
PMDF popstore & MessageStore
Manager’s Guide

Order Number: N-5304-66-NN-N

September 2015

This manual describes the usage of V6.7 of the PMDF popstore and PMDF MessageStore.
Documentation on the popstore API is also provided in this manual.

Revision/Update Information: This manual supersedes the V6.6 PMDF popstore &
MessageStore Manager’s Guide

Software Version: PMDF V6.7

Operating System and Version: Solaris SPARC V2.6, V8 or later; (SunOS V5.6, V5.8 or
later);

Red Hat Enterprise Linux 4 update 8 or later on x86; (or
other compatible Linux distribution)

OpenVMS VAX V6.1 or later;

OpenVMS Alpha V7.0 or later;

OpenVMS I64 V8.2 or later;

Windows 2003

Copyright ©2015 Process Software, LLC.
Unpublished — all rights reserved under
the copyright laws of the United States

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in any form or by any means electronic,
mechanical, magnetic, optical, chemical, or otherwise without the prior written permission of:

Process Software, LLC
959 Concord Street
Framingham, MA 01701-4682 USA
Voice: +1 508 879 6994; FAX: +1 508 879 0042
info@process.com

Process Software, LLC (‘‘Process’’) makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any
particular purpose. Furthermore, Process Software reserves the right to revise this publication and to
make changes from time to time in the content hereof without obligation of Process Software to notify
any person of such revision or changes.

Use of PMDF, PMDF-DIRSYNC, PMDF-FAX, PMDF-LAN, PMDF-MR, PMDF-MSGSTORE, PMDF-
MTA, PMDF-TLS, PMDF-X400, PMDF-X500, PMDF-XGP, and/or PMDF-XGS software and associated
documentation is authorized only by a Software License Agreement. Such license agreements specify
the number of systems on which the software is authorized for use, and, among other things, specifically
prohibit use or duplication of software or documentation, in whole or in part, except as authorized by
the Software License Agreement.

Restricted Rights Legend

Use, duplication, or disclosure by the government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in

Technical Data and Computer Software clause at DFARS 252.227-7013
or as set forth in the Commercial Computer Software —

Restricted Rights clause at FAR 52.227-19.

The PMDF mark and all PMDF-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries and are
used under license.

AlphaMate is a registered trademark of Motorola, Inc.

ALL-IN-1, Alpha AXP, AXP, Bookreader, DEC, DECnet, HP, I64, IA64, Integrity, MAILbus,
MailWorks, Message Router, MicroVAX, OpenVMS, Pathworks, PSI, RMS, TeamLinks,
TOPS-20, Tru64, TruCluster, ULTRIX, VAX, VAX Notes, VMScluster, VMS, and WPS-
PLUS are registered trademarks of Hewlett-Packard Company.

cc:Mail is a trademark of cc:Mail, Inc., a wholly-owned subsidiary of Lotus
Development Corporation. Lotus Notes is a registered trademark of Lotus
Development Corporation.

AS/400, CICS, IBM, Office Vision, OS/2, PROFS, and VTAM are registered trademarks
of International Business Machines Corporation. CMS, DISOSS, OfficeVision/VM,
OfficeVision/400, OV/VM, and TSO are trademarks of International Business Machines
Corporation.

RC2 and RC4 are registered trademarks of RSA Data Security, Inc.

dexNET is a registered trademark of Fujitsu Imaging Systems of America, Inc. Ethernet is a registered trademark of Xerox Corporation.

FaxBox is a registered trademark of DCE Communications Group Limited. GIF and ‘‘Graphics Interchange Format’’ are trademarks of CompuServe,
Incorporated.

InterConnections is a trademark of InterConnections, Inc. InterDrive is a registered trademark of FTP Software, Inc.

LANmanager and Microsoft are registered trademarks of Microsoft Corporation. Memo is a trade mark of Verimation ApS.

MHS, Netware, and Novell are registered trademarks of Novell, Inc. LaserJet and PCL are registered trademarks of Hewlett-Packard Company.

PGP and Pretty Good Privacy are registered trademarks of Pretty Good Privacy, Inc. Jnet is a registered trademark of Wingra, Inc.

Attachmate is a registered trademark and PathWay is a trademark of Attachmate
Corporation.

Pine and Pico are trademarks of the University of Washington, used by
permission.

PostScript is a registered trademark of Adobe Systems Incorporated. Solaris, Sun, and SunOS are trademarks of Sun Microsystems, Inc.

SPARC is a trademark of SPARC International, Inc. TCPware and MultiNet are registered trademarks of Process Software.

UNIX is a registered trademark of UNIX System Laboratories, Inc. TIFF is a trademark of Aldus Corporation.

Gold-Mail is a trademark of Data Processing Design, Inc. Copyright (c) 1990-2000 Sleepycat Software. All rights reserved.

libedit/editline is Copyright (c) 1992, 1993, The Regents of the University of California.
All rights reserved.

Contents

PREFACE xiii

CHAPTER 1 OVERVIEW 1–1
1.1 INTRODUCTION 1–1

1.2 LICENSING 1–2

1.3 ACCOUNTS 1–3
1.3.1 Account Naming 1–5

1.3.1.1 The Preferred Naming Scheme • 1–5
1.3.1.2 The Default Naming Scheme • 1–6
1.3.1.3 Another Obsolete Naming Scheme • 1–6

1.3.2 Account Passwords 1–7
1.3.2.1 Password Location • 1–7
1.3.2.2 Using the Operating System’s Password Database • 1–8
1.3.2.3 Password Security • 1–9

1.3.3 Account Quotas 1–9
1.3.4 Management Groups 1–10
1.3.5 User Domains 1–12
1.3.6 Account Usage Flags 1–13
1.3.7 Privileged Accounts 1–14
1.3.8 Bulk Loading 1–14
1.3.9 Account Storage 1–15

1.4 MESSAGES 1–15

1.5 FORWARDING MAIL 1–16

CHAPTER 2 THE PMDF MessageStore 2–1
2.1 INTRODUCTION 2–1

2.2 LICENSING 2–3

2.3 ACCOUNTS 2–3
2.3.1 Account Naming 2–3

2.4 MESSAGES 2–3

2.5 MANAGEMENT 2–4
2.5.1 Web-based Management Utility 2–4
2.5.2 Command Line Management Utility 2–5
2.5.3 IMAP-based Management Utilities 2–5
2.5.4 Reconstruct Utility 2–6

2.6 APPLICATION PROGRAM INTERFACE (API) 2–7

CHAPTER 3 OPTIONS 3–1
3.1 LOCATION OF THE OPTION FILES 3–1

3.2 OPTION FILE FORMATS 3–1

iii

Contents

3.3 OPTIONS FOR BOTH THE popstore AND THE MessageStore 3–2

3.4 popstore SPECIFIC OPTIONS 3–5

3.5 MessageStore SPECIFIC OPTIONS 3–7

CHAPTER 4 WEB-BASED MANAGEMENT INTERFACE 4–1
4.1 USING THE MANAGEMENT INTERFACE 4–1

4.1.1 Restricting Access 4–2
4.1.2 Location of the Management Interface 4–2

4.2 USING THE PASSWORD CHANGE INTERFACE 4–3

4.3 THE MANAGEMENT CGI 4–3
4.3.1 Processing HTTP Requests 4–3
4.3.2 Generating HTTP Responses 4–4
4.3.3 An Example 4–6
4.3.4 Management Commands 4–6

4.3.4.1 add_group Command: add a new management group • 4–7
4.3.4.2 add_user Command: add a new user account • 4–8
4.3.4.3 copy_user Command: copy an existing user account • 4–9
4.3.4.4 delete_group Command: delete a management

group • 4–11
4.3.4.5 delete_message Command: delete a user’s message • 4–11
4.3.4.6 delete_messages Command: delete a user’s

messages • 4–12
4.3.4.7 delete_user Command: delete a user account • 4–13
4.3.4.8 forward Command: establish a forwarding address • 4–14
4.3.4.9 list_forward Command: list forwarding addresses • 4–15
4.3.4.10 list_groups Command: list management groups • 4–17
4.3.4.11 list_users Command: list user accounts • 4–18
4.3.4.12 modify_group Command: modify a management group

definition • 4–22
4.3.4.13 modify_user Command: modify a user account • 4–22
4.3.4.14 rename_user Command: rename a user account • 4–26
4.3.4.15 show_counters Command: show channel counters • 4–26
4.3.4.16 show_message Command: show a user’s message • 4–29
4.3.4.17 show_user Command: show a user account • 4–30
4.3.4.18 unforward Command: remove a forwarding address • 4–32

CHAPTER 5 WEB-BASED USER INTERFACE 5–1
5.1 USING THE USER INTERFACE 5–1

5.1.1 Restricting Access 5–2
5.1.2 Location of the User Interface 5–2

5.2 THE USER CGIS 5–3
5.2.1 User Interface Commands 5–3

5.2.1.1 delete command: delete a stored message (popstore
only) • 5–4

5.2.1.2 show command: show a stored message (popstore only) • 5–4
5.2.1.3 set_pwd command: change the user’s password • 5–6
5.2.1.4 show_user command: show information about the user’s

account • 5–6

iv

Contents

5.2.2 Header trimming of displayed messages 5–8

CHAPTER 6 UNIX & WINDOWS COMMAND LINE MANAGEMENT
UTILITY 6–1

6.1 BASIC OPERATION 6–2

6.2 ADDING NEW ACCOUNTS 6–2

6.3 LISTING ACCOUNTS 6–4

6.4 MODIFYING ACCOUNTS 6–5

6.5 REMOVING ACCOUNTS 6–5

6.6 CHANGING NEW ACCOUNT DEFAULTS 6–6

6.7 BULK LOADING ACCOUNTS 6–6

6.8 RETURNING OR DELETING MESSAGES 6–6

6.9 ACCOUNT QUOTAS 6–7

6.10 BLOCKING ACCESS, BLOCKING NEW MAIL, AND LOCKING
PASSWORDS 6–7

6.11 FORWARDING MAIL 6–8

6.12 MANAGEMENT GROUPS 6–8

6.13 USER DOMAINS 6–10
6.13.1 Enabling user domains 6–10
6.13.2 Creating a new user domain 6–11
6.13.3 Managing a user domain 6–11
6.13.4 Deleting a user domain 6–12

