);

}

int read_line (void) 3
{

int stat;

txt_len = BIGALFA_SIZE;
stat = PMDFreadLine (&dq_context, txt, &txt_len);
if (!(1 & stat) && stat != PMDF__EOF) check (stat);
return (1 & stat);

}

void open_outbound (void) 4
{
char str[18+5+1];
int str_len = 18;

check (PMDFgetUniqueString (str, &str_len));
sprintf (filename, "ZZ%s.00", str);
outfile = fopen (filename, "w");
if (!outfile) {
fprintf (stderr, "Error opening output file; aborting\n", filename);
check (0);

}
outbound_open = 1;

}

void add (int nflags, int bit, char *src, char *dst)
{
if (!(nflags & bit)) return;
if (*dst) strcat (dst, ",");
strcat (dst, src);

}

void make_notify (int nflags, char *buf) 5
{
*buf = ’\0’;
add (nflags, PMDF_RECEIPT_NEVER, "NEVER", buf);
add (nflags, PMDF_RECEIPT_FAILURES, "FAILURE", buf);
add (nflags, PMDF_RECEIPT_DELAYS, "DELAY", buf);
add (nflags, PMDF_RECEIPT_SUCCESSES, "SUCCESS", buf);

}

Example 1–6 Cont’d on next page

1–22

The PMDF API
Examples of Using the API Routines

Example 1–6 (Cont.) Message Dequeuing (C)

main ()
{
string env_id, host, orig_adr, to_adr;
int env_id_len, nflags, host_len, orig_adr_len, to_adr_len;
char notify[64];

outbound_open = 0;
check (PMDFinitialize (1)); 6
host_len = ALFA_SIZE;
check (PMDFgetHostName (host, &host_len));
check (PMDFdequeueInitialize (&dq_context)); 7

while (get_message ()) { 8
env_id_len = ALFA_SIZE;
check (PMDFgetEnvelopeId (&dq_context, env_id, &env_id_len));
open_outbound ();
fprintf (outfile, "EHLO %s\n", host);
fprintf (outfile, "MAIL FROM:<%s> ENVID=%s\n", from_adr, env_id);
to_adr_len = orig_adr_len = ALFA_SIZE;
while (1 & PMDFgetRecipient (&dq_context, to_adr, &to_adr_len, 9

orig_adr, &orig_adr_len))
{
check (PMDFgetRecipientFlags (&dq_context, &nflags)); 1 0

make_notify (nflags, notify);
fprintf (outfile, "RCPT TO:<%s> ORCPT=%s", to_adr, orig_adr);
if (notify[0]) fprintf (outfile, " NOTIFY=%s\n", notify);
else fprintf (outfile, "\n");
check (PMDFrecipientDisposition (&dq_context, nflags, 1 1

PMDF_DISP_DELIVERED, to_adr,
to_adr_len, orig_adr, orig_adr_len,
NULL, 0));

to_adr_len = orig_adr_len = ALFA_SIZE;
}
fprintf (outfile, "DATA\n");
while (read_line ()) { 1 2

if (txt_len > 0) if (txt[0] == ’.’) fprintf (outfile, ".");
fprintf (outfile, "%s\n", txt);

}
fprintf (outfile, ".\nQUIT\n");
fclose (outfile); outbound_open = 0;
check (PMDFdequeueMessageEnd (&dq_context, 0, NULL, 0)); 1 3

}
check (PMDFdequeueEnd (&dq_context)); 1 4

check (PMDFdone ());
}

1–23

The PMDF API
Examples of Using the API Routines

Example 1–7 Output of Examples 1–5 and 1–6

EHLO EXAMPLE.COM
MAIL FROM:<stephano@example.com> ENVID=01ISXU84PB929AMHQL@EXAMPLE.COM
RCPT TO:<caliban@example.com>
ORCPT=rfc822;caliban@island.example.com NOTIFY=FAILURES,DELAY

DATA
Received: from EXAMPLE.COM by EXAMPLE.COM (PMDF #1339) id
<01GP3A97QW9CAATXKZ@EXAMPLE.COM>; Sat, 04 May 2012 18:04:00 EDT
Date: 04 May 2012 18:04:00 -0400 (EDT)
From: "Stephano the Drunken Butler" <stephano@example.com>
Subject: Testing
To: "Caliban the Savage" <caliban@island.example.com>
Message-id: <01GP3A97R5WIAATXKZ@EXAMPLE.COM>
MIME-version: 1.0
Content-type: TEXT/PLAIN; CHARSET=US-ASCII
Content-transfer-encoding: 7BIT

This is a test of the emergency broadcasting system.
Please do not be alarmed. Please do not hold your breath.

Bye
.
QUIT

1.12.3 Dequeuing & Re-enqueuing Messages
The programs shown in Examples 1–8 and 1–9 will loop through all messages in

a message queue, converting the body of each message and re-enqueuing the converted
message back to PMDF. The conversion process involves applying the ‘‘rot13’’ encoding
used by many news readers to encode potentially offensive message content.

Note: It is important to remember to define the PMDF_CHANNEL logical (OpenVMS) or
environment variable (UNIX and Windows) to be the name of the channel (in lower
case) to be serviced by this program. Also, if experimenting from your own account, do
not leave this logical or environment variable defined while not experimenting — PMDF
can see it when you send mail and submit that mail as though it was enqueued by the
channel given by PMDF_CHANNEL. (This is a debugging feature.)

The following items of note are identified with callouts in each of the two programs:

1 In the event of an error, the current message being processed is deferred, any new
message being enqueued is aborted, and the program exits.

2 get_message is a routine which will return true (1) if PMDFgetMessage successfully
accesses a message or false (0) otherwise. If PMDFgetMessage returns any error
other than PMDF__EOF, then the check routine is invoked.

3 read_line is a routine which will return true (1) if PMDFgetLine successfully reads
a line from a message or false (0) otherwise. If PMDFreadLine returns any error other
than PMDF__EOF, then the check routine is invoked.

4 A routine to walk through the header structure, hdr, and display any header lines
stored in the structure. This routine does not serve any real purpose here other than
to illustrate how to walk a header structure.

5 The infamous rot13 filter.

1–24

The PMDF API
Examples of Using the API Routines

6 PMDFinitialize is invoked with the ischannel argument true.

7 PMDFgetChannelName is used to determine the name of the channel being processed.
This information is later passed to PMDFstartMessageEnvelope.

8 PMDFdequeueInitialize creates and initializes a message dequeue context.

9 Using the get_message routine, the program loops over all messages to be processed.

1 0 The envelope id for the message being processed is obtained. This envelope id will
be carried over to the new message which will be enqueued.

1 1 Begin a message enqueue context. This new message will be the converted form of
the message to be dequeued.

1 2 Set the envelope id for the new message to be that of the old message.

1 3 Using PMDFgetRecipient, the program loops over the envelope "To:" address list in
an accessed message.

1 4 The NOTARY flags for the current envelope "To:" address are obtained with
PMDFgetRecipientFlags. They are then copied over to the same envelope
"To:" address in the new message by calling PMDFsetRecipientFlags and then
PMDFaddRecipient.

1 5 The disposition of the envelope "To:" address is declared.

1 6 The envelope is ended and the message header started.

1 7 PMDFreadHeader and PMDFwriteHeader is used to copy, without alteration, the
message header from the old message to the new message.

1 8 Call display_header_lines to display, on the terminal, the contents of the header
structure, hdr. This is merely done as an example of walking through a header
structure; displaying the structure serves no other useful purpose in this example.

1 9 Using the read_line routine, the program loops over the message body, reading
each line from the original messages, converting it, and then writing it to the new
message being enqueued.

2 0 The new message is enqueued and the message enqueue context disposed of.

2 1 The old message is dequeued.

2 2 All done processing mesages; dispose of the message dequeue context;

Example 1–8 Message Dequeuing & Re-enqueuing (Pascal)

(* api_example5.pas -- Dequeue a message, rot13 the message body,
and then requeue the message *)

[inherit (’pmdf_exe:apidef’)] program api_example5 (output);

type
uword = [word] 0..65535;
string = packed array [1..ALFA_SIZE] of char;
bigstring = packed array [1..BIGALFA_SIZE] of char;

Example 1–8 Cont’d on next page

1–25

The PMDF API
Examples of Using the API Routines

Example 1–8 (Cont.) Message Dequeuing & Re-enqueuing (Pascal)

var
channel, env_id, from_adr, orig_adr, to_adr : string;
channel_len, env_id_len, from_adr_len,
orig_adr_len, to_adr_len, txt_len : uword;

dq_context : PMDF_dq;
empty : varying [1] of char;
hdr : PMDF_hdr;
i, nflags, stat : integer;
nq_context : PMDF_nq;
outfile : text;
txt : bigstring;

function SYS$EXIT (%immed status : integer := %immed 1) : integer; extern;

procedure check (stat : integer); 1

var reason : varying [20] of char;

begin (* check *)
if not odd (stat) then begin
writev (reason, ’Reason ’, stat:0);
if dq_context <> nil then PMDF_defer_message (dq_context, true, reason);
if nq_context <> nil then PMDF_abort_message (nq_context);
if stat = 0 then SYS$EXIT (1) else SYS$EXIT (stat);

end; (* if *)
end; (* check *)

function get_message : boolean; 2

var msg_file : string; msg_file_len : uword;

begin (* get_message *)
stat := PMDF_get_message (dq_context, msg_file, msg_file_len,

from_adr, from_adr_len);
get_message := odd (stat);
if (not odd (stat)) and (stat <> PMDF__EOF) then check (stat);

end; (* get_message *)

function read_line : boolean; 3

begin (* read_line *)
stat := PMDF_read_line (dq_context, txt, txt_len);
read_line := odd (stat);
if (not odd (stat)) and (stat <> PMDF__EOF) then check (stat);

end; (* read_line *)

Example 1–8 Cont’d on next page

1–26

The PMDF API
Examples of Using the API Routines

Example 1–8 (Cont.) Message Dequeuing & Re-enqueuing (Pascal)

procedure display_header_lines (hdr : PMDF_hdr); 4

var i : integer; hdr_line : PMDF_hdr_line_ptr;

begin (* display_header_lines *)
for i := HL_FIRST_HEADER to HL_LAST_HEADER do begin
if hdr^[i] <> nil then begin
hdr_line := hdr^[i];
while hdr_line <> nil do begin
writeln (substr (hdr_line^.line^, 1, hdr_line^.line_length));
hdr_line := hdr_line^.next_line;

end; (* while *)
end; (* if *)

end; (* for *)
end; (* display_header_lines *)

function rot13 (c : char) : char; 5

begin (* rot13 *)
if c in [’A’..’Z’] then
rot13 := chr (((ord (c) - ord (’A’) + 13) mod 26) + ord (’A’))

else if c in [’a’..’z’] then
rot13 := chr (((ord (c) - ord (’a’) + 13) mod 26) + ord (’a’))

else rot13 := c;
end; (* rot13 *)

begin (* api_example5 *)
empty := ’’;
hdr := nil;
dq_context := nil;
nq_context := nil;
check (PMDF_initialize (true)); 6

check (PMDF_get_channel_name (channel, channel_len)); 7

check (PMDF_dequeue_initialize (dq_context)); 8
check (PMDF_enqueue_initialize);
while get_message do begin 9

check (PMDF_get_envelope_id (dq_context, env_id, env_id_len)); 1 0

check (PMDF_start_message_envelope (nq_context, 1 1

substr (channel, 1, channel_len),
substr (from_adr, 1, from_adr_len)));

check (PMDF_set_envelope_id (nq_context, substr (env_id, 1, env_id_len))); 1 2

while odd (PMDF_get_recipient (dq_context, to_adr, to_adr_len, 1 3

orig_adr, orig_adr_len)) do begin
check (PMDF_get_recipient_flags (dq_context, nflags)); 1 4

check (PMDF_set_recipient_flags (nq_context, nflags));
check (PMDF_add_recipient (nq_context, substr (to_adr, 1, to_adr_len),

substr (orig_adr, 1, orig_adr_len)));
check (PMDF_recipient_disposition (dq_context, nflags, 1 5

PMDF_DISP_DELIVERED,
substr (to_adr, 1, to_adr_len),
substr (orig_adr, 1, orig_adr_len), empty));

end; (* while *)

Example 1–8 Cont’d on next page

1–27

The PMDF API
Examples of Using the API Routines

Example 1–8 (Cont.) Message Dequeuing & Re-enqueuing (Pascal)

check (PMDF_start_message_header (nq_context)); 1 6

check (PMDF_read_header (dq_context, hdr)); 1 7

display_header_lines (hdr); 1 8

check (PMDF_write_header (nq_context, hdr));
check (PMDF_dispose_header (hdr));
check (PMDF_start_message_body (nq_context));

while read_line do begin 1 9

for i := 1 to txt_len do txt[i] := rot13 (txt[i]);
check (PMDF_write_line (nq_context, substr (txt, 1, txt_len)));

end; (* while *)
check (PMDF_enqueue_message (nq_context)); 2 0

check (PMDF_dequeue_message_end (dq_context, false, empty)); 2 1

end; (* while *)
check (PMDF_dequeue_end (dq_context)); 2 2

check (PMDF_done);
end. (* api_example5 *)

Example 1–9 Message Dequeuing & Re-enqueuing (C)

/* api_example6.c -- Dequeue a message, rot13 the message body,
and then requeue the message */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef __VMS
#include "pmdf_com:apidef.h"
#else
#include "/pmdf/include/apidef.h"
#endif

typedef char string[ALFA_SIZE+1];

string from_adr, txt;
int from_adr_len, txt_len;
PMDF_nq *nq_context = 0;
PMDF_dq *dq_context = 0;

Example 1–9 Cont’d on next page

1–28

The PMDF API
Examples of Using the API Routines

Example 1–9 (Cont.) Message Dequeuing & Re-enqueuing (C)

void check (int stat) 1
{
char reason[20];
if (!(1 & stat)) {
sprintf (reason, "Reason %d", stat);
if (dq_context) PMDFdeferMessage (&dq_context, 1, reason, strlen (reason));
if (nq_context) PMDFabortMessage (&nq_context);
if (!stat) exit (0);
else exit (stat);

}
}

int get_message (void) 2
{

string msg_file;
int msg_file_len, stat;

msg_file_len = from_adr_len = ALFA_SIZE;
stat = PMDFgetMessage (&dq_context, msg_file, &msg_file_len,

from_adr, &from_adr_len);
if (!(1 & stat) && stat != PMDF__EOF) check (stat);
return (1 & stat);

}

int read_line (void) 3
{

int stat;

txt_len = BIGALFA_SIZE;
stat = PMDFreadLine (&dq_context, txt, &txt_len);
if (!(1 & stat) && stat != PMDF__EOF) check (stat);
return (1 & stat);

}

void display_header_lines (PMDF_hdr *hdr) 4
{
int i;
PMDF_hdr_line *hdr_line;

for (i = HL_FIRST_HEADER; i <= HL_LAST_HEADER; i++) {
if ((*hdr)[i]) {
hdr_line = (*hdr)[i];
while (hdr_line) {
printf ("%s\n", hdr_line->line);
hdr_line = hdr_line->next_line;

}
}

}
}

Example 1–9 Cont’d on next page

1–29

The PMDF API
Examples of Using the API Routines

Example 1–9 (Cont.) Message Dequeuing & Re-enqueuing (C)

char rot13 (char c) 5
{
if (’A’ <= c && c <= ’Z’) return (((c - ’A’ + 13) % 26) + ’A’);
else if (’a’ <= c && c <= ’z’) return (((c - ’a’ + 13) % 26) + ’a’);
else return (c);

}

main ()
{
string channel, env_id, orig_adr, to_adr;
int channel_len, env_id_len, nflags, i, orig_adr_len, to_adr_len;
PMDF_hdr *hdr;
unsigned int key;

check (PMDFinitialize (1)); 6
channel_len = ALFA_SIZE;
check (PMDFgetChannelName (channel, &channel_len, &key, &key)); 7

check (PMDFdequeueInitialize (&dq_context)); 8
check (PMDFenqueueInitialize ());
while (get_message ()) { 9
env_id_len = ALFA_SIZE;
check (PMDFgetEnvelopeId (&dq_context, env_id, &env_id_len)); 1 0

check (PMDFstartMessageEnvelope (&nq_context, channel, channel_len, 1 1

from_adr, from_adr_len));
check (PMDFsetEnvelopeId (&nq_context, env_id, env_id_len)); 1 2

to_adr_len = orig_adr_len = ALFA_SIZE;
while (1 & PMDFgetRecipient (&dq_context, to_adr, &to_adr_len, 1 3

orig_adr, &orig_adr_len))
{
check (PMDFgetRecipientFlags (&dq_context, &nflags)); 1 4

check (PMDFsetRecipientFlags (&nq_context, nflags));
check (PMDFaddRecipient (&nq_context, to_adr, to_adr_len,

orig_adr, orig_adr_len));
check (PMDFrecipientDisposition (&dq_context, nflags, 1 5

PMDF_DISP_DELIVERED, to_adr,
to_adr_len, orig_adr, orig_adr_len,
NULL, 0));

to_adr_len = orig_adr_len = ALFA_SIZE;
}
check (PMDFstartMessageHeader (&nq_context)); 1 6

check (PMDFreadHeader (&dq_context, &hdr)); 1 7

display_header_lines (hdr); 1 8

check (PMDFwriteHeader (&nq_context, hdr));
check (PMDFdisposeHeader (&hdr));
check (PMDFstartMessageBody (&nq_context));

Example 1–9 Cont’d on next page

1–30

The PMDF API
Examples of Using the API Routines

Example 1–9 (Cont.) Message Dequeuing & Re-enqueuing (C)

while (read_line ()) { 1 9

for (i = 0; i < txt_len - 1; i++) txt[i] = rot13 (txt[i]);
check (PMDFwriteLine (&nq_context, txt, txt_len));

}
check (PMDFenqueueMessage (&nq_context)); 2 0

check (PMDFdequeueMessageEnd (&dq_context, 0, NULL, 0)); 2 1

}
check (PMDFdequeueEnd (&dq_context)); 2 2

check (PMDFdone ());
}

1.12.4 Dequeuing & Returning Messages
Examples 1–10 and 1–11 illustrate the use of PMDFdequeueMessageEnd to return

a message to its originator. A message in the channel’s queue is accessed and each
of its envelope "To:" recipients are given a disposition of PMDF_DISP_RETURN
which indicates that the message is undeliverable for that recipient. Then, when
PMDFdequeueMessageEnd is called, a bounce message is automatically generated and
sent back to the original message’s originator. The original message is then removed
from the queue. Note that no notification message will be generated if the NOTARY
flags for all of the recipients specify PMDF_RETURN_NEVER.

These two particular examples, through the use of PMDFgetMessage, return each
and every message in a message queue. A sample returned message is shown in
Example 1–12.

Note: It is important to remember to define the PMDF_CHANNEL logical (OpenVMS) or
environment variable (UNIX and Windows) to be the name of the channel (in lower
case) to be serviced by this program. Also, if experimenting from your own account, do
not leave this logical or environment variable defined while not experimenting — PMDF
can see it when you send mail and submit that mail as though it was enqueued by the
channel given by PMDF_CHANNEL. (This is a debugging feature.)

The following items of note are identified with callouts in each of the two programs:

1 In the event of an error, the current message being processed is deferred, any new
message being enqueued is aborted, and the program exits.

2 get_message is a routine which will return true (1) if PMDFgetMessage successfully
accesses a message or false (0) otherwise. If PMDFgetMessage returns any error
other than PMDF__EOF, then the check routine is invoked.

3 PMDFinitialize is invoked with the ischannel argument true.

4 Initialize a message dequeue context with PMDFdequeueInitialize.

5 Using the get_message routine, the program loops over all messages to be
processed.

6 Obtain the next envelope "To:" address for the current message.

7 Obtain the NOTARY flags for the envelope "To:" address just obtained.

1–31

The PMDF API
Examples of Using the API Routines

8 Set the disposition for this envelope "To:" address to PMDF_DISP_RETURN. This
will cause the message to be returned as undeliverable for this envelope "To:"
address.

9 The message is automatically returned when PMDFdequeueMessageEnd is called.

1 0 All done processing messages; dispose of the message dequeue context.

Example 1–10 Dequeuing & Returning Messages (Pascal)

(* api_example7.pas -- Return channel which returns all mail queued to it *)

[inherit (’pmdf_exe:apidef’)] program api_example7;

type
uword = [word] 0..65535;
string = packed array [1..ALFA_SIZE] of char;

var
from_adr, orig_adr, to_adr : string;
from_adr_len, orig_adr_len, to_adr_len : uword;
dq_context : PMDF_dq;
empty : varying [1] of char;
nflags : integer;

function SYS$EXIT (%immed status : integer := %immed 1) : integer; extern;

procedure check (stat : integer); 1

var reason : varying [20] of char;

begin (* check *)
if not odd (stat) then begin
writev (reason, ’Error ’, stat:0);
if dq_context <> nil then PMDF_defer_message (dq_context, true, reason);

end; (* if *)
end; (* check *)

function get_message : boolean; 2

var msg_file : string; msg_file_len : uword; stat : integer;

begin (* get_message *)
stat := PMDF_get_message (dq_context, msg_file, msg_file_len,

from_adr, from_adr_len);
get_message := odd (stat);
if (not odd (stat)) and (stat <> PMDF__EOF) then check (stat);

end; (* get_message *)

begin (* api_example7 *)
dq_context := nil;
empty := ’’;
check (PMDF_initialize (true)); 3

check (PMDF_dequeue_initialize (dq_context)); 4

Example 1–10 Cont’d on next page

1–32

The PMDF API
Examples of Using the API Routines

Example 1–10 (Cont.) Dequeuing & Returning Messages (Pascal)

while get_message do begin 5

while odd (PMDF_get_recipient (dq_context, to_adr, to_adr_len, 6
orig_adr, orig_adr_len)) do begin

check (PMDF_get_recipient_flags (dq_context, nflags)); 7

check (PMDF_recipient_disposition (dq_context, nflags, 8
PMDF_DISP_RETURN, substr (to_adr, 1, to_adr_len),
substr (orig_adr, 1, orig_adr_len),
’Message undeliverable; returned by the postmaster’));

end; (* while *)
check (PMDF_dequeue_message_end (dq_context, false, empty)); 9

end; (* while *)
check (PMDF_dequeue_end (dq_context)); 1 0

check (PMDF_done);
end. (* api_example7 *)

Example 1–11 Dequeuing & Returning Messages (C)

/* api_example8.c -- Return channel which returns all mail queued to it */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef __VMS
#include "pmdf_com:apidef.h"
#else
#include "/pmdf/include/apidef.h"
#endif

typedef char string[ALFA_SIZE+1];

string from_adr;
int from_adr_len, item_index;
PMDF_dq *dq_context = 0;

void check (int stat) 1
{
char reason[20];
if (!(1 & stat)) {
sprintf (reason, "Reason %d", stat);
if (dq_context) PMDFdeferMessage (&dq_context, 1, reason, strlen (reason));
if (!stat) exit (0);
else exit (stat);

}
}

Example 1–11 Cont’d on next page

1–33

The PMDF API
Examples of Using the API Routines

Example 1–11 (Cont.) Dequeuing & Returning Messages (C)

int get_message (void) 2
{

string msg_file;
int msg_file_len, stat;

msg_file_len = from_adr_len = ALFA_SIZE;
stat = PMDFgetMessage (&dq_context, msg_file, &msg_file_len,

from_adr, &from_adr_len);
if (!(1 & stat) && stat != PMDF__EOF) check (stat);
return (1 & stat);

}

main ()
{
string orig_adr, to_adr;
int i, nflags, orig_adr_len, to_adr_len;

channel_len = ALFA_SIZE;
check (PMDFinitialize (1)); 3
check (PMDFdequeueInitialize (&dq_context)); 4

while (get_message ()) { 5
item_index = 0;
to_adr_len = orig_adr_len = ALFA_SIZE;
while (1 & PMDFgetRecipient (&dq_context, to_adr, &to_adr_len, 6

orig_adr, &orig_adr_len)) {
check (PMDFgetRecipientFlags (&dq_context, &nflags)); 7

check (PMDFrecipientDisposition (&dq_context, nflags, 8
PMDF_DISP_RETURN, to_adr, to_adr_len,
orig_adr, orig_adr_len,
"Message undeliverable; returned by the postmaster", 49));

to_adr_len = orig_adr_len = ALFA_SIZE;
}
check (PMDFdequeueMessageEnd (&dq_context, 0, "", 0)); 9

}
check (PMDFdequeueEnd (&dq_context)); 1 0

check (PMDFdone ());
}

Example 1–12 shows a sample return message generated by PMDFreturnMessage.
In that example, the following items are marked with callouts: the message header, 1 ;
a MIME header line indicating that the message is a multi-part message, 2 ; the first
body part which contains a human readable explanation as to why the message was
returned, 3 ; the second body part which contains a machine readable explanation as to
why the message was returned, 4 ; and the third body part containing the message being
returned, 5 .

Example 1–12 Output of Examples 1–10 and 1–11

Example 1–12 Cont’d on next page

1–34

The PMDF API
Examples of Using the API Routines

Example 1–12 (Cont.) Output of Examples 1–10 and 1–11

Received: from example.com (PMDF V6.1 #8790) 1
id <01IXGG2X55A88Y55Z3@example.com>; Sat, 04 May 2012 18:04:00 EDT
Date: Sat, 04 May 2012 18:04:00 EDT
From: PMDF Internet Messaging <postmaster@example.com>
Subject: Delivery Notification: Delivery has been manually aborted
To: Trinculo@example.com, postmaster@example.com
Message-id: <01IXGG2Y8J468Y55Z3@example.com>
MIME-version: 1.0
Content-type: MULTIPART/REPORT; REPORT-TYPE=DELIVERY-STATUS; 2
BOUNDARY="Boundary_(ID_78nMbcjsTsCboulbhJC84A)"

--Boundary_(ID_78nMbcjsTsCboulbhJC84A) 3
Content-type: text/plain; charset=us-ascii
Content-language: EN-US

This report relates to a message you sent with the following header fields:

Message-id: <01IXGGR0TSYS8Y55Z3@example.com>
Date: Sat, 04 May 2012 18:04:00 -0400 (EDT)
From: Trinculo@example.com
To: Stephano@example.com
Subject: Meeting next Wednesday

Your message is being returned. It was forced to return by the postmaster.

The recipient list for this message was:

Recipient address: Stephano@example.com
Reason: Message undeliverable; returned by the postmaster

--Boundary_(ID_78nMbcjsTsCboulbhJC84A) 4
Content-type: message/DELIVERY-STATUS

Original-envelope-id: 01IXGFBILT3M8Y55Z3@example.com
Reporting-MTA: dns;example.com

Action: failed
Status: 5.0.0 (Message undeliverable; returned by the postmaster)
Original-recipient: rfc822;Stephano@example.com
Final-recipient: rfc822;Stephano@example.com

Example 1–12 Cont’d on next page

1–35

The PMDF API
Examples of Using the API Routines

Example 1–12 (Cont.) Output of Examples 1–10 and 1–11

--Boundary_(ID_78nMbcjsTsCboulbhJC84A) 5
Content-type: text/rfc822-headers

Return-path: Trinculo@example.com
Received: from example.com by example.com (PMDF V6.1 #8790)
id <01IXGG2X55A88Y55Z3@example.com>
(original mail from Trinculo@example.com); Sat, 04 May 2012 18:04:00 EDT
Received: from example.com by example.com (PMDF V6.1 #8790)
id <01IXGFBIKQIO8Y55Z3@example.com> for Stephano@example.com;
Sat, 04 May 2012 18:04:00 EDT
Date: Sat, 04 May 2012 18:04:00 -0400 (EDT)
From: Trinculo@example.com
Subject: Meeting next Wednesday
To: Stephano@example.com
Message-id: <01IXGFBILT3M8Y55Z3@example.com>
MIME-version: 1.0
Content-type: TEXT/PLAIN; CHARSET=US-ASCII

Can we reschedule the meeting of comic relief characters to be at 14:30?

--Boundary_(ID_78nMbcjsTsCboulbhJC84A)--

1.13 API Routine Descriptions
The strings passed as input to the C format API routines need not be zero terminated;

the API routines ignore any zero terminators and exclusively use the associated length
argument when determining the strings length. On output, however, the C format API
routines will always add zero terminators to output strings as well as return the strings’
lengths in the associated length arguments.

1.13.1 Summary of Routines
Table 1–1 summarizes the routines included in the PMDF API.

Table 1–1 Routines Included in the PMDF API

Enqueue routines Description

PMDFenqueueInitialize Prepare for one or more message enqueues
PMDFstartMessageEnvelope Begin a message enqueue context; specify the envelope

"From:" address
PMDFsetEnvelopeId Set the envelope id for the message
PMDFsetRecipientType Specify if an address is a "To:", "Cc:", or "Bcc:" address
PMDFsetRecipientFlags Set NOTARY flags for next envelope recipient address
PMDFaliasNoExpansion Inhibit expansion of aliases; generally, this routine should

not be used

1–36

The PMDF API
API Routine Descriptions

Table 1–1 (Cont.) Routines Included in the PMDF API

Enqueue routines Description

PMDFaddRecipient Specify "To:", "Cc:", and "Bcc:" addresses
PMDFstartMessageHeader End the message envelope and begin the message header
PMDFwriteDate Output a "Date:" header line
PMDFwriteFrom Output a "From:" header line
PMDFwriteSubject Output a "Subject:" header line
PMDFwriteHeader Output a header structure
PMDFstartMessageBody End the message header and begin the message body
PMDFwriteLine Output a line to the message header or body
PMDFwriteText Output a text string to the message header or body
PMDFenqueueMessage End the message and enqueue it; dispose of the message

enqueue context
PMDFabortMessage Abort a message and dispose of the message enqueue

context
PMDFreceiptControl Control the use of delivery and receipt request headers
PMDFsetLimits Set message size limits used to fragment messages
PMDFsetReceiptAddresses Set delivery and read receipt request addresses

Dequeue routines Description

PMDFdequeueInitialize Prepare for one or more message dequeues; create a
dequeue context

PMDFgetMessage Access a queued message; return the envelope "From:"
address

PMDFgetEnvelopeId Get the message’s envelope id
PMDFgetMessageId Get the message’s message id
PMDFgetRecipient Read the next envelope "To:" address
PMDFgetRecipientFlags Obtain NOTARY flags for previous envelope recipient

address
PMDFcopyMessage Copy the queued message to a new message being

enqueued
PMDFrecipientDisposition Specify the disposition of a recipient address.
PMDFreadHeader Read the header of a message
PMDFreadLine Read a line from a message; line feed record terminator is

stripped by API
PMDFreadText Read a line from a message; line feed record terminator is

not stripped by API
PMDFreadFailureLog Read a line from the message delivery failure log, if present
PMDFrewindMessage Go back to the start of the message header
PMDFdequeueMessageEnd Remove a message from the message queue
PMDFdequeueEnd Dispose of a message dequeue context

Address parsing Description

PMDFaddressParseList Parse a list of address producing an address context
PMDFaddressGet Extract an individual address from a list of parsed addresses
PMDFaddressGetProperty Extract a property of an individual address from a list of

parsed addresses
PMDFaddressDispose Dispose of an address context
PMDFgetAddressProperty Parse an address and return the specified property

Option file processing Description

PMDFoptionDispose Dispose of an option file context

1–37

The PMDF API
API Routine Descriptions

Table 1–1 (Cont.) Routines Included in the PMDF API

Option file processing Description

PMDFoptionGetInteger Obtain the value associated with an integer-valued option
PMDFoptionGetReal Obtain the value associated with a real-valued option
PMDFoptionGetString Obtain the value associated with a string-valued option
PMDFoptionRead Process an option file

Miscellaneous routines Description

PMDFabortProgram Abort the currently running program
PMDFaddHeaderLine Add a header line to a header structure
PMDFaddressToChannel Return the name of the channel to which the specified

address rewrites
PMDFcancelCallBack Cancel any call backs
PMDFchannelToHost Return the official host name associated with a channel
PMDFcloseLogFile Close the PMDF log file
PMDFcloseQueueCache Close the queue cache database
PMDFdebug Set enqueue and dequeue debugging flags
PMDFdatabaseAddEntry Add an entry to a database
PMDFdatabaseClose Close a database
PMDFdatabaseDeleteEntry Remove an entry from a database
PMDFdatabaseGetEntry Lookup an entry in a database
PMDFdeleteHeaderLine Remove a header line from a header structure
PMDFdisposeChannelCounters Dispose of a list of channel counters
PMDFdisposeHeader Dispose of a message header structure
PMDFdone Deallocate PMDF data structures and resources
PMDFgetBlockSize Obtain the size in bytes of a PMDF block
PMDFgetChannelName Obtain the current channel name
PMDFgetChannelCounters Obtain channel counters
PMDFgetErrorText Obtain information about a recent error message
PMDFgetDateTime Obtain the current date and time
PMDFgetHostName Obtain the official local host name
PMDFgetPostmasterAddress Obtain the local postmaster’s address
PMDFgetUniqueString Obtain a unique string suitable for use in filenames
PMDFgetUserName Obtain the current user name
PMDFhostToChannel Return the name of the channel associated with the

specified host name
PMDFinitialize Initialize PMDF data structures and resources
PMDFlog Write a line of text to a channel log file
PMDFmappingApply Map a string with a mapping table
PMDFmappingLoad Load a mapping table
PMDFqueueCacheEnd Dispose of a queue cache context created with

PMDFqueueCacheGetEntry
PMDFqueueCacheGetEntry Retrieve an entry from the queue cache database
PMDFsetCallBack Establish a call back routine
PMDFsetMutex Provide mutex handling routines

Obsolete routines Description

PMDFdequeueMessage Remove a message from the message queue;
superseded by PMDFrecipientDisposition and
PMDFdequeueMessageEnd

PMDFdeferMessage Defer a message for later reprocessing; superseded
by PMDFrecipientDisposition and PMDFde-
queueMessageEnd

1–38

The PMDF API
API Routine Descriptions

Table 1–1 (Cont.) Routines Included in the PMDF API

Obsolete routines Description

PMDFreturnMessage Return a message as undeliverable; non-NOTARY style
format; superseded by PMDFrecipientDisposition

1.13.2 Order Dependencies
Figure 1–2 visually depicts the calling order dependency of the message enqueue

routines. To the right of each routine name appears a horizontal line segment, possibly
broken across a column (e.g., PMDFwriteLine, PMDFwriteText). Routines for which
two horizontal line segments, one atop the other, appear are required routines —
routines which must be called in order to enqueue a message. These routines
are PMDFenqueueInitialize, PMDFstartMessageEnvelope, PMDFaddRecipient,
PMDFstartMessageHeader, and PMDFenqueueMessage. Now, to determine at which
point a routine can be called, start in the leftmost column and work towards the rightmost
column. Any routine whose line segment lies in the first (leftmost) column can be called
first. Any routine whose line segment falls in the second column can next be called
after which any routine whose line segment falls in the third column can be called,
etc., etc.. When more than one routine appears in the same column, any or all of those
routines can be called in any order. Progression from left to right across the columns is
mandated by the need to call the required routines. Note that of the required routines,
only PMDFaddRecipient can be called multiple times for a given message.

It is assumed in Figure 1–2 that PMDFinitialize is first called before any other
API routines. If more than one message is to be enqueued, PMDFenqueueInitialize
should only be called once, at the start of the first message.

1–39

The PMDF API
API Routine Descriptions

Figure 1–2 Calling Precedence for the API Message Enqueue Routines

Similarly, Figure 1–3 visually depicts the calling order dependency of the message
dequeue routines. In that figure, the required routines are PMDFdequeueInitialize,
and PMDFgetMessage.

In Figure 1–3, it is assumed that PMDFinitialize is first called before any other
API routines. If more than one message is to be dequeued, PMDFdequeueInitialize
should only be called once, at the start of the first message. PMDFgetMessage should
be called repeatedly until the status code PMDF__EOF is returned at which point there
are no more messages to be processed. Note that after calling PMDFrewindMessage, the
message is rewound to the start of the message header and PMDFreadHeader can again
be called (i.e., you’re back in the sixth column counting from the left).

1–40

The PMDF API
API Routine Descriptions

Figure 1–3 Calling Precedence for the API Message Dequeue Routines

1.13.3 Strings Passed To and From the API
As mentioned previously, the API presents two call formats: one which uses

OpenVMS-style string descriptors and another which uses C’s style of passing a pointer
to a string. For multi-platform code, use the C style interface.

When using the C-style interface, strings passed in need not be zero terminated:
the length of the string is always determined from an associated argument specifying
the length of the string. When a string is passed in which will be written to, on output
the string is always zero terminated and its length, not including the zero terminator,
returned in an associated length argument. On input, this length argument must give
the maximum length of the string, not including the space used by a zero terminator.

Although strongly discouraged, the VMS-style interface which uses OpenVMS string
descriptors can be used on UNIX as well as OpenVMS. Under UNIX the DSC$B_
DTYPE and DSC$B_CLASS fields of descriptors are ignored by the API; all descriptors
are treated as static character string descriptors (DSC$B_CLASS = DSC$K_CLASS_S;
DSC$B_DTYPE = DSC$K_DTYPE_T).

There are basic string sizes used by the API. Their symbolic names and their values
in PMDF V6.1 are shown in Table 1–2. As these sizes are subject to change, programmers
are encouraged to use the constants defined in the supplied include files described in
Section 1.11.

1–41

The PMDF API
API Routine Descriptions

Table 1–2 String Size Constants Used by the API

Symbolic name Value

ALFA_SIZE 252
BIGALFA_SIZE 1024
CHANLENGTH 32
DATA_LENGTH 80
KEY_LENGTH 32
LONG_DATA_LENGTH ALFA_SIZE
LONG_KEY_LENGTH 80
SHORTALFA_SIZE 40

1.13.4 Routine Descriptions
This section documents the PMDF API routines.

1–42

PMDFabortMessage

PMDFabortMessage

Abort a message enqueue context.

PASCAL status = PMDF_abort_message (nq_context)

argument information

Argument Data type Access Mechanism

nq_context context pointer read/write reference

C status = PMDFabortMessage (nq_context)

argument information
int PMDFabortMessage(PMDF_nq **nq_context)

ARGUMENTS nq_context
A message enqueue context created with PMDFstartMessageEnvelope.

DESCRIPTION PMDFabortMessage aborts the specified message enqueue context, deleting the
message associated with that context. The specified enqueue context is no longer
usable; a new one can be generated with PMDFstartMessageEnvelope.

This routine is typically called when an error occurs while enqueuing a message
and the submission needs to be aborted.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

1–43

PMDFabortProgram

PMDFabortProgram

Output an error message and then abort the currently running program.

PASCAL PMDF_abort_program (message, error_code)

argument information

Argument Data type Access Mechanism

message descriptor read reference
error_code signed longword read value

C PMDFabortProgram
(message, message_len, error_code)

argument information
void PMDFabortProgram(char *message,

int message_len,
int error_code)

ARGUMENTS message
A text string to output as an error message. The length of this string should not
exceed SHORTALFA_SIZE bytes. Any string exceeding this length will be truncated
to SHORTALFA_SIZE bytes.

message_len
Length in bytes of message.

error_code
An integer error code to output as part of the error message. If error_code is 0,
it will not be output.

DESCRIPTION PMDFabortProgam outputs as an error message the supplied text string messsage
and, if non-zero, error_code. After the error message is output, a halt instruction
is issued thereby aborting the currently running program. Generally, this routine
should only be called when an unrecoverable error has been detected. Before
calling PMDFabortProgram, any active message enqueue or dequeue contexts
should be aborted with PMDFabortMessage or PMDFdequeueMessagEnd. Note
that this routine can be called even when PMDFinitialize has failed.