6.14 USE OF THE UTILITY BY NON-PRIVILEGED USERS 6–12

6.15 INFORMATION DISPLAY FORMATS 6–13
6.15.1 Changing default display formats 6–13
6.15.2 Report generation 6–14

6.16 RECREATING THE DEFAULT ACCOUNT 6–14

6.17 RECREATING THE USER DATABASE 6–15

6.18 COMMAND DESCRIPTIONS 6–15
ADD 6–16
COPY 6–20
DELETE 6–24
EXIT 6–26
FORWARD 6–27
GROUP 6–29
LOGIN 6–31
LOGOUT 6–32
MODIFY 6–33
NOFORWARD 6–37
QUIT 6–38
RENAME 6–39
RUN 6–41
SET DOMAIN 6–42
SET STORAGE_UNITS 6–43
SET TIME_UNITS 6–44
SHOW 6–45
TEST 6–48

v

Contents

CHAPTER 7 OpenVMS COMMAND LINE MANAGEMENT UTILITY 7–1
7.1 BASIC OPERATION 7–1

7.2 ADDING NEW ACCOUNTS 7–2

7.3 LISTING ACCOUNTS 7–4

7.4 MODIFYING ACCOUNTS 7–5

7.5 REMOVING ACCOUNTS 7–5

7.6 CHANGING NEW ACCOUNT DEFAULTS 7–6

7.7 BULK LOADING ACCOUNTS 7–6

7.8 RETURNING OR DELETING MESSAGES 7–7

7.9 ACCOUNT QUOTAS 7–7

7.10 BLOCKING ACCESS, BLOCKING NEW MAIL, AND LOCKING
PASSWORDS 7–7

7.11 FORWARDING MAIL 7–8

7.12 MANAGEMENT GROUPS 7–9

7.13 USER DOMAINS 7–10
7.13.1 Enabling User Domains 7–11
7.13.2 Creating a New User Domain 7–11
7.13.3 Managing a User Domain 7–11
7.13.4 Deleting a User Domain 7–12

7.14 USE OF THE UTILITY BY NON-PRIVILEGED USERS 7–13

7.15 INFORMATION DISPLAY FORMATS 7–13
7.15.1 Changing Default Display Formats 7–13
7.15.2 Report Generation 7–14

7.16 RECREATING THE DEFAULT ACCOUNT 7–15

7.17 RECREATING THE USER DATABASE 7–15

7.18 COMMAND DESCRIPTIONS 7–15
ADD 7–16
COPY 7–20
DELETE 7–24
EXIT 7–26
FORWARD 7–27
GROUP 7–29
LOGIN 7–31
LOGOUT 7–32
MODIFY 7–33
NOFORWARD 7–37
QUIT 7–38
RENAME 7–39
SET DOMAIN 7–41
SET STORAGE_UNITS 7–42
SET TIME_UNITS 7–43
SHOW 7–44
TEST 7–47

vi

Contents

CHAPTER 8 MIGRATION 8–1
8.1 MIGRATING THE POPSTORE TO ANOTHER PLATFORM 8–1

8.2 MIGRATING MAILBOXES 8–2
8.2.1 Migrating UNIX and NT Mailboxes 8–2

MOVEIN 8–3
8.2.2 Migrating OpenVMS Mailboxes 8–10

MOVEIN 8–11

CHAPTER 9 REPORT GENERATION 9–1
9.1 WRITING A FORMATTING FILE 9–1

9.2 PRODUCING A REPORT 9–1

9.3 AN EXAMPLE 9–2

CHAPTER 10 INBOUND MESSAGE DELIVERY & MESSAGE BOUNCER 10–1
10.1 THE INBOUND DELIVERY CHANNEL 10–1

10.1.1 Validating Accounts 10–2
10.1.2 Storage Quotas 10–2
10.1.3 Delivery Notifications 10–3

10.2 THE MESSAGE BOUNCER 10–3

CHAPTER 11 SERVERS 11–1
11.1 POP3 SERVERS 11–1

11.2 IMAP SERVER 11–1

11.3 poppassd SERVER 11–2

11.4 HTTP SERVER 11–2

CHAPTER 12 APPLICATION PROGRAM INTERFACE (API) 12–1
12.1 FUNDAMENTALS 12–1

12.2 CREATING ACCOUNTS 12–1
12.2.1 From Scratch 12–2
12.2.2 By Copying 12–4

12.3 MODIFYING ACCOUNTS 12–6

12.4 DELETING ACCOUNTS 12–7

12.5 LISTING ACCOUNTS 12–7

12.6 BILLING ACCOUNTS 12–10

12.7 STORING MESSAGES 12–12

12.8 ACCESSING MESSAGES 12–12

12.9 USING THE API FROM MULTI-THREADED PROGRAMS 12–14

12.10 COMPILING AND LINKING PROGRAMS 12–14

12.11 BASIC CONSTANTS, TYPES, AND DATA STRUCTURES 12–15

vii

Contents

12.11.1 POPSTORE_user_data Structure 12–16
12.11.2 POPSTORE_message_ref Structure 12–19
12.11.3 POPSTORE_user_context Structure 12–21

12.12 SUBROUTINE DESCRIPTIONS 12–22
POPSTORE_COMMAND 12–24
POPSTORE_COMMAND_D 12–27
POPSTORE_END 12–31
POPSTORE_ERROR_TO_TEXT 12–32
POPSTORE_FORMAT_COUNTERS 12–33
POPSTORE_FORMAT_DISPOSE 12–35
POPSTORE_FORMAT_FORWARDING 12–36
POPSTORE_FORMAT_FORWARDING_D 12–38
POPSTORE_FORMAT_MESSAGE 12–40
POPSTORE_FORMAT_MESSAGES 12–42
POPSTORE_FORMAT_PROFILE 12–43
POPSTORE_FORMAT_PROFILES 12–45
POPSTORE_FORMAT_PROFILES_D 12–46
POPSTORE_FORMAT_READ 12–48
POPSTORE_INIT 12–50
POPSTORE_MANAGE 12–52
POPSTORE_MESSAGE_BEGIN 12–53
POPSTORE_MESSAGE_END 12–55
POPSTORE_MESSAGE_MARK_DELETE 12–56
POPSTORE_MESSAGE_MARK_NODELETE 12–57
POPSTORE_MESSAGE_MARK_NOREAD 12–58
POPSTORE_MESSAGE_MARK_READ 12–59
POPSTORE_MESSAGE_READ 12–60
POPSTORE_MESSAGE_RETURN 12–61
POPSTORE_USER_BEGIN 12–63
POPSTORE_USER_BEGIN_D 12–65
POPSTORE_USER_BILLING 12–67
POPSTORE_USER_BILLING_D 12–68
POPSTORE_USER_COPY 12–70
POPSTORE_USER_COPY_D 12–72
POPSTORE_USER_CREATE 12–75
POPSTORE_USER_CREATE_DISPOSE 12–77
POPSTORE_USER_CREATE_SET 12–78
POPSTORE_USER_DELETE 12–83
POPSTORE_USER_DELETE_D 12–84
POPSTORE_USER_END 12–86
POPSTORE_USER_EXISTS 12–87
POPSTORE_USER_EXISTS_D 12–88
POPSTORE_USER_LIST 12–89
POPSTORE_USER_LIST_D 12–91
POPSTORE_USER_LIST_ABORT 12–94
POPSTORE_USER_PW_CHANGE 12–95
POPSTORE_USER_PW_CHANGE_D 12–97
POPSTORE_USER_PW_CHECK 12–99
POPSTORE_USER_UPDATE 12–101

viii

Contents

CHAPTER 13 LOGGING 13–1
13.1 PMDF-STYLE LOGGING 13–1

13.2 THE SITE-SUPPLIED LOGGING INTERFACE 13–2
13.2.1 Linking a Shared Library 13–3
13.2.2 Logging Data Types 13–4
13.2.3 Logging Samples 13–10
13.2.4 POPSTORE_user_log Structure 13–11
13.2.5 POPSTORE_message_log Structure 13–12
13.2.6 POPSTORE_message_store_log Structure 13–13
13.2.7 POPSTORE_recipient_list Structure 13–14

CHAPTER 14 MISCELLANEOUS SUBROUTINES 14–1
14.1 COMPUTATION SUBROUTINES 14–1

14.2 FILE LOCATIONS 14–4

14.3 SUBROUTINE TO VALIDATE A PASSWORD 14–10

INDEX

EXAMPLES
4–1 list_forward formatting file 4–16
4–2 list_users formatting file 4–19
4–3 show_counters formatting file 4–27
4–4 show_message formatting file 4–29
4–5 show_users account formatting file 4–31
4–6 show_users message list formatting file 4–32
5–1 show_message Formatting File 5–5
5–2 show_user Account Formatting File 5–7
5–3 show_user Message List Formatting File (popstore only) 5–7
9–1 Account Listing Report 9–2
12–1 Creating a New Account from Scratch 12–3
12–2 Creating a New Account by Copying the default Account 12–4
12–3 Formatting File for Account Listings 12–7
12–4 Generating Account Listings 12–7
12–5 Simple Account Listing 12–9
12–6 Account Billing Operations 12–10
12–7 Message Lists 12–12
12–8 Displaying New Messages 12–13
13–1 Logging of a user profile modification 13–10
13–2 Logging of a POP3 client downloading and deleting a message 13–11
13–3 Logging of the storage of a message 13–11
14–1 Default compute_connect Subroutine 14–2
14–2 Default compute_block_days Subroutine 14–4
14–3 UNIX map_profile_filename Sample Subroutine 14–8
14–4 UNIX /pmdf/table/popstore_profile_paths Sample File 14–8

ix

Contents

14–5 OpenVMS map_profile_filename Sample Subroutine 14–9
14–6 OpenVMS PMDF_TABLE:popstore_profile_paths. Sample File 14–9
14–7 validate_password Sample Subroutine 14–12