On OpenVMS systems, the error message is written to PMDF_OUTPUT if defined
and SYS$OUTPUT otherwise. On UNIX and Windows systems, the error message

1–44

PMDFabortProgram

is written to stdout.

Example output generated on an OpenVMS system in response to the call

PMDFabortProgram("Fatal error in BITBUCKET channel", 8922);

is shown below:

04-MAY-2012 18:04:00: Fatal error in BITBUCKET channel, status = 8922.
%PAS-F-HALT, HALT procedure called
%TRACE-F-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC abs PC

00094E6B 00094E6B
MMMOD MM_ABORT_PROGRAM_INT 13141 00000082 00036642
PMDF_API PMDF_ABORT_PROGRAM 5107 00000064 00009BF8
BITBUCKET ROUND_FILE 214 00000031 00007051

RETURN VALUESNone.

1–45

PMDFaddHeaderLine

PMDFaddHeaderLine

Add a header line to a header structure.

PASCAL status = PMDF_add_header_line (header, type, line)

argument information

Argument Data type Access Mechanism

header header pointer write reference
type signed longword read value
line descriptor read reference

C status = PMDFaddHeaderLine
(header, type, line, line_len)

argument information
int PMDFaddHeaderLine(PMDF_hdr **header,

int type,
char *line,
int line_len)

ARGUMENTS header
Address of a header structure.

type
The type of header line being added.

line
The header line to add. No length limit is imposed.

line_len
The length in bytes of line.

DESCRIPTION PMDFaddHeaderLine adds a header line of the specified type to the header
structure, header. The header structure need not have been created by a previous
call to PMDFreadHeader; PMDFaddHeaderLine will initialize the structure if it is
nil (zero) on input.

The type argument specifies the type of header line being added (e.g., HL_FROM,
HL_TO, HL_DATE, etc.). The accepted types are defined in the API include files;
see Section 1.6 for further details. Specify HL_OTHER for a header line type not
recognized by the API. Only the body of the header line must be specified in the

1–46

PMDFaddHeaderLine

line argument. The field name and colon and space will be prepended to what
you specify. For example, if you specify HL_X_YOW in the type argument, and
the string ‘‘Wow! PMDF is great!’’ in the line argument, this routine will add the
following header: ‘‘X-Yow: Wow! PMDF is great!’’.

Header structures can be output with PMDFwriteHeader and disposed of with
PMDFdisposeHeader. See Section 1.6 for further details on using and manipu-
lating header structures.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _HEANOTKNW Unknown header line type. No header line added. Recall
PMDFaddHeaderLine specifying HL_OTHER for the
header line type.

PMDF_ _INVSTRDES Invalid string descriptor for line: descriptor has an invalid
value in its DSC$B_CLASS field. No header line added.

1–47

PMDFaddRecipient

PMDFaddRecipient

Associate a "To:", "Cc:", or "Bcc:" address with a message.

PASCAL status = PMDF_add_recipient
(nq_context, address, orig_address)

argument information

Argument Data type Access Mechanism

nq_context context pointer read/write reference
address descriptor read reference
orig_address descriptor read reference

C status = PMDFaddRecipient
(nq_context, address, address_len, orig_address,
orig_address_len)

argument information
int PMDFaddRecipient(PMDF_nq **nq_context,

char *address,
int address_len,
char *orig_address,
int orig_address_len)

ARGUMENTS nq_context
A message enqueue context created with PMDFstartMessageEnvelope.

address
The "To:", "Cc:", or "Bcc:" address to associate with the message. The length of the
address can not exceed ALFA_SIZE bytes.

address_len
The length in bytes of address.

orig_address
If known, the original form of the input address, address. Length can not exceed
ALFA_SIZE bytes.

orig_address_len
Length in bytes of the original address. Supply a value of zero if the original
address is not known.

1–48

PMDFaddRecipient

DESCRIPTION When enqueuing a mail message, the list of "To:", "Cc:", and "Bcc:" recipients is
built up, one address at a time, by repeatedly calling PMDFaddRecipient. This
information is then used to construct the message’s envelope "To:" address list as
well as the "To:", "Cc:", and "Bcc:" header lines which will appear in the message’s
header. Note that in the message envelope, there is no distinction between "To:",
"Cc:", and "Bcc:" addresses.

The routine PMDFsetRecipientType is used to specify whether each address is
a "To:", "Cc:", or "Bcc:" address and whether or not it should be included in the
message’s envelope "To:" address list. PMDFsetRecipientType should be called
prior to PMDFaddRecipient; that is, PMDFsetRecipientType sets information
for the next recipient added with PMDFaddRecipient. If PMDFsetRecipient-
Type is never called, then each address will be treated as a "To:" address and
added to the message’s list of envelope "To:" addresses.

The routine PMDFsetRecipientFlags is used to specify NOTARY flags for a
envelope "To:" address. PMDFsetRecipientFlags should be called prior to
PMDFaddRecipient. If PMDFsetRecipientFlags is never called, then each
address will be assume the NOTARY flags PMDF_RECEIPT_FAILURES and
PMDF_RECEIPT_DELAYS.

After calling PMDFstartMessageEnvelope, PMDFaddRecipient should be called
once for each forward pointing address ("To:", "Cc:", or "Bcc:") to be specified. Each
address should conform to RFC 822. PMDF will do its best to transform non-
conformant addresses into legal RFC 822 addresses; however, this is not always
possible and a PMDF__HOST or PMDF__PARSE error can result. After all addresses
have been specified, then PMDFstartMessageHeader should be called, after which
no more addresses can be specified for the current message.

While multiple addresses, separated by commas, can be passed in a single call,
specifying one address per call is recommended: when multiple addresses are
specified and an error results, it is not possible to determine which address was
in error.

Note also that the same address can be specified more than once. This can or can
not result in multiple copies of the message being sent to that address. PMDF
itself will attempt to deliver a copy of the message to each instance of a specified
address; however, some mail systems receiving the mail can only deliver a single
copy of the message to each recipient, regardless of how many times a recipient
appears in the envelope "To:" address list (e.g., VMS MAIL).

RETURN VALUES
PMDF_ _OK Successful, normal completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. No address added.

PMDF_ _HOST Illegal address. No address added. Call PMDFgetError-
Text to obtain specific information about the nature of the
error.

1–49

PMDFaddRecipient

PMDF_ _INVSTRDES Invalid string descriptor for address: descriptor has an invalid
value in its DSC$B_CLASS field. No address added.

PMDF_ _NAUTH Sender is not authorized to send to this address or mailing
list. No address added. Call PMDFgetErrorText to
obtain specific information about the nature of the error.

PMDF_ _PARSE Bad address syntax. No address added. Call
PMDFgetErrorText to obtain specific information about
the nature of the error.

PMDF_ _STRTRUERR Length of address exceeds ALFA_SIZE bytes. No address
added.

PMDF_ _USER Unknown or illegal user name specification. No address
added. Call PMDFgetErrorText to obtain specific
information about the nature of the error.

1–50

PMDFaddressDispose

PMDFaddressDispose

Dispose of an address context.

PASCAL status = PMDF_address_dispose (addr_context)

argument information

Argument Data type Access Mechanism

addr_context context pointer read value

C status = PMDFaddressDispose (addr_context)

argument information
int PMDFaddressDispose(PMDF_addr *addr_context)

ARGUMENTS addr_context
Address context generated by a previous call to PMDFaddressParseList.

DESCRIPTION Address contexts created with PMDFaddressParseList must be disposed of by
calling PMDFaddressDispose. Failure to do so will result in memory leaks.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

1–51

PMDFaddressGet

PMDFaddressGet

Extract an address from a list of parsed addresses.

PASCAL status = PMDF_address_get
(addr_context, index, address, address_len)

argument information

Argument Data type Access Mechanism

addr_context context pointer read value
index integer read value
address descriptor read/write reference
address_len unsigned word write reference

C status = PMDFaddressGet
(addr_context, index, address, address_len)

argument information
int PMDFaddressGet(PMDF_addr *addr_context,

int index,
char *address,
int *address_len)

ARGUMENTS addr_context
Address context generated by a previous call to PMDFaddressParseList.

index
Index of the address to extract from the list of parsed addresses.

address
String to receive the extracted address. Must be at least ALFA_SIZE bytes in
length for PMDF_address_get and ALFA_SIZE+1 bytes for PMDFaddressGet.

line_len
Length in bytes of the returned address. Callers using PMDFaddressGet must,
on input, supply the maximum length in bytes of address.

1–52

PMDFaddressGet

DESCRIPTION After parsing a line of addresses with PMDFaddressParseList, the individual
addresses can each be retrieved with PMDFaddressGet. Call PMDFaddressGet
once for each address. The index argument can range from 1 to count where
count is the count of parsed addresses returned by PMDFaddressParseList.
The first address corresponds to an index value of 1 and the last to an index
value of count.

Note that PMDFaddressGet will also heuristically correct addresses with minor
syntactical problems.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _NO Value for index is out of range. No address returned.

1–53

PMDFaddressGetProperty

PMDFaddressGetProperty

Extract a property of an address from a list of parsed addresses.

PASCAL status = PMDF_address_get_property
(addr_context, index, property, result, result_len)

argument information

Argument Data type Access Mechanism

addr_context context pointer read value
index integer read value
property integer read value
result descriptor read/write reference
result_len unsigned word write reference

C status = PMDFaddressGetProperty
(addr_context, index, property, result, result_len)

argument information
int PMDFaddressGetProperty(PMDF_addr *addr_context,

int index,
int property,
char *result,
int *result_len)

ARGUMENTS addr_context
Address context generated by a previous call to PMDFaddressParseList.

index
Index of the address to obtain the property for.

property
The address property to return.

result
String to receive the address property. Must be at least ALFA_SIZE bytes in
length for PMDF_address_get_property and ALFA_SIZE+1 bytes for PMDFad-
dressGetProperty.

result_len
Length in bytes of the returned property. Callers using PMDFaddressGetProp-
erty must, on input, supply the maximum length in bytes of result.

1–54

PMDFaddressGetProperty

DESCRIPTION After parsing a line of addresses with PMDFaddressParseList, properties of
individual addresses can be retrieved with PMDFaddressGetProperty.The index
argument can range from 1 to count where count is the count of parsed addresses
returned by PMDFaddressParseList. The first address corresponds to an index
value of 1.

The accepted values for property are listed and described in the table below.
Note that unlike PMDFgetAddressProperty, PMDFaddressGetProperty does
not accept the PMDF_PROP_FRIENDLY property.

Table 1–3 Properties of the Address phrase <@otherhost:user@host>

Symbolic name Value Description

PMDF_PROP_ADDRESS 1 Address part, @otherhost:user@host, of the
address

PMDF_PROP_DOMAIN 2 Domain part, host, of the address
PMDF_PROP_LOCAL 4 Local part, user, of the address
PMDF_PROP_PHRASE 5 Phrase part, phrase, of the address, if any
PMDF_PROP_PROPER 6 Full address including any phrases and comments
PMDF_PROP_ROUTE 7 Source route part, @otherhost:, of the address, if

any

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BAD Bad parameter supplied: invalid value for property. No result
returned.

PMDF_ _FATERRLIB Call to LIB$SCOPY_R_DX failed owing to a fatal internal
error in the OpenVMS Run Time Library. No result returned.

PMDF_ _INSVIRMEM Insufficient virtual memory: call to LIB$GET_VM made by
LIB$SCOPY_R_DX has failed. No result returned.

PMDF_ _INVSTRDES Invalid string descriptor for result: descriptor has an invalid
value in its DSC$B_CLASS field. No result returned.

PMDF_ _NO Value for index is out of range. No result returned.

PMDF_ _STRTRU Supplied string was too long; result truncated to fit.

1–55

PMDFaddressParseList

PMDFaddressParseList

Parse a line of comma separated addresses.

PASCAL status = PMDF_address_parse_list
(addr_context, count, line)

argument information

Argument Data type Access Mechanism

addr_context context pointer read/write reference
count integer write reference
line descriptor read reference

C status = PMDFaddressParseList
(addr_context, count, line, line_len)

argument information
int PMDFaddressParseList(PMDF_addr **addr_context,

int *count,
char *line,
int line_len)

ARGUMENTS addr_context
Address context created for the parsed address line.

count
The number of addresses parsed.

line
Character string containing the list of comma separated, RFC 822 addresses to be
parsed.

line_len
Length in bytes of the string of addresses to parse.

DESCRIPTION PMDFaddressParseList can be used to parse a line of one or more comma
separated RFC 822 addresses. The input line can be of arbitrary length.
The result of the parse is represented by an address context, addr_context,
and a count of parsed addresses, count. Each parsed address can then be
individually extracted from the parsed line with a call to PMDFaddressGet or

1–56

PMDFaddressParseList

PMDFaddressGetProperty. The address context should be disposed of with a
call to PMDFaddressDispose.

When there are no valid addresses in the input line, the returned context will be
zero (nil) and the count zero.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _INVSTRDES Invalid string descriptor for line: descriptor has an invalid
value in its DSC$B_CLASS field. No result returned.

1–57

PMDFaliasNoExpansion

PMDFaliasNoExpansion

Inhibit the expansion of aliases for all subsequent recipient addresses.

PASCAL status = PMDF_alias_no_expansion (nq_context)

argument information

Argument Data type Access Mechanism

nq_context context pointer read/write reference

C status = PMDFaliasNoExpansion (nq_context)

argument information
int PMDFaliasNoExpansion(PMDF_nq **nq_context)

ARGUMENTS nq_context
A message enqueue context created with PMDFstartMessageEnvelope.

DESCRIPTION Generally, expansion of aliases should never be inhibited. However, there is at
least one situation where alias expansion must be inhibited. That situation arises
when a message being dequeued needs to be re-enqueued to the same channel with
a subset of its envelope recipient list. That is done by enqueuing a new message,
inhibiting alias expansion, specifying only the envelope addresses of the desired
subset, ending the envelope, and then copying the message content verbatim with
PMDFcopyMessage.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

1–58

PMDFcancelCallBack

PMDFcancelCallBack

Cancel the use of any specified call back routines.

PASCAL status = PMDF_cancel_call_back

C status = PMDFcancelCallBack ()

argument information
int PMDFcancelCallBack()

ARGUMENTS None.

DESCRIPTION After calling PMDFcancelCallBack, the API will no longer invoke any call back
routines specified with a previous call to PMDFsetCallBack.

On UNIX and Windows systems, this routine merely returns PMDF__OK.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

1–59

PMDFcloseLogFile

PMDFcloseLogFile

Close the PMDF log file if it is open.

PASCAL status = PMDF_close_log_file

C status = PMDFcloseLogFile ()

argument information
int PMDFcloseLogFile()

ARGUMENTS None.

DESCRIPTION PMDFcloseLogFile can be called to close the PMDF log file if it is open. Only
programs which (1) enqueue or dequeue mail and (2) run indefinitely before ever
calling PMDFdone, need worry about calling PMDFcloseLogFile. See Section 1.7
for a discussion of this topic.

Note that the PMDF log file is distinct from channel log files. The PMDFlog routine
is not related to the PMDFcloseLogFile routine.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

1–60

PMDFcloseQueueCache

PMDFcloseQueueCache

Close the queue cache database if it is open.

PASCAL status = PMDF_close_queue_cache

C status = PMDFcloseQueueCache ()

argument information
int PMDFcloseQueueCache()

ARGUMENTS None.

DESCRIPTION PMDFcloseQueueCache can be called to close the PMDF queue cache database if it
is open. Only programs which (1) enqueue or dequeue mail and (2) run indefinitely
before ever calling PMDFdone, need worry about calling PMDFcloseQueueCache.
See Section 1.7 for a discussion of this topic.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

1–61

PMDFcopyMessage

PMDFcopyMessage

Make a verbatim copy of a message header and content.

PASCAL status = PMDF_copy_message
(dq_context, nq_context)

argument information

Argument Data type Access Mechanism

dq_context context pointer read/write reference
nq_context context pointer read/write reference

C status = PMDFcopyMessage
(dq_context, nq_context)

argument information
int PMDFcopyMessage(PMDF_dq **dq_context,

PMDF_nq **nq_context)

ARGUMENTS dq_context
A message dequeue context created with PMDFdequeueInitialize.

nq_context
A message enqueue context created with PMDFstartMessageEnvelope.

DESCRIPTION Use PMDFcopyMessage to efficiently copy to a new message being enqueued a
verbatim copy of a message being dequeued. Only the portion of the dequeued
message following the read point for that message will be copied. Thus, if the
entire dequeued message — header and content — is to be copied, then it can be
necessary to first call PMDFrewindMessage.

PMDFcopyMessage is especially useful in cases where a message needs to have
it’s envelope changed but be left enqueued. For example, when a message was
successfully delivered to some but not all recipients. In that case, if some
of the recipients could not be delivered to owing to temporary problems, the
message should be re-enqueued verbatim to just those recipients who could not
be handled because of temporary problems. In such a case, be sure to also call
PMDFaliasNoExpansion while enqueuing the new message.

1–62

PMDFcopyMessage

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Bad value passed for dq_context or nq_context.

1–63

PMDFdatabaseAddEntry

PMDFdatabaseAddEntry

Add an entry to a database.

PASCAL status = PMDF_database_add_entry
(database, entry, value, create_db, replace, setbits, bits)

argument information

Argument Data type Access Mechanism

database signed longword read value
entry descriptor read reference
value descriptor read reference
create_db boolean read value
replace boolean read value
setbits boolean read value
bits unsigned longword read value

C status = PMDFdatabaseAddEntry
(database, entry, entry_len, value, value_len, create_db,
replace, setbits, bits)

argument information
int PMDFdatabaseAddEntry(int database,

char *entry,
int entry_len,
char *value,
int value_len,
int create_db,
int replace,
int setbits,
unsigned long int bits)

ARGUMENTS database
Database to add the entry to.

entry
Entry to add to the database (e.g., alias name). Length of this string should not
exceed KEY_LENGTH for a short database or LONG_KEY_LENGTH for a long database.

entry_len
Length in bytes of the entry.

1–64

PMDFdatabaseAddEntry

value
Value to associate with the database entry (e.g., alias translation value). Length of
this string should not exceed DATA_LENGTH for a short database or LONG_DATA_LENGTH
for a long database.

value_len
Length in bytes of the entry’s value.

create_db
When true, create the database if it does not already exist.

replace
When true, replace the entry if one already exists in the database.

setbits
When true, set control bits associated with a personal alias database entry.

bits
Integer longword containing personal alias control bits.

DESCRIPTION PMDFdatabaseAddEntry adds an entry to a database. If the database is not
already opened, it will be opened. When no more database accesses are to be
performed, the database should be closed with PMDFdatabaseClose.

The specified entry and its associated value will be added to the database. If the
database does not exist, then it will be created if create_db is true; otherwise,
a PMDF__CANOPNDAT error will be returned and no database created. When a
database is created, it will be created as a long database, if possible, and as a
short database if not. If the specified entry already exists in the database, then it
will be replaced if replace is true; otherwise, a PMDF__CANTUPDAT error will be
returned and no entry added.

The length of the entry and its value can not exceed, respectively, the key and
data lengths used by the database. PMDF databases come in two sizes: short
and long. A short database uses a key length of KEY_LENGTH and a data length
of DATA_LENGTH. A long database uses a key length of LONG_KEY_LENGTH and
a data length of LONG_DATA_LENGTH. The values of these constants are given in
Table 1–2.

The database to use is specified with the database argument. The possible values
for that argument are shown in Table 1–4. In that table, the second column gives
the symbolic names for the different databases, as defined in the API include
files described in Section 1.11. Whenever possible, programmers should use the
symbolic names rather than the actual values.

Table 1–4 Database Symbolic Names and Values

Database Symbolic name Value

Alias PMDF_DATABASE_ALIAS 1
Domain PMDF_DATABASE_DOMAIN 3
PMDF-MR FROM_MR PMDF_DATABASE_FROM_MR 4

1–65

PMDFdatabaseAddEntry

Table 1–4 (Cont.) Database Symbolic Names and Values

Database Symbolic name Value

PMDF-X400 FROM_X400 PMDF_DATABASE_FROM_X400 5
General PMDF_DATABASE_GENERAL 6
Personal alias PMDF_DATABASE_PERSONAL_ALIAS 7
Address reversal PMDF_DATABASE_REVERSE 8
PMDF-MR TO_MR PMDF_DATABASE_TO_MR 9
PMDF-X400 TO_X400 PMDF_DATABASE_TO_X400 11
User profile PMDF_DATABASE_USER_PROFILE 12
Popstore forward PMDF_DATABASE_POPSTORE_FORWARD 13
Pipe PMDF_DATABASE_PIPE 15
Forward PMDF_DATABASE_FORWARD 16

The setbits and bits arguments are for use only with personal alias databases.
When setbits is true, the control bits specified in the bit mask bits will be set for
the alias. In this case, the length of value can not exceed DATA_LENGTH - 4 or
LONG_DATA_LENGTH - 4. The bits in the bit mask bits control aspects of the
alias and are shown in the table below:

Bit Usage

PMDF_ALIAS_ADDRESS_BIT Alias translation value is an address or mailing list

PMDF_ALIAS_FAX_BIT Alias translation value is a FAX address

PMDF_ALIAS_PUBLIC_BIT When set, alias is public; when clear, alias is private

PMDF_ALIAS_EXPAND_BIT When set, alias is expanded in message headers; when
clear, alias is not expanded

PMDF_ALIAS_RECEIPT_BIT When set, receipts are allowed to pass through; when
clear, receipts are blocked

PMDF_ALIAS_ADDRESS_BIT should always be set; otherwise, it will not be
possible to manipulate the resulting alias from within the PMDF DB utility.
PMDF_ALIAS_FAX_BIT should be set if the alias is to be manipulated from within
PMDF DB’s FAX mode. The API include files described in Section 1.11 provide
values for the PMDF_ALIAS_ symbolic names.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BAD Bad parameter value: illegal value specified for database.

PMDF_ _CANOPNDAT Database could not be opened. If it does not exist, then
create_db must be true in order to force the creation of the
database.

PMDF_ _CANTUPDAT Cannot update the database. Attempt to add or replace the
entry failed.

PMDF_ _DUPENTRY Entry already exists and replace was false. No entry added.

PMDF_ _ENTWONFIT Length of entry or value too long for database. No entry
added.

1–66

PMDFdatabaseAddEntry

PMDF_ _INVSTRDES Invalid string descriptor for entry or value: one or both
descriptors has an invalid value in its DSC$B_CLASS field.
No entry added.

PMDF_ _STRTRUERR Supplied string entry or value is too long. No entry added.

1–67

PMDFdatabaseClose

PMDFdatabaseClose

Close a database.

PASCAL status = PMDF_database_close (database)

argument information

Argument Data type Access Mechanism

database signed longword read value

C status = PMDFdatabaseClose (database)

argument information
int PMDFdatabaseClose(int database)

ARGUMENTS database
Database to close.

DESCRIPTION PMDFdatabaseClose should be called to close a database opened with a PMDF-
databaseAddEntry, PMDFdatabaseDeleteEntry, or PMDFdatabaseGetEntry
call.

See the description of PMDFdatabaseAddEntry for a list of the legal values for
database.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BAD Bad parameter value: illegal value specified for database.

1–68

PMDFdatabaseDeleteEntry

PMDFdatabaseDeleteEntry

Remove an entry from a database.

PASCAL status = PMDF_database_delete_entry
(database, entry)

argument information

Argument Data type Access Mechanism

database signed longword read value
entry descriptor read reference

C status = PMDFdatabaseDeleteEntry
(database, entry, entry_len)

argument information
int PMDFdatabaseDeleteEntry(int database,

char *entry,
int entry_len)

ARGUMENTS database
Database to delete the entry from.

entry
Entry to remove from the database (e.g., an alias). Length of this string should
not exceed KEY_LENGTH for a short database or LONG_KEY_LENGTH for a long
database.

entry_len
Length in bytes of the entry.

DESCRIPTION Entries are removed from databases with PMDFdatabaseDeleteEntry. In the
case of duplicate entries, multiple calls are required to remove all entries — one
call per entry. If the specified database is not already opened, then it will be
opened automatically. When no more database accesses are to be performed, the
database should be closed with PMDFdatabaseClose.

See the description of PMDFdatabaseAddEntry for a list of the legal values for
database.

1–69

PMDFdatabaseDeleteEntry

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BAD Bad parameter value: illegal value specified for database.
No entry deleted.

PMDF_ _NO No matching entry found. No entry deleted.

PMDF_ _CANOPNDAT Database could not be opened or does not exist.

PMDF_ _CANTUPDAT Cannot update the database. Attempt to delete an entry
failed.

PMDF_ _ENTWONFIT Length of entry too long for database. No entry deleted.

PMDF_ _INVSTRDES Invalid string descriptor for entry: descriptor has an invalid
value in its DSC$B_CLASS field. No entry deleted.

PMDF_ _STRTRUERR Supplied string entry is too long. No entry deleted.

1–70

PMDFdatabaseGetEntry

PMDFdatabaseGetEntry

Lookup an entry in a database.

PASCAL status = PMDF_database_get_entry
(database, access, entry, entry_len, value, value_len, bits)

argument information

Argument Data type Access Mechanism

database signed longword read value
access signed longword read value
entry descriptor read/write reference
entry_len unsigned word read/write reference
value descriptor write reference
value_len unsigned word write reference
bits unsigned longword write reference

C status = PMDFdatabaseGetEntry
(database, access, entry, entry_len, value, value_len, bits)

argument information
int PMDFdatabaseGetEntry(int database,

int access,
char *entry,
int *entry_len,
char *value,
int *value_len,
unsigned long int *bits)

ARGUMENTS database
Database to search.

access
Type of search to perform.

entry
Entry to search for in the database. Length of this should be KEY_LENGTH for a
short database or LONG_KEY_LENGTH for a long database. On output the actual
entry read from the database will be returned in entry.

entry_len
On input, the length in bytes of the entry. On output, the length in bytes of the
returned entry.

1–71

PMDFdatabaseGetEntry

value
Value of the entry retrieved from the database. Length must be at least LONG_DATA_LENGTH
bytes for PMDF_database_get_entry or
LONG_DATA_LENGTH+1 bytes for PMDFdatabaseGetEntry.)

value_len
Length in bytes of the returned entry value. Callers using PMDFdatabaseGetEn-
try must, on input, supply the maximum length in bytes of value.

bits
Optional integer longword containing personal alias control bits associated with
the returned value.

DESCRIPTION PMDFdatabaseGetEntry can be called to find an entry in a database and return
the value associated with the entry. If the database is not already opened, it will
be opened. When no more database accesses are to be performed, it should be
closed with PMDFdatabaseClose.

The first time a given entry is to be located, access should have the value
PMDF_DATABASE_GET_FIRST or PMDF_DATABASE_GET_FIRST_ROOT. If a match-
ing entry is found, then the return status code will be PMDF__OK. If no match is
found or the database could not be opened (e.g., does not exist), then PMDF__EOF
will be returned. To search for any additional matching entries, make repeated
calls specifying either PMDF_DATABASE_GET_NEXT or PMDF_DATABASE_GET_NEXT_ROOT
for access. After no more matching entries can be found, a status code of
PMDF__EOF will be returned.

The access argument specifies the nature of the database search to perform. The
possible values for access are shown in the table below. In that table, the second
column gives the symbolic names for the different access types. These symbolic
names are defined in the API include files described in Section 1.11. Whenever
possible, programmers should use the symbolic names rather than the actual
values.

Symbolic name Value Description

PMDF_DATABASE_GET_FIRST 1 Starting from the beginning of the database, find the first
database entry which matches (case blind) entry.

PMDF_DATABASE_GET_NEXT 2 Continuing from the last located entry, find the next database
entry which matches (case blind) entry.

PMDF_DATABASE_GET_FIRST_ROOT 3 Starting from the beginning of the database, find the first
database entry whose first entry_len characters match (case
blind) entry.

PMDF_DATABASE_GET_NEXT_ROOT 4 Continuing from the last located entry, find the next database
entry whose first entry_len characters match (case blind)
entry.

PMDF_DATABASE_GET_FIRST_ALL 5 Return the first entry from the database.

PMDF_DATABASE_GET_NEXT_ALL 6 Return the next entry from the database.

The bits argument is optional and only used in conjunction with personal alias
databases. When an alias value is returned, any control bits associated with

1–72

PMDFdatabaseGetEntry

that alias will be returned in the bit mask bits. Consult the description of
PMDFdatabaseAddEntry for details on this bit mask.

To retrieve all entries from a database use PMDF_DATABASE_GET_FIRST_ALL and
PMDF_DATABASE_GET_NEXT_ALL.

See the description of PMDFdatabaseAddEntry for a list of the legal values for
database.

Note: For each PMDF database, a single per-process read context is maintained by
PMDF. As such, any sequence of chained PMDFdatabaseGetEntry calls must not
be interrupted by other threads accessing the same database with PMDFdatabase
calls. Any interruption will disrupt the read state. A chained sequence is one that
starts with a PMDF_DATABASE_GET_FIRST or PMDF_DATABASE_GET_FIRST_ROOT
access followed by either a
PMDF_DATABASE_GET_NEXT or PMDF_DATABASE_GET_NEXT_ROOT access to find
subsequent, related entries. to find subsequent, related entries.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BAD Bad parameter value: illegal value specified for database or
access. No database search performed; no value returned

PMDF_ _EOF No matching entry found; no value returned.

PMDF_ _FATERRLIB Call to LIB$SCOPY_R_DX failed owing to a fatal internal
error in the OpenVMS Run Time Library. No value returned.

PMDF_ _INSVIRMEM Insufficient virtual memory: call to LIB$GET_VM made by
LIB$SCOPY_R_DX has failed. No value returned.

PMDF_ _INVSTRDES Invalid string descriptor for entry or value: one or both
descriptors has an invalid value in its DSC$B_CLASS field.
No value returned.

PMDF_ _STRTRU Supplied string value is too short; output truncated to fit into
string.

PMDF_ _STRTRUERR Supplied string entry is too long. No value returned.

1–73

PMDFdebug

PMDFdebug

Enable debugging output.

PASCAL status = PMDF_debug
(enqueue_debug, dequeue_debug)

argument information

Argument Data type Access Mechanism

enqueue_debug boolean read value
dequeue_debug boolean read value

C status = PMDFdebug
(enqueue_debug, dequeue_debug)

argument information
int PMDFdebug(int enqueue_debug, int dequeue_debug)

ARGUMENTS enqueue_debug
When true, enables message enqueue debugging output. When false, disables
message enqueue debugging output.

dequeue_debug
When true, enables message dequeue debugging output. When false, disables
message dequeue debugging output.

DESCRIPTION PMDF is capable of producing voluminous debugging output both while enqueuing
and dequeuing messages. By default, this output is disabled. To enable either
enqueue or dequeue debugging output, call PMDFdebug with the appropriate
argument set true.

Since any of the routines PMDFinitialize, PMDFenqueueInitialize, or PMDFd-
equeueInitialize can explicitly initialize the debugging flags, PMDFdebug should
be called after calls to those routines have been made.

Note that output of additional debugging information can be enabled by setting
OS_DEBUG=1 in the PMDF option file. Setting DEQUEUE_DEBUG=1 in the PMDF
option file is equivalent to setting the dequeuing debug flag to true with

1–74

PMDFdebug

PMDFdebug; a similar relation holds between the PMDF option MM_DEBUG and
the enqueuing debug flag.

On OpenVMS systems, the debugging output will be written to PMDF_DEBUG: if
defined and SYS$OUTPUT otherwise. On UNIX and Windows systems, debugging
output will be written to stdout.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

1–75

PMDFdecodeMessage

PMDFdecodeMessage

Decode a MIME formatted message.

PASCAL status = PMDF_decode_message
(dq_context, param, flags, input_line, output_header,
output_line, output_block)

argument information

Argument Data type Access Mechanism

dq_context context pointer read/write reference
param address pointer read value
flags unsigned longword read value
input_line procedure read reference
output_header procedure read reference
output_line procedure read reference
output_block procedure read reference

C status = PMDFdecodeMessage
(dq_context, param, flags, input_line, output_header,
output_line, output_block)

argument information
int PMDFdecodeMessage(PMDF_dq **dq_context,

void *param,
unsigned long flags,
void (*input_line)(),
void (*output_header)(),
void (*output_line)(),
void (*output_block)())

ARGUMENTS dq_context
Optional message dequeue context created with PMDFdequeueInitialize. If not
specified, then input_line must be specified.

param
Optional parameter which will be passed to each of the supplied routines, input_
line, output_header, output_line, and output_block, when they are called.

flags
Bit flags controlling the operation of PMDFdecodeMessage.

1–76

PMDFdecodeMessage

input_line
Optional address of a procedure to read each line of the message to be decoded. If
not specified, then dq_context must be specified.

output_header
Address of a procedure to output either the outer message header or the header
associated with a message part.

output_line
Address of a procedure to output a line of the content of a non-binary message
part.

output_block
Address of a procedure to output a block of data from a binary message part.

DESCRIPTION PMDFdecodeMessage can be used to decode a MIME message. Example programs
illustrating the use of this routine are given in the files api_example9.pas and
api_example10.c and can be found in the
PMDF_ROOT:[DOC.EXAMPLES] directory on OpenVMS systems or, on UNIX and
Windows systems, in the /pmdf/doc/examples directory.

Each line of the message to be decoded can come from either a message currently
being dequeued or from an arbitrary source. If the former, then supply the message
dequeue context generated by PMDFdequeueInitialize and specify zero for the
input_line argument. The message being dequeued must have its read point
positioned at the start of the message’s outer header. That is the position the
read point will be at after the last envelope recipient address has been read with
PMDFgetRecipient or after calling PMDFrewindMessage.

To decode a message from an arbitrary source, specify zero for the dq_context
argument, and supply with input_line the address of a procedure to call to obtain
each successive line of the message. The input procedure must be of the form

int input_line(void *param, char *line, int *line_len)

When the procedure is called, param will have the value of the parameter supplied
to PMDFdecodeMessage with the param argument, line will be the address of a
buffer to place the message line into, and *line_len will be the maximum number
of bytes which can be written to the buffer. On output, the procedure should return
in *line_len the number of bytes placed into the buffer. The buffer does not need
to be zero terminated. Finally the procedure should return a value of PMDF__OK if
there is more data to read and PMDF__EOF if there is an error or no further data
to read.

The procedures referenced by output_header, output_line, and output_block
have the form

int output_header(void *param,
PMDF_hdr *hdr,
int part,
int depth,
int index)

1–77

PMDFdecodeMessage

int output_line(void *param,
char *line,
int line_len,
int eol)

int output_block(void *param,
char *data,
int data_len,
int eol)

where the arguments are as follows:

param Value passed to PMDF_decode_message for the param argument.

hdr Pointer to a PMDF_hdr structure containing the header lines to output.

part Will have the value 2 if the message part associated with the header is textual
in nature and the value 1 if the associated part is binary in nature.

depth Nesting depth in the MIME structure for this message part.

index Index for this part; first message part at depth N has an index value of 1,
second part at depth N has an index value of 2, etc..

line Line of text output. This text comes from the content of a non-binary message
part. The line is not null terminated.

line_len Length in bytes of the line of message text to output.

eol Binary. Indicates end-of-line was seen.

data Raw binary data to output. This data comes from the content of a binary data
part. The data is not null terminated and can contain nulls within it.

data_len Length in bytes of the data to output.

The output routines should return an odd-valued result (e.g., 1, PMDF__OK) when
successful, and an even-valued result otherwise (e.g., 0, PMDF__NO). When an even-
valued result is returned by an output routine, PMDFdecodeMessage will abort
the decode operation and return to the caller the value returned by the output
routine.

When the lowest bit of flags is set to 1, a message in any of the various formats
which PMDF understands (e.g., RFC 1154, Pathworks, NeXT, etc.) will be first
translated to MIME prior to decoding. Furthermore, if the message does not
have a recognized format, but does contain embedded information encoded with
UUENCODE or BINHEX, then the message will be converted to MIME prior to
decoding with the encoded material placed in a separate attachment.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BAD Both dq_context and input_line were zero. Message not
decoded.

PMDF_ _BADCONTEXT Invalid dq_context supplied. Message not decoded.

1–78

PMDFdeferMessage

PMDFdeferMessage

Defer a message for later processing.

PASCAL status = PMDF_defer_message
(dq_context, increment, reason)

argument information

Argument Data type Access Mechanism

dq_context context pointer read/write reference
increment boolean read value
reason descriptor read reference

C status = PMDFdeferMessage
(dq_context, increment, reason, reason_len)

argument information
int PMDFdeferMessage(PMDF_dq **dq_context,

int increment,
char *reason,
int reason_len)

ARGUMENTS dq_context
A message dequeue context created with PMDFdequeueInitialize.

increment
If true, the message’s retry count will be incremented; otherwise, the retry count
will be left unchanged.

reason
Optional text string describing why the message is being deferred. The length of
this string should not exceed BIGALFA_SIZE bytes.

reason_len
Length in bytes of reason.

DESCRIPTION NOTE: Although still supported, this routine is now obsolete. Use the PMDFde-
queueMessageEnd routine instead.

PMDFdeferMessage can be called to defer processing of the currently accessed
message. The deferred message will be left in PMDF’s message queues for
processing by a subsequent processing job. If the message continues to remain

1–79

PMDFdeferMessage

in the message queues long enough, it will be returned by PMDF’s message
return system. See the message return and bouncing discussions in the PMDF
System Manager’s Guide for further details on this subject. When a message
is deferred, no notification messages will be generated despite any prior calls
to PMDFrecipientDisposition. This is because deferring a message with
PMDFdeferMessage causes all of the message’s recipient addresses to be deferred
for later reprocessing.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. Message not deferred.

1–80

PMDFdeleteHeaderLine

PMDFdeleteHeaderLine

Remove all header lines of a given type from a header structure.

PASCAL status = PMDF_delete_header_line (header, type)

argument information

Argument Data type Access Mechanism

header header pointer read value
type signed longword read value

C status = PMDFdeleteHeaderLine (header, type)

argument information
int PMDFdeleteHeaderLine(PMDF_hdr *header, int type)

ARGUMENTS header
Address of a header structure previously created by PMDFreadHeader or PMDFad-
dHeaderLine.

type
The type of header line being removed.

DESCRIPTION PMDFdeleteHeaderLine removes all header lines of the type type from the
header structure pointed at by header. That is, the linked list

header[type]

will be disposed of.

The type argument specifies the type of header lines to be removed (e.g., HL_
FROM, HL_TO, HL_DATE, etc.). The accepted types are defined in the API include
files; see Section 1.6 for further details. Specify HL_OTHER for a header line type
not recognized by the API.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

1–81

PMDFdeleteHeaderLine

PMDF_ _HEANOTKNW Unknown header line type. No header lines removed. Recall
PMDFdeleteHeaderLine specifying HL_OTHER for the
header line type.

1–82

PMDFdequeueEnd

PMDFdequeueEnd

Terminate and dispose of a PMDF dequeue context.

PASCAL status = PMDF_dequeue_end (dq_context)

argument information

Argument Data type Access Mechanism

dq_context context pointer write reference

C status = PMDFdequeueEnd (dq_context)

argument information
int PMDFdequeueEnd(PMDF_dq **dq_context)

ARGUMENTS dq_context
Message dequeue context created for this message dequeuing context.

DESCRIPTION PMDFdequeueEnd should be called to dispose of a message dequeue context created
with PMDFdequeueInitialize. This routine should be called prior to PMDFdone.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

1–83

PMDFdequeueInitialize

PMDFdequeueInitialize

Initialize PMDF for message dequeuing operations and create a message dequeue
context.