FIGURES
1–1 Example management groups 1–11

TABLES
1–1 popstore Account Fields 1–4
2–1 popstore API routines which support the MessageStore 2–7
3–1 MessageStore ACL Rights 3–8
4–1 add_group command parameters 4–7
4–2 add_user command parameters 4–8
4–3 copy_user command parameters 4–9
4–4 delete_group command parameters 4–11
4–5 delete_message command parameters 4–12
4–6 delete_messages command parameters 4–13
4–7 delete_user command parameters 4–14
4–8 forward command parameters 4–15
4–9 list_forward command parameters 4–15
4–10 General substitution strings 4–16
4–11 list_forward command substitution strings 4–17
4–12 list_groups command parameters 4–17
4–13 list_groups command substitution strings 4–18
4–14 list_users command parameters 4–18
4–15 list_users command substitution strings 4–19
4–16 modify_group command parameters 4–22
4–17 modify_user command parameters 4–23
4–18 rename_user command parameters 4–26
4–19 show_counters command parameters 4–27
4–20 show_counters command substitution strings 4–28
4–21 show_message command parameters 4–29
4–22 show_message command substitution strings 4–29
4–23 show_user command parameters 4–30
4–24 show_user mformat command substitution strings 4–32
4–25 unforward command parameters 4–33
5–1 delete Command Parameters 5–4
5–2 show Command Parameters 5–5
5–3 set_pwd Command Parameters 5–6
5–4 show_user Command Parameters 5–6
6–1 Summary of command line management commands (UNIX & NT) 6–1
7–1 Summary of command line management commands (OpenVMS) 7–1
12–1 Constants 12–15
12–2 Basic Data Types 12–16

x

Contents

12–3 Subroutines included in the API 12–22
12–4 POPSTORE_user_update Operations 12–79
13–1 Summary of Logging Data Types 13–4
13–2 LOG_ACTIVITY_MASK Bit Values 13–5

xi

Preface

Purpose of This Manual

This manual describes the structure, configuration, and use of PMDF’s popstore and
MessageStore. The intended audience is system managers who want to become familiar
with how these two stores operate and are managed. It is assumed the reader is familiar
with PMDF and the operating system on which PMDF is installed. Note also that the
POP3, IMAP, HTTP, and poppassd servers used by the popstore and MessageStore are
documented in the PMDF System Manager’s Guide and not in this document. This is
because, on UNIX and OpenVMS platforms, those servers also serve out message stores
native to those operating systems.

This manual does not provide a description of the popstore or MessageStore suitable
for end users. End users do not directly interact with these stores: instead they interact
with a POP3, IMAP, or Web client which in turn, through a PMDF server, interacts with
the store in question.

Note: Owing to time constraints, a fully-integrated PMDF MessageStore and popstore manual
is not yet available. However, much of the documentation for the PMDF popstore applies
to the PMDF MessageStore. A number of chapters in this manual will speak solely
about the popstore. However, unless noted otherwise, the chapter likely applies to the
MessageStore as well as the popstore. Chapter 2 provides information specific to the
MessageStore as well as noting any significant differences with the popstore.

Overview of This Manual

This manual serves as both a configuration and usage guide for the popstore. It also
provides technical information for programmers wanting to write code which interacts
with the popstore via the popstore’s API.

An overview of the popstore is provided in Chapter 1. Configuration instructions
may be found in the PMDF Installation Guide & Release Notes. Directions on using the
web-based management interface are provided in Chapter 4; see Chapters 6 (UNIX and
NT) or 7 (OpenVMS) for directions on using the command line management utility.

Availability

PMDF software products are marketed directly to end users in North America, and
either directly or through distributors in other parts of the world depending upon the
location of the end user. Contact Process Software for ordering information, to include
referral to an authorized distributor where applicable:

Process Software, LLC
959 Concord Street
Framingham, MA 01701 USA
+1 508 879 6994
+1 508 879 0042 (FAX)
sales@process.com

xiii

1 Overview

1.1 Introduction
The PMDF popstore is a message store streamlined for use with POP3 clients. It is

distinct from the Berkeley and VMS MAIL mail box message stores traditionally used
on UNIX and OpenVMS platforms. For a given message, a single copy is stored for
all recipients. Moreover, the message is stored in a ready-to-download format; i.e., the
server can just map the file into memory and send it down the TCP connection without
the need for any pre-processing of the message data as is the case with many stores such
as Berkeley and VMS MAIL mail boxes.

The popstore is primarily designed for scalability. Central database files, a principal
cause of bottlenecks in high volume settings, are avoided.1 In a similar vein, the
underlying message store itself can be spread across any number of disks.

The major components of the popstore are described below.

Legacy and popstore POP3 server
A dual-store, multi-threaded POP3 server is provided on UNIX and OpenVMS platforms
which supports both the PMDF popstore and the legacy UNIX Berkeley and OpenVMS
MAIL mailbox formats.

MessageStore and popstore POP3 server
A new dual-store, multi-threaded POP server is provided on all platforms which supports
both the popstore and MessageStore. This server includes security and performance
enhancements not possible while maintaining support for legacy mailbox formats.

Poppassd server
A multi-threaded poppassd server for users of Mulberry, Eudora, and other clients which
support the ad hoc poppassd protocol for changing passwords.

Web-based user interface
A basic web-based user interface is provided. This interface allows users to use a
web-client to change their password as well as see basic usage information about their
popstore account. They can also read and delete messages stored for their account. For
details, see Chapter 5.

Web-based management utility
A web-based management utility to manage the popstore. The utility presents itself as
a multi-threaded CGI accessed through the PMDF HTTP server. Popstore users with
management privileges can use this interface to monitor and manage the popstore. This
utility is extremely reconfigurable; the entire interface can be changed around to suit a
site’s needs. See Chapter 4 for a description of this interface.

1 Note that the popstore does use some databases. However, these databases are only used to expedite management
operations such as listing accounts and maintaining information about management groups. They are not used for non-
management operations and therefore do not impact the performance of the popstore.

1–1

Overview
Introduction

Command line management utility
A command line oriented management utility. Users with operating system privileges as
well as popstore users who have been granted popstore management privileges can use
the utility. See Chapters 6 or 7 for information about this utility.

Migration utility
A utility is provided to migrate the mail inboxes for login accounts to the popstore. The
utility can create a popstore account for each migrated user, migrate their mail inbox, and
then establish mail forwarding from their login account’s message store to the popstore.
See Chapter 8 for details about this utility.

Forwarding database
A forwarding database which allows mail for popstore users, fictitious or otherwise, to
be automatically redirected elsewhere. Consult Section 1.5 for further details.

Delivery channel
A master channel to deliver inbound messages to the popstore. Inbound messages for
the popstore are queued to this channel by PMDF. The channel is then run by PMDF to
deliver the messages to the popstore. See Section 10.1 for details.

Message bouncer
This is a job which runs periodically and either returns or deletes old stored messages
which have ‘‘expired’’. This channel is best likened to the PMDF RETURN job. This
job is used to ‘‘time out’’ old messages which popstore users have not deleted. If an old
message has never been read, it is returned as undelivered. If it has been read, it is
deleted. Note that the popstore can be configured to never delete old messages and just
keep messages around indefinitely. See Section 10.2 for further discussion.

Validating accounts
The immediate validation of accounts is turned on by default on the msgstore channel
so that it can, when presented with a popstore address, immediately check to see if it is
valid or not (e.g., is it a valid recipient address, is the recipient allowed to receive new
messages, etc.). This allows the various incoming mail streams to reject up front invalid
messages for the popstore thereby obviating cases where the message is received only to
then have to be bounced. Section 10.1.1 contains additional information on this account
validation.

API
An API for sites who want to generate their own management, accounting, billing,
logging, etc. facilities. In addition, agents which access the popstore or manipulate
user accounts can be written using the API. See Chapter 12 for further details.

1.2 Licensing
Although installed as part of the base PMDF-MTA product, the PMDF popstore

is licensed separately. The popstore can, however, be used without a license: sites
without a PMDF-POPSTORE license can create up to ten popstore user accounts plus a
default account. A PMDF-POPSTORE license enables a site to create more than ten
user accounts.

1–2

Overview
Licensing

From the interactive command line management utilities, the show -count_users
command (SHOW/COUNT_USERS on OpenVMS) can be used to display the number of
currently defined accounts as well as the limit allowed by your license. The web-based
management utility can also display this information; see the ‘‘License limits’’ link in the
menu at the top of the main page.

1.3 Accounts
Each user of the popstore has a popstore account. Accounts have several key

attributes:

Attribute Description

Name The username used to identify the account.

Password The secret used to access the messages stored for the account. Note
that passwords are case sensitive. The popstore stores the passwords
in an encrypted form.

Group Management group to which the account belongs. Use of management
groups is optional.

Quota A storage quota which limits the total amount of messages which an
account can store.

Usage flags Flags used to control usage of the account. For example, whether or
not the account can receive new messages.

Accounting information Accounting information such as time of last connect, total connect time,
current storage, etc.

Accounts are created with either the web-based or command line management utilities.
Sites can also develop their own utilities using the API.

Of particular importance is the account name and password. The account name
specifies the mailbox for the popstore account. That is, if the popstore has the domain
name sample.example.com then a popstore account with the name jdoe would have
the e-mail address

jdoe@sample.example.com

Also, the popstore supports the concept of subaddresses. If an address contains a plus
sign, +, in the local part then the plus sign and any characters to the right of it up to the
at sign are ignored. For instance, the user jdoe can want to identify mail they receive
from the HBD mailing list by subscribing themselves to that list with the address

jdoe+hbd@sample.example.com

Mail coming in to the popstore with that address will then be delivered to the account
jdoe and not jdoe+hbd.

POP users access the mail stored for their account by supplying to their POP3 client
their popstore account name and password. The rules for account names and passwords
are given in Section 1.3.1 and Section 1.3.2.

1–3

Overview
Accounts

Note that there is a special account — the default account — which is created at
the time that the popstore is configured. The settings for the default account serve
as account defaults. When new accounts are created, their defaults are copied from the
default account.

The complete list of account fields is given in Table 1–1. Their interpretation and
usage are made clear throughout the remainder of this manual.