PASCAL status = PMDF_dequeue_initialize (dq_context)

argument information

Argument Data type Access Mechanism

dq_context context pointer write reference

C status = PMDFdequeueInitialize (dq_context)

argument information
int PMDFdequeueInitialize(PMDF_dq **dq_context)

ARGUMENTS dq_context
Message dequeue context created for this message dequeuing context.

DESCRIPTION Initialize PMDF for message dequeue operations and create a message dequeue
context. PMDFinitialize must be called prior to calling PMDFdequeueInitial-
ize; after calling PMDFdequeueInitialize, PMDFgetMessage can be called.
Use PMDFdequeueEnd to dispose of a message dequeue context.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

1–84

PMDFdequeueMessage

PMDFdequeueMessage

Remove a message from PMDF’s message queues.

PASCAL status = PMDF_dequeue_message (dq_context)

argument information

Argument Data type Access Mechanism

dq_context context pointer read/write reference

C status = PMDFdequeueMessage (dq_context)

argument information
int PMDFdequeueMessage(PMDF_dq **dq_context)

ARGUMENTS dq_context
A message dequeue context created with PMDFdequeueInitialize.

DESCRIPTION NOTE: Although still supported, this routine is now considered obsolete. Instead
use the PMDFdequeueMessageEnd routine.

If calls to PMDFrecipientDisposition were made prior to calling PMDFde-
queueMessage, then PMDF will automatically generate any required notification
messages when PMDFdequeueMessage is called. Once any notification messages
have been generated, the message being dequeued is then permanently removed
from the message queue.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. Message not dequeued.

1–85

PMDFdequeueMessageEnd

PMDFdequeueMessageEnd

Remove a message from PMDF’s message queues.

PASCAL status = PMDF_dequeue_message_end
(dq_context, defer, reason)

argument information

Argument Data type Access Mechanism

dq_context context pointer read/write reference
defer boolean read value
reason descriptor read reference

C status = PMDFdequeueMessageEnd
(dq_context, defer, reason, reason_len)

argument information
int PMDFdequeueMessageEnd(PMDF_dq **dq_context,

int defer,
char *reason,
int reason_len)

ARGUMENTS dq_context
A message dequeue context created with PMDFdequeueInitialize.

defer
When true (1), the message will be deferred for later processing.

reason
Optional text string describing why the message is being deferred. The length of
this string should not exceed BIGALFA_SIZE bytes.

reason_len
Length in bytes of reason.

DESCRIPTION NOTE: Use of this routine with defer set to false (0) requires that PMDFrecipi-
entDisposition be called for each recipient address obtained with PMDFgetRe-
cipient.

To finish processing a message, call PMDFdequeueMessageEnd. This will re-
enqueue the message if it requires deferred processing of some or all of its

1–86

PMDFdequeueMessageEnd

recipients as well as generate any required notification messages concerning the
message. Specifically, if all recipient addresses have a permanent disposition
(PMDF_DISP_DELIVERED, _FAILED, _RELAYED, _RELAYED_FOREIGN, or
_RETURN) then any required notifications are generated and the message is
permanently removed from the processing queue. If all recipients are to be deferred
(PMDF_DISP_DEFERRED), then no notifications are generated and the message
is left in the queue for later re-processing. If some recipients have a permanent
disposition while others were deferred, then

1. Any required notifications are generated for those recipients with permanent
dispositions,

2. A new message is enqueued for just those recipients who were deferred, and

3. The original message file is removed from the processing queue.

A message can be forcibly deferred, without regard to the dispositions of the
recipients, by passing a value of true (1) for the defer argument. When a
message is deferred, either because defer is true or all recipients have a deferred
disposition, then the value supplied with the reason argument will be placed in the
message’s delivery failure log. If a zero length string is supplied for that argument,
then the deferral reason, if any, for the last deferred recipient address will be used.
Should the message be returned as an undeliverable message by PMDF’s message
return system, a copy of the log will be included with the returned message.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. Message not dequeued.

1–87

PMDFdisposeChannelCounters

PMDFdisposeChannelCounters

Dispose of a list of channel counters.

PASCAL status = PMDF_dispose_channel_counters (counters)

argument information

Argument Data type Access Mechanism

counters counter pointer read/write reference

C status = PMDFdisposeChannelCounters (counters)

argument information
int PMDFdisposeChannelCounters(PMDF_channel_counters
**counters)

ARGUMENTS header
Pointer to list of channel counters returned by a previous call to PMDFgetChan-
nelCounters.

DESCRIPTION PMDFdisposeChannelCounters should be called to dispose of a previously
allocated list of channel counters created by PMDFgetChannelCounters.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

1–88

PMDFdisposeHeader

PMDFdisposeHeader

Dispose of a header data structure.

PASCAL status = PMDF_dispose_header (header)

argument information

Argument Data type Access Mechanism

header header pointer read/write reference

C status = PMDFdisposeHeader (header)

argument information
int PMDFdisposeHeader(PMDF_hdr **header)

ARGUMENTS header
Address of a header structure returned by a previous call to PMDFreadHeader or
PMDFaddHeaderLine.

DESCRIPTION PMDFdisposeHeader should be called to dispose of a previously allocated header
stucture created by PMDFreadHeader or PMDFaddHeaderLine.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

1–89

PMDFdone

PMDFdone

Deallocate PMDF data structures and resources.

PASCAL status = PMDF_done

C status = PMDFdone ()

argument information
int PMDFdone()

ARGUMENTS None.

DESCRIPTION After finishing all processing, PMDFdone should be called. Processes which
run indefinitely should not repeatedly call PMDFinitialize and PMDFdone.
PMDFinitialize and PMDFdone should, generally, be called only once per
program run.

To shutdown any active message dequeue or enqueue contexts, call PMDFde-
queueEnd, PMDFenqueueMessage, or PMDFabortMessage prior to calling PMDF-
done. If PMDFdone is called while dequeue or enqueue contexts are still active,
then any messages associated with active dequeue contexts will be deferred for
later processing and any messages associated with active enqueue contexts will be
deleted.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

1–90

PMDFenqueueInitialize

PMDFenqueueInitialize

Initialize PMDF for message enqueuing operations.

PASCAL status = PMDF_enqueue_initialize

C status = PMDFenqueueInitialize ()

argument information
int PMDFenqueueInitialize()

ARGUMENTS None.

DESCRIPTION PMDFenqueueInitialize is called to initialize PMDF for message enqueue
processing. PMDFenqueueInitialize should only be called once, after calling
PMDFinitialize.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

1–91

PMDFenqueueMessage

PMDFenqueueMessage

Submit a message to PMDF’s message queues.

PASCAL status = PMDF_enqueue_message (nq_context)

argument information

Argument Data type Access Mechanism

nq_context context pointer read/write reference

C status = PMDFenqueueMessage (nq_context)

argument information
int PMDFenqueueMessage(PMDF_nq **nq_context)

ARGUMENTS nq_context
A message enqueue context created with PMDFstartMessageEnvelope.

DESCRIPTION The final step in enqueuing a message is to call PMDFenqueueMessage. This
call submits the message which was being composed and sends it on its way.
Should an error occur, PMDFgetErrorText can be called to obtain further
details about the error. Note that only temporary processing errors are reported
(e.g., write errors to the disk occurred when creating the message file in the
PMDF channel queue directory). When a permanent processing error occurs
(e.g., message size exceeds site-imposed limits), PMDF automatically generates
a non-delivery notification and sends it to the envelope "From:" address specified
with PMDFstartMessageEnvelope. The non-delivery notification will show the
address of each recipient address which failed with a permanent error.

If the message is successfully enqueued as indicated by a return value of PMDF__OK
or PMDF__NOOP, then PMDFenqueueMessage deletes the message context and nils
(zeros) the context context pointer. If, however, an error occurs, the message
context is not deleted. In that case PMDFabortMessage should be called to
properly dispose of the message context. A new message enqueue context can
be created with PMDFstartMessageEnvelope. That is, the process of submitting
another message can be started with a call to PMDFstartMessageEnvelope.

1–92

PMDFenqueueMessage

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. Message not enqueued.

PMDF_ _FCRT File create error. The message could not be placed in the
PMDF message queues. This is typically due to insufficient
privileges although other possibilities exist such as insufficient
disk space. Message not enqueued; message context not
deleted. Delete with PMDFabortMessage.

PMDF_ _NO Message could not be delivered owing to temporary
processing problems of some sort (e.g., insufficient disk
space to store the queued message).

PMDF_ _NOOP Message had no envelope "To:" addresses; its delivery was
effected by simply deleting it.

1–93

PMDFgetAddressProperty

PMDFgetAddressProperty

Parse an address and return the requested address property.

PASCAL status = PMDF_get_address_property
(address, property, result, result_len)

argument information

Argument Data type Access Mechanism

address descriptor read reference
property integer read value
result descriptor read/write reference
result_len unsigned word write reference

C status = PMDFgetAddressProperty
(address, address_len, property, result, result_len)

argument information
int PMDFgetAddressProperty(char *address,

int address_len,
int property,
char *result,
int *result_len)

ARGUMENTS address
The address to parse. Length of this string can not exceed BIGALFA_SIZE bytes.

address_len
Length in bytes of the address to parse.

property
The address property to return.

result
String to receive the address property. Must be at least ALFA_SIZE bytes in
length for PMDF_get_address_property or ALFA_SIZE+1 bytes for PMDFge-
tAddressProperty.

result_len
Length in bytes of the returned property. Callers using PMDFgetAddressProp-
erty must, on input, supply the maximum length in bytes of result.

1–94

PMDFgetAddressProperty

DESCRIPTION PMDFgetAddressProperty can be used to parse an address and return the
desired property. Moreover, PMDFgetAddressProperty can be used to see if
an address is syntactically legal and to clean up addresses with minor syntax
problems. The former is accomplished by seeing if PMDF__PARSE is returned and
the latter by requesting the PMDF_PROP_PROPER property.

The accepted values for property are shown below and refer to an address of the
form

phrase <@otherhost:user@host> (comment)

Symbolic name Value Description

PMDF_PROP_ADDRESS 1 Address part, @otherhost:user@host, of the
address

PMDF_PROP_DOMAIN 2 Domain part, host, of the address

PMDF_PROP_FRIENDLY 3 See description below

PMDF_PROP_LOCAL 4 Local part, user, of the address

PMDF_PROP_PHRASE 5 Phrase part, phrase, of the address, if any

PMDF_PROP_PROPER 6 Full address including any phrases and comments

PMDF_PROP_ROUTE 7 Source route part, @otherhost:, of the address, if
any

The PMDF_PROP_FRIENDLY property can be used to attempt to extract a human
name from the address. When this property is requested, the following steps are
used to determine the value to return:

1. If a RFC 822 phrase phrase is present, then return it, else

2. If at least one RFC 822 comment comment is present, then return the first
one, else

3. If the local part user is not a RFC 1327 AVPL, then return the local part, else

4. If a string of the form /pn=value/ is present in the local part, then replace
any dots in value with spaces and return that, else

5. If a string of the form /s=svalue/ is not present in the local part, then return
the local part, else

6. If a string of the form /g=gvalue/ is present in the local part then return
gvalue svalue, otherwise

7. Return svalue.

Note that PMDF_get_address_property can only handle a single address
of length up to but not exceeding BIGALFA_SIZE bytes. If more than one
address is present in the string, then PMDF__NO will be returned. So, if the
address is longer than BIGALFA_SIZE bytes or more than one address can
be present, PMDFaddressParseList and PMDFaddressGetProperty should
instead be used.

1–95

PMDFgetAddressProperty

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BAD Bad parameter supplied: invalid value for property. No result
returned.

PMDF_ _FATERRLIB Call to LIB$SCOPY_R_DX failed owing to a fatal internal
error in the OpenVMS Run Time Library. No result returned.

PMDF_ _INSVIRMEM Insufficient virtual memory: call to LIB$GET_VM made by
LIB$SCOPY_R_DX has failed. No result returned.

PMDF_ _INVSTRDES Invalid string descriptor for result: descriptor has an invalid
value in its DSC$B_CLASS field. No result returned.

PMDF_ _NO Invalid address. No result returned.

PMDF_ _STRTRU Supplied string was too long; result truncated to fit.

1–96

PMDFgetBlockSize

PMDFgetBlockSize

Obtain the size in bytes of a PMDF block.

PASCAL block_size = PMDF_get_block_size

C block_size = PMDFgetBlockSize ()

argument information
int PMDFgetBlockSize()

ARGUMENTS None.

DESCRIPTION PMDF measures message sizes in units of ‘‘blocks’’. Units of blocks are used when
recording message sizes in log files and when determining if a message is large
enough to warrant being fragmented into smaller messages. By default, a block
is 1024 bytes; however, sites can change this size of a block with the BLOCK_SIZE
option in the PMDF option file.

RETURN VALUES
block_size The size in bytes of a PMDF block.

1–97

PMDFgetChannelCounters

PMDFgetChannelCounters

Obtain accumulated counters for one or more channels.

PASCAL status = PMDF_get_channel_counters
(channel, counters, count)

argument information

Argument Data type Access Mechanism

channel descriptor read reference
timeout signed longword read value
counters counters pointer write reference
count signed longword write reference

C status = PMDFgetChannelCounters
(channel, channel_len, timeout, counters, count)

argument information
int PMDFgetChannelCounters(char *channel,

int channel_len,
int timeout,
PMDF_channel_counters **counters,
int *count)

ARGUMENTS channel
String containing the name of the channel to retrieve counters for. The name
can contain wild card characters. Length of the string, in bytes, can not exceed
CHANLENGTH.

channel_len
Length in bytes of the channel name.

timeout
Maximum time, in seconds, to wait for counters to be synchronized.

counters
Pointer to list of channel counters. The format of each entry in the list is described
in the Description section below.

count
Count of the number of channels for which counters have been returned.

1–98

PMDFgetChannelCounters

DESCRIPTION PMDF accumulates in the form of counters message traffic statistics for each of its
channels. These statistics, referred to as ‘‘channel counters’’, correspond to those
used by the Mail Monitoring MIB (RFC 1566) with a PMDF channel representing
a ‘‘group’’ as defined by RFC 1566. The PMDFgetChannelCounters routine can
be used to read these counters for one or more channels.

To obtain counters for more than one channel at a time, use wild cards in the
channel name. For instance, to obtain counters for all TCP/IP channels use the
name ‘‘*tcp*’’. Similarly, to obtain counters for all channels, use the name ‘‘*’’.

The counters are returned as a list pointed at by the counters argument. The
list should be disposed of with the PMDFdisposeChannelCounters routine.

Each entry in the list has the structure

#define CHANLENGTH 32
typedef struct PMDF_channel_counters_s {
char channel_name[CHANLENGTH+1];
int received_messages;
int submitted_messages;
int stored_messages;
int delivered_messages;
int received_volume;
int submitted_volume;
int stored_volume;
int delivered_volume;
int received_recipients;
int submitted_recipients;
int stored_recipients;
int delivered_recipients;
struct PMDF_channel_counters_s *next;
int rejected_messages;
int failed_messages;
int attempted_messages;
int rejected_volume;
int failed_volume;
int attempted_volume;
int rejected_recipients;
int failed_recipients;
int attempted_recipients;
int delivered_first_messages;
int delivered_first_queue_count;
int delivered_first_queue_time;
int delivered_queue_count;
int delivered_queue_time;

} PMDF_channel_counters;

This structure is predeclared as PMDF_channel_stats in the C apidef.h
header and Pascal apidef.pen environment files. With the exception of the
channel_name and next fields, each field is a long, signed integer value. The
channel_name field is CHANLENGTH+1 bytes long and gives the name of the
channel corresponding to the counters in the entry. The next field is a pointer to

1–99

PMDFgetChannelCounters

another list entry. The end of the list is signified by a next field with a zero (nil)
value.

The interpretation of each field is given in the Table 1–5.

Table 1–5 Channel Counters List Entry

Field name Type Description

channel_name string The name of the channel stored in
a CHANLENGTH+1 byte long string;
PMDFgetChannelCounters will zero
terminate the string.

received_messages signed longword The cumulative count of messages enqueued to
the channel.

submitted_messages signed longword The cumulative count of messages enqueued
by the channel.

stored_messages signed longword The current count of messages stored for the
channel

delivered_messages signed longword The cumulative count of messages dequeued
by the channel.

received_volume signed longword The cumulative volume of messages enqueued
to the channel.

submitted_volume signed longword The cumulative volume of messages enqueued
by the channel.

stored_volume signed longword The current volume of messages stored for the
channel.

delivered_volume signed longword The cumulative volume of messages dequeued
by the channel.

received_recipients signed longword The cumulative count of recipients specified in
all messages enqueued to the channel.

submitted_recipients signed longword The cumulative count of recipients specified in
all messages enqueued by the channel.

stored_recipients signed longword The current count of recipients specified in all
messages currently stored for the channel.

delivered_recipients signed longword The cumulative count of recipients specified in
all messages dequeued by the channel.

next pointer Pointer to the next list entry of channel counters.

rejected_messages signed longword The cumulative count of messages which, upon
trying to be enqueued to the channel, were
rejected.

failed_messages signed longword The cumulative count of messages enqueued
to the channel which, when processed, failed to
be delivered for one or more recipients owing
to permanent errors of some sort (e.g., invalid
recipient address).

Note: All volumes are measured in units of PMDF blocks. A PMDF block is, by default, 1024 bytes. However, this
size can vary from system to system. The size of a PMDF block is controlled with the BLOCK_SIZE PMDF option.
The PMDFgetBlockSize routine can be used to determine the current size of a PMDF block; i.e., the setting of
the BLOCK_SIZE option.

1–100

PMDFgetChannelCounters

Table 1–5 (Cont.) Channel Counters List Entry

Field name Type Description

attempted_messages signed longword The cumulative count of messages enqueued to
the channel whose delivery has been attempted.

rejected_volume signed longword The cumulative volume of messages which,
upon trying to be enqueued to the channel,
were rejected.

failed_volume signed longword The cumulative volume of messages enqueued
to the channel which, when processed, failed to
be delivered for one or more recipients owing
to permanent errors of some sort (e.g., invalid
recipient address).

attempted_volume signed longword The cumulative volume of messages enqueued
to the channel whose delivery has been
attempted.

rejected_recipients signed longword The cumulative count of recipient addresses
which, upon trying to be enqueued to the
channel, were rejected.

failed_recipients signed longword The cumulative count of recipients enqueued to
the channel which, when processed, failed to
be delivered owing to permanent errors of some
sort (e.g., invalid recipient address).

attempted_recipients signed longword The cumulative count of recipients enqueued to
the channel whose delivery has been attempted.

delivered_first_messages signed longword The cumulative count of messages enqueued to
the channel which were successfully delivered
(or returned as undeliverable) on their first
processing attempt.

delivered_first_queue_count signed longword Cumulative count of first message delivery
attempts made by the channel. When this
value is less then received_messages,
it means that delivery has not yet been
attempted for all received messages. This
is not unusual: this value is expected to lag
behind received_messages.

delivered_first_queue_time signed longword Cumulative count of elapsed seconds
between when a message is enqueued
and when processing of its first delivery
attempt completes. The result of dividing
delivered_first_queue_time by
delivered_first_queue_count gives
the average amount of time in seconds spent
by a message in the processing queues as it
awaits its initial delivery attempt.

delivered_queue_count signed longword Cumulative count of message delivery attempts
made by the channel.

Note: All volumes are measured in units of PMDF blocks. A PMDF block is, by default, 1024 bytes. However, this
size can vary from system to system. The size of a PMDF block is controlled with the BLOCK_SIZE PMDF option.
The PMDFgetBlockSize routine can be used to determine the current size of a PMDF block; i.e., the setting of
the BLOCK_SIZE option.

1–101

PMDFgetChannelCounters

Table 1–5 (Cont.) Channel Counters List Entry

Field name Type Description

delivered_queue_time signed longword Cumulative count of elapsed seconds between
when a message is enqueued and when it is
finally removed from the channel queue. The
result of dividing delivered_queue_time
by delivered_queue_count gives the
average amount of time in seconds spent by a
message in the processing queues.

Note: All volumes are measured in units of PMDF blocks. A PMDF block is, by default, 1024 bytes. However, this
size can vary from system to system. The size of a PMDF block is controlled with the BLOCK_SIZE PMDF option.
The PMDFgetBlockSize routine can be used to determine the current size of a PMDF block; i.e., the setting of
the BLOCK_SIZE option.

The timeout argument specifies the maximum time, in seconds, to wait for node-
specific caches of counters to be synchronized with the cluster-wide database of
counters. If the time limit is exceeded, then the cluster-wide counters will be
returned as is, not necessarily up-to-date. Specify a value of zero to avoid waiting
at all or a value of -1 to wait without a timeout.

The timeout argument has no effect on UNIX and Windows systems at present.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _INVSTRDES Invalid string descriptor for channel: descriptor has an invalid
value in its DSC$B_CLASS field. No counters returned.

PMDF_ _NO Cannot access the counters; an interlock could not be
obtained after ten attempts. No counters returned.

PMDF_ _STRTRUERR Supplied channel name was too long; no counters returned.

1–102

PMDFgetChannelName

PMDFgetChannelName

Obtain the name of the channel to be processed.

PASCAL status = PMDF_get_channel_name
(channel, channel_len, keywords1, reserved)

argument information

Argument Data type Access Mechanism

channel descriptor read/write reference
channel_len unsigned word write reference
keywords1 unsigned longword write reference
reserved unsigned longword write reference

C status = PMDFgetChannelName
(channel, channel_len, keywords1, reserved)

argument information
int PMDFgetChannelName(char *channel,

int *channel_len,
unsigned int *keywords1,
unsigned int *reserved)

ARGUMENTS channel
String to receive the channel name. Must be at least CHANLENGTH bytes in
length for PMDF_get_channel_name or CHANLENGTH+1 bytes for PMDFgetChan-
nelName.

channel_len
Length in bytes of the returned channel name. Callers using PMDFgetChannel-
Name must, on input, supply the maximum length in bytes of channel.

keywords1
Unsigned longword of bit flags describing various channel options set with channel
keywords. This argument can be omitted.

reserved
Unsigned longword argument reserved for future use. Not used at present. This
argument can be omitted.

1–103

PMDFgetChannelName

DESCRIPTION Channel programs typically service one or more instances of a channel, each
instance having a distinct name which is specified in the PMDF configuration
file. For example, a master (outbound) PhoneNet over DECnet channel program
services all channels with names of the form dn_x where x distinguishes between
each instance of a master PhoneNet over DECnet channel (e.g., dn_node1, dn_
node2, etc.). The routine PMDFgetChannelName can be used by channel programs
to determine which instance of a channel they are servicing; i.e., to determine the
name of the particular channel they are processing.

Channel programs which enqueue mail or can return messages typically need to
know the name of the particular channel they are processing. This channel name is
then used when PMDFstartMessageEnvelope or PMDFreturnMessage is called.

In some cases, it can be necessary to ‘‘hard-code’’ a channel name into a program or
otherwise obtain the channel name by a means other than PMDFgetChannelName.
For instance, the channel name for TCP/IP slave channels is specified at compile
time, and PhoneNet slave channels prompt for the name of the channel they are
to process. In such cases, PMDFgetChannelName should not be used.

When specified, bits in the optional keywords1 argument will be set as follows:

Bits Usage

0, 1 These two bits specify whether or not the headerbottom, headerinc, or
headeromit channel keywords have been specified:

Bit 0 = 0, bit 1 = 0. headeromit: discard the message’s header.
Bit 0 = 1, bit 1 = 0. headerinc: preserve the message header and keep it
at the top of the message. This is the default case when none of these three
channel keywords have been applied to the channel.
Bit 0 = 0, bit 1 = 1. headerbottom: preserve the message header but place it
at the bottom of the message.

2 When set, indicates that the master_debug keyword was specified for this channel.

3 When set, indicates that the slave_debug keyword was specified for this channel.

4, 5 These two bits specify whether or not the exquota, holdexquota, or
noexquota channel keywords have been specified:

Bit 4 = 0, bit 5 = 0. noexquota: return the message as undeliverable if the
recipient is over quota.
Bit 4 = 1, bit 5 = 0. holdexquota: defer delivery of the message if the
recipient is over quota.
Bit 4 = 0, bit 5 = 1. exquota: deliver the message to the recipient even if they
are over quota.

Bit 0 is the least significant bit.

Note that all other channel keywords which can be applied to the channel are
automatically handled by PMDF.

On OpenVMS systems, the actual name of the particular channel being processed
is specified by the logical PMDF_CHANNEL. The translation value of this logical gives
the name of the channel being processed. On UNIX and Windows systems, the

1–104

PMDFgetChannelName

PMDF_CHANNEL environment variable is instead used with the equivalence value
of the variable being the name of the channel.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _FATERRLIB Call to LIB$SCOPY_R_DX failed owing to a fatal internal
error in the OpenVMS Run Time Library. Channel name not
returned.

PMDF_ _INSVIRMEM Insufficient virtual memory: call to LIB$GET_VM made by
LIB$SCOPY_R_DX has failed. Channel name not returned.

PMDF_ _INVSTRDES Invalid string descriptor for channel: descriptor has an
invalid value in its DSC$B_CLASS field. Channel name not
returned.

PMDF_ _NOCHANNEL Either the channel name cannot be determined, or the
channel cannot be located in the configuration file.

PMDF_ _STRTRU Supplied string was too long; value truncated to fit.

1–105

PMDFgetDateTime

PMDFgetDateTime

Obtain the current date and time in an RFC 822/1123 compliant format.

PASCAL status = PMDF_get_date_time
(datetime, datetime_len)

argument information

Argument Data type Access Mechanism

datetime descriptor read/write reference
datetime_len unsigned word write reference

C status = PMDFgetDateTime (datetime, datetime_len)

argument information
int PMDFgetDateTime(char *datetime, int *datetime_len)

ARGUMENTS datetime
String to receive the formatted date and time. Must be at least 27+N bytes long
where N is the length of the local time zone string.

datetime_len
Length in bytes of the returned time string. Callers using PMDFgetDateTime
must, on input, supply the maximum length in bytes of datetime.

DESCRIPTION The routine PMDFgetDateTime can be used to obtain the system’s current date
and time. The returned string will be in a format compatible with RFC 822 and
RFC 1123; e.g., ‘‘Sat, 04 May 2012 18:04:00 EDT’’. This string is then suitable for
use in a "Date:" header line.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _FATERRLIB Call to LIB$SCOPY_R_DX failed owing to a fatal internal
error in the OpenVMS Run Time Library. Date and time not
returned.

PMDF_ _INSVIRMEM Insufficient virtual memory: call to LIB$GET_VM made by
LIB$SCOPY_R_DX has failed. Date and time not returned.

1–106

PMDFgetDateTime

PMDF_ _INVSTRDES Invalid string descriptor for datetime: descriptor has an
invalid value in its DSC$B_CLASS field. Date and time not
returned.

PMDF_ _STRTRU Supplied string was too long; value truncated to fit.

1–107

PMDFgetEnvelopeId

PMDFgetEnvelopeId

Obtain the envelope id associated with this message.

PASCAL status = PMDF_get_envelope_id
(dq_context, envelope_id, envelope_id_len)

argument information

Argument Data type Access Mechanism

dq_context context pointer read/write reference
envelope_id descriptor read/write reference
envelope_id_len unsigned word write reference

C status = PMDFgetEnvelopeId
(dq_context, envelope_id, envelope_id_len)

argument information
int PMDFgetEnvelopeId(PMDF_dq **dq_context,

char *envelope,
int *envelope_id_len)

ARGUMENTS dq_context
A message dequeue context created with PMDFdequeueInitialize.

envelope_id
String to receive the message’s envelope id. Length must be at least ALFA_SIZE+1
bytes.

envelope_id_len
Length in bytes of the envelope id. Callers using PMDFgetEnvelopeId must, on
input, supply the maximum length in bytes of envelope_id.

DESCRIPTION Messages queued to PMDF often carry with them two identification strings – ‘‘id’s’’
for short. The first is the ‘‘message id’’ as seen in the message’s RFC 822 "Message-
id:" header line. This id is the same for all copies of a given message. The second
id is the envelope id. Each copy of the message has a distinct envelope id, if it has
any envelope id at all.

It is important to note that not all messages can have envelope id’s. Specifically,
RFC 1891 forbids adding an envelope id to a message obtained via SMTP without
an envelope id. As such, it is possible to find messages in PMDF’s queues

1–108

PMDFgetEnvelopeId

which have no envelope id’s—these are messages which were received without
an envelope id.

When a message dequeue is initiated, the message and envelope id’s can be ob-
tained by calling PMDFgetEnvelopeId and PMDFgetMessageId. It is particularly
important to obtain the envelope id as it should be propogated forward by channels
which re-enqueue the message for subsequent processing.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. No envelope id retrieved.

PMDF_ _FATERRLIB Call to LIB$SCOPY_R_DX failed owing to a fatal internal
error in the OpenVMS Run Time Library. No envelope id
retrieved.

PMDF_ _INSVIRMEM Insufficient virtual memory: call to LIB$GET_VM made by
LIB$SCOPY_R_DX has failed. No envelope id retrieved.

PMDF_ _INVSTRDES Invalid string descriptor for envelope_id: descriptor has an
invalid value in its DSC$B_CLASS field. No envelope id
retrieved.

PMDF_ _STRTRU Supplied string was too long; value truncated to fit.

1–109

PMDFgetErrorText

PMDFgetErrorText

Obtain any error message associated with a PMDF__ error status code.

PASCAL status = PMDF_get_error_text
(nq_context, text, text_len)

argument information

Argument Data type Access Mechanism

nq_context context pointer read/write reference
text descriptor read/write reference
text_len unsigned word write reference

C status = PMDFgetErrorText
(nq_context, text, text_len)

argument information
int PMDFgetErrorText(PMDF_nq **nq_context,

char *text,
int *text_len)

ARGUMENTS text
String to receive a description associated with an error message. Must be at least
ALFA_SIZE+1 bytes in length.

text_len
Length in bytes of the returned description. Callers using PMDFgetErrorText
must, on input, supply the maximum length in bytes of text.

DESCRIPTION In some cases, after a PMDF__ error has been returned, additional information
about the error can be obtained by calling PMDFgetErrorText. This additional
information is returned as a text string and is suitable for writing to a log file.
The applicable cases are

• after an error from PMDFaddRecipient,

• after an error from PMDFenqueueMessage, or

• after an error from PMDFstartMessageEnvelope.

The above cases do not include errors associated with bad call arguments; that is,
do not apply when the error resulted from passing a bad parameter to the routine
which returned the error.

1–110

PMDFgetErrorText

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _FATERRLIB Call to LIB$SCOPY_R_DX failed owing to a fatal internal
error in the OpenVMS Run Time Library. Error text not
returned.

PMDF_ _INSVIRMEM Insufficient virtual memory: call to LIB$GET_VM made by
LIB$SCOPY_R_DX has failed. Error text not returned.

PMDF_ _INVSTRDES Invalid string descriptor for text: descriptor has an invalid
value in its DSC$B_CLASS field. Error text not returned.

PMDF_ _STRTRU Supplied string was too long; value truncated to fit.

1–111

PMDFgetHostName

PMDFgetHostName

Obtain the official local host name.

PASCAL status = PMDF_get_host_name (host, host_len)

argument information

Argument Data type Access Mechanism

host descriptor read/write reference
host_len unsigned word write reference

C status = PMDFgetHostName (host, host_len)

argument information
int PMDFgetHostName(char *host, int *host_len)

ARGUMENTS host
String to receive the official local host name. This string should be at least
ALFA_SIZE+1 bytes long.

host_len
Length in bytes of the returned host string. Callers using PMDFgetHostName
must, on input, supply the maximum length in bytes of host.

DESCRIPTION The official name of the local host (i.e., the host name associated with the local, l,
channel) can be obtained by calling PMDFgetHostName. This host name is typically
used when constructing return addresses for local users. Such a return address is
simply user@host where user is the name of the local user and host is the local
host name.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _FATERRLIB Call to LIB$SCOPY_R_DX failed owing to a fatal internal
error in the OpenVMS Run Time Library. Host name not
returned.

PMDF_ _INSVIRMEM Insufficient virtual memory: call to LIB$GET_VM made by
LIB$SCOPY_R_DX has failed. Host name not returned.

1–112

PMDFgetHostName

PMDF_ _INVSTRDES Invalid string descriptor for host: descriptor has an invalid
value in its DSC$B_CLASS field. Host name not returned.

PMDF_ _STRTRU Supplied string was too long; value truncated to fit.

1–113

PMDFgetMessage

PMDFgetMessage

Access the next message in the message queue being processed.

PASCAL status = PMDF_get_message
(dq_context, filename, filename_len, from, from_len)

argument information

Argument Data type Access Mechanism

dq_context context pointer read/write reference
filename descriptor read/write reference
filename_len unsigned word write reference
from descriptor read/write reference
from_len unsigned word write reference

C status = PMDFgetMessage
(dq_context, filename, filename_len, from, from_len)

argument information
int PMDFgetMessage(PMDF_dq **dq_context,

char *filename,
int *filename_len,
char *from,
int *from_len)

ARGUMENTS dq_context
A message dequeue context created with PMDFdequeueInitialize.

filename
String to receive the name of the file containing the accessed message. Length
must be at least ALFA_SIZE+1 bytes.

filename_len
Length in bytes of the returned file name. Callers using PMDFgetMessage must,
on input, supply the maximum length in bytes of filename.

from
String to receive the envelope "From:" address of the accessed message. Length
must be at least ALFA_SIZE+1 bytes.

from_len
Length in bytes of the envelope "From:" address. Callers using PMDFgetMessage
must, on input, supply the maximum length in bytes of from.

1–114

PMDFgetMessage

DESCRIPTION PMDFgetMessage should be called repeatedly to access, one at a time, each
message requiring processing. Each message to be processed will only be presented
once; i.e., a job will not repeatedly see a message which it has deferred. When
PMDFgetMessage returns the status code PMDF__EOF, no more messages remain
to be processed.

The returned envelope "From:" address should be saved as it can be needed if the
program either enqueues a new message or returns the accessed message. The
returned file name can usually be ignored as the API routines manage all access
to the message file including opening the file, reading it, closing it, and deleting it
when it is dequeued.

A message accessed with PMDFgetMessage can be processed using any of the
routines accepting a dq_context argument.

After processing an accessed message, the message should de-accessed with
PMDFdequeueMessageEnd.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _EOF No more messages to be processed.

PMDF_ _FATERRLIB Call to LIB$SCOPY_R_DX failed owing to a fatal internal
error in the OpenVMS Run Time Library. Message not
accessed.

PMDF_ _INSVIRMEM Insufficient virtual memory: call to LIB$GET_VM made by
LIB$SCOPY_R_DX has failed. Message not accessed.

PMDF_ _INVSTRDES Invalid string descriptor for filename or from: one or both
of the descriptors has an invalid value in its DSC$B_CLASS
field.

PMDF_ _STRTRU Supplied filename or from string was too long; value
truncated to fit.

1–115

PMDFgetMessageId

PMDFgetMessageId

Obtain the message id associated with this message.

PASCAL status = PMDF_get_message_id
(dq_context, message_id, message_id_len)

argument information

Argument Data type Access Mechanism

dq_context context pointer read/write reference
message_id descriptor read/write reference
message_id_len unsigned word write reference

C status = PMDFgetMessageId
(dq_context, message_id, message_id_len)

argument information
int PMDFgetMessageId(PMDF_dq **dq_context,

char *message,
int *message_id_len)

ARGUMENTS dq_context
A message dequeue context created with PMDFdequeueInitialize.

message_id
String to receive the message’s message id. Length must be at least ALFA_SIZE+1
bytes.

message_id_len
Length in bytes of the message id. Callers using PMDFgetMessageId must, on
input, supply the maximum length in bytes of message_id.

DESCRIPTION The PMDFgetMessageId routine provides ready access to a message’s message
id. Note that the message id can also be obtained by reading and parsing the
message’s header. However, for efficiency purposes, PMDF stores a copy of the
message id in the message envelope. This routine provides access to that envelope
copy.

1–116

PMDFgetMessageId

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. No message id retrieved.

PMDF_ _FATERRLIB Call to LIB$SCOPY_R_DX failed owing to a fatal internal
error in the OpenVMS Run Time Library. No message id
retrieved.

PMDF_ _INSVIRMEM Insufficient virtual memory: call to LIB$GET_VM made by
LIB$SCOPY_R_DX has failed. No message id retrieved.

PMDF_ _INVSTRDES Invalid string descriptor for message_id: descriptor has an
invalid value in its DSC$B_CLASS field. No message id
retrieved.

PMDF_ _STRTRU Supplied string was too long; value truncated to fit.

1–117

PMDFgetPostmasterAddress

PMDFgetPostmasterAddress

Obtain the local postmaster’s address.

PASCAL status = PMDF_get_postmaster_address
(address, address_len)

argument information

Argument Data type Access Mechanism

address descriptor read/write reference
address_len unsigned word write reference

C status = PMDFgetPostmasterAddress
(address, address_len)

argument information
int PMDFgetPostmasterAddress(char *address, int *address_len)

ARGUMENTS address
String to receive the local postmaster’s address. Length must be at least
ALFA_SIZE+1 bytes.

address_len
Length in bytes of the postmaster’s address. Callers using PMDFgetpostmaster-
address must, on input, supply the maximum length in bytes of address.

DESCRIPTION PMDFgetPostmasterAddress can be used to obtain the mail address for the local
postmaster. Note, however, that it usually is not a good idea for programs to send
mail to the postmaster. In many situations, sending mail to the postmaster when
failures occur can lead to mail loops; e.g., the mail sent to the postmaster itself
fails and generates a message to the postmaster which then fails and generates
yet another message to the postmaster, ad infinitum.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _FATERRLIB Call to LIB$SCOPY_R_DX failed owing to a fatal internal
error in the OpenVMS Run Time Library. No address
returned.

1–118

PMDFgetPostmasterAddress

PMDF_ _INSVIRMEM Insufficient virtual memory: call to LIB$GET_VM made by
LIB$SCOPY_R_DX has failed. No address returned.

PMDF_ _INVSTRDES Invalid string descriptor for address: descriptor has an invalid
value in its DSC$B_CLASS field. No address returned.

PMDF_ _STRTRU Supplied string was too long; value truncated to fit.

1–119

PMDFgetRecipient

PMDFgetRecipient

Obtain the next envelope "To:" address from a message.

PASCAL status = PMDF_get_recipient
(dq_context, address, address_len, orig_address,
orig_address_len)

argument information

Argument Data type Access Mechanism

dq_context context pointer read/write reference
address descriptor read/write reference
address_len unsigned word write reference
orig_address descriptor read/write reference
orig_address_len unsigned word write reference

C status = PMDFgetRecipient
(dq_context, address, address_len, orig_address,
orig_address_len)

argument information
int PMDFgetRecipient(PMDF_dq **dq_context,

char *address,
int *address_len,
char *orig_address,
int *orig_address_len)

ARGUMENTS dq_context
A message dequeue context created with PMDFdequeueInitialize.

address
String to receive an envelope "To:" address from the message’s envelope. Length
must be at least ALFA_SIZE+1 bytes.

address_len
Length in bytes of the envelope "To:" address. Callers using PMDFgetRecipient
must, on input, supply the maximum length in bytes of address.

orig_address
String to receive the original form of the envelope "To:" address, if known. Length
must be at least ALFA_SIZE+1 bytes.

1–120

PMDFgetRecipient

orig_address_len
Length in bytes of the original envelope "To:" address, if known. Callers using
PMDFgetRecipient must, on input, supply the maximum length in bytes of orig_
address.

DESCRIPTION PMDFgetRecipient should be called repeatedly to obtain each envelope "To:"
address from a message. In each call to PMDFgetRecipient a single envelope
"To:" address will be returned in address. After all addresses have been output,
PMDFgetRecipient will return the status code PMDF__EOF. For example, if the
message envelope has two "To:" addresses, then three calls to PMDFgetRecipient
should be made. In the first two calls, the two addresses will be output along with
the return status code PMDF__OK. In the third call no address will be output and
the status code PMDF__EOF will be returned.

After each call in which PMDFgetRecipient returns PMDF__OK, a call should
be made to PMDFgetRecipientFlags to obtain the NOTARY processing flags
associated with the envelope "To:" address.

After all of the envelope "To:" addresses have been read, the message header and
body can be read with PMDFreadHeader, PMDFreadLine, and PMDFreadText.

The orig_address gives, if known, the original form of the envelope "To:" address.
This is original address is carried with the message and used when generating no-
tifications concerning the message. When calling PMDFrecipientDisposition
or re-enqueuing a message to PMDF, this original address should be supplied.

After the channel processes an envelope "To:" address and determines its disposi-
tion, PMDFrecipientDisposition must be called. The NOTARY flag obtained
with PMDFgetRecipientFlags for that address as well the original form of the
address must be supplied to PMDFrecipientDisposition. By supplying this dis-
position information, PMDF can automatically generate determine whether or not
the message needs to be deferred for later processing and generate any required
notifications when the message being dequeued is de-accessed.

If the status code PMDF__NO is returned, then the message file was found to be
missing both a message header and message body and has been deleted. The
calling program should abort processing of the current message and call either
PMDFdequeueMessageEnd with the defer argument set to true.

If the status code PMDF__STRTRU is returned, then it is probably not safe to
proceed: the envelope "To:" address had to be truncated to fit into the supplied
address string and a truncated address is generally worthless.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. No address retrieved.

PMDF_ _EOF No more envelope To: addresses.

1–121

PMDFgetRecipient

PMDF_ _FATERRLIB Call to LIB$SCOPY_R_DX failed owing to a fatal internal
error in the OpenVMS Run Time Library. No address
retrieved.

PMDF_ _INSVIRMEM Insufficient virtual memory: call to LIB$GET_VM made by
LIB$SCOPY_R_DX has failed. No address retrieved.

PMDF_ _INVSTRDES Invalid string descriptor for address: descriptor has an invalid
value in its DSC$B_CLASS field. No address retrieved.

PMDF_ _NO Accessed message file was corrupt. It has been
deleted. Abort current dequeue processing by calling
PMDFdequeueMessageEnd. No address retrieved.

PMDF_ _STRTRU Supplied string was too long; value truncated to fit.

1–122

PMDFgetRecipientFlags

PMDFgetRecipientFlags

Obtain the NOTARY flags for the previously obtained envelope recipient address.

PASCAL status = PMDF_get_recipient_flags
(dq_context, flags)

argument information

Argument Data type Access Mechanism

dq_context context pointer read/write reference
flags integer write reference

C status = PMDFgetRecipientFlags
(dq_context, notary_flags)

argument information
int PMDFgetRecipientFlags(PMDF_dq **dq_context,
int *notary_flags)

ARGUMENTS dq_context
A message dequeue context created with PMDFdequeueInitialize.

notary_flags
Longword integer to receive the NOTARY flag bits.

DESCRIPTION PMDF mail messages carry per recipient NOTARY information in their envelope.
This information is aligned with the NOTARY SMTP extension as described in
RFC 1891 and describes failure and success handling requested by the sender
(e.g., send a delivery receipt, send failure notifications but do not include return
of content, never send any form of notifications, etc.).

When dequeuing a message, every time PMDFgetRecipient is called and returns
PMDF__OK, PMDFgetRecipientFlags should immediately be called afterwords.
The notary_flags value returned should then be saved and, once the disposition of
the associated envelope recipient address is known, PMDFrecipientDisposition
called with the recipient address, the value of notary_flags, and the disposition
of the address.

notary_flags is a bit-encoded value. The interpretation of the individual bits are
given in Table 1–6. These flags are based upon RFC 1891; refer to that document
for details on their usage.

1–123

PMDFgetRecipientFlags

Table 1–6 Envelope To: Address NOTARY Flags

Symbolic name Bit
Mask
value Description

PMDF_RECEIPT_HEADER 0 1 Include the message’s header in notification messages
concerning this envelope "To:" address. RFC 1891 equivalent:
RET=HDRS.

PMDF_RECEIPT_NOHEADER 1 2 Do not include the message’s header in notification messages
concerning this envelope "To:" address. No RFC 1891
equivalent.

PMDF_RECEIPT_FAILURES 2 4 Send a non-delivery notification (NDN) to the envelope "From:"
address if the message cannot be delivered to this envelope
"To:" address. RFC 1891 equivalent: NOTIFY=FAILURE.

PMDF_RECEIPT_SUCCESSES 3 8 When the message is successfully delivered to this envelope
"To:" address, send a delivery status notification (DSN) to the
envelope "From:" address indicating successful delivery. RFC
1891 equivalent: NOTIFY=SUCCESS.

PMDF_RECEIPT_DELAYS 4 16 When delivery of the message to this envelope "To:" address
is delayed for some period of time, send send a delivery status
notification (DSN) to the envelope "From:" address reporting the
delay. RFC 1891 equivalent: NOTIFY=DELAY.

PMDF_RECEIPT_NEVER 6 64 Do not send back notification messages of any sort
concerning this envelope "To:" address. RFC 1891 equivalent:
NOTIFY=NEVER.

When gatewaying mail to another mail system, the NOTARY information should be
converted to equivalent requests in the other mail system. If they cannot be, then
a disposition of PMDF_DISP_RELAYED_FOREIGN should be set for the gatewayed
envelope "To:" address.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. No flags retrieved.

PMDF_ _NO Information not available.

1–124

PMDFgetUniqueString

PMDFgetUniqueString

Generate a unique, eighteen character string.

PASCAL status = PMDF_get_unique_string (string, string_len)

argument information

Argument Data type Access Mechanism

string descriptor read/write reference
string_len unsigned word write reference

C status = PMDFgetUniqueString (string, string_len)

argument information
int PMDFgetUniqueString(char *string, int *string_len)

ARGUMENTS string
String to receive the psuedo-random unique character string. Length must be at
least 19 bytes.

string_len
Length in bytes of the unique string. Callers using PMDFgetUniqueString must,
on input, supply the maximum length in bytes of the string buffer.

DESCRIPTION PMDFgetUniqueString will return a psuedo-random character string composed
of a fixed number of characters chosen from the thirty-six character alphabet 0, 1,
2, ..., 9, A, B, C, ..., Z. On OpenVMS and Windows systems, this string will be 18
characters long and unique cluster-wide (i.e., no two calls made in the same cluster
will generate the same string). On UNIX systems, the string is 14 characters long.

PMDFgetUniqueString is a useful utility for programs which need to generate,
for instance, unique file names. Note that the generated string can begin with a
numeral. Thus, on file systems which require that file names begin with a non-
numeric character, a character such as a ‘‘A’’ should be prepended to the string to
produce a valid file name. Truncating the string will compromise its uniqueness.

1–125

PMDFgetUniqueString

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _FATERRLIB Call to LIB$SCOPY_R_DX failed owing to a fatal internal
error in the OpenVMS Run Time Library. No string returned.

PMDF_ _INSVIRMEM Insufficient virtual memory: call to LIB$GET_VM made by
LIB$SCOPY_R_DX has failed. No string returned.

PMDF_ _INVSTRDES Invalid string descriptor for string: descriptor has an invalid
value in its DSC$B_CLASS field. No string returned.

PMDF_ _STRTRU Supplied string was too short; value truncated to fit.

1–126

PMDFgetUserName

PMDFgetUserName

Determine the user name associated with the currently running process.

PASCAL status = PMDF_get_user_name
(user_name, user_name_len)

argument information

Argument Data type Access Mechanism

user_name descriptor read/write reference
user_name_len unsigned word write reference

C status = PMDFgetUserName
(user_name, user_name_len)

argument information
int PMDFgetUserName(char *user_name, int *user_name_len)

ARGUMENTS user_name
String to receive the current process’s user name. Length must be sufficient to
receive any user name supported by the operating system in use. Callers of
PMDFgetUserName must include an extra byte for zero termination of the returned
string.

user_name_len
Length in bytes of the returned user name. Callers using PMDFgetUserName
must, on input, supply the maximum length in bytes of user_name.

DESCRIPTION PMDFgetUserName can be called to determine the user name associated with the
currently running process.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _FATERRLIB Call to LIB$SCOPY_R_DX failed owing to a fatal internal
error in the OpenVMS Run Time Library. No user name
returned.

PMDF_ _INSVIRMEM Insufficient virtual memory: call to LIB$GET_VM made by
LIB$SCOPY_R_DX has failed. No user name returned.

1–127

PMDFgetUserName

PMDF_ _INVSTRDES Invalid string descriptor for user_name: descriptor has an
invalid value in its DSC$B_CLASS field. No user name
returned.

PMDF_ _STRTRU Supplied string was too long; value truncated to fit.

1–128

PMDFinitialize

PMDFinitialize

Initialize PMDF data structures and resources.

PASCAL status = PMDF_initialize (ischannel)

argument information

Argument Data type Access Mechanism

ischannel boolean read reference

C status = PMDFinitialize (ischannel)

argument information
int PMDFinitialize(int ischannel)

ARGUMENTS ischannel
If true, then user-to-channel access checks will be disabled. If false, then user-to-
channel access checks will be enabled.

DESCRIPTION With the exception of PMDFsetMutex, PMDFinitialize must be called prior
to calling any other API routines. This allocates and initializes internal data
structures used by the API and PMDF. PMDFinitialize should only be called
once. After all processing is completed, PMDFdone should be called to release any
allocated memory, and ensure that any open files are properly closed.

The ischannel flag is used to enable or disable rightslist based user-to-channel
access checks. Programs which enqueue messages in behalf of users (e.g., user
agents), should invoke PMDFinitialize with ischannel false; channel programs
which enqueue mail should invoke PMDFinitialize with ischannel true. When
ischannel is false, PMDFenqueueMessage will also close the queue cache database
after enqueuing a message. On OpenVMS systems, channel programs which
run indefinitely (e.g., detached processes) should supply a call back procedure to
PMDFsetCallBack so that when a PMDF CACHE/CLOSE command is issued the
program can call PMDFcloseQueueCache when convenient. See Section 1.7 for a
further discussion of this issue.

Multithreaded routines must call PMDFsetMutex prior to calling PMDFinitial-
ize.

1–129

PMDFinitialize

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _FOPN Initialization failed. One or more PMDF configuration
files could not be accessed. PMDF configuration
files are incorrectly protected. Note that the use of
PMDFinitialize does not require any privileges;
unprivileged users should be able to invoke this particular
routine.

PMDF_ _NO Initialization failed owing to a version mismatch between the
current version of PMDF and the sites compiled configuration.
Either the PMDF configuration needs to be recompiled or the
character set tables need to be recompiled.

1–130

PMDFlog

PMDFlog

Write a line of text to the channel log file.

PASCAL status = PMDF_log (text, time_stamp)

argument information

Argument Data type Access Mechanism

text descriptor read reference
time_stamp boolean read value

C status = PMDFlog (text, text_len, time_stamp)

argument information
int PMDFlog(char *text,

int text_len,
int time_stamp)

ARGUMENTS text
String of text to write to the log file. Cannot exceed a length of 65,535 bytes.

text_len
Length in bytes of text.

time_stamp
When true, output a time stamp to the log file prior to writing out the text string.

DESCRIPTION Channels written using the PMDF API should write output using PMDFlog. They
should not, for instance, attempt to write to stdout or stderr. So doing will
lead to the output going to unexpected places such as the job controller’s log file
or down a network connection.

The PMDF_log routine writes text to the correct output destination; e.g., the
channel’s log file or the terminal if the channel is running interactively. If
debugging has been enabled with PMDFdebug, then the output will go to the same
destination as the PMDF debugging output.

When time_stamp is true, a time stamp will first be output. For example, the
call

1–131

PMDFlog

PMDF_log("Resuming message processing", true);

would result in output similar to

04-MAY-2012 18:04:00: Resuming message processing

Note that the channel log file is distinct from the PMDF log file. The PMDFcloseL-
ogFile routine closes the PMDF log file and not the channel log file.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _INVSTRDES Invalid string descriptor for text: descriptor has an invalid
value in its DSC$B_CLASS field. Text not written.

PMDF_ _STRTRU Input string’s length exceeded 65,535 bytes; only the first
65,535 bytes were output.

1–132

PMDFmappingApply

PMDFmappingApply

Pass an input string through a mapping table.

PASCAL status = PMDF_mapping_apply
(mapping, instr, outstr, outstr_len, flags, match)

argument information

Argument Data type Access Mechanism

mapping signed longword read value
instr descriptor read reference
outstr descriptor read/write reference
outstr_len unsigned word write reference
flags descriptor read/write reference
match boolean write reference

C status = PMDFmappingApply
(mapping, instr, instr_len, outstr, outstr_len, flags, match)

argument information
int PMDFmappingApply(int mapping,

char *instr,
int instr_len,
char *outstr,
int *outstr_len,
unsigned char *flags,
int *match)

ARGUMENTS mapping
Reference to a mapping table returned by PMDFmappingLoad.

instr
Input string to process with the specified mapping table. The length of the string
can not exceed ALFA_SIZE bytes.

instr_len
Length in bytes of the input string, instr.

outstr
String to receive the output, if any, of the mapping. Must be at least ALFA_SIZE+1
bytes in length.

1–133

PMDFmappingApply

outstr_len
Length in bytes of the output of the mapping. Will be set to 0 if no output is
produced. Callers using PMDFmappingApply must, on input, supply the maximum
length in bytes of outstr.

flags
Bit array of length at least 32 bytes (256 bits) which, on output, will contain bit
encoded information about the mapping process.

match
For PMDFmappingApply, a boolean indicating whether or not a match was found.
For PMDFmappingApply an integer indicating whether or not a match was found.
If true (1) a match was found; if false (0) no match was found.

DESCRIPTION PMDFmappingApply is used to apply a previously loaded mapping table to an
input string. Consult the PMDF System Manager’s Guide for details on the use of
mapping tables and the mapping file in which mapping tables reside.

If the input string matches an entry in the table, then the result of the mapping
is returned in outstr and match set true. Otherwise, match will be false and
outstr_len set to zero.

Applications can require that special sequences such as $Y or $N be used in
mapping table templates. The presence of such sequences are indicated in the
flags bit array. These sequences, called metacharacters, will not appear in the
output string itself. The output string produced by a template with a $Y in it will
not contain $Y. However, bit 89, the ordinal value of the ASCII character Y, will
be set in flags.

The interpretation of the first 256 bits in flags are given in the table below. Bit
0 is the low-order bit of the first byte in flags, bit 7 is the high-order bit of that
same byte, bit 8 is the low-order bit of the next byte, and so forth.

Bit Description

0—31 For ������, bit � set indicates that �� � matches occurred. When bit � is set,
bits �� �, �� �, ..., � will also be set.

32 When bit 32 is set, 32 or more matches occurred.

33—255 When bit �, ��������, is set, then the two character sequence $x appeared
in the output string, where x is the ASCII character with ordinal index �. This
sequence will not actually appear in the output string itself. Bits 36, 67, 99, 69,
101, 76, 108, 82, and 114 are never set; they correspond to the sequences $$,
$C, $c, $E, $e, $L, $l, $R, and $r used by the mapping facilities.

To illustrate the usage of flags, consider the mapping table

SAMPLE-TABLE

1 2AR
2 3$B

The input string 1 will match the first entry of the table, and produce the output
string 2. Because of the $R metacharacter, the mapping will be reapplied using 2

1–134

PMDFmappingApply

as the new input string. When 2 is mapped, it will match the second entry and
produce the output string 3. Now, when 1 is mapped with PMDFmappingApply,
the final output string will be 3, and bits 0, 1, 65, and 66 of flags will be set. The
first two bits indicate that two matches in the mapping table were made. Bits
65 and 66 indicate that the metacharacters $A and $B were encountered in the
templates of those matching entries. If 2 is mapped with PMDFmappingApply,
then the output string will again be be 3, but flags will have only bits 0 and 66
set. If any other string is mapped, then no output string will be returned and no
bits in flags will be set.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _FATERRLIB Call to LIB$SCOPY_R_DX failed owing to a fatal internal
error in the OpenVMS Run Time Library. Mapping result not
resturned.

PMDF_ _INSVIRMEM Insufficient virtual memory: call to LIB$GET_VM made by
LIB$SCOPY_R_DX has failed. Channel name not returned.

PMDF_ _INVSTRDES Invalid string descriptor for instr, outstr, or flags: one or
more of the descriptors has an invalid value in its DSC$B_
CLASS field. Mapping not performed or results not returned.

PMDF_ _STRTRU Mapping result was too long to fit into the supplied output
string; result truncated to fit.

PMDF_ _STRTRUERR Input string is too long or flags string too short. Mapping not
performed.

1–135

PMDFmappingLoad

PMDFmappingLoad

Access a mapping table.

PASCAL status = PMDF_mapping_load (table, mapping)

argument information

Argument Data type Access Mechanism

table descriptor read reference
mapping signed longword write reference

C status = PMDFmappingLoad
(table, table_len, mapping)

argument information
int PMDFmappingLoad(char *table,

int table_len,
int *mapping)

ARGUMENTS table
Name of the table to load. The length of the string can not exceed ALFA_SIZE
bytes.

table_len
Length in bytes of the table name.

mapping
Reference to the loaded mapping table for use with PMDFmappingApply.

DESCRIPTION Before a mapping table can be used to map input strings, it must first be loaded.
This is accomplished with PMDFmappingLoad. Any number of tables can be loaded,
one table per PMDFmappingLoad call. Once a mapping table is loaded, it can be
used with PMDFmappingApply. There is no call to make to unload a table.

PMDFinitialize must be called prior to the first call to PMDFmappingLoad.
Failure to initialize PMDF first will result in a PMDF__NO error.

1–136

PMDFmappingLoad

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _INVSTRDES Invalid string descriptor for table: descriptor has an invalid
value in its DSC$B_CLASS field. No table loaded.

PMDF_ _NO PMDFinitialize has not yet been called. No table
loaded.

PMDF_ _NOMAPPING Cannot load specified mapping table; check to see if the
mapping table exists. No table loaded.

PMDF_ _STRTRUERR Supplied table name is too long. No table loaded.

1–137

PMDFoptionDispose

PMDFoptionDispose

Dispose of an option file context.

PASCAL status = PMDF_option_dispose (opt_context)

argument information

Argument Data type Access Mechanism

opt_context context pointer read value

C status = PMDFoptionDispose (opt_context)

argument information
int PMDFoptionDispose(PMDF_opt *opt_context)

ARGUMENTS opt_context
Pointer to context information generated by a previous call to PMDFoptionRead.

DESCRIPTION PMDFoptionDispose should be called to dispose of a previously allocated option
context created by PMDFoptionread. It is okay to pass in a zero (nil) value for
opt_context.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

1–138

PMDFoptionGetInteger

PMDFoptionGetInteger

Get the value of an integer-valued option from an option file.

PASCAL status = PMDF_option_get_integer
(opt_context, name, value)

argument information

Argument Data type Access Mechanism

opt_context context pointer read value
name descriptor read reference
value signed longword write reference

C status = PMDFoptionGetInteger
(opt_context, name, name_len, value)

argument information
int PMDFoptionGetInteger(PMDF_opt *opt_context,

char *name,
int name_len,
int *value)

ARGUMENTS opt_context
Pointer to context information generated by a previous call to PMDFoptionRead.

name
Name of the option to obtain the value of. Name can not exceed a length in bytes
of SHORT_ALFA. Option names are treated as case insensitive strings.

name_len
Length in bytes of the option name.

value
Value of the specified option.

DESCRIPTION PMDFoptionGetInteger returns in value the value of the specified option. If the
option was not specified in the option file or if opt_context is zero (nil), then the
content of value is left unchanged.

1–139

PMDFoptionGetInteger

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _INVSTRDES Invalid string descriptor for name: descriptor has an invalid
value in its DSC$B_CLASS field. No option value returned.

PMDF_ _STRTRUERR Supplied name string exceeds the maximum permitted
length. No option value returned.

1–140

PMDFoptionGetReal

PMDFoptionGetReal

Get the value of an single precision, floating point-valued option from an option file.

PASCAL status = PMDF_option_get_real
(opt_context, name, value)

argument information

Argument Data type Access Mechanism

opt_context context pointer read value
name descriptor read reference
value single precision real write reference

C status = PMDFoptionGetReal
(opt_context, name, name_len, value)

argument information
int PMDFoptionGetReal(PMDF_opt *opt_context,

char *name,
int name_len,
float *value)

ARGUMENTS opt_context
Pointer to context information generated by a previous call to PMDFoptionRead.

name
Name of the option to obtain the value of. Name can not exceed a length in bytes
of SHORT_ALFA. Option names are treated as case insensitive strings.

name_len
Length in bytes of the option name.

value
Value of the specified option.

DESCRIPTION PMDFoptionGetReal returns in value the value of the specified option. If the
option was not specified in the option file or if opt_context is zero (nil), then the
content of value is left unchanged.

1–141

PMDFoptionGetReal

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _INVSTRDES Invalid string descriptor for name: descriptor has an invalid
value in its DSC$B_CLASS field. No option value returned.

PMDF_ _STRTRUERR Supplied name string exceeds the maximum permitted
length. No option value returned.

1–142

PMDFoptionGetString

PMDFoptionGetString

Get the value of an string-valued option from an option file.

PASCAL status = PMDF_option_get_string
(opt_context, name, value, value_len)

argument information

Argument Data type Access Mechanism

opt_context context pointer read value
name descriptor read reference
value descriptor read/write reference
value_len unsigned word write reference

C status = PMDFoptionGetString
(opt_context, name, name_len, value, value_len, max_len)

argument information
int PMDFoptionGetString(PMDF_opt *opt_context,

char *name,
int name_len,
char *value,
int *value_len,
int max_len)

ARGUMENTS opt_context
Pointer to context information generated by a previous call to PMDFoptionRead.

name
Name of the option to obtain the value of. Name can not exceed a length in bytes
of SHORT_ALFA. Option names are treated as case insensitive strings.

name_len
Length in bytes of the option name.

value
Value of the specified option. String must be large enough to receive at least
BIGALFA_SIZE+1 bytes.

value_len
Length in bytes of the returned value.

1–143

PMDFoptionGetString

max_len
The maximum length in bytes of value, not including any NULL terminator.

DESCRIPTION PMDFoptionGetString returns in value the value of the specified option. If the
option was not specified in the option file or if opt_context is zero (nil), then the
content of value and value_len is left unchanged.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _FATERRLIB Call to LIB$SCOPY_R_DX failed owing to a fatal internal
error in the OpenVMS Run Time Library. No value returned.

PMDF_ _INSVIRMEM Insufficient virtual memory: call to LIB$GET_VM made by
LIB$SCOPY_R_DX has failed. No value returned.

PMDF_ _INVSTRDES Invalid string descriptor for either name or value or both:
descriptor for one or both has an invalid value in its DSC$B_
CLASS field. No option value returned.

PMDF_ _STRTRU Supplied value string was too short. Option value truncated
to fit in value.

PMDF_ _STRTRUERR Supplied name string exceeds the maximum permitted
length. No option value returned.

1–144

PMDFoptionRead

PMDFoptionRead

Read an option file.

PASCAL status = PMDF_option_read (opt_context, filename)

argument information

Argument Data type Access Mechanism

opt_context context pointer write reference
filename descriptor read reference

C status = PMDFoptionRead
(opt_context, filename, filename_len)

argument information
int PMDFoptionRead(PMDF_opt **opt_context,

char *filename,
int filename_len)

ARGUMENTS opt_context
Pointer to context information generated by PMDFoptionRead.

filename
Full file specification specifying the option file to read. Length can not exceed
ALFA_SIZE bytes.

filename_len
Length in bytes of the filename.

DESCRIPTION PMDFoptionRead is used to read PMDF-style option files. The values for options
can then be obtained using the PMDFoptionGetInteger, PMDFoptionGetReal,
and PMDFoptionGetString routines. When finished obtaining option values,
dispose of the opt_context with a call to PMDFoptionDispose.

Note that when no option file exists or the file contains no entries, the returned
value for opt_context will be zero (nil). It is okay to pass a zero value for opt_
context to the other routines which accept opt_context. This allows a program
to blindly call the various option routines without regard to whether or not an
option file exists.

1–145

PMDFoptionRead

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _DONE Normal, successul completion. No option file existed.

PMDF_ _INVSTRDES Invalid string descriptor for filename: descriptor has an
invalid value in its DSC$B_CLASS field. Option file not
processed.

PMDF_ _NO Error reading option file; most likely means that there is a
syntax error in the option file.

PMDF_ _STRTRUERR Supplied filename string exceeds the maximum permitted
length. Option file not processed.

1–146

PMDFqueueCacheEnd

PMDFqueueCacheEnd

Dispose of a queue cache database context.

PASCAL status = PMDF_queue_cache_end (cache_context)

argument information

Argument Data type Access Mechanism

cache_context context pointer read/write reference

C status = PMDFqueueCacheEnd (cache_context)

argument information
void PMDFqueueCacheEnd(PMDF_qc **cache_context)

ARGUMENTS cache_context
Queue cache read context created with PMDFqueueCacheGetEntry.

DESCRIPTION Normally, queue cache contexts generated with PMDFqueueCacheGetEntry are
automatically disposed of by PMDFqueueCacheGetEntrywhen it returns PMDF__EOM.
To prematurely dispose of a context, use PMDFqueueCacheEnd.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

1–147

PMDFqueueCacheGetEntry

PMDFqueueCacheGetEntry

Retrieve an entry from the queue cache database.

PASCAL status = PMDF_queue_cache_get_entry
(cache_context, item_list, reserved1, reserved2)

argument information

Argument Data type Access Mechanism

cache_context context pointer read/write reference
item_list item list read/write reference
reserved1 descriptor read reference
reserved2 descriptor read reference

C status = PMDFqueueCacheGetEntry
(cache_context, item_list, reserved1, reserved2)

argument information
void PMDFqueueCacheGetEntry

(PMDF_qc **cache_context,
PMDF_keyword_item_list *item_list,
void *reserved1,
int reserved11,
void *reserved2,
int *reserved22)

ARGUMENTS cache_context
Queue cache read context created with PMDFqueueCacheGetEntry.

item_list
Item list specifying actions to be taken. item_list is the address of a list of item
descriptors, each of which specifies an action and provides the information needed
to perform that action. See the description below for further details.

reserved1, reserved11, reserved2, reserved22
These arguments are presently ignored. Pass values of zero.

1–148

PMDFqueueCacheGetEntry

DESCRIPTION PMDFqueueCacheGetEntry is used to dump the contents of the queue cache
database. On the first call to the routine, the cache_context argument should be
set to zero. It will then be created by PMDFqueueCacheGetEntry and returned
along with the first queue cache entry. Repeated calls should then be made using
this cache context to obtain the remaining queue cache entries. When there are no
more entries to return, the context will be disposed of and PMDF__EOM returned.
To prematurely abort the listing, call PMDFqueueCacheEnd.

A list of item descriptors — an item list — is used to specify, for each queue
cache entry, what values to return. The item_list argument is the address of
the first item descriptor in the list. Each item descriptor specifies an action
and provides the information needed to perform that action. The list of item
descriptors is terminated with an item descriptor with an item_code field value
of PMDF_QC_END_LIST.

Each item descriptor has the following C-style structure declaration:

typedef struct {
int item_code;
int item_blength;
void *item_address;
int item_length;
int item_status;

} PMDF_keyword_item_list;

where

Field name Description

item_code Item code chosen from Table 1–7 indicating the value to return. The
PMDF_QC_END_LIST item code indicates the end of the item list. Used
for input only.

item_blength Maximum length in bytes of the buffer pointed at by item_address. For
string buffers, this length does not include any null terminator. Used for
input only.

item_address Pointer to the buffer where the indicated value is to be written. Used for
input only.

item_length On output, this field is set to the length in bytes of the value written to the
buffer pointed at by item_address. This length does not include any
null terminator use to terminate string values. Used for output only.

item_status Status code associated with writing the value to the buffer. Will be
PMDF_ _OK for a success. In the case of an error, will generally be
PMDF_ _STRTRU indicating that the value was truncated to fit. Used for
output only.

The allowed item code values are given in Table 1–7. A sample program,
api_example11.pas and api_example12.c, are provided in the directory of ex-
ample programs, (PMDF_ROOT:[DOC.EXAMPLES] on OpenVMS and /pmdf/doc/examples/
on UNIX and Windows.

1–149

PMDFqueueCacheGetEntry

Table 1–7 PMDF_queue_cache_get_entry Item Codes

Item code Description

PMDF_QC_END_LIST Denotes the end of the item list. The item_address, item_blength,
and item_length fields are ignored.

PMDF_QC_CHAIN This item entry points to another item list to process. item_address
is a pointer to another item list to process. The item_blength and
item_length fields are ignored.

PMDF_QC_CHANNEL Name of the channel to which this message is queued. item_address
is a pointer to a buffer of length at least CHANLENGTH+1 bytes. The
channel name is written to this buffer and null terminated.

PMDF_QC_CREATION_DATE_BIN Binary representation of the message file’s creation date and time. On
OpenVMS systems, this is a quadword binary time. On UNIX systems it is
a time_t value. On Windows systems, it is a FILETIME.

PMDF_QC_CREATION_DATE_STR ASCII string representation of the message file’s creation date and time.
item_address should point to a buffer of length at least ALFA_SIZE+1
bytes. The date and time will be written to that buffer and null terminated.

PMDF_QC_DEFERRED_DATE_BIN Binary representation of any "Deferred-delivery-date:" specified in the
message’s RFC 822 header. Usually this value will be zero since PMDF
by default ignores that header line. PMDF must be explicitly configured
to honor it via the deferred channel keyword. On OpenVMS systems,
this binary time value is a quadword binary time. On UNIX systems it is a
time_t value. On Windows systems it is a FILETIME. item_address
should point to a buffer where the value is to be written.

PMDF_QC_DEFERRED_DATE_STR ASCII string representation of any "Deferred-delivery-date:" specified in the
messages RFC 822 header. item_address should point to a buffer of
length at least ALFA_SIZE+1 bytes. The date and time will be written to
that buffer and null terminated.

PMDF_QC_EXPIRY_DATE_BIN Binary representation of any "Expiry-date:" specified in the message’s RFC
822 header. On OpenVMS systems, this binary time value is a quadword
binary time. On UNIX systems it is a time_t value. On Windows
systems it is a FILETIME. item_address should point to a buffer where
the value is to be written.

PMDF_QC_EXPIRY_DATE_STR ASCII string representation of any "Expiry-date:" specified in the messages
RFC 822 header. item_address should point to a buffer of length at
least ALFA_SIZE+1 bytes. The date and time will be written to that buffer
and null terminated.

PMDF_QC_FILENAME Full path to the message file. item_address should point to a buffer
of length at least ALFA_SIZE+1 bytes. The file path will be written to that
buffer and null terminated.

PMDF_QC_LAST_TRY_DATE_BIN Binary representation of the date and time at which delivery was last
attempted for this message. A value of zero indicates that delivery has
not yet been attempted. On OpenVMS systems, this binary time value
is a quadword binary time. On UNIX systems it is a time_t value. On
Windows systems it is a FILETIME. item_address should point to the
buffer where the value is to be written.

PMDF_QC_LAST_TRY_DATE_STR ASCII string representation of the date and time at which delivery was last
attempted for this message. When the message has yet to be attempted,
the system’s zero time representation is returned. item_address
should point to a buffer of length at least ALFA_SIZE+1 bytes. The date
and time will be written to that buffer and null terminated.

1–150

PMDFqueueCacheGetEntry

Table 1–7 (Cont.) PMDF_queue_cache_get_entry Item Codes

Item code Description

PMDF_QC_OWNER_USERNAME Username associated with the process which enqueued this message
to PMDF. item_address should point to a buffer of length at least
ALFA_SIZE+1 bytes. The username will be written to that buffer and null
terminated.

PMDF_QC_PRIORITY Processing priority assigned to the message. This is a four byte, signed
integer value. Possible values are PMDF_CKEY_V_THIRD_CLASS,
PMDF_CKEY_V_SECOND_CLASS, PMDF_CKEY_V_NON_URGENT,
PMDF_CKEY_V_NORMAL, PMDF_CKEY_V_URGENT. item_address
should point to the location where the value is to be written.

PMDF_QC_RECIPIENT_COUNT Count of envelope "To:" addresses associated with the message. This is
a four byte, signed integer value. item_address should point to the
location where the value is to be written.

PMDF_QC_RECIPIENT_SYSTEM String representation of the destination system’s host name.
item_address should point to a buffer of length at least ALFA_SIZE+1
bytes. The host name will be written to that buffer and null terminated.

RETURN VALUES
PMDF_ _OK Normal, successful completion; queue cache entry returned.

PMDF_ _EOF Normal, successful completion; no more queue cache entries
to return.

PMDF_ _NO Cannot access queue cache database. No queue cache
entry returned.

1–151

PMDFreadFailureLog

PMDFreadFailureLog

Read a message delivery failure log from a message file.

PASCAL status = PMDF_read_failure_log
(dq_context, date, date_len, line, line_len)

argument information

Argument Data type Access Mechanism

dq_context context pointer read/write reference
date descriptor read/write reference
date_len unsigned word write reference
line descriptor read/write reference
line_len unsigned word write reference

C status = PMDFreadFailureLog
(dq_context, date, date_len, line, line_len)

argument information
int PMDFreadFailureLog(PMDF_dq **dq_context,

char *date,
int *date_len,
char *line,
int *line_len)

ARGUMENTS dq_context
A message dequeue context created with PMDFdequeueInitialize.

date
A buffer to receive the time stamp indicating when the log record was written.
Length must be at least ALFA_SIZE+1 bytes.

date_len
Length in bytes of the time stamp. Callers using PMDFreadFailureLog must, on
input, supply the maximum length in bytes of date.

line
A buffer to receive the log line read from the message delivery failure log. Length
must be at least BIGALFA_SIZE bytes.

line_len
Length in bytes of the line read. Callers using PMDFreadFailureLog must, on
input, supply the maximum length in bytes of line.

1–152

PMDFreadFailureLog

DESCRIPTION Messages can contain a delivery failure log detailing why previous delivery
attempts, if any, failed. This log can be read only after the message content
(headers and body) has been read. If no log is present, then PMDF__EOF will
be returned on the first read attempt. If however a log is present, then it can be
read with repeated calls to PMDFreadFailureLog. After reading the last line of
the log from the message, a subsequent call to PMDFreadFailureLog will return
the PMDF__EOF status code. That is, if two log lines remain to be read, then the
next two calls will read those two lines and return PMDF__OK. A third call will not
read any line and will return PMDF__EOF.

The delivery failure log is generated with PMDFdequeueMessageEnd when it
defers a message. It is also generated with PMDFdeferMessage.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. No data returned; no line read.

PMDF_ _EOF End of message.

PMDF_ _FATERRLIB Call to LIB$SCOPY_R_DX failed owing to a fatal internal
error in the OpenVMS Run Time Library. No data returned
although a line was read.

PMDF_ _INSVIRMEM Insufficient virtual memory: call to LIB$GET_VM made by
LIB$SCOPY_R_DX has failed. No data returned although a
line was read.

PMDF_ _INVSTRDES Invalid string descriptor for either date or line: descriptor for
one or both has an invalid value in its DSC$B_CLASS field.
No data returned; however, a line was read.

PMDF_NO Message read point is at the wrong location; must first read
to the end of the message body with PMDFreadLine or
PMDFreadText.

PMDF_ _STRTRU Supplied string was too long; value truncated to fit.

1–153

PMDFreadHeader

PMDFreadHeader

Read a message header from a message file.

PASCAL status = PMDF_read_header (dq_context, header)

argument information

Argument Data type Access Mechanism

dq_context context pointer read/write reference
header header pointer write reference

C status = PMDFreadHeader (dq_context, header)

argument information
int PMDFreadHeader(PMDF_dq **dq_context,

PMDF_hdr **header)

ARGUMENTS dq_context
A message dequeue context created with PMDFdequeueInitialize.

header
Address of a header structure created by PMDFreadHeader.

DESCRIPTION PMDFreadHeader will, in a single call, read the entire message header from a
message. The ‘‘read point’’ for the message must be positioned at the start of the
message header. This will be the case immediately after a call to PMDFgetRecip-
ient has returned PMDF__EOF or after a call to PMDFrewindMessage.

PMDFwriteHeader can be called to output a header structure to a message being
enqueued. PMDFdisposeHeader should be called to dispose of a previously read
header. See Section 1.6 for details on using and manipulating header structures.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. Header not read.

1–154

PMDFreadLine

PMDFreadLine

Read a line from a message file.

PASCAL status = PMDF_read_line (dq_context, line, line_len)

argument information

Argument Data type Access Mechanism

dq_context context pointer read/write reference
line descriptor read/write reference
line_len unsigned word write reference

C status = PMDFreadLine (dq_context, line, line_len)

argument information
int PMDFreadLine(PMDF_dq **dq_context,

char *line,
int *line_len)

ARGUMENTS dq_context
A message dequeue context created with PMDFdequeueInitialize.

line
A buffer to receive the line read from the message file. Length must be at least
BIGALFA_SIZE bytes.

line_len
Length in bytes of the line read. Callers using PMDFreadLine must, on input,
supply the maximum length in bytes of line.

DESCRIPTION Lines from a message file can be read, one at a time, using PMDFreadLine or
PMDFreadText. The only difference between PMDFreadLine and PMDFreadText
is that PMDFreadLine removes the trailing line terminator, a line feed, from the
end of the line before returning it to the caller. After reading the last line from the
message, any subsequent calls to PMDFreadLine or PMDFreadText will return
the PMDF__EOF status code. That is, if two lines remain to be read, then the next
two calls will read those two lines and return PMDF__OK. A third call will not read
any line and will return PMDF__EOF.

PMDFreadLine and PMDFreadText can be used to read both message header lines
and the content of the message body. When either of these routines are used to
read the message header, then the first blank line encountered signifies the end

1–155

PMDFreadLine

of the message header and the start of the message body. If PMDFreadHeader is
used to read the message header, then PMDFreadLine and PMDFreadText will
only read the message body and the blank line separating the message header
from message body will not be seen.

PMDFrewindMessage can be called to reset the read position to the start of the
message header.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. No data returned; no line read.

PMDF_ _EOF End of message.

PMDF_ _FATERRLIB Call to LIB$SCOPY_R_DX failed owing to a fatal internal
error in the OpenVMS Run Time Library. No data returned
although a line was read.

PMDF_ _INSVIRMEM Insufficient virtual memory: call to LIB$GET_VM made by
LIB$SCOPY_R_DX has failed. No data returned although a
line was read.

PMDF_ _INVSTRDES Invalid string descriptor for line: descriptor has an invalid
value in its DSC$B_CLASS field. No data returned; however,
a line was read.

PMDF_ _STRTRU Supplied string was too long; value truncated to fit.

1–156

PMDFreadText

PMDFreadText

Read a line from a message file.

PASCAL status = PMDF_read_text (dq_context, text, text_len)

argument information

Argument Data type Access Mechanism

dq_context context pointer read/write reference
text descriptor read/write reference
text_len unsigned word write reference

C status = PMDFreadText (dq_context, text, text_len)

argument information
int PMDFreadText(PMDF_dq **dq_context,

char *text,
int *text_len)

ARGUMENTS dq_context
A message dequeue context created with PMDFdequeueInitialize.

text
A buffer to receive the line read from the message file. Length must be at least
BIGALFA_SIZE+1 bytes.

text_len
Length in bytes of the line read from the message file. Callers using PMDFread-
Text must, on input, supply the maximum length in bytes of text.