Table 1–1 popstore Account Fields

Field name Description

version Data structure version number indicating what revision of the
popstore account data structure is used by the account.

store_type Storage type: popstore or MessageStore.

flags Account usage flags.

ulen Length in bytes of the value stored in the username field.

plen Length in bytes of the value stored in the password field.
The value stored in the plen field is stored in an encrypted
form.

olen Length in bytes of the value stored in the owner field.

slen Length in bytes of the value stored in the private field.

username The account’s name. Maximum length of this field is 32 bytes.

password The account’s password. Maximum length of this field is 32
bytes. The value stored in this field is encrypted.

owner Information about the account’s owner. Maximum length of this
field is 40 bytes.

private Site-defined data field. Maximum length of this field is 64
bytes. The contents of this field can be set through the API or
either of the management interfaces.

quota The account’s primary storage quota measured in bytes. A
value of zero indicates unlimited storage quota.

return_after How long to retain messages in the popstore before returning
them.

overdraft The account’s overdraft quota measured in bytes.

last_billing Time when billing information for the account was last
generated. When the account is created, this value is set
to the creation time of the account.

total_connections Total number of connections made to the account.

last_connect Time when the user last connected to the account with a POP3
client.

last_pwd_change Time when the user last changed their password.

last_disconnect Time when the user last disconnected from the account with a
POP3 client.

total_connect Total time, in seconds, spent connected to the account.

past_block_days Storage block days for previously stored and since deleted
or returned messages. Does not include storage values for
messages currently being held in the store.

1–4

Overview
Accounts

Table 1–1 (Cont.) popstore Account Fields

Field name Description

past_block_days_remainder Roundoff from the past_block_days field. The roundoff is
measured in units of byte minutes.

message_count Count of messages presently stored for the account.

quota_used Total size in bytes of the messages presently being stored for
the account.

received_messages Cumulative number of messages which have been stored for
the account.

received_bytes Cumulative number of message bytes which have been stored
for the account.

glen Length in bytes of the value stored in the group field.

group Management group to which this account belongs. Maximum
length of this field is 16 bytes.

1.3.1 Account Naming
The popstore supports three different naming schemes: two are case-insensitive

while the third is case sensitive. Note that the character set used for account names
is controlled with the USERNAME_CHARSET option discussed in Section 3.4. The choice
of character set is only of relevance to USERNAME_STYLE 1 and 2. And, for those two,
is only used when doing case-insensitive comparisons of account names (e.g., are the
account names Sue and sue identical).

1.3.1.1 The Preferred Naming Scheme

The preferred naming scheme corresponds to an option setting of USERNAME_STYLE=3
in the popstore option file. This option is required by the PMDF MessageStore and will
be included in newly generated PMDF configurations.

With this setting,

• usernames are case-sensitive,

• can contain any printable UTF-8 characters except for

/ @ % +

and,

• must not begin with an underscore, _.2

2 A leading underscore character in a recipient address is interpreted by the delivery agent as a request to ignore any
forwarding for that recipient. For instance, a message for _jdoe@pop.example.com is delivered to the popstore account
jdoe regardless of any popstore forwarding which might exist for that account. A plus sign and any characters to the
right of it but before the at sign, @, are also ignored. For instance, mail to the address joe+hbd-list@example.com would
be delivered to the popstore account joe.

1–5

Overview
Accounts

However, for interoperability with Internet protocols it is safer to confine usernames to
alphanumeric characters and

- _ .

If you want to have case-insensitive behavior, create all your accounts using lower-
case names, and use

$\$U$_

in appropriate domain rewriting rules to convert usernames to lower case on message
delivery. Also, set TRANSLATE=ASCII-NOCASE in your security.cnf file to convert
login usernames to lower case.

1.3.1.2 The Default Naming Scheme

For backwards compatability, the default naming scheme corresponds to an option
setting of USERNAME_STYLE=2 in the popstore option file. That option file is described
in Chapter 3.

In the default scheme, account names can be up to 32 characters long and can contain
any of the characters from the set

0 1 2 3 4 5 6 7 8 9 . _ -
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Since account names are treated as being case insensitive, the names Anne and anne
specify the same account.3 Account names should not begin with an underscore character,
‘‘_’’.2

1.3.1.3 Another Obsolete Naming Scheme

A third, and largely obsolete naming scheme corresponds to the option setting of
USERNAME_STYLE=1 in the popstore option file. That option file is described in Chapter 3.

In this naming scheme, account names can contain any printable character in the
DEC MCS or any one of the ISO Latin 1 through Latin 9 character sets (ISO 8559-1
through ISO 8859-9). That is, any character with decimal ordinal value in the ranges
33—126 or 161—255 (0x21—0x7E or 0xA1—0xFF in hexadecimal). On UNIX and NT
platforms, the account names can be up to 32 characters long; on OpenVMS platforms up
to 19 characters. Note that the names can contain spaces and punctuation characters.
Again, the names are treated as being case insensitive. The account names should not
begin with an underscore character, _, or contain plus signs, +.2.

When a name is specified, it is converted to an account name using the following five
steps:

3 For storage purposes, account names are stored in lowercase.

1–6

Overview
Accounts

1. All control characters are removed from the name. That is, all characters with
decimal ordinal values in the ranges 0—31 or 127—159 are removed (0x00—0x1F
or 0x7F—0x9F in hexadecimal).

2. All leading and trailing white space characters are removed. White space characters
are the characters SPACE (0x20), TAB, (0x09), and non-breaking space (0xA0).

3. Each internal white space character is replaced with a SPACE character.

4. Consecutive SPACE characters are replaced with a single SPACE character.

5. All uppercase characters are converted to lowercase.

The choice of character set is specified with the USERNAME_CHARSET option as
described in Chapter 3.

1.3.2 Account Passwords
Passwords are used to authenticate a would-be user of the popstore. That is, a user

wanting to access the popstore must supply a valid popstore account username as well
as the password for that account. The user-supplied password is checked against the
password stored for the account: only if they match is access permitted.

1.3.2.1 Password Location

Each popstore account requires a password. A password can either be stored with the
popstore account’s profile or it can be stored externally outside of the popstore. Regardless
of where the password is stored, it can be set and changed with the popstore management
and user interfaces as well as with the PMDF poppassd server. PMDF’s authentication
API is used by the popstore both to authenticate as well as set or change passwords. By
default, this means that when a password is authenticated, it will be checked against

1. the user’s popstore profile provided that the PWD_ELSEWHERE usage flag is not set for
that profile;

2. or the PMDF password database if an entry exists for the user;

3. or the operating system’s password database if an entry exists for the user.

The first password entry found for the user is that used to compare against the supplied
password. If the password supplied by the user matches the password in the entry
found, then access is permitted. If the supplied password does not match, access is
denied. Further password entries are not checked.

When a password is set or changed for a popstore user, it will by default be

1. added or changed in the user’s popstore profile provided that the PWD_ELSEWHERE
usage flag is not set for that profile;

2. and changed in the PMDF password database provided that a previous entry for the
user already exists;

1–7

Overview
Accounts

3. and changed in the operating system’s password database provided that an entry for
the user already exists.

The above actions are the default behavior—the behavior when PMDF’s authentica-
tion facilities are using their default configuration. Those facilities can be reconfigured to
act differently and even to use other repositories of password information (e.g., an LDAP
server or other authentication server). For more information on PMDF’s authentication
facilities, see the ‘‘Connection Authentication and Password Management’’ chapter of the
PMDF System Manager’s Guide. When using those facilities, the popstore uses a service
name of POP.

When a password is stored with the account’s profile, the plain text form of the password
is encrypted and stored. Such passwords are

• case sensitive,

• can contain any bytes (0x00—0xff), and

• can be up to 32 bytes long.

Accounts with a zero length password are ‘‘public’’ accounts: any password will access
such an account.

To store a password in an external source, mark the account with the PWD_ELSEWHERE
usage flag. This tells the popstore that the password is stored externally. See also the
information on password migration in the PMDF System Manager’s Guide.

The POP3 server uses PMDF’s authentication services and as such supports plain
text as well as APOP, CRAM-MD5, and DIGEST-MD5 password authentication. Moreover,
the POP3 server supports SASL (RFC 2222).

POP users can change their account passwords with PMDF’s poppassd server, as
described in Section 11.3, or with the web-based user interfaces described in Chapter 5.
The poppassd server implements an ad hoc password changing protocol employed by
several popular POP3 clients such as Eudora.

1.3.2.2 Using the Operating System’s Password Database

With the default configuration of PMDF’s authentication services, using the op-
erating system’s password database is quite straightforward. Simply set the PWD_
ELSEWHERE usage flag for each popstore account which is to use the operating system
password database.4 Once this has been done, authentication will be performed against

1. the PMDF password database if an entry exists for the user;

2. or the operating system’s password database if an entry exists for the user.

Since, by default, users do not have entries in the PMDF password database, au-
thentication will be performed against the operating system’s password database (e.g.,
/etc/passwd on UNIX systems and sysuaf.dat on OpenVMS systems). Note, how-
ever, that this requires that there be an entry for the user in the operating system’s

4 You can also want to effect that setting for the default account so that new accounts automatically have that setting.

1–8

Overview
Accounts

password database. Usually, this means that the user will also have a login account on
the system.

1.3.2.3 Password Security

If a password is stored with the account’s profile, the popstore provides several
security features.

• The time that a password is changed is recorded. This information is displayed in
the output of the command line management utility and the web-based management
interface.

• The popstore has support for password expiration, minimum password length, and
basic "reasonableness" checks. These features are enabled by using the options PASS-
WORD_LIFETIME, PASSWORD_MINIMUM_LENGTH, and PASSWORD_REASONABLENESS,
respectively.

• Sites may also apply additional validation or "reasonableness" checks through the
VALIDATE_PASSWORD subroutine (see Section 14.3).

• Accounts can be marked "pre-expired", which forces the user of the account to change
the password immediately. Note that "pre-expired" is only meaningful if password
expiration has been enabled. An account can be marked pre-expired, or marked not
pre-expired, using either the command line or web-based management interfaces.

• A utility is available to go through all accounts and mark them as not pre-expired.
To run the utility, for example on unix:

/pmdf/bin/unpreexpire

Note: As soon as password expiration is enabled, all accounts created by versions of PMDF
prior to V6.2-1 are automatically pre-expired.