DESCRIPTION Lines from a message file can be read, one at a time, using PMDFreadLine or
PMDFreadText. The only difference between PMDFreadLine and PMDFreadText
is that PMDFreadLine removes the trailing line terminator, a line feed, from the
end of the line before returning it to the caller. After reading the last line from the
message, any subsequent calls to PMDFreadLine or PMDFreadText will return
the PMDF__EOF status code. That is, if two lines remain to be read, then the next
two calls will read those two lines and return PMDF__OK. A third call will not read
any line and will return PMDF__EOF.

PMDFreadLine and PMDFreadText can be used to read both message header lines
and the content of the message body. When either of these routines are used to
read the message header, then the first blank line encountered signifies the end

1–157

PMDFreadText

of the message header and the start of the message body. If PMDFreadHeader is
used to read the message header, then PMDFreadLine and PMDFreadText will
only read the message body and the blank line separating the message header
from message body will not be seen.

PMDFrewindMessage can be called to reset the read position to the start of the
message header.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. No data returned; no line read.

PMDF_ _EOF End of message.

PMDF_ _FATERRLIB Call to LIB$SCOPY_R_DX failed owing to a fatal internal
error in the OpenVMS Run Time Library. No data returned
although a line was read.

PMDF_ _INSVIRMEM Insufficient virtual memory: call to LIB$GET_VM made by
LIB$SCOPY_R_DX has failed. No data returned although a
line was read.

PMDF_ _INVSTRDES Invalid string descriptor for text: descriptor has an invalid
value in its DSC$B_CLASS field. No data returned; however,
a line was read.

PMDF_ _STRTRU Supplied string was too long; value truncated to fit.

1–158

PMDFreceiptControl

PMDFreceiptControl

Control the generation of read and delivery receipts.

PASCAL status = PMDF_receipt_control
(nq_context, read, delivery, read_comment,
delivery_comment, suppress_receipts)

argument information

Argument Data type Access Mechanism

nq_context context pointer read/write reference
read signed longword read value
delivery signed longword read value
read_comment boolean read value
delivery_comment boolean read value
suppress_receipts boolean read value

C status = PMDFreceiptControl
(nq_context, read, delivery, read_comment,
delivery_comment, suppress_receipts)

argument information
int PMDFreceiptControl(PMDF_nq **nq_context,

int read,
int delivery,
int read_comment,
int delivery_comment,
int suppress_receipts)

ARGUMENTS nq_context
A message enqueue context created with PMDFstartMessageEnvelope.

read
The value -1, 0, or +1. See the Description for details.

delivery
The value -1, 0, or +1. See the Description for details.

read_comment
If true then read receipt request comments will be honored; otherwise, read receipt
request comments will be ignored.

1–159

PMDFreceiptControl

delivery_comment
If true then delivery receipt request comments will be honored; otherwise, delivery
receipt request comments will be ignored.

suppress_receipts
If true then any read or delivery receipt request headers will be removed from a
message’s header prior to enqueuing it. If false, then read and delivery receipt
headers will not be removed if present.

DESCRIPTION PMDFreceiptControl can be called to set or alter the nature of the read and
delivery receipt headers which PMDF can generate. The settings established by
PMDFreceiptControl will only affect the specified message enqueue context and
can be changed with further calls to PMDFreceiptControl.

By calling PMDFreceiptControl prior to each call to PMDFaddRecipient, the
receipt handling behavior can be altered on a per address basis. It is important to
keep in mind that when a message with multiple recipients is enqueued, multiple
copies of that message can actually be created. Each copy differing in the contents
of the message envelope and message header. In this way, it is possible to enqueue
a message which will have receipt requests for some addressees but not others. A
copy is made for those addressees requiring read receipt requests, another copy
for those requiring delivery receipt requests, a third for those requiring both, and
another for those requiring neither. Actually, it is even more complicated than this
as different receipt request addresses can appear.

The read and delivery arguments have default values of 0. These two arguments
set the default receipt generation behavior:

-1. By default, if no other mechanism causes the creation of a read [delivery]
receipt request, then an explicit ‘‘Read-receipt-to: <>’’ [‘‘Delivery-receipt-to:
<>’’] header line is added to the message header. This has the effect of blocking
any read [delivery] receipts from being returned to the message’s originator.

0. By default, no read [delivery] receipt request headers are added to the message
header.

1. By default, a read [delivery] receipt request header is added to the message
header. The return address used for the header is that of the message’s
originator (envelope "From:" address) unless some other address has been
selected with PMDFsetReceiptAddresses.

The read_comment and delivery_comment arguments control whether or not
comment strings in "To:", "Cc:", and "Bcc:" addresses can be used to request a read
or delivery receipt from that particular addressee. By default, such comments are
ignored. To honor comments requesting read [delivery] receipts, specify a true
value for read_comment [delivery_comment]; to ignore comments requesting
read [delivery] receipts, specify a false value for read_comment [delivery_
comment]. See the discussion of read and delivery receipt requests in the PMDF
System Manager’s Guide for further details on the use of comment strings in
addresses as receipt requests.

Finally, the suppress_receipts argument can be used to forcibly strip any or all
receipt requests from a message’s header. If suppress_receipts is true, then this

1–160

PMDFreceiptControl

stripping will always be done and will override any other mechanism for specifying
receipt requests. If suppress_receipts is false, then such blind stripping will not
be performed and the other mechanisms will be allowed to function. This is the
default case.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. No settings made or changed.

1–161

PMDFrecipientDisposition

PMDFrecipientDisposition

Specify the disposition of a dequeued recipient address.

PASCAL status = PMDF_recipient_disposition
(dq_context, notary_flags, disposition, address,
orig_address, reason)

argument information

Argument Data type Access Mechanism

dq_context context pointer read/write reference
notary_flags integer read value
disposition integer read value
address descriptor read reference
orig_address descriptor read reference
reason descriptor read reference

C status = PMDFrecipientDisposition
(dq_context, notary_flags, disposition, address,
address_len, orig_address, orig_address_len, reason,
reason_len)

argument information
int PMDFrecipientDisposition(PMDF_dq **dq_context,

int notary_flags,
int disposition,
char *address,
int address_len,
char *orig_address,
int orig_address_len,
char *reason,
int reason_len)

ARGUMENTS dq_context
A message dequeue context created with PMDFdequeueInitialize.

notary_flags
NOTARY flags for this envelope recipient address as obtained from a prior call to
PMDFgetRecipientFlags.

disposition
Disposition for this envelope recipient address.

1–162

PMDFrecipientDisposition

address
Envelope recipient address obtained from PMDFgetRecipient and being reported
on.

address_len
Length in bytes of the envelope recipient address.

orig_address
Original form of the envelope recipient address obtained from PMDFgetRecipient
and being reported on.

orig_address_len
Length in bytes of the original envelope recipient address.

reason
Optional text string describing the disposition of the envelope recipient address
being reported on. The length of this string should not exceed BIGALFA_SIZE
bytes.

reason_len
Length in bytes of reason.

DESCRIPTION As part of message dequeue processing, a list of envelope recipient addresses is
obtained by repeatedly calling PMDFgetRecipient. Once the disposition of each
envelope recipient address is know (e.g., delivered, failed, relayed, deferred, etc.),
that disposition should be conveyed back to PMDF. When the processing of the
message is completed, PMDF can automatically determine how to dispose of the
message, as described below. See the description of PMDFdequeueMessageEnd for
further details.

The value of notary_flags should be the value obtained from PMDFgetRecipi-
entFlags. The value of disposition must be chosen from Table 1–8 and states
the disposition of the envelope recipient address being reported on.

Table 1–8 Disposition Values for Use with PMDF_recipient_disposition

Symbolic name Value Description

PMDF_DISP_DEFERRED 1 Recipient address processing failed owing to a temporary problem
(e.g., network down, remote host unreachable, mailbox busy,
etc.); defer processing of this address until later.

PMDF_DISP_DELIVERED 2 Recipient address successfully delivered; generate a delivery
status notification if required.

PMDF_DISP_FAILED 3 Recipient address processing has failed owing to a permanent
problem (e.g., invalid recipient address, recipient over quota, etc.);
no further delivery attempts should be made for this address;
generate a non-delivery notification if required.

PMDF_DISP_RELAYED 4 Recipient address forwarded to another address or gatewayed
into a non-NOTARY mail system; the message’s NOTARY
information was, however, preserved; there is no need to generate
a ‘‘relayed’’ notification message.

1–163

PMDFrecipientDisposition

Table 1–8 (Cont.) Disposition Values for Use with PMDF_recipient_disposition

Symbolic name Value Description

PMDF_DISP_RELAYED_FOREIGN 5 Recipient address forwarded to another address or gatewayed to
a non-NOTARY mail system; the message’s NOTARY information
was not preseved; generate a ‘‘relayed’’ notification message if
required.

PMDF_DISP_RETURN 6 For this recipient, return the message as undeliverable; generate
a non-delivery notification if required.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BAD Illegal value specified for disposition. Disposition not set.

PMDF_ _BADCONTEXT Illegal or corrupt context, dq_context. Disposition not set.

PMDF_ _INVSTRDES Invalid string descriptor for address, orig_address, or
reason: one or more of the descriptors has an invalid value
in its DSC$B_CLASS field. Disposition not set.

PMDF_ _STRTRUERR One or both of the address or orig_address strings exceeds
the maximum permitted length. Disposition not set.

1–164

PMDFreturnMessage

PMDFreturnMessage

Return a message to its originator.

PASCAL status = PMDF_return_message
(dq_context, channel, from, bad_addresses)

argument information

Argument Data type Access Mechanism

dq_context context pointer read/write reference
channel descriptor read reference
from descriptor read reference
bad_addresses item list read reference

C status = PMDFreturnMessage
(dq_context, channel, channel_len, from, from_len,
bad_addresses)

argument information
int PMDFreturnMessage(PMDF_dq **dq_context,

char *channel,
int channel_len,
char *from,
int from_len,
PMDF_item_list *bad_addresses)

ARGUMENTS dq_context
A message dequeue context created with PMDFdequeueInitialize.

channel
Name of the channel to act in behalf of when bouncing the message. The length
of channel must not exceed CHANLENGTH bytes.

channel_len
Length in bytes of channel.

from
Envelope "From:" address associated with the message to be returned. This string
was returned by PMDFgetMessage and must not exceed ALFA_SIZE bytes.

from_len
Length in bytes of the envelope "From:" address. This value was returned by
PMDFgetMessage.

1–165

PMDFreturnMessage

bad_addresses
Item list specifying each bad address along with any error information.

DESCRIPTION NOTE: While still supported, this routine is now obsolete. Callers should in-
stead use the PMDFrecipientDisposition routine to stipulate the disposition
of each recipient address. Then, when PMDFdequeueMessageEnd or PMDFde-
queueMessage is called, any necessary notification messages will automatically
be generated. Moreover, the notification messages will conform to the NOTARY
specifications (RFC 1892, 1893, and 1894).

NOTE: The notification messages generated by PMDFreturnMessage do not
adhere to the NOTARY specifications.

Messages can be returned to their originator with PMDFreturnMessage. Mes-
sages will be returned in behalf of the channel specified. If no channel name is
specified (channel has zero length), then PMDFreturnMessage will use the name
of the currently running channel if possible and the local channel otherwise. In
order to remove the returned message from PMDF’s message queues, PMDFde-
queueMessageEnd should be called after calling PMDFreturnMessage.

PMDFreturnMessage will determine from the message’s header the most appro-
priate address to return the message to as well as whether or not to send a copy
of the message to the local postmaster (as controlled by channel keywords for the
channel the message is being returned in whose behalf).

The returned message will be a multipart message containing two parts. The
first part contains a list of the bad addresses to which the original message was
addressed to. These addresses are given in the item list referenced by bad_
addresses. Specifically, the bad_addresses argument is the address of a list
of item descriptors, each of which describes a bad address. Each item descriptor
has the structure

struct {
int reserved1;
void *item_address;
int reserved2;
int item_length;

}

item_address is a pointer to a string giving a bad address and any explanation
as to why the address was bad; item_length is an integer giving the length of
the string pointed at by item_address. The item list is terminated by an entry
with an item_length of zero.

Each string specified by an entry in the item list is output, one string per line.
The strings appear best if in the format:

address - error text

where address is a bad address and error-text is any applicable error message
associated with the bad address. The bad addresses are generally envelope "To:"
addresses which failed. For example,

1–166

PMDFreturnMessage

a@b.com - mail rejected; no such user ’a@b.com’.

The second part of the multipart message will contain the failed message itself.

Examples 1–10 and 1–11 demonstrate the use of PMDFreturnMessage.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. Message not returned.

PMDF_ _INVSTRDES Invalid string descriptor for channel or from: one or both of
the descriptors has an invalid value in its DSC$B_CLASS
field. Message not returned.

PMDF_ _STRTRUERR One or both of the channel or from strings exceeds the
maximum permitted length. Message not returned.

1–167

PMDFrewindMessage

PMDFrewindMessage

Rewind a message file back to the start of its message header.

PASCAL status = PMDF_rewind_message (dq_context)

argument information

Argument Data type Access Mechanism

dq_context context pointer read/write reference

C status = PMDFrewindMessage (dq_context)

argument information
int PMDFrewindMessage(PMDF_dq **dq_context)

ARGUMENTS dq_context
A message dequeue context created with PMDFdequeueInitialize.

DESCRIPTION PMDFrewindMessage will ‘‘rewind’’ a message file back to the start of its message
header. This routine can be called any time after all of the envelope "To:" addresses
have been read with PMDFgetRecipient and prior to dequeuing or deferring the
message. After PMDFrewindMessage has been called, the message header can be
read with either PMDFreadHeader, PMDFreadLine, or PMDFreadText.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. Message was not rewound.

PMDF_ _NO There is some sort of inconsistency in the message file; the
message cannot be rewound.

1–168

PMDFsetCallBack

PMDFsetCallBack

Specify the address of a procedure to call when a PMDF RESTART or PMDF
SHUTDOWN command has been issued.

PASCAL status = PMDF_set_call_back
(proc, facility, facility_len)

argument information

Argument Data type Access Mechanism

proc procedure read reference
facility descriptor read reference
facility_len signed longword read value

C status = PMDFsetCallBack
(proc, facility, facility_len)

argument information
int PMDFsetCallBack(void (*proc)(),

char *facility,
int facility_len)

ARGUMENTS proc
An asynchronous procedure which will be called at AST level whenever a PMDF
RESTART or SHUTDOWN command is issued. This procedure will be passed by
reference a single integer parameter explaining the reason for the call back.

facility
Facility or component name to associate with the routine using this call back.
When a RESTART or SHUTDOWN command specifying this facility name is
issued, then the call back procedure will be invoked. The length of this string
should not exceed 17 bytes.

facility_len
Length in bytes of facility.

1–169

PMDFsetCallBack

DESCRIPTION PMDFsetCallBack is only functional on OpenVMS systems. On other systems, it
merely returns PMDF__OK and does nothing.)

Through a call back procedure, programs can be notified whenever a PMDF
RESTART or PMDF SHUTDOWN command has been issued. Unless PMDF-
cancelCallBack is called, the call back procedure will be called each and every
time any of the five commands are issued

$ PMDF CACHE/CLOSE
$ PMDF RESTART
$ PMDF RESTART facility
$ PMDF SHUTDOWN
$ PMDF SHUTDOWN facility

where facility is the facility name.

The call back procedure will be invoked at AST level and passed, by reference, a
single argument. This argument is of type integer and has one of three values:

Symbolic name Value Command issued

PMDF_CACHE_CALLBACK 8 PMDF CACHE/CLOSE

PMDF_RESTART_CALLBACK 16 PMDF RESTART [facility]

PMDF_SHUTDOWN_CALLBACK 24 PMDF SHUTDOWN [facility]

In response to a PMDF_CACHE_CALLBACK call back, the program using the
call back should close the queue cache as soon as is convenient by calling
PMDFcloseQueueCache. In response to either of the other two call backs, the
program should exit in an orderly fashion as soon as is convenient. In the case of
PMDF_RESTART_CALLBACK, the program should be restarted (i.e., re-run).

On OpenVMS systems, this routine will enqueue five resource locks each with
blocking ASTs. In order to accomplish this, SYSLCK privilege as well as a
sufficient enqueue and AST quotas are required. The call back procedure will
be invoked at AST level. Note that the delivery of the blocking AST’s used by
PMDFsetCallBacks can be hindered in a program which itself spends most of its
time at AST level.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _INVSTRDES Invalid string descriptor for facility: descriptor has an invalid
value in its DSC$B_CLASS field. No call back established.

PMDF_ _STRTRUERR Length of facility exceeds 17 bytes. No call back
established.

On OpenVMS systems Any error returned by the $ENQ System Service.

1–170

PMDFsetEnvelopeId

PMDFsetEnvelopeId

Specify the envelope id to associate with this message.

PASCAL status = PMDF_set_envelope_id
(nq_context, envelope_id)

argument information

Argument Data type Access Mechanism

nq_context context pointer read/write reference
envelope_id descriptor read reference

C status = PMDFsetEnvelopeId
(nq_context, envelope_id, envelope_id_len)

argument information
int PMDFsetEnvelopeId(PMDF_nq **nq_context,

char *envelope,
int envelope_id_len)

ARGUMENTS nq_context
A message enqueue context created with PMDFstartMessageEnvelope.

envelope_id
Envelope id to use for this message. Length can not exceed ALFA_SIZE bytes.

envelope_id_len
Length in bytes of the envelope id.

DESCRIPTION Messages queued to PMDF carry with them two identification strings – ‘‘id’s’’ for
short. The first is the ‘‘message id’’ as seen in the message’s RFC 822 "Message-id:"
header line. This id is the same for all copies of a given message. The second id
is the envelope id. Each copy of the message has a distinct envelope id.

Normally you will only specify these id’s yourself when you are re-enqueuing a
message to PMDF. In that case, it is important to preserve the envelope id and
message id. If you are enqueuing a new message to PMDF, then you should just

1–171

PMDFsetEnvelopeId

leave generation of these id’s to PMDF: PMDF will automatically generate both of
these id’s when they are not supplied.

Should you want to set the message id, then include your own Message-id: header
line in the enqueued message’s RFC 822 header. If you want to set the envelope id,
then do so with this routine. Note, however, that if PMDF has to make multiple
copies of the enqueued message, then it is likely that your specified envelope id
will not be used. Your message id, however, will be used since a message id is
identical across all copies of the message.

When re-enqueuing a dequeued message to PMDF, you can get obtain the enve-
lope id and NOTARY flags of the dequeued message via the PMDFgetEnvelopeId
and PMDFgetRecipientFlags routines. You would then propogate the id and
flags forward by calling PMDFsetEnvelopeId once after PMDFstartMessageEn-
velope, and by calling PMDFsetRecipientFlags once for each, and prior to each,
PMDFaddRecipient call.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. No envelope id set.

PMDF_ _INVSTRDES Invalid string descriptor for envelope_id: descriptor has an
invalid value in its DSC$B_CLASS field. Envelope id not set.

PMDF_ _STRTRUERR Supplied string was too long. Envelope id not set.

1–172

PMDFsetLimits

PMDFsetLimits

Set message fragmentation thresholds.

PASCAL status = PMDF_set_limits
(nq_context, max_blocks, max_lines, max_to)

argument information

Argument Data type Access Mechanism

nq_context context pointer read/write reference
max_blocks signed longword read value
max_lines signed longword read value
max_to signed longword read value

C status = PMDFsetLimits
(nq_context, max_blocks, max_lines, max_to)

argument information
int PMDFsetLimits(PMDF_nq **nq_context,

int max_blocks,
int max_lines,
int max_to)

ARGUMENTS nq_context
A message enqueue context created with PMDFstartMessageEnvelope.

max_blocks
Non-negative integer specifying the maximum number of blocks (header + body)
per message. A value of zero implies no limit.

max_lines
Non-negative integer specifying the maximum number of message lines (header +
body) per message. A value of zero implies no limit.

max_to
Non-negative integer specifying the maximum number of envelope "To:" addresses
per message. A value of zero implies no limit.

1–173

PMDFsetLimits

DESCRIPTION PMDF can be instructed to fragment ‘‘large’’ messages into multiple messages.
Large is taken by PMDF to mean exceeds max_blocks blocks, exceeds max_lines
message lines, or exceeds max_to envelope "To:" addresses. All of these limits are
simultaneously imposed. When either max_blocks or max_lines is exceeded,
the message is fragmented into multiple messages using MIME’s message/partial
mechanism. MIME compliant mailers receiving the message can automatically
re-assemble the message upon receipt of all of the pieces. (PMDF channels must
be marked with the defragment keyword for automatic message re-assembly to
occur.) When the max_to limit is exceeded, the message is merely broken into
multiple copies, each copy with an envelope "To:" address list of length less than
or equal to max_to.

Note that the size of a block in bytes is given by the PMDF option file entry
BLOCK_SIZE. When not specified in an option file, the default value of 1024 bytes
is used. The function PMDFgetBlockSize should be used to determine the current
block size.

Settings chosen with PMDFsetLimits only affect the specified message enqueue
context and can be changed with further calls to PMDFsetLimits. By default, no
limits are imposed: max_blocks = max_lines = max_to = 0.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. Limits were not changed.

1–174

PMDFsetMutex

PMDFsetMutex

Provide mutex handling routines.

PASCAL status = PMDF_set_mutex
(create, lock, unlock, delete, sleep)

argument information

Argument Data type Access Mechanism

create procedure read reference
lock procedure read reference
unlock procedure read reference
delete procedure read reference
sleep procedure read reference

C status = PMDFsetMutex
(create, lock, unlock, delete, sleep)

argument information
int PMDFsetMutex(int (*create)(),

int (*lock)(),
int (*unlock)(),
int (*delete)(),
void (*sleep)())

ARGUMENTS create
Address of a procedure to create a mutex.

lock
Address of a procedure to lock a mutex.

unlock
Address of a procedure to unlock a mutex.

delete
Address of a procedure to delete a mutex.

sleep
Address of a procedure to sleep the specified number of hundreths of a second.

1–175

PMDFsetMutex

DESCRIPTION The PMDF API and underlying routines are re-entrant and thread-safe. Multi-
threaded routines which will be using the PMDF API must call PMDFsetMutex
before calling any other API routines, including PMDFinitialize. The procedures
passed to PMDFsetMutex are then used by PMDF to manage thread mutexes and
efficiently sleep a thread.

The procedures referenced by create, lock, unlock, and delete each perform the
mutex operation implied by their name:

create: Create and initialize a mutex.
lock: Block other threads wanting to use the mutex.
unlock: Allow other threads to use the mutex.
delete: Destroy the mutex and free up any memory associated with it.

Each of the four routines accept a single parameter which is the address of a
pointer to a thread mutex. That is, if a thread mutex is the structure MUTEX then
the routines would be declared in C as

int create (struct MUTEX **mutex)
int lock (struct MUTEX **mutex)
int unlock (struct MUTEX **mutex)
int delete (struct MUTEX **mutex)

The mutex creation routine should create the mutex, initialize it, and return the
address of the mutex. The integer return value should be 0. It is not presently used
by PMDF, but is provided for compatability with POSIX Threads mutex routines.
For example,

int create (struct MUTEX **mutex)
{

struct MUTEX *mtx;

mtx = (struct MUTEX *)calloc (sizeof (struct MUTEX));
mutex_init (mtx);
*mutex = mtx;
return (0);

}

Routines must not assume that only one mutex will be used by PMDF. PMDF
creates and uses a number of mutexes.

The procedure referenced by sleep accepts an unsigned longword passed by value
and specifying the number of hundreths of seconds to sleep:

void sleep (unsigned long centi_seconds)

The sleep procedure is not expected to return a value. Optionally, a value of zero
can be supplied for sleep in which case PMDF will use a simple, non-thread aware
routine to sleep the process.

1–176

PMDFsetMutex

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BAD One or more of the parameters create, lock, unlock, or
delete was zero. Mutex routines not set.

PMDF_ _NO PMDFinitialize was called prior to PMDFsetMutex;
this should be treated as a fatal error.

1–177

PMDFsetRecipientFlags

PMDFsetRecipientFlags

Set the NOTARY flags for the next envelope recipient address.

PASCAL status = PMDF_set_recipient_flags
(nq_context, notary_flags)

argument information

Argument Data type Access Mechanism

nq_context context pointer read/write reference
notary_flags integer read value

C status = PMDFsetRecipientFlags
(nq_context, notary_flags)

argument information
int PMDFsetRecipientFlags(PMDF_nq **dq_context,
int notary_flags)

ARGUMENTS nq_context
A message enqueue context created with PMDFstartMessageEnvelope.

notary_flags
Longword integer containing NOTARY flag bits.

DESCRIPTION PMDF mail messages carry per recipient NOTARY information in their envelope.
This information is aligned with the NOTARY SMTP extension as described in
RFC 1891 and describes failure and success handling requested by the sender
(e.g., send a delivery receipt, send failure notifications but do not include return
of content, never send any form of notifications, etc.).

By default, when an envelope recipient address is enqueued, PMDF assigns it the
NOTARY handling PMDF_RECEIPT_FAILURES + PMDF_RECEIPT_DELAYS
which indicates that non-delivery notifications (NDNs) should be generated
for delivery failures and delays. To select, for a given envelope recipient
address, different handling characteristics or to propogate NOTARY flags from
a previous dequeue operation, call PMDFsetRecipientFlags prior to calling

1–178

PMDFsetRecipientFlags

PMDFaddRecipient. The notary_flags argument is a bit mask whose bits are
given in Table 1–6.

Note that PMDF_RECEIPT_NEVER and PMDF_RECEIPT_FAILURES can not
both be set. If both are set, then PMDF_RECEIPT_NEVER will be ignored.
Similarly, if both PMDF_RECEIPT_HEADER and PMDF_RECEIPT_NOHEADER
are set, then PMDF_RECEIPT_NOHEADER is ignored. When neither are set,
then notifications will include full return of content (RET=FULL).

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. No flags set.

1–179

PMDFsetRecipientType

PMDFsetRecipientType

Specify whether subsequent addresses are To:, Cc:, or Bcc: addresses.

PASCAL status = PMDF_set_recipient_type
(nq_context, to, cc, bcc, envelope)

argument information

Argument Data type Access Mechanism

nq_context context pointer read/write reference
to boolean read value
cc boolean read value
bcc boolean read value
envelope boolean read value

C status = PMDFsetRecipientType
(nq_context, to, cc, bcc, envelope)

argument information
int PMDFsetRecipientType(PMDF_nq **nq_context,

int to,
int cc,
int bcc,
int envelope)

ARGUMENTS nq_context
A message enqueue context created with PMDFstartMessageEnvelope.

to
If true, then subsequent addresses added with PMDFaddRecipient will be treated
as "To:" addresses (and possibly as "Cc:" or "Bcc:" addresses too). If false, then
subsequent addresses will not be treated as "To:" addresses.

cc
If true, then subsequent addresses added with PMDFaddRecipient will be treated
as "Cc:" addresses (and possibly as "To:" or "Bcc:" addresses too). If false, then
subsequent addresses will not be treated as "Cc:" addresses.

bcc
If true, then subsequent addresses added with PMDFaddRecipient will be treated
as "Bcc:" addresses (and possibly as "To:" or "Cc:" addresses too). If false, then
subsequent addresses will not be treated as "Bcc:" addresses.

1–180

PMDFsetRecipientType

envelope
If true, then all subsequent addresses added with PMDFaddRecipient will be
added to the message envelope as envelope "To:" addresses. If false, then
subsequent addresses will not be added to the message envelope but can be added
to the message header lines.

DESCRIPTION When PMDFstartMessageEnvelope is called, the defaults to = true, cc = false,
bcc = false, envelope = true are established. These defaults can then be changed
by calls to PMDFsetRecipientType which can be called as often as is necessary
while building the message envelope with PMDFaddRecipient calls. Note that
any combination of to, cc, or bcc can simultaneously be set true. For instance, if
to and cc are set true, then any address added with PMDFaddRecipient will be
treated as both a "To:" and "Cc:" address. It will be added only once to the message
envelope if envelope is true, but will appear in both the "To:" and "Cc:" message
header line.

The settings made with PMDFsetRecipientType only affect the specified message
enqueue context and can be subsequently altered by subsequent calls to PMDFse-
tRecipientType.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. Recipient type not changed.

1–181

PMDFsetReceiptAddresses

PMDFsetReceiptAddresses

Specify delivery and read receipt request addresses for a message being enqueued.

PASCAL status = PMDF_set_receipt_addresses
(nq_context, read_address, delivery_address)

argument information

Argument Data type Access Mechanism

nq_context context pointer read/write reference
read_address descriptor read reference
delivery_address descriptor read reference

C status = PMDFsetReceiptAddresses
(nq_context, read_address, read_address_len,
delivery_address, delivery_address_len)

argument information
int PMDFsetReceiptAddresses(PMDF_nq **nq_context,

char *read_address,
int read_address_len,
char *delivery_address,
int delivery_address_len)

ARGUMENTS nq_context
A message enqueue context created with PMDFstartMessageEnvelope.

read_address
Address to send a read receipt to. Length can not exceed ALFA_SIZE bytes.

read_address_len
Length in bytes of read_address.

delivery_address
Address to send a delivery receipt to. Length can not exceed ALFA_SIZE bytes.

delivery_address_len
Length in bytes of delivery_address.

1–182

PMDFsetReceiptAddresses

DESCRIPTION PMDFsetReceiptAddresses can be called to set default values for the addresses
to which to send read or delivery receipts. If either string has zero length, then
no default will be set for the associated receipt address. These addresses will
then be used in the construction of read or delivery receipt request header lines
whenever a read or delivery receipt is requested for the specified message enqueue
context. Note that these default addresses can be overridden by other receipt
request mechanisms or suppressed in response to PMDFreceiptControl call with
suppress_receipts set true.

By default, no read or delivery receipt addresses are set. Settings made with
this routine only affect the specified message enqueue context and can be further
changed by additional calls to PMDFsetReceiptAddresses.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. Receipt addresses not changed.

PMDF_ _INVSTRDES Invalid string descriptor for read_address or delivery_
address: one or both of the descriptors has an invalid value
in its DSC$B_CLASS field. Receipt addresses not changed.

PMDF_ _STRTRUERR One or both of the input strings exceeds ALFA_SIZE bytes.
Receipt addresses not changed.

1–183

PMDFstartMessageBody

PMDFstartMessageBody

Begin the body of a message which is being enqueued.

PASCAL status = PMDF_start_message_body (nq_context)

argument information

Argument Data type Access Mechanism

nq_context context pointer read/write reference

C status = PMDFstartMessageBody (nq_context)

argument information
int PMDFstartMessageBody(PMDF_nq **nq_context)

ARGUMENTS nq_context
A message enqueue context created with PMDFstartMessageEnvelope.

DESCRIPTION After the message header has been written, PMDFstartMessageBody should
be called to begin the message body. If the message has no body, then
PMDFenqueueMessage should be called without calling PMDFstartMessageBody.

After PMDFstartMessageBody has been called, either PMDFwriteLine or PMD-
FwriteText must be used to write the message body. Once the message body is
complete, PMDFenqueueMessage should be used to enqueue the message.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. Message body not started.

1–184

PMDFstartMessageEnvelope

PMDFstartMessageEnvelope

Begin a message enqueue; specify the envelope "From:" address.

PASCAL status = PMDF_start_message_envelope
(nq_context, channel, from)

argument information

Argument Data type Access Mechanism

nq_context context pointer write reference
channel descriptor read reference
from descriptor read reference

C status = PMDFstartMessageEnvelope
(nq_context, channel, channel_len, from, from_len)

argument information
int PMDFstartMessageEnvelope(PMDF_nq **nq_context,

char *channel,
int channel_len,
char *from,
int from_len)

ARGUMENTS nq_context
Message enqueue context created for this message enqueue context.

channel
Name of the channel to act as when enqueuing the message. Length can not exceed
CHANLENGTH bytes.

channel_len
Length in bytes of channel.

from
Envelope "From:" address for the message to be enqueued. Length can not exceed
ALFA_SIZE bytes.

from_len
Length in bytes of the envelope "From:" address.

1–185

PMDFstartMessageEnvelope

DESCRIPTION PMDFstartMessageEnvelope must be called to start a message enqueue con-
text. No other message enqueue API procedures can be called until after PMDFs-
tartMessageEnvelope has been called.

For programs which act as a user interface, the local channel name, ‘‘l’’, should be
used for the channel argument. Channel programs should use their own channel
name. If a zero length string is passed in, then ‘‘l’’ will be used if the ischannel
argument of PMDFinitialize was false; otherwise, PMDFgetChannelName will
be called to determine the current channel name and that will be used.

The from argument specifies the envelope "From:" address to associate with the
message to be enqueued. An envelope "From:" address must be specified and
should conform to RFC 822. PMDF will do its best to transform non-conformant
addresses into legal RFC 822 addresses; however, this is not always possible and
a PMDF__NO error can result.

After calling PMDFstartMessageEnvelope, PMDFaddRecipient should be called
to specify all "To:", "Cc:", and "Bcc:" addresses.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _INVSTRDES Invalid string descriptor for channel or from: one or both of
the descriptors has an invalid value in its DSC$B_CLASS
field. Message enqueue context not started.

PMDF_ _NO Error initializing PMDF. Either the specified channel does not
exist or a problem exists with the site’s PMDF configuration
(e.g., duplicate channel name in the configuration file).
PMDFgetErrorText can be called to obtain additional
information about the nature of the error.

PMDF_ _STRTRUERR One or both of the input strings is too long. Message
enqueue context not started.

1–186

PMDFstartMessageHeader

PMDFstartMessageHeader

Begin the message header of a message which is being enqueued.

PASCAL status = PMDF_start_message_header (nq_context)

argument information

Argument Data type Access Mechanism

nq_context context pointer read/write reference

C status = PMDFstartMessageHeader (nq_context)

argument information
int PMDFstartMessageHeader(PMDF_nq **nq_context)

ARGUMENTS nq_context
A message enqueue context created with PMDFstartMessageEnvelope.

DESCRIPTION After the message envelope has been constructed by calls to PMDFaddRecipient,
the construction of the message header is started with a call to PMDFstartMes-
sageHeader. Header lines can be written with PMDFwriteHeader, PMDFwrite-
Line, PMDFwriteText, PMDFwriteFrom, PMDFwriteDate, and PMDFwriteSub-
ject. The only mandatory header lines which must be written are the "From:"
and "Date:" header lines. PMDF will supply all other required header lines.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. Message header not started.

1–187

PMDFwriteDate

PMDFwriteDate

Write a "Date:" header line to a message being enqueued.

PASCAL status = PMDF_write_date (nq_context)

argument information

Argument Data type Access Mechanism

nq_context context pointer read/write reference

C status = PMDFwriteDate (nq_context)

argument information
int PMDFwriteDate(PMDF_nq **nq_context)

ARGUMENTS nq_context
A message enqueue context created with PMDFstartMessageEnvelope.

DESCRIPTION PMDFwriteDate will output a "Date:" header line to a message header. The
current system date and time will be used in constructing this header line.

PMDFwriteDate should be called after PMDFstartMessageHeader and prior to
calling PMDFstartMessageBody. If it is called after PMDFstartMessageBody,
then it’s output will become part of the message body.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. "Date:" header line not written.

1–188

PMDFwriteFrom

PMDFwriteFrom

Write a "From:" header line to a message being enqueued.

PASCAL status = PMDF_write_from (nq_context, from)

argument information

Argument Data type Access Mechanism

nq_context context pointer read/write reference
from descriptor read reference

C status = PMDFwriteFrom
(nq_context, from, from_len)

argument information
int PMDFwriteFrom(PMDF_nq **nq_context,

char *from,
int from_len)

ARGUMENTS nq_context
A message enqueue context created with PMDFstartMessageEnvelope.

from
Envelope "From:" address for the message to be enqueued. Length can not exceed
ALFA_SIZE bytes.

from_len
Length in bytes of the envelope "From:" address.

DESCRIPTION PMDFwriteFrom will output a "From:" header line to a message header. The
address cited in the header line will be that supplied with the from argument.

PMDFwriteFrom should be called after PMDFstartMessageHeader and prior to
calling PMDFstartMessageBody. If it is called after PMDFstartMessageBody,
then it’s output will become part of the message body.

1–189

PMDFwriteFrom

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. "Date:" header line not written.

PMDF_ _INVSTRDES Invalid string descriptor for from: descriptor has an invalid
value in its DSC$B_CLASS field. Header line not written.

PMDF_ _STRTRUERR The from input string is too long. Header line not written.

1–190

PMDFwriteHeader

PMDFwriteHeader

Write a message header to a message being enqueued.

PASCAL status = PMDF_write_header (nq_context, header)

argument information

Argument Data type Access Mechanism

nq_context context pointer read/write reference
header header pointer read value

C status = PMDFwriteHeader (nq_context, header)

argument information
int PMDFwriteHeader(PMDF_nq **nq_context,

PMDF_hdr *header)

ARGUMENTS nq_context
A message enqueue context created with PMDFstartMessageEnvelope.

header
Address of a message header structure created with PMDFreadHeader or PMD-
FaddHeaderLine.

DESCRIPTION Header structures can be output with PMDFwriteHeader. See Section 1.6 for
details on using and manipulating header structures.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. Header not written.

1–191

PMDFwriteLine

PMDFwriteLine

Write a line of text to a message being enqueued.

PASCAL status = PMDF_write_line (nq_context, line)

argument information

Argument Data type Access Mechanism

nq_context context pointer read/write reference
line descriptor read reference

C status = PMDFwriteLine (nq_context, line, line_len)

argument information
int PMDFwriteLine(PMDF_nq **nq_context,

char *line,
int line_len)

ARGUMENTS nq_context
A message enqueue context created with PMDFstartMessageEnvelope.

line
Line of text to write to the message. Length can not exceed 65,535 bytes.

line_len
Length in bytes of line.

DESCRIPTION Text can be written to a message using PMDFwriteLine or PMDFwriteText.
The only difference between these two routines is that PMDFwriteLine always
appends a record terminator, line feed, to the end of each line it outputs.
PMDFwriteText does not: it is left to callers of PMDFwriteText to include record
terminators, where appropriate, in their output.

Each line written with PMDFwriteLine will appear as a single line (record) in
the message being composed. For this reason, PMDFwriteLine is often more
convenient to use than PMDFwriteText. However, programs which loop reading
lines from a queued message and writing them to a new message should use
PMDFreadText and PMDFwriteText in their loop. This is more efficient than
PMDFreadLine and PMDFwriteLine which will needlessly strip away and then
re-append a record terminator for each line read and written.

1–192

PMDFwriteLine

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. Line not written.

PMDF_ _INVSTRDES Invalid string descriptor for line: descriptor has an invalid
value in its DSC$B_CLASS field. Line not written.

1–193

PMDFwriteSubject

PMDFwriteSubject

Write a "Subject:" header line to a message being created.

PASCAL status = PMDF_write_subject (nq_context, subject)

argument information

Argument Data type Access Mechanism

nq_context context pointer read/write reference
subject descriptor read reference

C status = PMDFwriteSubject
(nq_context, subject, subject_len)

argument information
int PMDFwriteSubject(PMDF_nq **nq_context,

char *subject,
int subject_len)

ARGUMENTS nq_context
A message enqueue context created with PMDFstartMessageEnvelope.

subject
Text to place in a "Subject:" header line; should not include the leading ‘‘Subject:
’’. Length can not exceed 65,535 bytes.

subject_len
Length in bytes of subject.

DESCRIPTION PMDFwriteSubject is a convenience routine for writing a "Subject:" header line
to a message. The call

PMDFwriteSubject(nq_context, "Meeting at 10:30");

is equivalent to the call

PMDFwriteLine(nq_context, "Subject: Meeting at 10:30");

PMDFwriteSubject should be called after PMDFstartMessageHeader and prior
to calling PMDFstartMessageBody. If it is called after PMDFstartMessageBody,
then it’s output will become part of the message body.

1–194

PMDFwriteSubject

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. "Subject:" header line not written.

PMDF_ _INVSTRDES Invalid string descriptor for subject: descriptor has an invalid
value in its DSC$B_CLASS field. No "Subject:" line written.

1–195

PMDFwriteText

PMDFwriteText

Write a line of text to a message being enqueued.

PASCAL status = PMDF_write_text (nq_context, text)

argument information

Argument Data type Access Mechanism

nq_context context pointer read/write reference
text descriptor read reference

C status = PMDFwriteText (nq_context, text, text_len)

argument information
int PMDFwriteText(PMDF_nq **nq_context,

char *text,
int text_len)

ARGUMENTS nq_context
A message enqueue context created with PMDFstartMessageEnvelope.

text
String of text to write to the message. Can not exceed a length of 65,535 bytes.

text_len
Length in bytes of text.

DESCRIPTION Text can be written to a message using PMDFwriteText or PMDFwriteLine.
The only difference between these two routines is that PMDFwriteLine always
appends a record terminator, line feed, to the end of each line it outputs.
PMDFwriteText does not: it is left to callers of PMDFwriteText to include record
terminators, where appropriate, in their text. This gives slightly more flexibility
than PMDFwriteLine in that a single call can output multiple lines or multiple
calls can output a single line. Note that each distinct line (record) in a message
must be terminated with a line feed. If this terminator is omitted then, in the
message being composed, the subsequent line will be appended directly to the end
the line lacking a terminator. While this is merely a nuisance in a message body,
it can introduce serious errors into the message header.

Programs which loop reading lines from a queued message and writing them to a
new message should use PMDFreadText and PMDFwriteText in their loop. This

1–196

PMDFwriteText

is more efficient than PMDFreadLine and PMDFwriteLine which will needlessly
strip away and then re-append a record terminator for each line read and written.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _BADCONTEXT Illegal or corrupt context. Text not written.

PMDF_ _INVSTRDES Invalid string descriptor for text: descriptor has an invalid
value in its DSC$B_CLASS field. Text not written.

1–197

2 Callable SEND

PMDF’s callable send facility is a single procedure, PMDF_send, which can be used to send (enqueue)
mail messages of local origin; that is, to originate mail from the local host. Because the callable
SEND routine is not as flexible as the API routines and will take possibly undesirable, but necessary,
authentication steps, the PMDF API routines should generally be used by programs which need to
re-send, forward, gateway, or otherwise route mail messages.1

Note: Callable send can be used simultaneously with the PMDF API routines.

2.1 Sending a Message
For each message to be sent with PMDF_send, an item list describing the message

to be sent must first be built. The entries in this item list specify the message’s "From:"
and "To:" addresses as well as input sources for the content of the message. The basic
steps in sending a message with callable send are:

1. Build the item list to pass to PMDF_send:

a. specify any special processing options (e.g., PMDF_BLANK, PMDF_NOIGNORE_ERRORS,
etc.);

b. specify the message’s envelope "From:" address with the PMDF_USER item;

c. specify the message’s "To:", "Cc:", and "Bcc:" addresses with the PMDF_TO,
PMDF_CC, and PMDF_BCC items;

d. an initial message header can be specified through an input source which supplies
each of the initial message header lines (PMDF_HDR_FILE, PMDF_HDR_PROC), or
the content of individual message header lines can be specified with individual
item codes (PMDF_SUBJECT, PMDF_REPLY_TO, PMDF_ORGANIZATION, etc.);

e. specify the input sources for the message body with the PMDF_MSG_FILE or
PMDF_MSG_PROC items; and then

f. terminate the item list with PMDF_END_LIST.

2. Pass the item list to PMDF_send.

3. Check the return status from PMDF_send.

To enqueue additional messages, simply repeat these steps. The entire set of available
item codes and their usage is given in Section 2.7.

1 An example of such an authentication step would be the addition of a "Sender:" header line.

2–1

Callable SEND
Sending a Message

2.1.1 Envelope & Header "From:" Address
The envelope "From:" address for a message to be sent should be specified with the

PMDF_USER item code. With this item code, only a user name can be specified; PMDF_send
will automatically append the official local host name to the name so as to produce a valid
address.

The PMDF_ENV_FROM item can be used to specify an envelope "From:" address which
is not a local address. This is usually not necessary: applications which enqueue non-
local mail should probably be using the API routines rather than callable send.

If neither PMDF_USER or PMDF_ENV_FROM are specified, then the user name
associated with the current process will be used for the envelope "From:" address. When
PMDF_USER is used, the "From:" header line address will be derived from the envelope
"From:" address; when PMDF_ENV_FROM is used, the "From:" header line will be derived
from the user name of the current process. 2 Only privileged users can specify with
PMDF_USER a user name different than that of the current process’s. On OpenVMS
systems, WORLD privilege as a default privilege is required. On UNIX systems, the
process must have the same (real) UID as either the root or pmdf account. On NT
systems, PMDF_send can only be used by privileged accounts such as Administrator.

2.1.2 To:, Cc:, and Bcc: Addresses
The list of "To:", "Cc:" and "Bcc:" addresses to send a message to is built up, one

address at a time, with item list entries. Each item list entry specifies the type of
address ("To:", "Cc:", or "Bcc:") and a string containing the address. The type of address
is denoted by the item code, PMDF_TO, PMDF_CC, or PMDF_BCC, associated with the item
entry. PMDF_send will use this information to build the message’s envelope "To:" address
list and "To:", "Cc:", and "Bcc:" header lines.

To specify an envelope-only address which should not appear in the message header
(i.e., an active transport address), use PMDF_ENV_TO, PMDF_ENV_CC, or PMDF_ENV_BCC,
as appropriate.3 Likewise, to specify a header-only address which should not ap-
pear in the envelope (i.e., an inactive address), use PMDF_HDR_TO, PMDF_HDR_CC, or
PMDF_HDR_BCC, as appropriate.

When one or more of the "To:", "Cc:", or "Bcc:" addresses is illegal, PMDF_send will
not, by default, indicate which addresses were in error. By using the
PMDF_ADDRESS_STATUS item code; however, this differentiation can be achieved. When
this item code is used, the string containing each "To:", "Cc:", or "Bcc:" address passed in
to PMDF_send must have a length of at least ALFA_SIZE bytes. On output, PMDF_send
will overwrite each address with a status message (which includes the original address
in the message). The item_length field associated with each address will contain the

2 In either case, if a "From:" header line is supplied in an initial header, then a "Sender:" header line will be added to
the message header. The initial "From:" header line will be left intact and the address specified and "Sender:" address
will be derived from either the envelope "From:" address (PMDF_USER) or from the user name of the current process
(PMDF_ENV_FROM).

3 While it is correct that PMDF currently does not distinguish between "To:", "Cc:", and "Bcc:" recipients in the envelope,
distinct item codes are nonetheless provided for specifying envelope-only recipients. Use them as you see fit.

2–2

Callable SEND
Sending a Message

length of the returned message and an indication as to whether the address was legal or
illegal. The magnitude of the value stored in the item_length field will give the length
of the message; the sign of the value will indicate if it was legal (positive sign) or illegal
(negative sign).

2.1.3 Message Headers & Content
The body of a message (i.e., the message content) to be sent is built up from zero or

more input files or procedures. The input files and procedures are read or invoked in the
order specified in the item list passed to PMDF_send and the message body built up by
appending the next input source to the end of the previous input source. A blank line
will be inserted in the message as a separator between input sources if the PMDF_BLANK
item is requested in the item list. The PMDF_MSG_FILE and PMDF_MSG_PROC items are
used to specify the name or address of input files or procedures.

An initial message header can be supplied via either an input file or procedure. The
message header will then be modified as needed when the message is enqueued. The
PMDF_HDR_FILE and PMDF_HDR_PROC items are used to specify the name or address of
an input file or procedure. If an initial message header is to be supplied, it must appear
in the item list before any PMDF_MSG_FILE or PMDF_MSG_PROC items. A blank line must
be supplied at the end of the message header or at the start of the first message body
input source. This blank line will automatically be supplied when the PMDF_BLANK item
code is specified in the item list.

The PMDF_MODE_ and PMDF_ENC_ items control the access mode and encodings
applied to message body input sources. These items set the current access mode and
encoding to be applied to all subsequent input sources which appear in the item list.
The default access mode is PMDF_MODE_UNKNOWN which uses a text mode access and the
default encoding is PMDF_ENC_UNKNOWN which results in no encoding of the data. The
block access mode will not be applied to input procedures; the access mode and encodings
do not apply to input sources for an initial message header which is always accessed using
the default access mode and never encoded.

Input procedures use the calling format:

status = proc (bufadr, buflen)

where

bufadr is the address of a buffer to receive the next line of input. bufadr is passed
by value.
buflen is an integer which, on input, specifies the maximum size in bytes of the
buffer pointed at by bufadr and, on output, receives the length of the data read into
that buffer. buflen is passed by reference.

The return value status is an integer which should be set to zero (0) when there are no
more lines to return and one (1) at all other times including when the last line itself is
returned.

2–3

Callable SEND
Sending a Message

2.2 Writing Output from a Channel Program
The stdin, stdout, and stderr I/O destinations (SYS$INPUT, SYS$OUTPUT, and

SYS$ERROR) are all controlled by PMDF and will vary depending upon the context
under which a channel program has been invoked. As such, programs which will operate
as PMDF channels should use the PMDFlog routine described in Chapter 1 to write
information to their log file. Such programs should never write output directly to stdout
or stderr or other generic I/O destinations (e.g., Pascal’s ‘‘output’’ or FORTRAN’s default
output logical unit). There’s no telling where such output might go: it might go to the
job controller’s log file, it might even go down a network pipe to a remote client or server.

Note that the channel log file is a different file than the PMDF log file; the PMDF_log
and PMDF_close_log_file are unrelated routines.

2.3 Required Privileges
Like the PMDF API routines, privileges are required in order to use callable SEND.

Enqueuing messages requires privileges sufficient to create, open, read from, and write
to the queue cache database as well as to create subdirectories and files in the PMDF
message queue directories. There are any number of ways of accomplishing this under
OpenVMS; the typical being to have the program run under the SYSTEM account. On
UNIX, this is accomplished by having your executable program owned and run by the
pmdf account or, alternatively, owned by pmdf and have the setuid attribute set. On NT
systems, PMDF_send can only be used by privileged accounts such as Administrator.

In order to submit mail under a user name which differs from that of the calling
process, privileges are required. On OpenVMS, WORLD default privilege is needed. On
UNIX, the process must have the same (real) UID as either the root or pmdf account.
On NT, the process must be a privileged account such as Administrator.

In addition, under OpenVMS the account running your program must have SYSPRV
and CMKRNL privileges. These privileges are required so that PMDF can submit any
processing jobs required to handle an enqueued message. Note that PMDF itself does
not use these privileges: they are required by the $SNDJBC system service call used to
dispatch processing jobs.

In some applications, it is important to keep strict control over when privileges are
enabled and disabled. To this end, the PMDF_PRIV_ENABLE_PROC and PMDF_PRIV_
DISABLE_PROC item codes can be used to specify the addresses of two procedures to
call immediately prior to and immediately after enqueuing a message. This allows the
required privileges to be enabled only when they are needed — when the message is
enqueued — and to remain disabled at all other times. Callable SEND does not use a
condition handler, so if a fatal error occurs while enqueuing a message, it is up to the
calling program to trap the error and, if necessary, disable any privileges which should
be disabled. These procedures, if specified, should accept no arguments and return no
return value (i.e., function result).

2–4

Callable SEND
Required Privileges

The privileges to be enabled must either be granted to the program using callable
SEND (e.g., the program can be installed with privileges) or the process running the
program must have the requisite privileges. Callable SEND and PMDF in no way provide
these privileges.

2.4 Compiling and Linking Programs
Programs which use callable SEND are linked using the same steps as the API

routines. Refer to Section 1.11 for details.

2.5 Examples of Using Callable SEND
Several example programs, written in Pascal and C, are provided in this section:

• Examples 2–1, 2–2, and 2–3 illustrate sending a simple message;

• Examples 2–4 — 2–7 illustrate specifying an initial message header;

• Examples 2–8, 2–9, and 2–10 illustrate sending a message to multiple recipients (To:,
and Cc:) as well as to FAX addresses (To: and Bcc:) and examining returned status
messages for each address; and

• Examples 2–11 and 2–12 illustrate the use of an input procedure to generate the
body of the message to be sent.

The example routines shown in this section can be found, on OpenVMS systems, in
the directory, PMDF_ROOT:[DOC.EXAMPLES]. On UNIX and NT systems, the examples
can be found in the /pmdf/doc/examples directory.

Note: The example Pascal programs are intended for use on OpenVMS. To use them on UNIX
or NT, changes to the examples will be required.

2.5.1 Sending a Simple Message
The programs shown in Examples 2–1 and 2–2 demonstrate how to send a simple

message to the SYSTEM account. The caller’s login command procedure is used as the
input source for the body of the message to be sent. The From: address associated with
the message is that of the process running the program. The output of these programs
is given in Example 2–3. The callouts shown in the first two examples produce the
corresponding output shown in the third example.

Example 2–1 Sending a Simple Message (Pascal)

Example 2–1 Cont’d on next page

2–5

Callable SEND
Examples of Using Callable SEND

Example 2–1 (Cont.) Sending a Simple Message (Pascal)

(* send_example1.pas -- Send a simple message *)

[inherit (’pmdf_exe:apidef’)] program send_example1;

var
item_index : integer := 0;
item_list : array [1..4] of PMDF_item_list;
msgfile : varying [20] of char := ’SYS$LOGIN:LOGIN.COM’;
subject : varying [20] of char := ’Your login.com file’;
to_adr : varying [20] of char := ’SYSTEM’;

function SYS$EXIT (%immed status : integer := %immed 1) : integer; extern;

(* Push an string oriented entry onto the item list *)
procedure push_str (code : integer; var str : varying [len] of char);

begin (* push_str *)
item_index := succ (item_index);
with item_list[item_index] do begin
item_code := code;
item_address := (iaddress (str.body))::$stringptr;
item_length := str.length;

end; (* with *)
end; (* push_str *)

begin (* send_example1 *)
push_str (PMDF_TO, to_adr); 1

push_str (PMDF_SUBJECT, subject); 2

push_str (PMDF_MSG_FILE, msgfile); 3
item_list[item_index+1].item_code := 0;
SYS$EXIT (PMDF_send ((iaddress (item_list))::PMDF_item_list_ptr));

end. (* send_example1 *)

Example 2–2 Sending a Simple Message (C)

/* send_example2.c -- Send a simple message */

#ifdef __VMS
#include "pmdf_com:apidef.h"
#else
#include "/pmdf/include/apidef.h"
#endif

/* Push an entry onto the item list */
#define ITEM(item,adr,len) item_list[item_index].item_code = (item); \

item_list[item_index].item_address = (char *)(adr); \
item_list[item_index].item_length = (len); \
item_index++

Example 2–2 Cont’d on next page

2–6

Callable SEND
Examples of Using Callable SEND

Example 2–2 (Cont.) Sending a Simple Message (C)

main ()
{

PMDF_item_list item_list[4];
int item_index = 0;
char *subject = "Your login procedure";

#ifdef __VMS
char *toadr = "system";
char *msgfile = "sys$login:login.com";

#else
char *toadr = "root";
char *msgfile = "~/.login";

#endif

ITEM (PMDF_TO, toadr, strlen (toadr)); 1

ITEM (PMDF_SUBJECT, subject, strlen (subject)); 2

ITEM (PMDF_MSG_FILE, msgfile, strlen (msgfile)); 3
ITEM (PMDF_END_LIST, 0, 0);
exit (PMDF_send (&item_list));

}

Example 2–3 Output of Examples 2–1 and 2–2

Date: 04 Oct 2012 22:24:07 -0700 (PDT)
From: dominic@yourstruely.com
Subject: Your login procedure 2
To: system@yourstruely.com 1
Message-id: <01GPKF10JIB89LV1WX@yourstruely.com>
MIME-version: 1.0
Content-type: TEXT/PLAIN; CHARSET=US-ASCII
Content-transfer-encoding: 7BIT

$ reply/enable=(tapes) 3
$ set terminal/insert
$ define/job dbg$decw$display " "
$ @mathlib_tools:login.com

2.5.2 Specifying an Initial Message Header
The programs shown in Examples 2–4 and 2–5 illustrate the use of the PMDF_

HDRMSG_FILE and PMDF_HDR_ADDRS item codes to enqueue a message which has
already been composed — headers and all — and stored in a file. Example 2–6 shows
input file. The resulting message is shown in Example 2–7.

When the entire message, header and body, is contained in a single file, use the
PMDF_HDRMSG_FILE item code in place of the PMDF_HDR_FILE and PMDF_MSG_
FILE item codes.

2–7

Callable SEND
Examples of Using Callable SEND

Example 2–4 Specifying an Initial Message Header (Pascal)

(* send_example3.pas -- Send a message with initial header *)

[inherit (’pmdf_exe:apidef’)] program send_example3;

var
item_index : integer := 0;
item_list : array [1..3] of PMDF_item_list;
msgfile : varying [40] of char := ’PMDF_ROOT:[DOC.EXAMPLES]EXAMPLE.TXT’;

function SYS$EXIT (%immed status : integer := %immed 1) : integer; extern;

(* Push an option oriented entry onto the item list *)
procedure push_opt (code : integer);

begin (* push_opt *)
item_index := succ (item_index);
with item_list[item_index] do begin
item_code := code;
item_address := nil;
item_length := 0;

end; (* with *)
end; (* push_opt *)

(* Push an string oriented entry onto the item list *)
procedure push_str (code : integer; var str : varying [len] of char);

begin (* push_str *)
item_index := succ (item_index);
with item_list[item_index] do begin
item_code := code;
item_address := (iaddress (str.body))::$stringptr;
item_length := str.length;

end; (* with *)
end; (* push_str *)

begin (* send_example3 *)
push_opt (PMDF_HDR_ADDRS);
push_str (PMDF_HDRMSG_FILE, msgfile);
push_opt (PMDF_END_LIST);
SYS$EXIT (PMDF_send ((iaddress (item_list))::PMDF_item_list_ptr));

end. (* send_example3 *)

Example 2–5 Specifying an Initial Message Header (C)

/* send_example4.c -- Send a message with initial header */

#ifdef __VMS
#include "pmdf_com:apidef.h"
#else
#include "/pmdf/include/apidef.h"
#endif

Example 2–5 Cont’d on next page

2–8

Callable SEND
Examples of Using Callable SEND

Example 2–5 (Cont.) Specifying an Initial Message Header (C)

/* Push an entry onto the item list */
#define ITEM(item,adr,len) item_list[item_index].item_code = (item); \

item_list[item_index].item_address = (char *)(adr); \
item_list[item_index].item_length = (len); \
item_index++

main ()
{

PMDF_item_list item_list[3];
int item_index = 0;

#ifdef __VMS
char *msgfile = "PMDF_ROOT:[DOC.EXAMPLES]EXAMPLE.TXT";

#else
char *msgfile = "/pmdf/doc/examples/example.txt";

#endif

ITEM (PMDF_HDR_ADDRS, 0, 0);
ITEM (PMDF_HDRMSG_FILE, msgfile, strlen (msgfile));
ITEM (PMDF_END_LIST, 0, 0);
exit (PMDF_send (&item_list));

}

Example 2–6 Input File Used in Examples 2–4 and 2–5

Subject: PMDF callable SEND example
To: system@sigurd.yourstruely.com
Message-id: <01GPKFNPUQF89LV1WX@sigurd.yourstruely.com>
MIME-version: 1.0
Content-type: TEXT/PLAIN; CHARSET=US-ASCII
Content-transfer-encoding: 7BIT
Comments: Ignore this message -- it’s just a test

This is a test of the emergency broadcasting system!

12345678901234567890123456789012345678901234567890123456789012345678901234567890
00000000011111111112222222222333333333344444444445555555555666666666677777777778

2–9

Callable SEND
Examples of Using Callable SEND

Example 2–7 Output of Examples 2–4 and 2–5

Date: 04 Oct 2012 22:42:25 -0700 (PDT)
From: system@sigurd.yourstruely.com
Subject: PMDF callable SEND example
To: system@sigurd.yourstruely.com
Message-id: <01GPKFNPUQF89LV1WX@sigurd.yourstruely.com>
MIME-version: 1.0
Content-type: TEXT/PLAIN; CHARSET=US-ASCII
Content-transfer-encoding: 7BIT
Comments: Ignore this message -- it’s just a test

This is a test of the emergency broadcasting system!

12345678901234567890123456789012345678901234567890123456789012345678901234567890
00000000011111111112222222222333333333344444444445555555555666666666677777777778

2.5.3 Multiple Recipients, FAX Addresses, and Per Address Status
Messages

The programs given in Examples 2–8 and 2–9 demonstrate three concepts:

1. sending a message to multiple recipients;

2. constructing FAX addresses; and

3. obtaining the status (legal, illegal) of each To:, Cc:, and Bcc: address.

The message is sent to three To: addresses, one of which is a FAX address, a Cc: address,
and a FAX Bcc: address. After PMDF_send is called, any status message associated
with each address is displayed. This information is only displayed if PMD_send either
returned a successful status code or a PMDF_ _HOST error. In any other case, the status
messages can not have been set. The terminal output produced by running the programs
is shown in Example 2–10.

The following items of note are identified with callouts in each of the two programs:

1 The status of the regular (i.e., non FAX) addresses will be output in the same strings
used to input the addresses.

2 The status of the FAX addresses will be stored in a string specified with the PMDF_
FAX_TO (5) or PMDF_FAX_BCC (6) item codes.

3 Instruct PMDF_send to return a status message for each To:, Cc:, and Bcc: address.

4 Specify some To: and Cc: addresses.

5 Begin a FAX To: address. Any status message for this address will be returned in
the fax_adr_1 string.

6 Begin a FAX Cc: address. Any status message for this address will be returned in
the fax_adr_2 string.

7 Attempt to send the message.

8 Display any returned status messages. (See Example 2–10.)

2–10

Callable SEND
Examples of Using Callable SEND

Example 2–8 Multiple Addresses (Pascal)

(* send_example5.pas -- Send a message to multiple recipients,
including FAX recipients *)

[inherit (’pmdf_exe:apidef’)] program send_example5 (output);

type string = varying [ALFA_SIZE] of char;

var
item_index : integer := 0; i, stat : integer;
item_list : array [1..19] of PMDF_item_list;
msgfile : string := ’sys$login:login.com’;
subject : string := ’PMDF callable SEND example: sending a FAX’;
to_adr_1 : [static] string := ’system’; 1

to_adr_2 : [static] string := ’bob@example.com’; 1

cc_adr_1 : [static] string := ’sue@example.com’; 1

(* First FAX address *)
fn_1 : string := ’1-714-555-5319’; (* REQUIRED *)
domain_1 : string := ’text-fax.example.com’; (* REQUIRED *)
at_1 : string := ’Mrochek Freed’;
o_1 : string := ’Example Software, LLC’;
ou1_1 : string := ’9 Main Street’;
ou2_1 : string := ’Springfield, USA’;
tn_1 : string := ’(508) 555-1111’;
fax_adr_1 : [static] string; 2

(* Second FAX address *)
fn_2 : string := ’1-800-555-1212’; (* REQUIRED *)
domain_2 : string := ’text-fax.example.com’; (* REQUIRED *)
at_2 : string := ’800 Directory Assistance’;
fax_adr_2 : [static] string; 2

function SYS$EXIT (%immed status : integer := %immed 1) : integer; extern;

(* Push an option oriented entry onto the item list *)
procedure push_opt (code : integer);

begin (* push_opt *)
item_index := succ (item_index);
with item_list[item_index] do begin
item_code := code;
item_address := nil;
item_length := 0;

end; (* with *)
end; (* push_opt *)

(* Push an string oriented entry onto the item list *)
procedure push_str (code : integer; var str : varying [len] of char);

begin (* push_str *)
item_index := succ (item_index);
with item_list[item_index] do begin
item_code := code;
item_address := (iaddress (str.body))::$stringptr;

Example 2–8 Cont’d on next page

2–11

Callable SEND
Examples of Using Callable SEND

Example 2–8 (Cont.) Multiple Addresses (Pascal)

item_length := str.length;
end; (* with *)

end; (* push_str *)

begin (* send_example5 *)

(* Specify the Subject: header line and message input source *)
push_str (PMDF_SUBJECT, subject);
push_str (PMDF_MSG_FILE, msgfile);

(* Return per address status/error messages *)
push_opt (PMDF_ADDRESS_STATUS); 3

(* Specify regular To: and Cc: addresses *)
push_str (PMDF_TO, to_adr_1); 4

push_str (PMDF_TO, to_adr_2); 4

push_str (PMDF_CC, cc_adr_1); 4

(* Specify the first FAX address *)
push_str (PMDF_FAX_TO, fax_adr_1); 5
push_str (PMDF_FAX_DOMAIN, domain_1);
push_str (PMDF_FAX_FN, fn_1);
push_str (PMDF_FAX_AT, at_1);
push_str (PMDF_FAX_O, o_1);
push_str (PMDF_FAX_OU, ou1_1);
push_str (PMDF_FAX_OU, ou2_1);
push_str (PMDF_FAX_TN, tn_1);

(* Specify the second FAX address *)
push_str (PMDF_FAX_BCC, fax_adr_2); 6
push_str (PMDF_FAX_DOMAIN, domain_2);
push_str (PMDF_FAX_FN, fn_2);
push_str (PMDF_FAX_AT, at_2);

(* Now terminate the item list *)
push_opt (PMDF_END_LIST);

(* And send the message *)
stat := PMDF_send ((iaddress (item_list))::PMDF_item_list_ptr); 7

(* Display the address status messages provided that no error
other than PMDF__HOST has occurred. *)

if odd (stat) or (stat = PMDF__HOST) then for i := 1 to item_index do 8
with item_list[i] do case item_code of
PMDF_TO, PMDF_CC, PMDF_BCC,
PMDF_FAX_TO, PMDF_FAX_CC, PMDF_FAX_BCC,
PMDF_PRT_TO, PMDF_PRT_CC, PMDF_PRT_BCC :

writeln (substr (item_address^, 1, abs (item_length)));
otherwise begin end;

end; (* case, with, for, if *)

(* Now exit *)
SYS$EXIT (stat);

end. (* send_example5 *)

2–12

Callable SEND
Examples of Using Callable SEND

Example 2–9 Multiple Addresses (C)

/* send_example6.c -- Send a message to multiple recipients,
including FAX recipients */

#include <stdio.h>
#ifdef __VMS
#include "pmdf_com:apidef.h"
#else
#include "/pmdf/include/apidef.h"
#endif

/* Push an entry onto the item list */
#define ITEM(item,adr,len) item_list[item_index].item_code = (item); \

item_list[item_index].item_address = (char *)(adr); \
item_list[item_index].item_length = (len); \
item_index++

main ()
{

int item_index = 0, stat;
PMDF_item_list item_list[19];
char *subject = "PMDF callable SEND example: sending a FAX";
char to_adr_2[ALFA_SIZE+1] = "bob@example.com"; 1

char cc_adr_1[ALFA_SIZE+1] = "sue@example.com"; 1
#ifdef __VMS

char *msgfile = "sys$login:login.com";
char to_adr_1[ALFA_SIZE+1] = "system";

#else
char *msgfile = "~/.login";
char to_adr_1[ALFA_SIZE+1] = "root";

#endif

/* First FAX address */
char *fn_1 = "1-714-555-5319"; /* REQUIRED */
char *domain_1 = "text-fax.example.com"; /* REQUIRED */
char *at_1 = "Mrochek Freed";
char *o_1 = "Example Software, LLC";
char *ou1_1 = "9 Main Street";
char *ou2_1 = "Springfield, USA";
char *tn_1 = "(508) 555-1111";
char fax_adr_1[ALFA_SIZE+1]; 2

/* Second FAX address */
char *fn_2 = "1-800-555-1212"; /* REQUIRED */
char *domain_2 = "text-fax.example.com"; /* REQUIRED */
char *at_2 = "800 Directory Assistance";
char fax_adr_2[ALFA_SIZE+1]; 2

/* Specify the Subject: header line and message input source */
ITEM (PMDF_SUBJECT, subject, strlen (subject));
ITEM (PMDF_MSG_FILE, msgfile, strlen (msgfile));

/* Return per address status/error messages */
ITEM (PMDF_ADDRESS_STATUS, 0, 0); 3

Example 2–9 Cont’d on next page

2–13

Callable SEND
Examples of Using Callable SEND

Example 2–9 (Cont.) Multiple Addresses (C)

/* Specify regular To: and Cc: addresses */
ITEM (PMDF_TO, to_adr_1, strlen (to_adr_1)); 4

ITEM (PMDF_TO, to_adr_2, strlen (to_adr_2)); 4

ITEM (PMDF_CC, cc_adr_1, strlen (cc_adr_1)); 4

/* Specify the first FAX address */
ITEM (PMDF_FAX_TO, fax_adr_1, 0); 5
ITEM (PMDF_FAX_DOMAIN, domain_1, strlen (domain_1));
ITEM (PMDF_FAX_FN, fn_1, strlen (fn_1));
ITEM (PMDF_FAX_AT, at_1, strlen (at_1));
ITEM (PMDF_FAX_O, o_1, strlen (o_1));
ITEM (PMDF_FAX_OU, ou1_1, strlen (ou1_1));
ITEM (PMDF_FAX_OU, ou2_1, strlen (ou2_1));
ITEM (PMDF_FAX_TN, tn_1, strlen (tn_1));

/* Specify the second FAX address */
ITEM (PMDF_FAX_BCC, fax_adr_2, 0); 6
ITEM (PMDF_FAX_DOMAIN, domain_2, strlen (domain_2));
ITEM (PMDF_FAX_FN, fn_2, strlen (fn_2));
ITEM (PMDF_FAX_AT, at_2, strlen (at_2));

/* Now terminate the item list */
ITEM (PMDF_END_LIST, 0, 0);

/* And send the message */
stat = PMDF_send (&item_list); 7

/* Display the address status messages provided that no error
other than PMDF__HOST has occurred. */

if ((1 & stat) || stat == PMDF__HOST) { 8
int i, j;
for (i = 0; i < item_index; i ++) {
switch (item_list[i].item_code) {
case PMDF_TO : case PMDF_CC : case PMDF_BCC :
case PMDF_FAX_TO : case PMDF_FAX_CC : case PMDF_FAX_BCC :
case PMDF_PRT_TO : case PMDF_PRT_CC : case PMDF_PRT_BCC :
j = abs (item_list[i].item_length);
item_list[i].item_address[j] = ’\0’;
printf ("%s\n", item_list[i].item_address);
break;

default : break;
}

}
}
exit (stat);

}

Example 2–10 Address Status Messages Produced by Examples 2–8 and 2–9

address okay: system
address okay: bob@example.com

Example 2–10 Cont’d on next page

2–14

Callable SEND
Examples of Using Callable SEND

Example 2–10 (Cont.) Address Status Messages Produced by Examples 2–8 and 2–9

address okay: sue@example.com
address okay: "/FN=1-714-555-5319/AT=John Jones/O=Example Software, LLC
./OU=9 Main Street/OU=Springfield, USA/TN=(508) 555-1111/"
@text-fax.example.com
address okay: "/FN=1-800-555-1212/AT=800 Directory Assistance/"
@text-fax.example.com

2.5.4 Using an Input Procedure
The programs shown in Examples 2–11 and 2–12 use an input procedure as the

source for the body of a message to be sent. In the Pascal program example, the procedure
msg_proc will continue to read input until a blank line is entered at which point the
message will be sent. In the C program example, the input proocedure msg_proc will
read input until the run-time library routine fgets() signals an EOF (e.g., a control-Z
has been input). In both programs, the address of the procedure msg_proc is passed to
PMDF_send via a PMDF_MSG_PROC item code and PMDF_send itself repeatedly calls the
procedure until a value of 0 is returned by the procedure.

Example 2–11 Using an Input Procedure (Pascal)

(* send_example7.pas -- Demonstrate the use of PMDF_MSG_PROC *)

[inherit (’pmdf_exe:apidef’)] program send_example7 (input, output);

type
string = varying [ALFA_SIZE] of char;
string_ptr = ^string;

var
item_index : integer := 0;
item_list : array [1..4] of PMDF_item_list;
subject : string := ’PMDF callable SEND example’;
to_adr : string := ’system’;

function SYS$EXIT (%immed status : integer := %immed 1) : integer; extern;

(* Push an entry onto the item list *)
procedure push (code : integer; adr : unsigned; len : integer);

begin (* push *)
item_index := succ (item_index);
with item_list[item_index] do begin
item_code := code;
item_address := adr::$stringptr;
item_length := len;

end; (* with *)
end; (* push *)

Example 2–11 Cont’d on next page

2–15

Callable SEND
Examples of Using Callable SEND

Example 2–11 (Cont.) Using an Input Procedure (Pascal)

function msg_proc (var str_i : integer; var str_len : integer) : integer;

type
chars = packed array [1..BIGALFA_SIZE] of char;
char_ptr = ^chars;

var
buffer : string;
i : integer;
str : char_ptr;

begin (* msg_proc *)
write (’input: ’);
readln (buffer);
if buffer.length = 0 then begin
str_len := 0;
msg_proc := 0;

end else begin
str := (iaddress (str_i))::char_ptr;
str_len := min (buffer.length, str_len);
for i := 1 to str_len do str^[i] := buffer[i];
msg_proc := 1;

end; (* if *)
end; (* msg_proc *)

begin (* send_example7 *)
push (PMDF_SUBJECT, iaddress (subject.body), subject.length);
push (PMDF_TO, iaddress (to_adr.body), to_adr.length);
push (PMDF_MSG_PROC, iaddress (msg_proc), 4);
push (PMDF_END_LIST, 0, 0);
SYS$EXIT (PMDF_send ((iaddress (item_list))::PMDF_item_list_ptr));

end. (* send_example7 *)

Example 2–12 Using an Input Procedure (C)

/* send_example8.c -- Demonstrate the use of PMDF_MSG_PROC */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef __VMS
#include "pmdf_com:apidef.h"
#else
#include "/pmdf/include/apidef.h"
#endif

/* Push an entry onto the item list */
#define ITEM(item,adr,len) item_list[item_index].item_code = (item); \

item_list[item_index].item_address = (char *)(adr); \
item_list[item_index].item_length = (len); \
item_index++

Example 2–12 Cont’d on next page

2–16

Callable SEND
Examples of Using Callable SEND

Example 2–12 (Cont.) Using an Input Procedure (C)

int msg_proc (char *str, int *str_len)
{

printf ("input: ");
if (fgets (str, *str_len, stdin)) {
*str_len = strlen (str);
if (str[*str_len-1] == ’\n’) *str_len -= 1;
return (1);

}
else {
*str_len = 0;
return (0);

}
}

main ()
{

int istat, item_index = 0;
PMDF_item_list item_list[4];
char *subject = "PMDF callable SEND example";

#ifdef _VMS
char *to_adr = "system";

#else
char *to_adr = "root";

#endif

if (!(1 & (istat = PMDFinitialize (0)))) exit (istat);
ITEM (PMDF_SUBJECT, subject, strlen (subject));
ITEM (PMDF_TO, to_adr, strlen (to_adr));
ITEM (PMDF_MSG_PROC, msg_proc, 4);
ITEM (PMDF_END_LIST, 0, 0);
exit (PMDF_send (item_list));

}

2.6 Summary of PMDF_send Item Codes
A summary of the PMDF_send item codes is given in Table 2–1.

2–17

Callable SEND
Summary of PMDF_send Item Codes

Table 2–1 PMDF_send Item Code Summary

Addressing
item codes Description

PMDF_BCC Specify a Bcc: address which will appear in the
header and envelope

PMDF_CC Specify a cc: address which will appear in the header
and envelope

PMDF_ENV_BCC Specify an envelope-only Bcc: address
PMDF_ENV_CC Specify an envelope-only Cc: address
PMDF_ENV_FROM Specify the envelope From: address
PMDF_ENV_TO Specify an envelope-only To: address
PMDF_HDR_ADDRS Obtain recipient addresses from the RFC 822 header
PMDF_HDR_BCC Specify a header-only Bcc: address
PMDF_HDR_CC Specify a header-only Cc: address
PMDF_HDR_NOADDRS Do not obtain recipient addresses from the RFC 822

header
PMDF_HDR_TO Specify a header-only To: address
PMDF_TO Specify a To: address which will appear in the header

and envelope
PMDF_SUBADDRESS Specify a subaddress
PMDF_USER Specify the user name to use for the envelope From:

and header line From: addresses

FAX addressing
item codes Description

PMDF_FAX_AFTER FAX address AFTER attribute-value pair
PMDF_FAX_AT FAX address AT attribute-value pair
PMDF_FAX_AUTH FAX address AUTH attribute-value pair
PMDF_FAX_BCC Begin the specification of a FAX Bcc: address
PMDF_FAX_CC Begin the specification of a FAX Cc: address
PMDF_FAX_DOMAIN Domain name to associate with a FAX address
PMDF_FAX_FN FAX address FN attribute-value pair
PMDF_FAX_FSI FAX address FSI attribute-value pair
PMDF_FAX_O FAX address O attribute-value pair
PMDF_FAX_OU FAX address OU attribute-value pair
PMDF_FAX_SETUP FAX address SETUP attribute-value pair
PMDF_FAX_SFN FAX address SFN attribute-value pair
PMDF_FAX_STN FAX address STN attribute-value pair
PMDF_FAX_TO Begin the specification of a FAX To: address
PMDF_FAX_TN FAX address TN attribute-value pair
PMDF_FAX_TTI FAX address TTI attribute-value pair

2–18

Callable SEND
Summary of PMDF_send Item Codes

Table 2–1 (Cont.) PMDF_send Item Code Summary

Printer addressing
item codes Description

Printer addressing
item codes Description

PMDF_PRT_AT Printer address AT attribute-value pair
PMDF_PRT_BCC Begin the specification of a printer Bcc: address
PMDF_PRT_CC Begin the specification of a printer Cc: address
PMDF_PRT_DOMAIN Specify the domain name to associate with a printer

address
PMDF_PRT_MS Printer address MS attribute-value pair
PMDF_PRT_O Printer address O attribute-value pair
PMDF_PRT_OU Printer address OU attribute-value pair
PMDF_PRT_P1 Printer address P1 attribute-value pair
PMDF_PRT_P2 Printer address P2 attribute-value pair
PMDF_PRT_P3 Printer address P3 attribute-value pair
PMDF_PRT_P4 Printer address P4 attribute-value pair
PMDF_PRT_P5 Printer address P5 attribute-value pair
PMDF_PRT_P6 Printer address P6 attribute-value pair
PMDF_PRT_P7 Printer address P7 attribute-value pair
PMDF_PRT_P8 Printer address P8 attribute-value pair
PMDF_PRT_TO Begin the specification of a printer To: address
PMDF_PRT_TN Printer address TN attribute-value pair

Header processing
item codes Description

PMDF_COMMENTS Specify the body of a Comments: header line
PMDF_CONTENT_TYPE Specify the body of a Content-type: header line
PMDF_DELIVERY_RECEIPT_TO Specify the body of a Delivery-receipt-to: header line
PMDF_ERRORS_TO Specify the body of an Errors-to: header line
PMDF_EXTRA_HEADER Specify an additional header line
PMDF_FROM Specify the body of a From: header line
PMDF_FRUIT_OF_THE_DAY Specify the body of a Fruit-of-the-day: header line
PMDF_HDR_ADDRS Obtain recipient addresses from the RFC 822 header
PMDF_HDR_FILE Specify an initial message header input source file
PMDF_HDR_NOADDRS Do not obtain recipient addresses from the RFC 822

header
PMDF_HDR_NORESENT Do not resort to Resent- header lines
PMDF_HDR_PROC Specify an initial message header input source

procedure
PMDF_HDR_RESENT Add addresses to the header using Resent- header

lines if necessary
PMDF_HDRMSG_FILE Specify a file containing initial RFC 822 header

information and a message body part
PMDF_HDRMSG_PROC Specify an initial RFC 822 header and message body

part input source procedure
PMDF_IMPORTANCE Specify the body of an Importance: header line
PMDF_KEYWORDS Specify the body of a Keywords: header line
PMDF_ORGANIZATION Specify the body of an Organization: header line
PMDF_PRIORITY Specify the body of a Priority: header line
PMDF_READ_RECEIPT_TO Specify the body of a Read-receipt-to: header line

2–19

Callable SEND
Summary of PMDF_send Item Codes

Table 2–1 (Cont.) PMDF_send Item Code Summary

Header processing
item codes Description

PMDF_REFERENCES Specify the body of a References: header line
PMDF_REPLY_TO Specify the body of a Reply-to: header line
PMDF_RESENT_FROM Specify the body of a Resent-from: header line
PMDF_RESENT_REPLY_TO Specify the body of a Resent-reply-to: header line
PMDF_SENSITIVITY Specify the body of a Sensitivity: header line
PMDF_SUBJECT Specify the body of a Subject: header line
PMDF_WARNINGS_TO Specify the body of a Warnings-to: header line
PMDF_X_ORGANIZATION Specify the body of a X-Organization: header line
PMDF_X_PS_QUALIFIERS Specify the body of a X-PS-Qualifiers: header line

Message body processing
item codes Description

PMDF_CONTENT_FILENAME Include the file name as a parameter in the MIME
Content-type: header line

PMDF_ENC_BASE64 MIME BASE64 encode the message body part
PMDF_ENC_BASE85 Adobe ASCII85 (BASE85) encode the message body

part
PMDF_ENC_BINHEX BINHEX encode the message body part
PMDF_ENC_BTOA BTOA encode the message body part
PMDF_ENC_COMPRESSED_BASE64 GNU zip compress the message body part and then

MIME BASE64 encode it
PMDF_ENC_COMPRESSED_BINARY GNU zip compress the message body part
PMDF_ENC_COMPRESSED_UUENCODE GNU zip compress the message body part and then

UUENCODE it
PMDF_ENC_HEXADECIMAL Hexadecimal encode the message body part
PMDF_ENC_NONE Do not encode the message body part
PMDF_ENC_PATHWORKS Encode the message body part using a DEC

Pathworks compatible encoding
PMDF_ENC_QUOTED_PRINTABLE MIME quoted printable encode the message body

part
PMDF_ENC_UNKNOWN Do not encode the message body part (default)
PMDF_ENC_UUENCODE UUENCODE the message body part
PMDF_HDR_FILE Specify a file containing initial RFC 822 header

information
PMDF_HDR_PROC Specify an initial RFC 822 header input source

procedure
PMDF_HDRMSG_FILE Specify a file containing initial RFC 822 header

information and a message body part
PMDF_HDRMSG_PROC Specify an initial RFC 822 header and message body

part input source procedure
PMDF_MAX_BLOCKS Specify the maximum number of blocks per message
PMDF_MAX_BYTES Specify the maximum number of bytes per message
PMDF_MAX_LINES Specify the maximum number of message lines per

message
PMDF_MAX_TO Specify the maximum number of envelope To:

addresses per message copy
PMDF_MODE_BLOCK Access input files using block mode I/O
PMDF_MODE_RECORD Access input files using record mode I/O
PMDF_MODE_RECORD_CRATTRIBUTE Access input files using record mode I/O & preserve

<CR> record terminators

2–20

Callable SEND
Summary of PMDF_send Item Codes

Table 2–1 (Cont.) PMDF_send Item Code Summary

Message body processing
item codes Description

PMDF_MODE_RECORD_CRLFATTRIBUTE Access input files using record mode I/O & preserve
<CR><LF> record terminators

PMDF_MODE_RECORD_LFATTRIBUTE Access input files using record mode I/O & preserve
<LF> record terminators

PMDF_MODE_TEXT Access input files using text mode I/O
PMDF_MODE_UNKNOWN Access input files using text mode I/O
PMDF_MSG_FILE Specify a message body input source file
PMDF_MSG_PROC Specify a message body input source procedure
PMDF_NOCONTENT_FILENAME Do not include the file name as a parameter in the

MIME Content-type: header line

Miscellaneous
item codes Description

PMDF_BLANK Insert a blank line between the input from each input
source

PMDF_CHAIN Pointer to another item list to process
PMDF_CHANNEL Specify the channel to act as when enqueuing mail
PMDF_END_LIST Terminate an item list
PMDF_IGNORE_ERRORS Send the message as long as at least one envelope

To: address and at least one input source was okay
PMDF_IS_CHANNEL Ignore user-to-channel access checks
PMDF_IS_NOT_CHANNEL Do not ignore user-to-channel access checks
PMDF_NOBLANK Do not insert a blank line between each input source
PMDF_NOIGNORE_ERRORS Send the message only if all envelope To: addresses

and all input sources are okay
PMDF_PRIV_DISABLE_PROC Privilege disable procedure to invoke after sending
PMDF_PRIV_ENABLE_PROC Privilege enable procedure to invoke prior to sending

2.7 PMDF_send Routine Description
In the following description, the string lengths CHANLENGTH and ALFA_SIZE are

mentioned. These values are defined in the API include files and listed in Table 1–2.