1.3.3 Account Quotas
Account quotas can be used to control how much message storage a given account

can have. When an account exceeds its storage quota, as measured in bytes of disk
storage, the account can not receive new mail messages. The user must delete some of
their stored messages in order to receive new mail messages.

Each account has two storage quotas: a primary storage quota and an overdraft
quota. This two-quota scheme is used for efficiency purposes. With most message transfer
protocols, the size of an incoming message is not known upfront and a message has to be
received in its entirety in order to determine its size. Use of an overdraft quota allows
PMDF to temporarily refuse to accept incoming messages for an over quota user. How
so? If a user has just one quota limit, then odds are they will never quite attain it. For
instance, if they have 100 spare bytes of storage they are not over quota and so the SMTP
server will accept new messages for the user. However, most received messages will be

1–9

Overview
Accounts

larger than 100 bytes and will thus need to be bounced. This will continue until the
user receives enough small messages to exactly use up those remaining 100 bytes. Once
they have exactly consumed their quota, the SMTP server can now immediately refuse
further messages without the need to first receive the message and see how large it is.
But this is only possible once the user has exactly consumed their quota. An alternative
is to have a ‘‘fudge’’ factor of some form. Once the user is somehow close to their quota,
the server refuses additional messages. The popstore’s overdraft quota is such a fudge
factor. A user’s quota is really a quota range with a lower limit given by their message
storage quota and the upper limit given by the sum of their message storage quota and
their overdraft quota.

All that having been said, note that by default PMDF will not reject incoming
messages for an over quota user. By default, PMDF accepts the messages and holds onto
them until either the user has available quota to receive the messages or the messages
‘‘times out’’ and are returned by PMDF’s message bouncer. To have PMDF reject incoming
messages for an over quota user, specify REJECT_OVER_QUOTA=1 in the popstore option
file as described in Section 3.4. When REJECT_OVER_QUOTA=1 is specified and a user is
over quota, the message copy for the over quota user will be rejected with a temporary
error message.

If desired, accounts can be granted unlimited storage quota as denoted by a primary
quota value of zero.

1.3.4 Management Groups
For management and accounting purposes, you can associate with each popstore

account a group name. Use of group names is optional. You can ignore this feature for
the time being and later, if a need should arise, then begin using it.

Group names are case-insensitive and can be zero to sixteen bytes long. Group names
are shared across all user domains. When you create a new account and do not specify
a group name for the account, the account is placed in the same group as the default
account. By default, the default account is not in any group — it has a group name of
zero length. This group with a zero length name is referred to as the world group.

There are two primary uses for management groups:

1. Accounting: For instance, listing or billing all accounts within the same management
group.

2. Management: Allowing a privileged account to only manage a subset of the popstore
accounts.

In regards to the latter usage, a privileged popstore account — that is a popstore account
with the MANAGE flag set — can perform management functions on only those accounts
within the same user domain and management group. A privileged popstore account
which is in no group (and hence is in the world group) can manage all popstore accounts
within the same user domain. However, a privileged popstore account which is in no
group and is in the default user domain can manage all accounts within all user
domains and groups.

1–10

Overview
Accounts

The actual details behind defining groups and assigning group names to accounts
is documented in Chapters 4 — 7 as part of the discussions of the various account
management commands. Note that only two classes of users can create, delete, or modify
group definitions. These classes are (1) users with operating system privileges, and (2)
popstore users with privileged account which themselves are in no group [and thus are
in the world group]. The first class can use the interactive command line management
utilities; the second class can use either the interactive command line or web-based
management utilities.

Groups can be nested. That is, a group can contain subgroups and those subgroups
can contain further subgroups. An account is contained in the group G if either (1) the
account’s group name is G, or (2) the account’s group is a subgroup (nested arbitrarily
deep) of the group G. The world group — the group with zero length group name — is
a distinguished group: it implicitly contains all other groups.

You can visualize typical group hierarchies as an inverted tree. A hypothetical
example with nine groups is shown in Figure 1–1. The root of the tree is the world group,
which contains all other groups. The staff and faculty groups have no subgroups.
The students group, however, has five subgroups.

Group hierarchical structure need not be a tree: in the language of graph theory,
loops are allowed. For instance, a group can be a subgroup of more than one group.
Modifying the example of Figure 1–1, it is possible for grad to also be a subgroup of
staff.

Figure 1–1 Example management groups

The ability to nest groups is particularly useful in regards to account management.
An account with management privileges can manage any account within the same group
as the privileged account itself. Thus, if a privileged account has a zero length group
name, then that account can manage any and all accounts. If, however, the privileged
account is in a group with a non-zero length group name, then that privileged account
can only manage accounts contained within the same group. For instance, a privileged
account in the students group can manage any account in that group; i.e., any account
with group name students, class97, class98, class99, class00, or grad. A

1–11

Overview
Accounts

privileged account in the group class97 can only manage other accounts in the group
class97. If you want to have an account which can manage both staff and faculty
but not students, then just create a new group named, for instance, dean and make
staff and faculty be subgroups of that new group. Then, make the group name for
the privileged account be dean.

If you want to allow an account to manage all accounts yet be in a named group
such as manager, then create a group named manager and make the world group be a
subgroup of the manager group.

1.3.5 User Domains
By default, all popstore accounts are considered to be part of the same user domain

called the default domain. This is true regardless of the e-mail address used to
reach the account’s mailbox. At some sites, however, it is useful to have distinct
sets of user communities, each differentiated by a distinct Internet host name. For
instance, one community can be the example.com community with mail addressed to
user@example.com while another community can be the sample.com community with
mail addressed to user@sample.com. In the popstore,5 each community can be assigned
a different Internet host name with an associated community name called a user domain
name.

The popstore user user in the user domain host has the e-mail address user@host.6

The delivery channel, which can deliver mail for several different user domains, deter-
mines which domain or domains a message should be delivered to by examining each
envelope recipient address. The non-legacy POP server determines which user domain a
client is in from either the username presented by the client or from the PORT_ACCESS
mapping table. In regards to the former, the client must present a username of the form
user%host or user@host.7 In regards to the latter, consult the PORT_ACCESS mapping
table documentation in the PMDF System Manager’s Guide. Use of that table allows se-
lection of the user domain to be based upon such information as the client’s source IP
address or the TCP port which the client has been configured to use for POP service.

When managing the popstore via the Web-based management utility, the user
domain to manage is specified by including it in the URL; for example, to manage the
example.org user domain, use the URL

http://host:7633/popstore/example.org/admin.html

When using user domains, there will be a special user domain referred to as the
default domain. The official host name for the delivery channel will be mapped to the
default domain. Moreover, a privileged management account in the default domain
which is in no group can manage any account within the popstore regardless of user
domain. To make this a little more clear, consider the channel definition

5 This functionality is not yet supported by the PMDF MessageStore.
6 Accounts in the default user domain would use the delivery channel’s official host name rather than @default.
7 Note that not all clients can handle a username of user@host: attempts to configure such a username are sometimes

interpreted by the client as meaning, ‘‘The username is user and the POP server is host’’. For this reason, users can
achieve better results by configuring their clients with user%host as their username.

1–12

Overview
Accounts

popstore defragment holdexquota
example.com
example.org

In the above, the host example.com is the channel’s official host name and therefore
identified with the popstore’s default user domain; the host example.org is identified
with the example.org user domain.8 Mail to jdoe@example.com is delivered to the
account jdoe in the example.com user domain. Mail to jdoe@example.org is delivered
to the separate account jdoe in the user domain example.org. Accounts associated with
the example.com host are managed by managing the default user domain; accounts
for the sample.com host are managed via the example.org user domain.

See Sections 6.13 and 7.13 for detailed information on creating a user domain and
managing accounts within it.

1.3.6 Account Usage Flags
Through ‘‘usage flags’’, account access to the popstore can be controlled:

DISMAIL
The DISMAIL flag is used to prevent an account from receiving new mail messages. When
this flag is set for an account, new messages are rejected and returned to their sender.
The account owner can, however, read any existing messages they might have unless the
account is also flagged with the DISUSER flag.

DISUSER
The DISUSER flag is used to deny access to an account. The account can, however,
continue to receive new messages unless it is either over quota or also flagged with the
DISMAIL flag. When the user attempts to access their account, they will be met with an
‘‘account disabled’’ error message.

LOCKPWD
The LOCKPWD flag prevents users from changing their account’s password. The password
can only be changed by a user with the management privilege or operating system
privileges.

MANAGE
Accounts with this flag can use the web-based interface to manage the popstore. In
addition, users with unprivileged login accounts to the platform running the popstore
can manage the popstore using the command line interface when their popstore account
has the MANAGE flag set. This is accomplished through the command line interface’s
LOGIN command. Section 1.3.7 for further details.

MIGRATED
This is a flag used by the PMDF’s migration utilities to track whether or not migration
from an external source to the popstore has been completed for a given popstore user
account.

8 Note that if the USER_DOMAINS option is set to its default value of zero in the popstore option file, then all domains
associated with the popstore channel will be identified with the popstore’s default user domain.

1–13

Overview
Accounts

PWD_ELSEWHERE
This flag tells the popstore that the user’s password information is stored externally,
outside of the popstore. The popstore’s authentication mechanisms use this flag when
determining how to authenticate a user password. See Section 1.3.2 for further details.

With the exception of the MANAGE and NOMANAGE flags, these flags can be set
or cleared with either the web-based or command line management interfaces. As a
security precaution, the MANAGE and NOMANAGE flags can only be manipulated through
the command-line interface.

Note that PMDF itself has a variety of other access control mechanisms such as
the SEND_ACCESS mapping table to control access at the envelope address level and the
PORT_ACCESS mapping tables to control access at an IP level. See the PMDF System
Manager’s Guide for details on these and other access mapping mechanisms provided by
PMDF.

1.3.7 Privileged Accounts
The popstore has the concept of ‘‘privileged’’ popstore accounts. These are popstore

accounts which have the MANAGE usage flag set. Only accounts with the MANAGE flag set
can use the web-based management interface. As a security precaution, this flag can
not be set or cleared through the web-based interface. That means that the command
line interface must be used to grant an account management privileges. That, in turn,
requires a priviliged login account to the operating system running the popstore. From
that login account, one or more popstore accounts can be granted management privileges.
Those accounts can then be used to manage the popstore either through the web interface
or, as described in Sections 6.14 and 7.14, the command line utility.

Privileged accounts can only manage other accounts within the same management
group and user domain. If a privileged account is in the world group (i.e., is not in any
group or is in a group which explicitly contains as a subgroup the world group), then it
can manage any popstore account within the same user domain. However, a privileged
popstore account which is in the world group and is in the default user domain can
manage all accounts within all user domains and groups.

1.3.8 Bulk Loading
Accounts can be created en masse using the command line management utility. This

is done by creating a file of commands, one command per line, and then directing the
utility to process the commands from that file. For further details, see Sections 6.7 (UNIX
and NT) or 7.7 (OpenVMS).

1–14

Overview
Accounts

1.3.9 Account Storage
The information associated with each user account is stored in a ‘‘profile’’ file on disk.

One file per user account is used. An account’s settings, usage information, and list of
currently stored messages is stored in its profile file. On UNIX systems, the location
of these files are determined via the PMDF_POPSTORE_PROFILES option in the PMDF
tailor file; on NT systems, the PMDF_POPSTORE_PROFILES registry entry is used, and
on OpenVMS systems, in the PMDF_POPSTORE_PROFILES: directory tree.

Read and write access to these files is controlled using private locks. As such, they
should only be accessed using the popstore API routines documented in Chapter 12.

Each profile file has a base size of 256 bytes plus 40 bytes per message stored for
the user. Presently, the profile files are interchangeable amongst the different platforms
on which the popstore runs. That is, for instance, it is presently possible to move the
popstore from one platform to another without the need to reformat the profile files.9

See Section 8.1 for complete details on migrating the popstore to another platform.

Note: The profile files must be stored on a disk with a reliable file system. The profile files
must not be accessed via NFS: NFS, even with a lockd daemon, does not provide adequate
file locking, integrity, or performance and is not supported.

1.4 Messages
When PMDF receives a message for the popstore, the message is queued to the

popstore’s inbound delivery channel. That channel then processes each queued message
and stores the resulting messages in the popstore’s message store. A single message
copy is stored for all recipients of a message. Once a message has been deleted by each
recipient, it is deleted from the store itself.

Message storage quotas are set on a per-user basis via the quota and overdraft quota
account settings. See Section 1.3.3 for further details.

Users access their stored mail messages via their POP3 client and the popstore’s
POP3 server. Ideally, users download their messages and delete them from the store
itself. By default, if a message is not deleted within a fixed number of days, the message
will be deleted silently. Should one or more of the recipients not have read the message,
a non-delivery notification is sent to the message’s originator prior to deleting it.

Popstore administrators can delete message files using either of the two management
utilities. Optionally, when a message file is deleted, a non-delivery notification can be
sent to the originator of the message. The non-delivery notification will state which
recipients had not read the message.

9 While Process Software hopes to maintain this level of portability in the future, it can not be possible, at which point a
conversion utility will be provided.

1–15

Overview
Messages

The actual message files are binary files stored in a ready-to-download format. On
UNIX systems, these files are kept in the directory tree specified by the
PMDF_POPSTORE_MESSAGES option in the PMDF tailor file;
on NT systems, the PMDF_POPSTORE_MESSAGES registry entry is used; and, on Open-
VMS systems, in the PMDF_POPSTORE_MESSAGES: directory tree. Read and write access
to these files is controlled using private locks. The files should only be accessed using
the popstore API routines as documented in Chapter 12.

The size of each message file varies depending upon the amount of envelope
information and message content which must be stored. Presently, the message files
are interchangeable amongst the different platforms on which the popstore runs. That
is, for instance, it is presently possible to move the popstore from one platform to another
without the need to reformat the message files. While Process Software hopes to maintain
this level of portability in the future, it can not be possible, at which point a conversion
utility will be provided.

Note: The message files must be stored on a disk with a file system which supports byte
range file locking. The message files must not be accessed via NFS: NFS, even with
a lockd daemon, does not provide adequate file locking, integrity, or performance and is
not supported.

1.5 Forwarding Mail
The popstore includes a forwarding database which can be used to re-route mail for

the popstore to other addresses. The addresses can be either internal or external to the
popstore. Moreover, forwardings need not correspond to actual popstore accounts. For
instance, if mail for staff@example.com is to be forwarded to a PMDF mailing list, then
there need not be a staff account in the popstore. Note that when a forwarding is
established for a popstore account, the popstore account itself will not receive copies of
its forwarded messages.

Forwardings are recursive. That is, if a popstore address has a forwarding which
in turn points to another popstore address, then that new address will also be checked
for a forwarding. In addition, a forwarding can point to more than one address. That is,
a forwarding can forward to multiple addresses and, moreover, some of those addresses
can themselves be forwarded.

Forwardings are established, examined, and removed through either of the manage-
ment interfaces. The forwardings are stored in an ordinary PMDF CRDB database —
the PMDF_POPSTORE_FORWARD_DATABASE. If desired, the database can be manipulated
using ordinary PMDF tools as well as through the PMDF API.

Messages destined to the popstore can explicitly defeat any forwarding by prefixing
the address with an underscore character, _. For instance, if the account ‘‘jdoe’’ has
mail forwarded elsewhere, then a message sent to the address _jdoe@example.com
will bypass that forwarding and be delivered to the ‘‘jdoe’’ account. To explicitly forbid
such bypassing, the DISMAIL usage flag can be set for the account in which case mail to
_jdoe@example.com will be returned as undeliverable.

1–16

Overview
Forwarding Mail

Finally, note that it is the popstore delivery channel which actually effects mail
forwardings. When processing message files, it checks each recipient to see if a
forwarding exists. If it does, it then uses the forwarding address instead. If the
forwarding address points back to the popstore, it then checks that address for a
forwarding. This process is iterated up to ten times; an address which is forwarded
internally more than ten times is deemed to be a forwarding loop and is rejected. If the
forwarding address is external to the popstore, then a new message is enqueued with
the forwarding address used as its envelope To: address.

1–17

2 The PMDF MessageStore

Owing to time constraints, a fully-integrated PMDF MessageStore and popstore
manual is not yet available. However, much of the documentation for the PMDF popstore
applies to the PMDF MessageStore. This chapter supplements the PMDF popstore
documentation with information specific to the PMDF MessageStore.

2.1 Introduction
As with the popstore, end users do not directly interact with the MessageStore:

instead they interact with an IMAP or POP3 client which in turn, through the PMDF
MessageStore IMAP or POP3 server, interacts with the MessageStore.

Whereas, the popstore is a message store streamlined for use with POP3 clients,
the PMDF MessageStore is a message store streamlined for use with IMAP clients, and,
incidentally, also supports POP3 clients.

The MessageStore is primarily designed for IMAP scalability and manageability. It
supports public folders so that a single mailing list subscription can be shared by a large
community of users. Responses to common IMAP operations are pre-computed at delivery
time, and the messages are stored in a ready-to-download format for IMAP without the
need for any pre-processing of the message data. In order to simplify backup and restore
of a single user, each user’s mail is stored in a single directory subtree.

The major components of the MessageStore are described below.

MessageStore and popstore POP3 server
A new dual-store, multi-threaded POP server is provided on all platforms which supports
both the popstore and MessageStore. This server includes security and performance
enhancements not possible while maintaining support for legacy mailbox formats.

MessageStore IMAP server
A new multi-threaded IMAP server is provided to access the MessageStore. This server
supports the IMAP4 ACL and QUOTA extensions so that existing clients can be used to
directly manage shared folders and quotas through the IMAP protocol.

Poppassd server
A multi-threaded poppassd server for users of Eudora, Mulberry, and other clients which
support the ad hoc poppassd protocol for changing passwords.

Web-based user interface
A basic web-based user interface is provided. This interface allows users to use a web-
client to change their password as well as see basic usage information about their account.
Unlike the user interface for the popstore, this interface does not allow MessageStore
users to access mail stored for their account. For details, see Chapter 5.

2–1

The PMDF MessageStore
Introduction

Web-based management utility
A web-based management utility to manage the MessageStore. The utility presents
itself as a multi-threaded CGI accessed through the PMDF HTTP server. MessageStore
users with management privileges can use this interface to monitor and manage the
MessageStore. This utility is extremely reconfigurable; the entire interface can be
changed around to suit a site’s needs. See Chapter 4 for a description of this interface.

Command line management utility
A command line oriented management utility. Users with operating system privileges as
well as MessageStore users who have been granted MessageStore management privileges
can use the utility. See Chapters 6 or 7 for information about this utility.

Migration utility
A utility is provided to migrate the mail inboxes for native login and popstore accounts to
the MessageStore. The utility can create a MessageStore account for each migrated user,
migrate their mail inbox, and then establish mail forwarding from their prior account’s
message store to the MessageStore. See Chapter 8 for details about this utility.

Forwarding database
A forwarding database which allows mail for MessageStore users, fictitious or otherwise,
to be automatically redirected elsewhere. Consult Section 1.5 for further details.

Delivery channel
A master channel to deliver inbound messages to the MessageStore. Inbound messages
for the MessageStore are queued to this channel by PMDF. The channel is then run by
PMDF to deliver the messages to the MessageStore. See Section 10.1 for details.

Validating accounts
The immediate validation of accounts is turned on by default on the msgstore channel
so that it can, when presented with a popstore address, immediately check to see if it is
valid or not (e.g., is it a valid recipient address, is the recipient allowed to receive new
messages, etc.). This allows the various incoming mail streams to reject up front invalid
messages for the popstore thereby obviating cases where the message is received only to
then have to be bounced. Section 10.1.1 contains additional information on this account
validation.

API
The popstore API, while including full support for the popstore, provides some limited
support for creating and deleting MessageStore accounts. See Section 2.6 below and
Chapter 12 for further details.

Reconstruct utility
A utility is provided to reconstruct MessageStore index and mailbox list files in the event
they are corrupted. In addition, if mailboxes are restored from backup, this utility can re-
integrate them into the MessageStore without the need to stop the servers. For further
information on this utility, see Section 2.5.4.