2–21

PMDF_send

PMDF_send

Send a message.

FORMAT status = PMDF_send (item_list)

argument information

Argument Data type Access Mechanism

item_list item list read reference

ARGUMENTS item_list
Item list specifying actions to be taken by PMDF_send. The item_list argument
is the address of a list of item descriptors, each of which specifies an action and
provides the information needed to perform that action. The list of item descriptors
is terminated with an entry with the PMDF_END_LIST item code.4 Each item
descriptor has the following C-style structure declaration:

struct {
int item_code;
void *item_address;
int reserved;
int item_length;

} PMDF_item_list;

PMDF_send Item Descriptor Fields

item_code
A longword (4 bytes) containing a user-supplied symbolic code specifying an action
to be taken by PMDF_send. The include files described in Section 1.11 defines
these codes. A description of each item code follows this list of item descriptor
fields.

item_address
A longword (4 bytes) containing the user-supplied address of a character string to
be used in conjunction with the action specified by the item_code field. Not all
actions require that an item_address be specified.

item_length
A longword (4 bytes) containing the user-supplied length of the character string
pointed at by item_address. Not all actions require that an item_address be
specified.

4 A single longword value of zero can instead be used.

2–22

PMDF_send

PMDF_send Item Codes

PMDF_ADDRESS_STATUS
Return status messages for each To:, Cc:, and Bcc: address specified with the
PMDF_*TO, PMDF_*CC, and PMDF_*BCC item codes. When this item code is
specified, all address strings specified with PMDF_*TO, PMDF_*CC, and PMDF_
*BCC must have a maximum length of at least ALFA_SIZE bytes. On input to
PMDF_send the string contains an address whose length is given by the associated
item_length field. On output, PMDF_send will write the status of that address
back to the address string overwriting the address stored in that string. (The
original address will be given in the text of the status message.) Also on output,
the magnitude of the value contained in the item_length field will contain the
length of the status message. If the value contained in the item_length field is
positive, then the address was legal; if the value is negative then the address was
illegal. See Section 2.5.3 for example programs which use this feature.

For each address built with PMDF_FAX_TO, PMDF_FAX_CC, PMDF_FAX_BCC,
PMDF_PRT_TO, PMDF_PRT_CC, PMDF_PRT_BCC the address of a string of
length at least ALFA_SIZE bytes must be specified in the item_address field. On
output, the success or error message associated with the address will be returned
in this string. The value in the item_length field will give the length of the
status message as well as indicate if the address was legal or illegal.

The output strings will not be zero terminated.

The item_address and item_length fields are ignored by this action.

PMDF_BCC
PMDF_ENV_BCC
PMDF_HDR_BCC
Specify a Bcc: address. The item_address and item_length fields specify the
address and length of a string containing a Bcc: address. The length of the address
can not exceed ALFA_SIZE bytes.

PMDF_BCC is used to specify a blind carbon copy (Bcc:) address which should
appear in both the message’s header and envelope. PMDF_ENV_BCC is used to
specify an envelope-only Bcc: address (i.e., an active recipient) which should not
appear in the message’s header. PMDF_HDR_BCC is used to specify a header-only
Bcc: address (i.e., an inactive recipient) which should only appear in the message’s
header.

If PMDF_ADDRESS_STATUS is specified, then this string must have a maximum
size of at least ALFA_SIZE bytes.

PMDF_BLANK
When processing multiple input sources, insert a blank line between the input
from each source. Ordinarily, the input files are appended one after the other
with no delimiters or separators. This is the action selected with the PMDF_
NOBLANK item code. By specifying the PMDF_BLANK action, PMDF_send will
insert a blank line between each input file. This is especially useful when the first
input file is to be treated as a source of header information and the second as the

2–23

PMDF_send

message body or part thereof. This then produces the requisite blank line between
the message header and body.

The item_address and item_length fields are ignored by this action.

PMDF_CC
PMDF_ENV_CC
PMDF_HDR_CC
Specify a Cc: address. The item_address and item_length fields specify the
address and length of a string containing a Cc: address. The length of the address
can not exceed ALFA_SIZE bytes.

PMDF_CC is used to specify a carbon copy (Cc:) address which should appear in
both the message’s header and envelope. PMDF_ENV_CC is used to specify an
envelope-only Cc: address (i.e., an active recipient) which should not appear in the
message’s header. PMDF_HDR_CC is used to specify a header-only Cc: address
(i.e., an inactive recipient) which should only appear in the message’s header.

If PMDF_ADDRESS_STATUS is specified, then this string must have a maximum
size of at least ALFA_SIZE bytes.

PMDF_CHAIN
PMDF_send immediately begins processing the list of item descriptors pointed at
by item_address. This new list will be used immediately; any remaining items
in the current list will be ignored. The item_length field should contain the
value 4, the length of a longword in bytes.

PMDF_CHANNEL
Specify the channel to act as when enqueuing the message. If not specified,
then mail will be enqueued as though sent from the local, l, channel. The
item_address and item_length fields specify the address and length of a text
string containing the name of the channel to act as. The length of the string can
not exceed CHANLENGTH bytes.

PMDF_COMMENTS
Specify the body of a Comments: header line. The item_address and item_length
fields specify the address and length of a text string to place in the body of a Com-
ments: header line. The length of the string can not exceed ALFA_SIZE bytes.
Only one Comments: body can be specified. Additional Comments: header lines
can be created with PMDF_EXTRA_HEADER.

PMDF_CONTENT_FILENAME
PMDF_NOCONTENT_FILENAME
When PMDF_CONTENT_FILENAME is specified, the name of the message input
file will be included as a parameter in the MIME Content-type: header line.
This action, when specified, will hold for all subsequent input files until a
PMDF_NOCONTENT_FILENAME action is seen in the same item list. PMDF_
NOCONTENT_FILENAME is the default.

The item_address and item_length fields can be used to specify the file name,
overriding the name of the input file.

2–24

PMDF_send

PMDF_CONTENT_TYPE
Specify the body of a Content-type: header line. The item_address and
item_length fields specify the address and length of a text string to place in
the body of a Content-type: header line. The length of the string can not exceed
ALFA_SIZE bytes. Only one Content-type: body can be specified.

PMDF_DELIVERY_RECEIPT_TO
Specify the body of a Delivery-receipt-to: header line. The item_address and
item_length fields specify the address and length of a text string to place in the
body of a Delivery-receipt-to: header line. The length of the string can not exceed
ALFA_SIZE bytes. Only one Delivery-receipt-to: body can be specified.

PMDF_ENC_BASE64
PMDF_ENC_COMPRESSED_BASE64
Encode data from all subsequent input sources using MIME’s BASE64 encoding.
In the case of PMDF_ENC_COMPRESSED_BASE64, the data is first compressed
using GNU zip.

This setting can be changed with any of the other PMDF_ENC_ item codes. The de-
fault encoding is PMDF_ENC_UNKNOWN. The item_address and item_length
fields are ignored by this action.

PMDF_ENC_BASE85
Encode data from all subsequent input sources using Adobe’s ASCII85 encoding
(BASE85). This setting can be changed with any of the other PMDF_ENC_ item
codes. The default encoding is PMDF_ENC_UNKNOWN. The item_address and
item_length fields are ignored by this action.

PMDF_ENC_BINHEX
Encode data from all subsequent input sources using the BINHEX encoding. This
setting can be changed with any of the other PMDF_ENC_ item codes. The default
encoding is PMDF_ENC_UNKNOWN. The item_address and item_length
fields are ignored by this action.

PMDF_ENC_BTOA
Encode data from all subsequent input sources using the UNIX btoa encoding. This
setting can be changed with any of the other PMDF_ENC_ item codes. The default
encoding is PMDF_ENC_UNKNOWN. The item_address and item_length
fields are ignored by this action.

PMDF_ENC_COMPRESSED_BINARY
Compress the data with GNU zip. No other encoding of the data will be done. This
setting can be changed with any of the other PMDF_ENC_ item codes. The default
encoding is PMDF_ENC_UNKNOWN. The item_address and item_length
fields are ignored by this action.

PMDF_ENC_COMPRESSED_UUENCODE
PMDF_ENC_UUENCODE
Encode data from all subsequent input sources using UUENCODE. In the case
of PMDF_ENC_COMPRESSED_UUENCODE, the data is first compressed using
GNU zip.

This setting can be changed with any of the other PMDF_ENC_ item codes. The de-
fault encoding is PMDF_ENC_UNKNOWN. The item_address and item_length
fields are ignored by this action.

2–25

PMDF_send

PMDF_ENC_HEXADECIMAL
Encode data from all subsequent input sources using a hexadecimal encoding. This
setting can be changed with any of the other PMDF_ENC_ item codes. The default
encoding is PMDF_ENC_UNKNOWN.

The item_address and item_length fields are ignored by this action.

PMDF_ENC_NONE
Data from all subsequent input sources is left unencoded (i.e., not encoded). This
setting can be changed with any of the other PMDF_ENC_ item codes. The default
encoding is PMDF_ENC_UNKNOWN.

The item_address and item_length fields are ignored by this action.

PMDF_ENC_QUOTED_PRINTABLE
Encode data from all subsequent input sources using MIME’s quoted printable
encoding. This setting can be changed with any of the other PMDF_ENC_ item
codes. The default encoding is PMDF_ENC_UNKNOWN.

The item_address and item_length fields are ignored by this action.

PMDF_ENC_UNKNOWN
Data from all subsequent input sources is left unencoded (i.e., not encoded). This
setting can be changed with any of the other PMDF_ENC_ item codes. The default
encoding is PMDF_ENC_UNKNOWN.

The item_address and item_length fields are ignored by this action.

PMDF_END_LIST
Terminate an item list. This item code, when encountered, signals the end of the
item list. The item_address and item_length fields are ignored by this action.

PMDF_ENV_FROM
Specify the envelope From: address to associate with a message. The item_address
and item_length fields specify the address and length of a text string containing
the envelope From: address to use for the message submission. The length of the
string can not exceed ALFA_SIZE bytes. Only one envelope From: address can be
specified.

The PMDF_ENV_FROM action should be used when the envelope From: address
is not a local address. When the address is a local address, then merely the user
name should be specified using the PMDF_USER action.

If this action and the PMDF_USER actions are not specified, then the user name
associated with the current process will be used.

Can not be used in conjunction with the PMDF_USER or PMDF_SUB_USER item
codes.

PMDF_ERRORS_TO
Specify the body of an Errors-to: header line. The item_address and item_length
fields specify the address and length of a text string to place in the body of an
Errors-to: header line. The length of the string can not exceed ALFA_SIZE bytes.
Only one Errors-to: body can be specified.

2–26

PMDF_send

PMDF_EXTRA_HEADER
Specify an additional header line to include in the message header. The
item_address and item_length fields specify the address and length of the
header line (field name and body) to place in the message header. The length of
the string can not exceed ALFA_SIZE bytes. Any number of header lines can be
added; use one item list entry per header line.

PMDF_EXTRA_HEADER is intended to be used to add header lines not supported
by other item codes (e.g., PMDF_SUBJECT, PMDF_KEYWORDS, etc., or to specify
additional instances of header lines which can multiple times (e.g., Comments:
header lines).

PMDF_FAX_AFTER
Specify the value to use with an AFTER attribute in a FAX address which is being
built up. The item_address and item_length fields specify the address and
length of a text string containing the value to use. The length of the string can
not exceed ALFA_SIZE bytes.

A PMDF_FAX_TO, PMDF_FAX_CC, or PMDF_FAX_BCC action must have ap-
peared prior to using this action.

PMDF_FAX_AT
Specify the value to use with an AT attribute in a FAX address which is being built
up. The item_address and item_length fields specify the address and length
of a text string containing the value to use. The length of the string can not exceed
ALFA_SIZE bytes.

A PMDF_FAX_TO, PMDF_FAX_CC, or PMDF_FAX_BCC action must have ap-
peared prior to using this action.

PMDF_FAX_AUTH
Specify the value to use with an AUTH attribute in a FAX address which is being
built up. The item_address and item_length fields specify the address and
length of a text string containing the value to use. The length of the string can
not exceed ALFA_SIZE bytes.

A PMDF_FAX_TO, PMDF_FAX_CC, or PMDF_FAX_BCC action must have ap-
peared prior to using this action.

PMDF_FAX_BCC
PMDF_FAX_CC
PMDF_FAX_TO
Begin the specification of a FAX To:, Cc:, or Bcc: address. FAX addresses can
be composed, one attribute at a time, using the PMDF_FAX_ item codes. The
attribute-value pair list is automatically assembled from the specified attribute-
value pairs, properly quoted, and the domain specification appended. The actual
assembly of the address is initiated when either the item list is terminated or
when another PMDF_*TO, PMDF_*CC, or PMDF_*BCC action is encountered.

The FAX address to be built will be treated as a To: address when PMDF_FAX_
TO is specified, as a Cc: address when PMDF_FAX_CC is specified, and as a Bcc:
address when PMDF_FAX_BCC is specified.

The PMDF_FAX_DOMAIN and PMDF_FAX_FN actions must be specified for each
FAX address to be assembled.

2–27

PMDF_send

The item_address and item_length fields are ignored by this action unless
PMDF_ADDRESS_STATUS is specified in which case then the address of a string
of length at least ALFA_SIZE bytes must be given in the item_address field.

PMDF_FAX_DOMAIN
Specify the domain name to associate with a FAX address which is being built up
(e.g., text-fax.example.com). The item_address and item_length fields specify
the address and length of a text string containing the domain name. The length
of the string can not exceed ALFA_SIZE bytes.

This action must be taken when composing a FAX address with the PMDF_FAX_
item codes.

A PMDF_FAX_TO, PMDF_FAX_CC, or PMDF_FAX_BCC action must have ap-
peared prior to using this action.

PMDF_FAX_FN
Specify the value to use with an FN attribute in a FAX address which is being
built up. The item_address and item_length fields specify the address and
length of a text string containing the value to use. The length of the string can
not exceed ALFA_SIZE bytes.

This action must be taken when composing a FAX address with the PMDF_FAX_
item codes.

A PMDF_FAX_TO, PMDF_FAX_CC, or PMDF_FAX_BCC action must have ap-
peared prior to using this action.

PMDF_FAX_FSI
Specify the value to use with an FSI attribute in a FAX address which is being
built up. The item_address and item_length fields specify the address and
length of a text string containing the value to use. The length of the string can
not exceed ALFA_SIZE bytes.

A PMDF_FAX_TO, PMDF_FAX_CC, or PMDF_FAX_BCC action must have ap-
peared prior to using this action.

PMDF_FAX_O
Specify the value to use with an O attribute in a FAX address which is being built
up. The item_address and item_length fields specify the address and length
of a text string containing the value to use. The length of the string can not exceed
ALFA_SIZE bytes.

A PMDF_FAX_TO, PMDF_FAX_CC, or PMDF_FAX_BCC action must have ap-
peared prior to using this action.

PMDF_FAX_OU
Specify the value to use with an OU attribute in a FAX address which is being
built up. The item_address and item_length fields specify the address and
length of a text string containing the value to use. The length of the string can
not exceed ALFA_SIZE bytes.

A PMDF_FAX_TO, PMDF_FAX_CC, or PMDF_FAX_BCC action must have ap-
peared prior to using this action.

2–28

PMDF_send

PMDF_FAX_SETUP
Specify the value to use with a SETUP attribute in a FAX address which is being
built up. The item_address and item_length fields specify the address and
length of a text string containing the value to use. The length of the string can
not exceed ALFA_SIZE bytes.

A PMDF_FAX_TO, PMDF_FAX_CC, or PMDF_FAX_BCC action must have ap-
peared prior to using this action.

PMDF_FAX_SFN
Specify the value to use with a SFN attribute in a FAX address which is being
built up. The item_address and item_length fields specify the address and
length of a text string containing the value to use. The length of the string can
not exceed ALFA_SIZE bytes.

A PMDF_FAX_TO, PMDF_FAX_CC, or PMDF_FAX_BCC action must have ap-
peared prior to using this action.

PMDF_FAX_STN
Specify the value to use with a STN attribute in a FAX address which is being
built up. The item_address and item_length fields specify the address and
length of a text string containing the value to use. The length of the string can
not exceed ALFA_SIZE bytes.

A PMDF_FAX_TO, PMDF_FAX_CC, or PMDF_FAX_BCC action must have ap-
peared prior to using this action.

PMDF_FAX_TN
Specify the value to use with a TN attribute in a FAX address which is being built
up. The item_address and item_length fields specify the address and length
of a text string containing the value to use. The length of the string can not exceed
ALFA_SIZE bytes.

A PMDF_FAX_TO, PMDF_FAX_CC, or PMDF_FAX_BCC action must have ap-
peared prior to using this action.

PMDF_FAX_TTI
Specify the value to use with a TTI attribute in a FAX address which is being built
up. The item_address and item_length fields specify the address and length
of a text string containing the value to use. The length of the string can not exceed
ALFA_SIZE bytes.

A PMDF_FAX_TO, PMDF_FAX_CC, or PMDF_FAX_BCC action must have ap-
peared prior to using this action.

PMDF_FROM
Specify the address to use in the message header’s From: header line. item_address
and item_length fields specify the address and length of a text string containing
the From: address. The length of the string can not exceed ALFA_SIZE bytes.
Only one From: address can be specified.

If this action is not used, then the From: header line will be derived from the
envelope From: address.

2–29

PMDF_send

PMDF_FRUIT_OF_THE_DAY
Specify the body of a Fruit-of-the-day: header line. The item_address and
item_length fields specify the address and length of a text string to place in the
body of a Fruit-of-the-day: header line. The length of the string can not exceed
ALFA_SIZE bytes. Only one Fruit-of-the-day: body can be specified.

PMDF_HDR_ADDRS
PMDF_HDR_NOADDRS
By default, PMDF_HDR_NOADDRS, recipient addresses must be explicitly speci-
fied and any addresses in a input header file will be ignored (but will still appear
in the message header). Specify PMDF_HDR_ADDRS to request that the message
also be sent to recipient addresses found in any input header files.

The item_address and item_length fields are ignored by this action.

PMDF_HDR_FILE
Specify the name of an input file containing message header lines. The first input
file can be a file containing a message header. In this case, it should be specified
using this item code rather than PMDF_MSG_FILE. This will ensure that the
input file receives the proper processing (e.g., is not encoded, accessed using text
mode access, etc.). PMDF_send will use the header lines from the input file to
form an initial message header. This initial header is then modified as necessary.
This functionality is useful when forwarding mail.

Note that any recipient addresses in the header file will be ignored unless PMDF_
HDR_ADDRS is also specified.

The item_address and item_length fields specify the address and length of a
text string containing the input file’s name. The length of the string can not exceed
ALFA_SIZE bytes.

PMDF_HDR_RESENT
PMDF_HDR_NORESENT
The PMDF_HDR_RESENT action selects the default behavior whereby Resent-
header lines are added as necessary to the message header when the associated
header line appears in any input header files. For instance, a Resent-to: header
line will be added if a To: header line already appears. Specify PMDF_HDR_
NORESENT to cause additional addresses to be added to existing header lines
rather than through the introduction of Resent- header lines.

The item_address and item_length fields are ignored by this action.

PMDF_HDR_PROC
Specify the address of a procedure which will return, one line at a time, header
lines for the message header. The item_address field specifies the address of
the procedure to invoke. item_length must be set to 4, the length in bytes of a
longword.

The calling format which must be used by the procedure is given in Section 2.1.3.

PMDF_HDRMSG_FILE
Specify the name of an input file containing both the message header and message
body. The content of the file represents an RFC 822 formatted message with
at least one blank line separating the RFC 822 header from the message body.

2–30

PMDF_send

PMDF_send will use the header lines from the input file to form an initial message
header. This initial header is then modified as necessary.

The item_address and item_length fields specify the address and length of a
text string containing the input file’s name. The length of the string can not exceed
ALFA_SIZE bytes.

PMDF_HDRMSG_PROC
Specify the address of a procedure which will return, one line at a time, each line
of an RFC 822 formatted message. The RFC 822 header must come first, followed
by at least one blank line, followed by the message body. The item_address field
specifies the address of the procedure to invoke. item_length must be set to 4,
the length in bytes of a longword.

The calling format which must be used by the procedure is given in Section 2.1.3.

PMDF_IGNORE_ERRORS
Send the message as long as at least one To: address was okay and at least one
input source was okay. By default, the message will not be sent if any of the To:
addresses are illegal (e.g., bad syntax, restricted, unknown host, etc.) or if any of
the input sources proved to be bad (e.g., could not open an input file).

The item_address and item_length fields are ignored by this action.

PMDF_IMPORTANCE
Specify the body of an Importance: header line. The item_address and
item_length fields specify the address and length of a text string to place in
the body of an Importance: header line. The length of the string can not exceed
ALFA_SIZE bytes. Only one Importance: body can be specified.

PMDF_IS_CHANNEL
Ignore user-to-channel access checks when enqueuing mail. This should, in
general, be used only by programs which do not enqueue mail in behalf of a user.

The item_address and item_length fields are ignored by this action.

PMDF_IS_NOT_CHANNEL
Do not ignore user-to-channel access checks when enqueuing mail. This should, in
general, be used by programs such as user agents which enqueue mail for users.

The item_address and item_length fields are ignored by this action.

PMDF_KEYWORDS
Specify the body of a Keywords: header line. The item_address and item_length
fields specify the address and length of a text string to place in the body of a Key-
words: header line. The length of the string can not exceed ALFA_SIZE bytes.
Only one Keywords: body can be specified.

PMDF_MAX_BLOCKS
Specify the maximum number of blocks per message. If, when the message is
enqueued, the message size exceeds this limit, then the message will be fragmented
into smaller messages, each fragment no larger than the specified block size.
The individual fragments are MIME compliant messages which use MIME’s
message/partial content type. MIME compliant mailers or user agents which
receive the fragments can automatically re-assemble the fragmented message.

2–31

PMDF_send

(PMDF channels must be marked with the defragment keyword in order for
automatic message re-assembly to occur.)

The size of a block can vary from site to site — sites can change this value from
its default value of 1,024 bytes. Use the PMDF API routine PMDF_get_block_size
to determine the size in bytes of a block. Or, alternatively, use the PMDF_MAX_
BYTES item code instead.

The item_address field specifies the address of a longword integer whose value
is the maximum block size per message or message fragment. item_length must
be set to 4, the length in bytes of a longword integer.

By default, no limit is imposed. This default can be re-instated by specifying a
value of -1. This limit can be simultaneously imposed with other limits.

PMDF_MAX_BYTES
Specify the maximum number of bytes per message. If, when the message is
enqueued, the message size exceeds this limit, then the message will be fragmented
into smaller messages, each fragment no larger than the specified byte size.
The individual fragments are MIME compliant messages which use MIME’s
message/partial content type. MIME compliant mailers or user agents which
receive the fragments can automatically re-assemble the fragmented message.
(PMDF channels must be marked with the defragment keyword in order for
automatic message re-assembly to occur.)

The item_address field specifies the address of a longword integer whose value
is the maximum bytes per message or message fragment. item_length must be
set to 4, the length in bytes of a longword integer.

By default, no limit is imposed. This default can be re-instated by using a value
of -1. This limit can be simultaneously imposed with other limits.

PMDF_MAX_LINES
Specify the maximum number of message lines per message. If, when the message
is enqueued, the number of message lines exceeds this limit, then the message
will be fragmented into smaller messages, each fragment with no more than the
specified number of lines. The individual fragments are MIME compliant messages
which use MIME’s message/partial content type. MIME compliant mailers or user
agents which receive the fragments can automatically re-assemble the fragmented
message. (PMDF channels must be marked with the defragment keyword in
order for automatic message re-assembly to occur.)

The item_address field specifies the address of a longword integer whose value
is the maximum number of message lines per message or message fragment.
item_length must be set to 4, the length in bytes of a longword integer.

By default, no limit is imposed. This default can be re-instated by using a value
of -1. This limit can be simultaneously imposed with other limits.

PMDF_MAX_TO
Specify the maximum number of envelope To: addresses per message copy. If,
when the message is enqueued, the number of envelope To: addresses for the

2–32

PMDF_send

message exceeds this limit, then the message will be broken into multiple copies,
each copy with no more than the specified number of envelope To: addresses.

The item_address field specifies the address of a longword integer whose value is
the maximum number of envelope To: addresses per message copy. item_length
must be set to 4, the length in bytes of a longword integer.

By default, no limit is imposed. This default can be re-instated by using a value
of -1. This limit can be simultaneously imposed with other limits.

PMDF_MODE_BLOCK
Access subsequent input files using block mode I/O. This setting can be changed
with any of the other PMDF_MODE_ item codes. The default access mode is that
selected with PMDF_MODE_UNKNOWN. This access mode will not be applied to
input procedures.

On OpenVMS systems, this setting should be used for binary files.

The item_address and item_length fields are ignored by this action.

PMDF_MODE_RECORD
Access subsequent input sources using record mode I/O. This setting can be
changed with any of the other PMDF_MODE_ item codes. The default access
mode is that selected with PMDF_MODE_UNKNOWN.

The item_address and item_length fields are ignored by this action.

PMDF_MODE_RECORD_CRATTRIBUTE
Access subsequent input sources using record mode I/O preserving carriage return
record terminators. This setting can be changed with any of the other PMDF_
MODE_ item codes. The default access mode is that selected with PMDF_MODE_
UNKNOWN.

The item_address and item_length fields are ignored by this action.

PMDF_MODE_RECORD_CRLFATTRIBUTE
Access subsequent input sources using record mode I/O preserving carriage return,
line feed record terminators. This setting can be changed with any of the other
PMDF_MODE_ item codes. The default access mode is that selected with PMDF_
MODE_UNKNOWN.

The item_address and item_length fields are ignored by this action.

PMDF_MODE_RECORD_LFATTRIBUTE
Access subsequent input sources using record mode I/O preserving line feed
record terminators. This setting can be changed with any of the other PMDF_
MODE_ item codes. The default access mode is that selected with PMDF_MODE_
UNKNOWN.

The item_address and item_length fields are ignored by this action.

2–33

PMDF_send

PMDF_MODE_TEXT
Access subsequent input sources using text mode I/O. This setting can be changed
with any of the other PMDF_MODE_ item codes. The default access mode is that
selected with PMDF_MODE_UNKNOWN.

This setting or that selected with PMDF_MODE_UNKNOWN must be use for
input files containing message header information and should be used for ordinary
text files.

The item_address and item_length fields are ignored by this action.

PMDF_MODE_UNKNOWN
Access subsequent input sources using text mode I/O. This setting can be changed
with any of the other PMDF_MODE_ item codes. The default access mode is that
selected with PMDF_MODE_UNKNOWN.

This setting or that selected with PMDF_MODE_TEXT must be use for input
sources containing message header information and should be used for ordinary
text files.

The item_address and item_length fields are ignored by this action.

PMDF_MSG_FILE
Specify an input file to read and include in the message body. The file will be read
using the current access mode and encoded using the current encoding as specified
by PMDF_MODE_ and PMDF_ENC_ item codes.

The item_address and item_length fields specify the address and length of a
text string containing the name of the input file. The length of the string can not
exceed ALFA_SIZE bytes.

PMDF_MSG_PROC
Specify the address of a procedure which will return, one line at a time, data for
the message body. Each line of input obtained from the procedure will be treated
using the current access mode and encoded using the current encoding as specified
by PMDF_MODE_ and PMDF_ENC_ item codes. Note, however, that the block
access mode will not be applied to input procedures.

The item_address field specifies the address of the procedure to invoke. item_length
must be set to 4, the length in bytes of a longword integer.

The calling format which must be used by the procedure is given in Section 2.1.3.

PMDF_NOADDRESS_ERRORS
Do not return status messages for To:, Cc:, and Bcc: addresses. This is the
default setting. The strings containing To:, Cc:, and Bcc: addresses specified with
PMDF_TO, PMDF_CC, PMDF_BCC, PMDF_ENV_TO, PMDF_ENV_CC, PMDF_
ENV_BCC, PMDF_HDR_TO, PMDF_HDR_CC, and PMDF_HDR_BCC need only
be long enough to contain the actual addresses.

The item_address and item_length fields are ignored by this action.

2–34

PMDF_send

PMDF_NOBLANK
When processing multiple input source, do not insert insert a blank line between
the input from one source and the next. This is the default behavior: the input from
each input source is appended one after the other with no delimiters or separators
marking the transition between sources.

The item_address and item_length fields are ignored by this action.

PMDF_NOIGNORE_ERRORS
Send the message only if all To: addresses are okay and all input sources are okay.
This is the default.

The item_address and item_length fields are ignored by this action.

PMDF_ORGANIZATION
Specify the body of an Organization: header line. The item_address and
item_length fields specify the address and length of a text string to place in
the body of an Organization: header line. The length of the string can not exceed
ALFA_SIZE bytes. Only one Organization: body can be specified.

PMDF_PRIORITY
Specify the body of a Priority: header line. The item_address and item_length
fields specify the address and length of a text string to place in the body of a
Priority: header line. The length of the string can not exceed ALFA_SIZE bytes.
Only one Priority: body can be specified.

PMDF_PRIV_DISABLE_PROC
The address of a procedure to invoke immediately after enqueuing a message so as
to disable process privileges. See the description of the PMDF_PRIV_ENABLE_
PROC item code for details on the use of this item code.

This item code must be used in conjunction with the PMDF_PRIV_ENABLE_
PROC item code.

The item_length field is ignored by this action.

PMDF_PRIV_ENABLE_PROC
The address of a procedure to invoke immediately before enqueuing a message so
as to enable process privileges.

Privileges are required to enqueue messages. It is possible to provide PMDF_send
with the address of two procedures to call. One procedure is called immediately
prior to enqueuing a message thereby allowing process privileges to be enabled.
The second procedure is then called immediately after the message has been
enqueued thereby allowing process privileges to be disabled. See Section 2.3 for
further details on the use of this item code.

This item code must be used in conjunction with the PMDF_PRIV_DISABLE_
PROC item code.

The item_length field is ignored by this action.

2–35

PMDF_send

PMDF_PRT_AT
Specify the value to use with an AT attribute in a printer To: address which is
being built up. The item_address and item_length fields specify the address
and length of a text string containing the value to use. The length of the string
can not exceed ALFA_SIZE bytes.

A PMDF_PRT_TO, PMDF_PRT_CC, or PMDF_PRT_BCC action must have ap-
peared prior to using this action.

PMDF_PRT_BCC
PMDF_PRT_CC
PMDF_PRT_CC
Begin the specification of a printer To:, Cc:, or Bcc: address. Printer addresses
can be composed, one attribute at a time, using the PMDF_PRT_ item codes. The
attribute-value pair list is automatically assembled from the specified attribute-
value pairs, properly quoted, and the domain specification appended. The actual
assembly of the address is initiated when either the item list is terminated or
when another PMDF_*TO, PMDF_*CC, or PMDF_*BCC action is encountered.

The printer address to be built will be treated as a To: address when PMDF_PRT_
TO is specified, as a Cc: address when PMDF_PRT_CC is specified, and as a Bcc:
address when PMDF_PRT_BCC is specified.

The PMDF_PRT_DOMAIN action must be specified for each printer address to be
assembled.

The item_address and item_length fields are ignored by this action unless
PMDF_ADDRESS_STATUS is specified in which case then the address of a string
of length at least ALFA_SIZE bytes must be given in the item_address field.

PMDF_PRT_DOMAIN
Specify the domain name to associate with a printer address which is being built up
(e.g., printer.example.com). The item_address and item_length fields specify
the address and length of a text string containing the domain name. The length
of the string can not exceed ALFA_SIZE bytes.

This action must be taken when composing a printer address with the PMDF_
PRT_ item codes.

A PMDF_PRT_TO, PMDF_PRT_CC, or PMDF_PRT_BCC action must have ap-
peared prior to using this action.

PMDF_PRT_MS
Specify the value to use with an MS attribute in a printer To: address which is
being built up. The item_address and item_length fields specify the address
and length of a text string containing the value to use. The length of the string
can not exceed ALFA_SIZE bytes.

A PMDF_PRT_TO, PMDF_PRT_CC, or PMDF_PRT_BCC action must have ap-
peared prior to using this action.

PMDF_PRT_O
Specify the value to use with an O attribute in a printer To: address which is
being built up. The item_address and item_length fields specify the address

2–36

PMDF_send

and length of a text string containing the value to use. The length of the string
can not exceed ALFA_SIZE bytes.

A PMDF_PRT_TO, PMDF_PRT_CC, or PMDF_PRT_BCC action must have ap-
peared prior to using this action.

PMDF_PRT_OU
Specify the value to use with an OU attribute in a printer To: address which is
being built up. The item_address and item_length fields specify the address
and length of a text string containing the value to use. The length of the string
can not exceed ALFA_SIZE bytes.

A PMDF_PRT_TO, PMDF_PRT_CC, or PMDF_PRT_BCC action must have ap-
peared prior to using this action.

PMDF_PRT_P1
...
PMDF_PRT_P8
Specify the value to use with a P1, P2, P3, P4, P5, P6, P7, or P8 attribute in a
printer To: address which is being built up. The item_address and item_length
fields specify the address and length of a text string containing the value to use.
The length of the string can not exceed ALFA_SIZE bytes.

A PMDF_PRT_TO, PMDF_PRT_CC, or PMDF_PRT_BCC action must have ap-
peared prior to using this action.

PMDF_PRT_TN
Specify the value to use with a TN attribute in a printer To: address which is
being built up. The item_address and item_length fields specify the address
and length of a text string containing the value to use. The length of the string
can not exceed ALFA_SIZE bytes.

A PMDF_PRT_TO, PMDF_PRT_CC, or PMDF_PRT_BCC action must have ap-
peared prior to using this action.

PMDF_READ_RECEIPT_TO
Specify the body of a Read-receipt-to: header line. The item_address and
item_length fields specify the address and length of a text string to place in
the body of a Read-receipt-to: header line. The length of the string can not exceed
ALFA_SIZE bytes. Only one Read-receipt-to: body can be specified.

PMDF_REFERENCES
Specify the body of a References: header line. The item_address and item_length
fields specify the address and length of a text string to place in the body of a Ref-
erences: header line. The length of the string can not exceed ALFA_SIZE bytes.
Only one References: body can be specified.

PMDF_REPLY_TO
Specify the body of a Reply-to: header line. The item_address and item_length
fields specify the address and length of a text string to place in the body of a Reply-
to: header line. The length of the string can not exceed ALFA_SIZE bytes. Only
one Reply-to: body can be specified.

2–37

PMDF_send

PMDF_RESENT_FROM
Specify the body of a Resent-From: header line. The item_address and
item_length fields specify the address and length of a text string to place in
the body of a Reply-to: header line. The length of the string can not exceed ALFA_
SIZE bytes. Only one Reply-to: body can be specified.

PMDF_RESENT_REPLY_TO
Specify the body of a Resent-reply-to: header line. The item_address and
item_length fields specify the address and length of a text string to place in
the body of a Resent-reply-to: header line. The length of the string can not exceed
ALFA_SIZE bytes. Only one Resent-reply-to: body can be specified.

PMDF_SENSITIVITY
Specify the body of a Sensitivity: header line. The item_address and item_length
fields specify the address and length of a text string to place in the body of a Sen-
sitivity: header line. The length of the string can not exceed ALFA_SIZE bytes.
Only one Sensitivity: body can be specified.

PMDF_SUBADDRESS
Specify a subaddress to use when generating a return address from a user name
specified with the PMDF_USER item code. The item_address and item_length
fields specify the address and length of a text string containing the subaddress.
The length of the string can not exceed ALFA_SIZE bytes. Only one subaddress
can be specified per message.

The PMDF_USER action must be used in conjunction with this item code.

PMDF_SUBJECT
Specify the body of a Subject: header line. The item_address and item_length
fields specify the address and length of a text string to place in the body of a
Subject: header line. The length of the string can not exceed ALFA_SIZE bytes.
Only one Subject: body can be specified.

PMDF_TO
PMDF_ENV_TO
PMDF_HDR_TO
Specify a To: address. The item_address and item_length fields specify the
address and length of a string containing a To: address. The length of the address
can not exceed ALFA_SIZE bytes.

PMDF_TO is used to specify a To: address which should appear in both the
message’s header and envelope. PMDF_ENV_TO is used to specify an envelope-
only To: address (i.e., an active recipient) which should not appear in the message’s
header. PMDF_HDR_TO is used to specify a header-only address To: (i.e., an
inactive recipient) which should only appear in the message’s header.

If PMDF_ADDRESS_STATUS is specified, then this string must have a maximum
size of at least ALFA_SIZE bytes.

PMDF_USER
Specify the user name to use for the envelope From: and header line From:
addresses. The item_address and item_length fields specify the address and
length of a text string containing the user name.

The PMDF_ENV_FROM action should be used when the envelope From: address

2–38

PMDF_send

is not a local address. When the address is a local address, then merely the user
name should be specified using the PMDF_USER action.

If this action and the PMDF_ENV_FROM actions are not specified, then the user
name associated with the current process will be used.

Under OpenVMS, WORLD privilege — as a default privilege — is required to
use this action when the specified From: address does not agree with the user
name of the process enqueuing the message. On UNIX, the process must have
the same (real) UID as the root or pmdf account. If the process lacks sufficient
privileges, the SS$_NOWORLD (OpenVMS) or PMDF_ _INSUFPRIV (UNIX) error
will be returned. On NT systems, the process must be a privileged process such
as Administrator.

Can not be used in conjunction with the PMDF_ENV_FROM item code.

PMDF_WARNINGS_TO
Specify the body of a Warnings-to: header line. The item_address and
item_length fields specify the address and length of a text string to place in
the body of a Warnings-to: header line. The length of the string can not exceed
ALFA_SIZE bytes. Only one Warnings-to: body can be specified.

PMDF_X_ORGANIZATION
Specify the body of a X-Organization: header line. The item_address and
item_length fields specify the address and length of a text string to place in
the body of a X-Organization: header line. The length of the string can not exceed
ALFA_SIZE bytes. Only one X-Organization: body can be specified.

PMDF_X_PS_QUALIFIERS
Specify the body of a X-PS-Qualifiers: header line. The item_address and
item_length fields specify the address and length of a text string to place in
the body of a X-PS-Qualifiers: header line. The length of the string can not exceed
ALFA_SIZE bytes. Only one X-PS-Qualifiers: body can be specified.

DESCRIPTION Send a message. The processing carried out to address the message, generate
the message’s header and body, and enqueue the message is specified through the
item_list argument. Refer to Section 2.1 for details on how to use PMDF_send.

In the event of an error (an even return value), no message will be sent.

RETURN VALUES
PMDF_ _OK Normal, successful completion.

PMDF_ _ADDRERRS One or more illegal envelope To: addresses prevented the
message from being sent.

PMDF_ _ALLADDRBAD Message contained no legal envelope To: addresses; no
message sent.

PMDF_ _BADITEMADDR item_address associated with an item list entry is illegal.

PMDF_ _BADITEMCODE Unrecognized item_code specified in an item list entry.

PMDF_ _BADITEMSIZE item_length associated with an item list entry is incorrect.

2–39

Callable SEND
PMDF_send

PMDF_ _ERRFDLPROC An error occurred while attempting to process an OpenVMS
file descriptor for an input file.

PMDF_ _ERROPENINP An error occurred while attempting to open an input file.

PMDF_ _ERRPROCINP An error occurred while processing an input source.

PMDF_ _FCRT File create error. The message could not be placed in the
PMDF message queues. This is typically due to insufficient
privileges although other possibilities exist such as insufficient
disk space. Message not enqueued.

PMDF_ _FILOPNERRS An error occurred while processing an input source.

PMDF_ _FOPN Initialization failed. One or more PMDF configuration files
could not be accessed. PMDF configuration files are
incorrectly protected.

PMDF_ _HOST Illegal address specified (e.g., bad syntax, illegal mail box
name, corresponds to a restricted mailing list, etc.).

PMDF_ _INCOMPITMS Incompatible item codes specified.

PMDF_ _INSUFPRIV Process must have the same (real) UID as either the root
or pmdf account in order to specify with the PMDF_USER
item code a user name different than that of the current
process. This error code is only returned on UNIX.

PMDF_ _MISGNSTART A PMDF_FAX_* or PMDF_PRT_* item code was used
without first specifying a PMDF_FAX_TO, PMDF_FAX_CC,
PMDF_FAX_BCC, PMDF_PRT_TO, PMDF_PRT_CC, or
PMDF_PRT_BCC item code.

PMDF_ _NO Initialization failed owing to a version mismatch between
the current version of PMDF and the site’s compiled
configuration. Either the PMDF configuration needs to be
recompiled or the character set tables need to be recompiled.

PMDF_ _NOADDRESSES No To:, Cc:, or Bcc: addresses specified.

PMDF_ _NOOP Message had no envelope To: addresses; its delivery was
effected by simply deleting it.

PMDF_ _STRTRUERR A string specified in one of the item list entries exceeds, in
length, the maximum size allowed for the associated item
code.

SS$_NOWORLD OpenVMS WORLD default privilege is required to specify
with the PMDF_USER item code a user name different than
that of the current process. This error code is only returned
on OpenVMS.

On OpenVMS Systems Any error returned by the $GETJPI System Service or the
STR$TRIM or STR$UPCASE OpenVMS Run Time Library
routines.

2–40

A Error Codes

Each of the error codes returned by the API are described below. Note that the codes
returned by the API follow the OpenVMS convention of success codes having and odd
value and error codes having an even value. Thus, programs can test the low bit of a
return value to see if an error occurred.

PMDF_ _ADDRERRS
One or more illegal envelope "To:" addresses prevented a message from being sent with
PMDF_send.

PMDF_ _ALLADDRBAD
A message to be sent with PMDF_send contained no legal "To:", "Cc:", or "Bcc:" addresses.

PMDF_ _BAD
Bad parameter value supplied. An illegal value for the property parameter to the
address property routines was specified, or an illegal value for the database parameter
to the database routines was specified.

PMDF_ _BADCONTEXT
An bad context variable was specified.

PMDF_ _BADITEMADDR
An illegal ITEM_ADDRESS was present in an item list passed to PMDF_send.

PMDF_ _BADITEMCODE
An illegal (undefined) ITEM_CODE was specified in an item list passed to PMDF_send.

PMDF_ _BADITEMSIZE
An illegal ITEM_LENGTH was specified in an item list passed PMDF_send.

PMDF_ _CANOPNDAT
The specified database could not be opened or does not exist. If it does exist, then it can
be incorrectly protected or formatted.

PMDF_ _CANTUPDAT
An attempt to update the database failed. That is, an attempt to add or remove an entry
failed. It can be that the database doesn’t exist or is incorrectly protected or formatted.
In the case of a failed entry addition, it can be a disk quota problem or lack of free disk
space.

PMDF_ _DONE
PMDF_ _DONE is actually a success code and not an error. It is returned by
PMDFoptionRead to indicate that no option file existed.

PMDF_ _DUPENTRY
Entry could not be added to the database as it would otherwise duplicate an existing
entry. Specify a value of true for the replace argument to PMDFdatabaseAddEntry in
order to override the existing entry.

A–1

Error Codes

PMDF_ _ENTWONFIT
Entry is too long to fit in the specified database. See the description of PMDFdatabaseAd-
dEntry for a discussion of maximum database entry lengths.

PMDF_ _EOF
The interpretation of this error code depends upon which dequeue processing routine
returned it.

• PMDFgetMessage: a PMDF_ _EOF indicates that there are no more messages to
process.

• PMDFgetRecipient: the entire envelope "To:" address list has been read.

• PMDFreadLine: the end of the message has been reached; there are no more lines
to be read from this message.

• PMDFreadText: the end of the message has been reached; there are no more lines
to be read from this message.

PMDF_ _ERRFDLPROC
PMDF_send encountered an error while attempting to process an OpenVMS file descriptor
for an input file.

PMDF_ _ERROPENINP
PMDF_send was unable to open an input file.

PMDF_ _ERRPROCINP
PMDF_send encountered an error while processing an input source.

PMDF_ _FATERRLIB
A call to LIB$SCOPY_R_DX failed owing to a fatal internal error in the OpenVMS Run
Time Library. This has prevented the API from writing data into a string passed by
descriptor to an API routine. Consult the description of the particular routine returning
this error in order to determine what processing, if any, was accomplished.

PMDF_ _FCRT
PMDFenqueueMessage or PMDF_send was unable to create a message file in the message
queue directories. Usually, this means that the process lacks sufficient privileges to create
a file in the PMDF message queues. However, it can indicate other problems (e.g., disk
full, quota exceeded,etc.).

PMDF_ _FILOPNERRS
PMDF_send encountered an error while attempting to process an input source.

PMDF_ _FOPN
PMDFinitialize or PMDF_send was unable to load PMDF configuration information.
One or more PMDF configuration files could not be accessed. This usually means that
one or more PMDF configuration files are incorrectly protected; however, it can also be
caused by missing or corrupted files.

PMDF_ _HEANOTKNW
An unknown header line type was specified to PMDFaddHeaderLine or PMDFdelete-
Header line. To proceed with the operation anyhow, recall the procedure specifying HL_
OTHER as the header line type.

A–2

Error Codes

PMDF_ _HOST
An illegal or restricted address was passed to PMDFaddRecipient or PMDF_send. In
the case of PMDFaddRecipient, call PMDFgetErrorText to determine the nature of the
problem; in the case of PMDF_send, the error, on a per address basis, will be described in
the string associated with each address by a PMDF_ERROR_TEXT item code. In either
case, the text of the error will be one of the following:

• Unknown host or domain: the address references a host or domain which is not
recognized by the site’s PMDF configuration.

• List is currently reserved and locked: the address is for a mailing list which
is currently locked and cannot be used.

• You are not allowed to use this list: the address is for a restricted mailing list
which does not accept postings from the specified "From:" address.

• No addressees in: the address translates to an empty address or address list.

• Channel size limit exceeded: message size exceeds size limit imposed one or
more destination channels. This limit was imposed by the postmaster and set with
a channel keyword.

• Channel line limit exceeded: message size exceeds line count limit imposed one
or more destination channels. This limit was imposed by the postmaster and set with
a channel keyword.

• You are not allowed to use this address: the combination of source channel,
"From:" address, destination channel, and "To:" address is not permitted by site
imposed access restrictions.

PMDF_ _INCOMPITMS
PMDF_send was passed an item list containing incompatible item codes.

PMDF_ _INSUFPRIV
Calling process must have the same (real) UID as either the root or pmdf account in
order to specify with the PMDF_USER item code a user name different than that of the
current process.

PMDF_ _INSVIRMEM
A call to LIB$GET_VM made by LIB$SCOPY_R_DX has failed owing to insufficient
virtual memory. This has prevented the API from writing data into a string passed by
descriptor to an API routine. Consult the description of the particular routine returning
this error in order to determine what processing, if any, was accomplished. The process
probably needs to have its page file quota increased or the system’s virtual page count
can need to be increased.

PMDF_ _INVSTRDES
An invalid string descriptor was passed to an API routine. The API routines require that
all string descriptors be passed by reference.

PMDF_ _MISGNSTART
In an item list passed to PMDF_send, a PMDF_FAX_* or PMDF_PRT_* item code
was used without first specifying a PMDF_FAX_TO, PMDF_FAX_CC, PMDF_FAX_BCC,
PMDF_PRT_TO, PMDF_PRT_CC, or PMDF_PRT_BCC item code to start a FAX or
printer address specification.

A–3

Error Codes

PMDF_ _NAUTH
An address passed to PMDFaddRecipient can not be used by the sending address — it
is a restricted address or mailing list. Further information can be obtained by calling
PMDFgetErrorText.

PMDF_ _NO
The interpretation of this error code depends upon which routine returned it.

• PMDFaddressGet, PMDFaddressGetProperty: value for the index parameter was
out of range.

• PMDFenqueueMessage: a temporary processing error occurred; the message enqueue
was not successful.

• PMDFgetAddressProperty: specified address contained more than one address.
Use PMDFaddressParseLine and PMDFaddressGetProperty instead.

• PMDFgetRecipient: the message file was corrupt and should be deleted by calling
PMDFdequeueMessage.

• PMDFinitialize: the site’s PMDF configuration file needs to be recompiled with
pmdf cnbuild or the site’s character set tables need to be recompiled with pmdf
chbuild. OpenVMS only: After recompiling either set of tables, they need to be
reinstalled.

• PMDFgetChannelStats: After ten attempts, each one second apart, PMDFgetChan-
nelStats was unable to obtain an lock on the channel statistics cache.

• PMDFmappingLoad: PMDFinitialize has not yet been called. PMDF must be
initialized before loading any mapping tables.

• PMDFrewindMessage: there is an inconsistency in the message file.

• PMDF_send: same as PMDFinitialize.

• PMDFstartMessageEnvelope: there is an error in the site’s PMDF configuration.
Either the specified channel does not exist or there is an error in the PMDF
configuration file.

PMDF_ _NOOP
A message enqueued with PMDFenqueueMessage or PMDF_send had no envelope "To:"
addresses and was therefore simply deleted.

PMDF_ _NOADDRESSES
An item list passed to PMDF_send contained no "To:", "Cc:", or "Bcc:" addresses.

PMDF_ _NOCHANNEL
Either the channel name to associate with the executing program could not be deter-
mined, or once determined the channel could not be located in the PMDF configuration
file. On OpenVMS systems, the channel name is generally specified with the PMDF_
CHANNEL logical which should translate to the name of the channel to use.

PMDF_ _NOMAPPING
The specified mapping table could not be loaded. Check to see that the mapping file
exists. If it does exist, check to ensure that the mapping table name is correct.

PMDF_ _OK
Successful, normal completion.

A–4

Error Codes

PMDF_ _PARSE
An address passed to PMDFaddRecipient had bad or otherwise illegal syntax. An
address passed to PMDFgetAddressProperty contained no legal addresses (i.e., either
contained no addresses or had one or more syntactically illegal addresses).

PMDF_ _STRTRU
A string passed to an API routine was not large enough. The data written to this string
by an API routine was truncated to fit. Depending upon the application, the truncated
data can or cannot be usable.

PMDF_ _STRTRUERR
A string passed to an API routine was not large enough and truncating the data to be
written to the string would only result in an error (i.e., the data is not usable when
truncated).

PMDF_ _USER
A bad or illegal user name was specified in a local address passed to PMDFaddRecipient.

SS$_NOWORLD
OpenVMS WORLD default privilege required to specify with the PMDF_USER item code
a user name different than that of the current process.

A–5

Glossary

Channel program: Loosely speaking, any program which enqueues or dequeues
messages to or from PMDF’s message queues.

Dequeue: The act of removing a mail message from PMDF’s message queues.

Enqueue: The act of submitting for transmission a mail message to PMDF.

Envelope: The message’s transport layer To: and From: addressing information is
contained in the message envelope.

Master channel program: Any program which enqueues messages to PMDF’s message
queues.

MIME: See RFC 2045–2049.

MTA: Message transfer agent; e.g., PMDF.

RFC: Request For Comments; the Internet’s method of publishing documents.

RFC 822: RFC 822, written by David Crocker, is the Internet standards document
entitled Standard for the Format of ARPA Internet Text Messages. Messages in
PMDF’s message queues conform to this standard; i.e., RFC 822 is the format
which PMDF uses internally.

RFC 1123: RFC 1123, edited by Robert Braden, is the Internet standards document
entitled Internet Host Requirements — Application and Support. PMDF adheres
to the requirements put forth by this document.

RFCs 2045–2049: RFCs 2045–2049, commonly referred to as MIME, written by
Nathaniel Borenstein and Ned Freed, are the Internet standards track documents
describing the format of Internet message bodies. PMDF uses the specifications
laid out in this document when forming multipart messages, encoded messages,
etc. Note that RFCs 2045–2049 replaced RFCs 1521–1522 and 1431, previous
drafts of MIME.

RFC 1566: RFC 1566, sometimes referred to as MADMAN, written by Steve Kille
and Ned Freed, is the Internet standards track protocol entitled Mail Monitoring
MIB. PMDF accumulates the necessary message traffic statistics needed for this
MIB. The concept of ‘‘group’’ used in the MIB is identified with a PMDF channel.
The PMDFgetChannelStats routine can be used to access the messages traffic
statistics, referred to as channel statistics.

RFCs 1891–1894: RFCs 1891–1894, sometimes referred to as NOTARY, written by
Keith Moore and Greg Vaudreuil, are the Internet standards track documents for
the format and handling of notification messages.

Glossary–1

Glossary

Slave channel program: Any program which dequeues messages from PMDF’s
message queues.

UA: User agent; e.g., the VMS MAIL utility.

Glossary–2

Index

A
Aborting

dequeue • 1–86
enqueue • 1–43

Accessing messages

See dequeuing messages
Addresses

Bcc: • 2–23
Cc: • 2–24
envelope

See envelope, message
From: • 2–2
header

See header, message
To: • 2–38
To:, Cc:, and Bcc: • 2–2

Address parsing • 1–51, 1–52, 1–54, 1–56, 1–94
ALFA_SIZE = 252 bytes • 1–42
Aliases, inhibiting • 1–58
apidef.h

OpenVMS: PMDF_COM:apidef.h • 1–8
UNIX, NT: /pmdf/include/apidef.h • 1–8

apidef.pen
OpenVMS: PMDF_EXE:apidef.pen • 1–8

B
Bcc: addresses • 1–48, 2–23
BIGALFA_SIZE = 1024 bytes • 1–42
Block size • 1–97
Body, message

description • 1–2
enqueuing • 1–184
PMDF_send • 2–3
starting • 1–184

Bouncing messages • 1–162
example program • 1–31

C
Calling dependencies • 1–39

Cc: addresses • 1–48, 2–24
CHANLENGTH = 32 bytes • 1–42
Channel counters • 1–98
Channel keywords
defragment • 1–174
determining which are set • 1–104
headerbottom • 1–104
headerinc • 1–104
headeromit • 1–104
logging • 1–12
master_debug • 1–104
slave_debug • 1–104

Channel log file • 1–12
Channel name • 1–4, 1–103
Comments: header line • 2–24
Compiling programs • 1–13, 2–5
Content-type: header line • 2–24, 2–25
Counters, channels • 1–98

D
DATA_LENGTH = 80 bytes • 1–42
Date • 1–106
Date: header line • 1–2, 1–188
Debugging • 1–12, 1–74
Debug output • 1–12, 1–131
Deferring queued messages • 1–6, 1–86
defragment keyword • 1–174, 2–32
Deleting a message

dequeue • 1–86
enqueue • 1–43

Delivery failure log • 1–87
reading • 1–152
writing • 1–86

Delivery receipts • 1–182
Delivery-receipt-to: header line • 1–159, 1–182, 2–25
Dequeuing messages • 1–4 to 1–7

aborting • 1–6, 1–86
accessing a message • 1–114
basic steps • 1–5
bouncing messages • 1–162
contexts • 1–7
copying a message • 1–62
debugging • 1–12, 1–74
deferring • 1–86
ending • 1–83
example • 1–17, 1–24, 1–31
logging • 1–12
message locking • 1–6

Index–1

Index

Dequeuing messages (cont’d)

privileges required • 1–12
reading • 1–155, 1–157
re-reading messages • 1–168
returning messages • 1–31, 1–162
rewinding messages • 1–168

E
Enqueueing messages

To:, Cc:, and Bcc: addresses • 1–180
Enqueuing messages • 1–2 to 1–4

aborting • 1–43
basic steps • 1–3

callable SEND • 2–1
contexts • 1–7
copying a message • 1–62
debugging • 1–12, 1–74
delivery receipts • 1–159, 1–182
example • 1–15, 1–24
fragmenting • 1–173
inhibiting aliases • 1–58
killing • 1–43
logging • 1–12
message body • 1–184
PMDF_send • 2–1
privileges required • 1–12
read receipts • 1–159, 1–182
receipts • 1–159, 1–182
simple example

PMDF_send • 2–5
size limits • 1–173
starting • 1–91
submitting • 1–92
writing message lines • 1–192, 1–196

Envelope, message
description • 1–2
envelope id • 1–108, 1–171
From: address • 1–2, 1–185

PMDF_send • 2–2, 2–38
NOTARY flags • 1–123, 1–178
To: addresses • 1–2

PMDF_send • 2–2, 2–38
reading • 1–120
writing • 1–48

Envelope id • 1–108, 1–171

Environment files
See files

Error codes
PMDF_ _ADDRERRS • A–1
PMDF_ _ALLADDRBAD • A–1
PMDF_ _BAD • A–1
PMDF_ _BADCONTEXT • A–1
PMDF_ _BADITEMADDR • A–1

Error codes (cont’d)

PMDF_ _BADITEMCODE • A–1
PMDF_ _BADITEMSIZE • A–1
PMDF_ _CANOPNDAT • A–1
PMDF_ _CANTUPDAT • A–1
PMDF_ _DONE • A–1
PMDF_ _DUPENTRY • A–1
PMDF_ _ENTWONFIT • A–1
PMDF_ _EOF • A–2
PMDF_ _ERRFDLPROC • A–2
PMDF_ _ERROPENINP • A–2
PMDF_ _ERRPROCINP • A–2
PMDF_ _FATERRLIB • A–2
PMDF_ _FCRT • A–2
PMDF_ _FILOPNERRS • A–2
PMDF_ _FOPN • A–2
PMDF_ _HEANOTKNW • A–2
PMDF_ _HOST • A–2
PMDF_ _INCOMPITMS • A–3
PMDF_ _INSUFPRIV • A–3
PMDF_ _INSVIRMEM • A–3
PMDF_ _INVSTRDES • A–3
PMDF_ _MISGNSTART • A–3
PMDF_ _NAUTH • A–3
PMDF_ _NO • A–4
PMDF_ _NOADDRESSES • A–4
PMDF_ _NOCHANNEL • A–4
PMDF_ _NOMAPPING • A–4
PMDF_ _NOOP • A–4
PMDF_ _OK • A–4
PMDF_ _PARSE • A–4
PMDF_ _STRTRU • A–5
PMDF_ _STRTRUERR • A–5
PMDF_ _USER • A–5
SS$_NOWORLD • A–5

Errors
during channel processing • 1–6
obtaining information about • 1–110

Errors-to: header line • 2–26
Examples • 1–14 to 1–36, 2–5 to 2–17

dequeuing & re-enqueuing messages • 1–24
dequeuing & returning messages • 1–31
dequeuing messages • 1–17
enqueuing messages • 1–15
PMDF_send

enqueuing messages • 2–5
FAX addresses • 2–10
initial message header • 2–7
input procedure • 2–15
multiple recipients • 2–10

F

Index–2

Index

Failure log

See delivery failure log
Files

apidef.h
OpenVMS: PMDF_COM:apidef.h • 1–8
UNIX, NT: /pmdf/include/apidef.h •

1–8
apidef.pen

OpenVMS: PMDF_EXE:apidef.pen • 1–8
Files, option • 1–139, 1–141, 1–143, 1–145
Foutines

PMDFaddRecipient • 1–48
Fragmenting messages • 1–173
From: header line • 1–2, 1–189, 2–29
Fruit-of-the-day: header line • 2–30

H
Header, message

Content-type: header line • 2–24, 2–25
Date: header line • 1–2, 1–188
Delivery-receipt-to: header line • 1–182, 2–25
description • 1–2
enqueuing • 1–187
Errors-to: header line • 2–26
From: address • 1–185

PMDF_send • 2–2, 2–29
From: header line • 1–2, 1–189, 2–29
Fruit-of-the-day: header line • 2–30
Importance: header line • 2–31
Keywords: header line • 2–31
PMDF_send • 2–3
Priority: header line • 2–35
Read-receipt-to: header line • 1–182, 2–37
References: header line • 2–37
Reply-to: header line • 2–37
Resent-from: header line • 2–38
Resent-reply-to: header line • 2–38
Sensitivity: header line • 2–38
starting • 1–187
Subject: header line • 1–194, 2–38
To:, Cc:, and Bcc: addresses • 1–48

PMDF_send • 2–2, 2–23, 2–24, 2–38
Warnings-to: header line • 2–39
X-Organization: header line • 2–39
X-PS-qualifiers: header line • 2–39

headerbottom keyword • 1–104

Header files
See files

headerinc keyword • 1–104
headeromit keyword • 1–104

Host name • 1–112

I
I/O • 1–12, 1–131
Importance: header line • 2–31

Include files
See files

Infinite loop

See loop, infinite
Item code • 2–22
Item list • 2–22
item_address • 2–22
item_length • 2–22

K
Keywords: header line • 2–31
KEY_LENGTH = 32 bytes • 1–42

L
Linking programs • 1–13, 2–5
Local host name • 1–112
Locking messages • 1–6
Log file • 1–60
Log file output • 1–12, 1–131
Logging • 1–12
logging keyword • 1–12
LONG_DATA_LENGTH = 252 bytes • 1–42
LONG_KEY_LENGTH = 80 bytes • 1–42

Loop, infinite

See infinite loop

M
Mail, sending

See enqueuing messages
master_debug keyword • 1–104

Message body

See body, message

Message envelope

See envelope, message

Index–3

Index

Message header

See header, message
Message id

obtaining • 1–116
MIME • Glossary–1
Multi-threaded applications • 1–175
Multithreaded applications • 1–7
Mutex • 1–7, 1–175

N
NOTARY • Glossary–1
NOTARY flags

message dequeue • 1–123
message enqueue • 1–178

O
Official local host name • 1–112
Option files, reading • 1–139, 1–141, 1–143, 1–145
Order dependencies • 1–39
Output • 1–12, 1–131

P
PMDF log file • 1–10, 1–60
PMDF_send

address status • 2–2
basic steps • 2–1
body, message • 2–3
calling • 2–21
description • 2–21
From: address • 2–2, 2–38
header, message • 2–3
input procedures • 2–3

calling format • 2–3
item codes • 2–22, 2–23

PMDF_ADDRESS_STATUS • 2–2, 2–10, 2–23
PMDF_BCC • 2–2, 2–23
PMDF_BLANK • 2–23
PMDF_CC • 2–2, 2–24
PMDF_CHAIN • 2–24
PMDF_CHANNEL • 2–24
PMDF_COMMENTS • 2–24
PMDF_CONTENT_FILENAME • 2–24
PMDF_CONTENT_TYPE • 2–25
PMDF_DELIVERY_RECEIPT_TO • 2–25
PMDF_ENC_BASE64 • 2–25
PMDF_ENC_BASE85 • 2–25

PMDF_send
item codes (cont’d)

PMDF_ENC_BINHEX • 2–25
PMDF_ENC_BTOA • 2–25
PMDF_ENC_COMPRESSED_BASE64 • 2–25
PMDF_ENC_COMPRESSED_BINARY • 2–25
PMDF_ENC_COMPRESSED_UUENCODE • 2–25
PMDF_ENC_HEXADECIMAL • 2–26
PMDF_ENC_NONE • 2–26
PMDF_ENC_QUOTED_PRINTABLE • 2–26
PMDF_ENC_UNKNOWN • 2–26
PMDF_ENC_UUENCODE • 2–25
PMDF_END_LIST • 2–26
PMDF_ENV_BCC • 2–2, 2–23
PMDF_ENV_CC • 2–2, 2–24
PMDF_ENV_FROM • 2–2, 2–26
PMDF_ENV_TO • 2–2, 2–38
PMDF_ERRORS_TO • 2–26
PMDF_EXPAND_LIMIT • 2–32
PMDF_EXTRA_HEADER • 2–27
PMDF_FAX_AFTER • 2–27
PMDF_FAX_AT • 2–27
PMDF_FAX_AUTH • 2–27
PMDF_FAX_BCC • 2–27
PMDF_FAX_CC • 2–27
PMDF_FAX_DOMAIN • 2–28
PMDF_FAX_FN • 2–28
PMDF_FAX_FSI • 2–28
PMDF_FAX_O • 2–28
PMDF_FAX_OU • 2–28
PMDF_FAX_SETUP • 2–29
PMDF_FAX_SFN • 2–29
PMDF_FAX_STN • 2–29
PMDF_FAX_TN • 2–29
PMDF_FAX_TO • 2–10, 2–27
PMDF_FAX_TTI • 2–29
PMDF_FROM • 2–29
PMDF_FRUIT_OF_THE_DAY • 2–30
PMDF_HDRMSG_FILE • 2–30
PMDF_HDRMSG_PROC • 2–31
PMDF_HDR_ADDRS • 2–30
PMDF_HDR_BCC • 2–2, 2–23
PMDF_HDR_CC • 2–2, 2–24
PMDF_HDR_FILE • 2–3, 2–7, 2–30
PMDF_HDR_NOADDRS • 2–30
PMDF_HDR_NORESENT • 2–30
PMDF_HDR_PROC • 2–3, 2–30
PMDF_HDR_RESENT • 2–30
PMDF_HDR_TO • 2–2, 2–38
PMDF_IGNORE_ERRORS • 2–31
PMDF_IMPORTANCE • 2–31
PMDF_IS_CHANNEL • 2–31
PMDF_IS_NOT_CHANNEL • 2–31
PMDF_KEYWORDS • 2–31
PMDF_MAX_BLOCKS • 2–31
PMDF_MAX_BYTES • 2–32

Index–4

Index

PMDF_send
item codes (cont’d)

PMDF_MAX_LINES • 2–32
PMDF_MODE_BLOCK • 2–33
PMDF_MODE_RECORD • 2–33
PMDF_MODE_RECORD_CRATTRIBUTE • 2–33
PMDF_MODE_RECORD_CRLFATTRIBUTE • 2–33
PMDF_MODE_RECORD_LFATTRIBUTE • 2–33
PMDF_MODE_TEXT • 2–34
PMDF_MODE_UNKNOWN • 2–34
PMDF_MSG_FILE • 2–3, 2–34
PMDF_MSG_PROC • 2–3, 2–15, 2–34
PMDF_NOADDRESS_ERRORS • 2–34
PMDF_NOBLANK • 2–35
PMDF_NOCONTENT_FILENAME • 2–24
PMDF_NOIGNORE_ERRORS • 2–35
PMDF_ORGANIZATION • 2–35
PMDF_PRIORITY • 2–35
PMDF_PRIV_DISABLE_PROC • 2–4, 2–35
PMDF_PRIV_ENABLE_PROC • 2–4, 2–35
PMDF_PRT_AT • 2–36
PMDF_PRT_BCC • 2–36
PMDF_PRT_CC • 2–36
PMDF_PRT_DOMAIN • 2–36
PMDF_PRT_MS • 2–36
PMDF_PRT_O • 2–36
PMDF_PRT_OU • 2–37
PMDF_PRT_Pn • 2–37
PMDF_PRT_TN • 2–37
PMDF_PRT_TO • 2–36
PMDF_READ_RECEIPT_TO • 2–37
PMDF_REFERENCES • 2–37
PMDF_REPLY_TO • 2–37
PMDF_RESENT_FROM • 2–38
PMDF_RESENT_REPLY_TO • 2–38
PMDF_SENSITIVITY • 2–38
PMDF_SUBADDRESS • 2–38
PMDF_SUBJECT • 2–38
PMDF_TO • 2–2, 2–38
PMDF_USER • 2–2, 2–38
PMDF_WARNINGS_TO • 2–39
PMDF_X_ORGANIZATION • 2–39
PMDF_X_PS_QUALIFIERS • 2–39
summary • 2–17

item descriptor fields • 2–22
item_address • 2–22
item_length • 2–22
item_list argument • 2–22
overview • 2–1
status messages • 2–2
To:, Cc:, and Bcc: addresses • 2–2, 2–23, 2–24, 2–38

Postmaster address • 1–118
Priority: header line • 2–35
Privileges • 1–12, 2–4

PMDF_send • 2–2
PMDF_USER item code • 2–2

Privileges (cont’d)

VMS WORLD • 2–2

Q
Queue cache database

closing • 1–10, 1–61
dumping • 1–148

R
Reading messages

See dequeuing messages
Read-receipt-to: header line • 1–159, 1–182, 2–37
Receipts • 1–182

controlling • 1–159
delivery receipts • 1–182, 2–25
read receipts • 1–182
Read receipts • 2–37

Re-entrancy • 1–7, 1–175
References: header line • 2–37
Reply-to: header line • 2–37
Resent-from: header line • 2–38
Resent-reply-to: header line • 2–38
Returning messages • 1–162

example program • 1–31
Rewinding messages • 1–168
RFC 1123 • 1–1, Glossary–1
RFC 1566 • 1–99, Glossary–1
RFC 1891–1894 • Glossary–1
RFC 2045–2049 • 1–1, Glossary–1
RFC 822 • 1–1, Glossary–1
Routines

order dependencies • 1–39
PMDFabortMessage • 1–43
PMDFabortProgram • 1–44
PMDFaddHeaderLine • 1–46
PMDFaddressDispose • 1–51
PMDFaddressGet • 1–52
PMDFaddressGetProperty • 1–54
PMDFaddressParseList • 1–56
PMDFaliasNoExpansion • 1–58
PMDFcancelCallBack • 1–59
PMDFcloseLogFile • 1–60
PMDFcloseQueueCache • 1–61
PMDFcopyMessage • 1–62
PMDFdatabaseAddEntry • 1–64
PMDFdatabaseClose • 1–68
PMDFdatabaseDeleteEntry • 1–69
PMDFdatabaseGetEntry • 1–71
PMDFdebug • 1–74

Index–5

Index

Routines (cont’d)

PMDFdecodeMessage • 1–76
PMDFdeferMessage • 1–79
PMDFdeleteHeaderLine • 1–81
PMDFdequeueEnd • 1–83
PMDFdequeueInitialize • 1–84
PMDFdequeueMessage • 1–85
PMDFdequeueMessageEnd • 1–86
PMDFdisposeChannelCounters • 1–88
PMDFdisposeHeader • 1–89
PMDFdone • 1–90
PMDFenqueueInitialize • 1–91
PMDFenqueueMessage • 1–92
PMDFgetAddressProperty • 1–94
PMDFgetBlockSize • 1–97
PMDFgetChannelCounters • 1–98
PMDFgetChannelName • 1–103
PMDFgetDateTime • 1–106
PMDFgetEnvelopeId • 1–108
PMDFgetErrorText • 1–110
PMDFgetHostName • 1–112
PMDFgetMessage • 1–114
PMDFgetMessageId • 1–116
PMDFgetPostmasterAddress • 1–118
PMDFgetRecipient • 1–120
PMDFgetRecipientFlags • 1–123
PMDFgetUniqueString • 1–125
PMDFgetUserName • 1–127
PMDFinitialize • 1–129
PMDFlog • 1–131
PMDFmappingApply • 1–133
PMDFmappingLoad • 1–136
PMDFoptionDispose • 1–138
PMDFoptionGetInteger • 1–139
PMDFoptionGetReal • 1–141
PMDFoptionGetString • 1–143
PMDFoptionRead • 1–145
PMDFqueueCacheEnd • 1–147
PMDFqueueCacheGetEntry • 1–148
PMDFreadFailureLog • 1–152
PMDFreadHeader • 1–154
PMDFreadLine • 1–155
PMDFreadText • 1–157
PMDFreceiptControl • 1–159
PMDFrecipientDisposition • 1–162
PMDFreturnMessage • 1–165
PMDFrewindMessage • 1–168
PMDFsetCallBack • 1–169
PMDFsetEnvelopeId • 1–171
PMDFsetLimits • 1–173
PMDFsetMutex • 1–175
PMDFsetReceiptAddresses • 1–182
PMDFsetRecipientFlags • 1–178
PMDFsetRecipientType • 1–180
PMDFstartMessageBody • 1–184
PMDFstartMessageEnvelope • 1–185

Routines (cont’d)

PMDFstartMessageHeader • 1–187
PMDFwriteDate • 1–188
PMDFwriteFrom • 1–189
PMDFwriteHeader • 1–191
PMDFwriteLine • 1–192
PMDFwriteSubject • 1–194
PMDFwriteText • 1–196
PMDF_abort_message • 1–4
PMDF_add_recipient • 1–3
PMDF_close_log_file • 1–10
PMDF_close_queue_cache • 1–10
PMDF_dequeue_end • 1–5
PMDF_dequeue_initialize • 1–5
PMDF_dequeue_message_end • 1–5
PMDF_enqueue_initialize • 1–3
PMDF_enqueue_message • 1–3
PMDF_get_channel_name • 1–4
PMDF_get_envelope_id • 1–4
PMDF_get_message • 1–5
PMDF_get_recipient • 1–5
PMDF_get_recipient_flags • 1–4, 1–5
PMDF_log • 1–12
PMDF_receipt_control • 1–182
PMDF_recipient_disposition • 1–5
PMDF_set_call_back • 1–10
PMDF_set_envelope_id • 1–4
PMDF_set_recipient_flags • 1–4
PMDF_start_message_envelope • 1–3
PMDF_start_message_header • 1–3
summary of API routines • 1–36

S
Sending mail

See enqueuing messages
Sensitivity: header line • 2–38
SHORTALFA_SIZE = 40 bytes • 1–42
Size limits • 1–173
slave_debug keyword • 1–104
SS$_NOWORLD • A–5
Stopping

dequeue • 1–83, 1–86
enqueue • 1–43

Strings • 1–36, 1–41
Subject: header line • 1–194, 2–38

Submitting mail

See enqueuing messages
Summary

API routines • 1–36
PMDF_send item codes • 2–17

Index–6

Index

T
Threads • 1–7, 1–175
Time • 1–106
To: addresses

NOTARY flags • 1–123, 1–178
reading • 1–120
specifying • 1–48, 2–38
writing • 1–48

U
Unique string, obtaining • 1–125
User name, obtaining • 1–127

W
Warnings-to: header line • 2–39
Writing message lines • 1–192, 1–196

X
X-Organization: header line • 2–39
X-PS-qualifiers: header line • 2–39

Index–7