2–2

The PMDF MessageStore
Licensing

2.2 Licensing
Although installed as part of the base PMDF-MTA product, the PMDF MessageStore

is licensed separately. Sites without a license can create up to ten MessageStore user
accounts in addition to the default account. A PMDF-MSGSTORE license is required
to create more than ten user accounts for the MessageStore.

2.3 Accounts
MessageStore accounts have the same basic profile information as popstore accounts.

Indeed, the same underlying data structure is used to describe both MessageStore
accounts and popstore accounts. That structure is shown in Table 1–1. However, for
MessageStore accounts the message_count field of that structure is not used and usually
should have a value of zero.

Note in particular that the password security features described in Section 1.3.2.3
apply to both popstore and MessageStore accounts.

Note that in the MessageStore, the account name post is reserved. It is the mailbox
name associated with the store’s collection of public folders. For instance, a message for
post+staff@host is delivered to the public folder named ‘‘staff’’.

2.3.1 Account Naming
The MessageStore supports only one account naming scheme: USERNAME_STYLE=3.

When configuring the MessageStore, the PMDF configuration utilities will select that
naming scheme automatically. See Section 1.3.1.1 for information on this naming scheme.

2.4 Messages
The MessageStore stores a copy of each message in each folder to which it is

delivered.1

Delivery can be directed to a user’s INBOX or to any folder in the MessageStore if
the folder’s IMAP ACL permits posting. A message directed to

user+folder@host

will be filed into the specified folder named folder if the ACL permits; otherwise, it will
be delivered to the user’s INBOX.

1 On UNIX platforms, hard links are used to minimize disk storage when possible.

2–3

The PMDF MessageStore
Messages

A reserved name is used to deliver to public folders: by default the name post is
used. A message directed to

post+folder@host

will be delivered to the public folder named folder if public posting is enabled; otherwise,
the message will be returned to its originator as undeliverable.

A user’s folders and messages are stored in a subdirectory of the directory containing
the user’s profile file as described in Section 1.3.9. Public folders are stored in a
different directory tree. On UNIX systems, public folders are kept in the directory
tree specified by the PMDF_MSGSTORE_MESSAGES option in the PMDF tailor file; on NT
systems by the PMDF_MSGSTORE_MESSAGES registry entry; and, on OpenVMS systems in
the PMDF_MSGSTORE_MESSAGES: directory tree as specified by the system-wide logical,
PMDF_MSGSTORE_MESSAGES.

The IMAP protocol is used to manipulate folders and messages in the MessageStore.
A number of IMAP clients provide rich management facilities including ACL and QUOTA
support. User management is available through a command line interface, a web-based
interface, and a subset of the popstore API as described in Section 2.6.

2.5 Management
The MessageStore comes with a web-based management utility, a command-line

management facility, and a reconstruct utility for managing the MessageStore. In
addition, a number of third party IMAP clients and utilities are available which take
advantage of the management capabilities provided by the IMAP protocol and the IMAP
ACL and QUOTA extensions.

2.5.1 Web-based Management Utility
The MessageStore’s web-based management utility is very similar to the popstore’s

web-based management utility described in Chapter 4 with the following differences:

1. The URL for the web-based MessageStore Management utility is

http://host:7633/msgstore/admin.html

2. The template files used by the utility are located in the directory /pmdf/www/msgstore
on UNIX and NT platforms and pmdf_root:[www.msgstore] on OpenVMS plat-
forms.

3. The MessageStore does not have a command to rename user accounts, and the
web-based interface does not provide access to messages in the MessageStore. In
particular, the following commands are not supported with MessageStore accounts:
add_user, delete_message, delete_messages, rename_user, and show_message.
In addition, the message_count command parameter is not supported. Finally,
the following format strings are not supported with MessageStore accounts: mes-
sage_count, msg_*, and msgr_*.

2–4

The PMDF MessageStore
Management

See Chapter 4 for detailed information on the use of the web-based management
utility.

2.5.2 Command Line Management Utility
The MessageStore’s command-line management utility is very similar to the pop-

store’s command-line management utility described in Chapters 6 and 7, with the fol-
lowing differences:

1. The command to invoke the utility is

pmdf msgstore

2. The template files used by the utility are located in the directory
/pmdf/www/msgstore on UNIX and NT platforms and
pmdf_root:[www.msgstore] on OpenVMS platforms.

3. The MessageStore does not have a command to rename user accounts, and access
to stored messages is not provided via the management utilities. In particular, the
following command switches—qualifiers on OpenVMS—are not supported for use
with MessageStore accounts: -message_count and -messages.

See Chapters 6 and 7 for detailed information.

2.5.3 IMAP-based Management Utilities
The IMAP protocol provides commands to create, delete, and rename folders. Thus

you can use almost any IMAP client to manage public folders in the MessageStore, simply
by logging in as a user with top-level management privileges, and creating folders under
the top-level ‘‘Public Folders’’ node.

A good use of public folders is to subscribe a public folder to a mailing list so that
individual users will not have to. First, verify that the public folder exists and grants
‘‘post’’ rights to anyone. The simplest way is to make sure the DEFAULT_ACL option
includes the p right after the anyone identifier before you create the folder. Next use
your IMAP client to create the desired folder under the "Public Folders" tree. To verify
that delivery to the new public folder is working, send a test message to the folder’s
address. Its address will be

post+folder@host

where post is replaced with the value of the POST_USER option, folder is the name of
the new public folder, and host is the domain name you configured for the MessageStore.
Note that the default value of the POST_USER option is post.

Once this test succeeds, set your mail client’s identity so that the From: address
is the folder’s posting address. Then simply follow the instructions for mailing list
subscription. This often involves sending a message to the e-mail address listname-
request@listdomain with a subject or body of ‘‘SUBSCRIBE’’.

2–5

The PMDF MessageStore
Management

The PMDF MessageStore supports the standard IMAP Access Control List ACL and
QUOTA extensions documented in RFCs 2086 and 2087. (See Table 3–1 for a list of
the ACL rights letters and what they mean.) This means that advanced IMAP clients
such as Mulberry and Execmail will be able to manage the access control lists on your
MessageStore directly.

2.5.4 Reconstruct Utility
The MessageStore comes with a ‘‘reconstruct’’ utility to be used in the event of a disk

corruption. The reconstruct utility rebuilds the index and cache files the MessageStore
uses to support the IMAP protocol. In addition, if an individual user is restored from
backup, the reconstruct utility can be used to re-integrate that user’s mailboxes into the
MessageStore.

Note: There must be no IMAP clients connected to a mailbox while it is being reconstructed.

The reconstruct utility is available as a command within the MessageStore
command-line management utility. There are three ways to use it:

1. Reconstruct index and cache files for one or more individual mailboxes. This is
necessary if a mailbox got corrupted (perhaps due to a power failure in the middle
of a delivery or expunge). It is also necessary to reconstruct a mailbox after restore
from backup, since the backup utility could also snapshot the mailbox in the middle
of a delivery or expunge operation. For this usage, no switches are provided; the
mailboxes are simply listed:

msgstore> reconstruct mailbox-name-1 [mailbox-name-2 ...]

Note that the MessageStore does not support messages with NUL bytes. In normal
operation, PMDF will strip or downconvert such bytes prior to final delivery.
However, in the event such a message is detected during the reconstruct process, BAD
will be appended to the name of the message file and the message will be ignored.

2. Reconstruct index and cache files for one or more subtrees of mailboxes. This
works much like (1), except it reconstructs the mailbox and all subfolders listed
in the mailbox list. The -recurse or -r switch is used to specify this behavior.
If no mailbox names are provided, then all mailboxes in the mailbox list will be
reconstructed.

msgstore> reconstruct -r [mailbox-name-1 [mailbox-name-2...]]

3. Reconstruct the mailbox list. The mailbox list is used by the MessageStore to locate
mailboxes and to provide fast responses to IMAP LIST commands. This is necessary
if the mailbox list got corrupted (perhaps due to a disk error or software defect), or
to re-integrate a restored mailbox which was previously deleted. Note that while the
reconstruct mailbox list command is running, users will be unable to create, delete
or rename mailboxes through IMAP. The -mailbox_list or -m switch is used to
specify this behavior.

msgstore> reconstruct -m

Note that this command uses the user database to determine the list of users
to reconstruct, so in the event that database is corrupted, the x-build-user-db
command must be used first.

2–6

The PMDF MessageStore
Management

The name of a user’s INBOX in the MessageStore is

Other Users/user

and their personal folders are one level below that. Thus if the user joe creates the
folder stuff, the full name for that folder would be

Other Users/joe/stuff

Since these names contain spaces, it will be necessary to enclose the mailbox names in
double quotes. As a convenience, the reconstruct utility will prepend ‘‘Other Users/’’ to
any mailbox name argument which does not already begin with ‘‘Other Users/’’ or ‘‘Public
Folders/’’.

2.6 Application Program Interface (API)
Support for the MessageStore was added to the popstore API after the API was

designed. Therefore all API routine names begin with ‘‘POPSTORE_’’ even if they work
with the MessageStore. The routines which operate on popstore message files are not
supported for use with the MessageStore. The following routines are supported for use
with the MessageStore:

Table 2–1 popstore API routines which support the MessageStore

Routine Name Comments

POPSTORE_command_d Include store=imap in the command to operate on a
MessageStore user. Use the copy_user command with the
default account as the source to create new MessageStore
accounts.

POPSTORE_end

POPSTORE_error_to_text

POPSTORE_format_profiles_stype

POPSTORE_init

POPSTORE_manage

POPSTORE_user_begin_d

POPSTORE_user_billing_d

POPSTORE_user_delete_d

POPSTORE_user_end

POPSTORE_user_exists_d Returns success if a matching popstore or MessageStore
account exists.

POPSTORE_user_pw_change_d

POPSTORE_user_pw_check

POPSTORE_user_update POPSTORE_SET_MESSAGE_COUNT is not supported for
use with MessageStore accounts.

2–7

3 Options

The popstore and MessageStore have a few options controlled through the use of
option files. The popstore option file contains popstore specific options as well as options
shared by both the popstore and MessageStore. Use of this option file is optional for the
popstore but mandatory for the MessageStore. The MessageStore option file contains
options specific to the MessageStore. Both of these option files are described in the
following sections.

Initial option files are created by the configuration utility described in the PMDF
Installation Guide manual.

3.1 Location of the Option Files
On UNIX and NT platforms, the popstore and MessageStore option files are,

respectively, the files

/pmdf/table/popstore_option
/pmdf/table/msgstore_option

On OpenVMS platforms, they are the files

PMDF_TABLE:popstore_option.
PMDF_TABLE:msgstore_option.

The option files are ordinary text files and can be created and edited with a normal
text editor. Like many PMDF option files, the option files must be world readable.

Note: The POP and IMAP servers also have option files which alter their behavior. See the
PMDF System Manager’s Guide for details for information on those option files.

3.2 Option File Formats
Option files consist of several lines. Each line contains the setting for one option.

An option setting has the form:

option-name=option-value

where option-value can be either a string or an integer, depending on the option’s
requirements. If the option accepts an integer value, option-value, a base can be
specified using notation of the form b%v, where b is the base expressed in base 10 and v
is the actual value expressed in base b.

Comments are allowed in option files. Any line that begins with an exclamation
point is considered to be a comment and is ignored. Blank lines are also ignored in any
option file.

3–1

Options
Option File Formats

3.3 Options for Both the popstore and the MessageStore
The following options, while specified in the popstore option file, affect both the

popstore and MessageStore:

AVOID_LOGIN_NAMES (0, 1, or 2)
Under some circumstances, sites using a password database shared between login and
popstore or MessageStore accounts may want to ensure that no popstore or MessageStore
accounts are created which have the same name as a login account. By setting
AVOID_LOGIN_NAMES=1, popstore and MessageStore accounts cannot be created which
have the same name as a login account. When AVOID_LOGIN_NAMES is set to the value
2, popstore and MessageStore accounts cannot be created which have the same name as
a privileged login account. On UNIX platforms, a privileged login account is considered
to be any account with a UID of 0 or which is in the root group. On OpenVMS platforms,
a privileged account is deemed to be any account with a group UIC number less than or
equal to the SYSGEN MAXSYSGROUP parameter or which has any default or authorized
privileges other than TMPMBX and NETMBX. On NT platforms, AVOID_LOGIN_NAMES only
prevents an account named Administrator from being created when a value of either 1
or 2 is used.

The default value of AVOID_LOGIN_NAMES is 0 which allows accounts of any name to be
created.

Note that the AVOID_LOGIN_NAMES option only influences accounts created through
the management interfaces and the POPSTORE_command and POPSTORE_command_d
subroutines. The option does not influence accounts created through other popstore API
routines such as POPSTORE_user_create.

COMPUTE_CONNECT (UNIX or NT file specification; OpenVMS exec-mode logical
name)
This option is used to supply the name of a site-developed, shared library which the
popstore will then use to compute elapsed connect time for client connections. The
shared library must contain an entry point for a subroutine named compute_connect
as described in Section 14.1. On UNIX and NT systems, the value of the option must
be a full file path — the path to the file containing the shared library. On OpenVMS
systems, the value of the option must be the name of a system-wide, executive mode
logical whose translation value is the full file specification for the shared library. Any
logical referenced by the logical must also be a system-wide, executive mode logical.
Moreover, on OpenVMS systems, the shared library must be installed as a known image
with the OpenVMS INSTALL utility.

DEBUG (bit mask)
When set to a value of -1, enables debugging in the popstore. When debugging is
enabled, the output is appended to the file /pmdf/log/popstore.log (UNIX and NT) or
PMDF_LOG:popstore.log (OpenVMS). The default value is 0 which disables all debug
output.

Note that use of this option will impact performance of the popstore. Moreover, the
format of the debug output is intentionally not documented as it is subject to change.
Sites wanting to generate similar output should provide their own logging subroutine;
see Chapter 13 for details.

3–2

Options
Options for Both the popstore and the MessageStore

HTTP_REALM (string)
Use the HTTP_REALM option to override the name of the HTTP authentication realm used
by the popstore and MessageStore HTTP CGIs.

LOG_ACTIVITY (UNIX or NT file specification; OpenVMS exec-mode logical name)
This option is used to supply the name of a site-developed, shared library which the
popstore will then use to log activity. The shared library must contain an entry point
for a subroutine named log_activity as described in Section 13.2. On UNIX and NT
systems, the value of the option must be a full file path — the path to the file containing
the shared library. On OpenVMS systems, the value of the option must be the name of a
system-wide, executive mode logical whose translation value is the full file specification
for the shared library. Any logical referenced by the logical must also be a system-wide,
executive mode logical. Moreover, on OpenVMS systems, the shared library must be
installed as a known image with the OpenVMS INSTALL utility.

LOG_ACTIVITY_MASK (bit mask)
This option can be used in conjunction with the LOG_ACTIVITY option to control for
which events the site supplied logging routine is called. By default, the logging routine
is called for all events. See Section 13.2.2 for further details.

MAP_PROFILE_FILENAME (UNIX or NT file specification; OpenVMS exec-mode logical
name)
This option is used to supply the name of a site-developed, shared library which
the popstore will then use to map message filenames to disk devices and directory
trees. The shared library must contain an entry point for a subroutine named
map_profile_filename as described in Chapter 14. On UNIX and NT systems, the
value of the option must be a full file path — the path to the file containing the shared
library. On OpenVMS systems, the value of the option must be the name of a system-
wide, executive mode logical whose translation value is the full file specification for the
shared library. Any logical referenced by the logical must also be a system-wide, executive
mode logical. Moreover, on OpenVMS systems, the shared library must be installed as a
known image with the OpenVMS INSTALL utility.

MESSAGE_PROFILE_VERSION (non-negative integer)
The value of this option is passed to the site supplied map_profile_filename
subroutine; see Section 14.2 for details. When not specified in the option file, this option
assumes the default value of 0.

PASSWORD_LIFETIME (non-negative integer)
Non-negative integer value specifying in units of days, how long a password’s lifetime
should be before it expires and the user must change their password. To disable password
expiration, specify a value of zero, PASSWORD_LIFETIME=0, meaning that passwords
never expire.

When no PASSWORD_LIFETIME value is specified, password expiration is disabled.

Units other than days can be selected by immediately following the numeric value with
a single character unit specifier chosen from the table below:

M, m Units of minutes
H, h Units of hours
D, d Units of days
W, w Units of weeks

For instance, a value of 14 days might be specified as

3–3

Options
Options for Both the popstore and the MessageStore

PASSWORD_LIFETIME=2w

where the value 2w indicates two weeks.

PASSWORD_MINIMUM_LENGTH (0 <= integer <= 32)
This option is used to specify a minimum acceptable length for a password. If the
password specified is shorter than PASSWORD_MINIMUM_LENGTH, then it is rejected. If a
value of 0 is specified, or this option is not specified at all, there is no minimum length
required (this is the default).

PASSWORD_REASONABLENESS (0, 1, or 2)
This option is used to specify what level of "reasonableness" checks that a password must
go through to be acceptable. If the password specified does not pass the reasonableness
checks, it is rejected.

A value of 0 (the default) causes no reasonableness checks to be made.

A value of 1 causes PMDF to check and make sure that the password is not the same as
the username.

A value of 2 causes PMDF to check and make sure both that the password is not the
same as the username, and it is not a substring of the "Owner" field (usually used to
contain the real name of the user).

REJECT_OVER_QUOTA (0 or 1)
By default, PMDF will accept incoming messages for users who have exceeded their
storage quota. This corresponds to the option setting REJECT_OVER_QUOTA=0. To have
PMDF reject incoming messages for over quota users, specify REJECT_OVER_QUOTA=1.
The rejections will take the form of a temporary error (e.g., an SMTP 4yz response). Note
that when this option is specified, local users can experience difficulty sending mail to
over quota users. For instance, a local POP user when sending mail to an over quota
user will be met with a temporary error and their client will be unable to send the
message. This option is, in general, only useful when all incoming messages are coming
from remote store-and-forward mail systems and not from local user agents.

USERNAME_STYLE (1, 2, or 3)
Selects the name space used for usernames. A value of 3 selects the preferred name
space described in Section 1.3.1.1. A value of 2 selects the default name space described
in Section 1.3.1.2. Finally, a value of 1 selects the name space described in Section 1.3.1.3.

Note that the MessageStore requires that USERNAME_STYLE=3 be used.

Note: After creating popstore accounts, you cannot simply change the value of the USER-
NAME_STYLE option. The value of this option influences the file names used to store
profile files. Should you change this option after creating accounts, accounts created
before the change can become inaccessible. Contact Process Software for assistance in
changing this option with an existing popstore installation. As such, sites which have
been using the popstore prior to PMDF V6.0 and now want to use the MessageStore
should contact Process Software for assistance.

VALIDATE_PASSWORD (UNIX or NT file specification; OpenVMS exec-mode logical
name)
This option is used to supply the name of a site-developed, shared library which PMDF
will call to perform additional validation (reasonableness) checks when a user’s password
is changed. The shared library must contain an entry point for a subroutine named

3–4

Options
Options for Both the popstore and the MessageStore

validate_password as described in Section 14.3. On UNIX and NT systems, the value
of the option must be a full file path — the path to the file containing the shared library.
On OpenVMS systems, the value of the option must be the name of a system-wide,
executive mode logical whose translation value is the full file specification for the shared
library. Any logical referenced by the logical must also be a system-wide, executive mode
logical. Moreover, on OpenVMS systems, the shared library must be installed as a known
image with the OpenVMS INSTALL utility.

3.4 popstore Specific Options
The following options are specified in the popstore option file and only affect the

behavior of the popstore.

COMPUTE_BLOCK_DAYS (UNIX or NT file specification; OpenVMS exec-mode logical
name)
This option is used to supply the name of a site-developed, shared library which
the popstore will then use to compute elapsed block days of storage for message
files. The shared library must contain an entry point for a subroutine named
compute_block_days as described in Section 14.1. On UNIX and NT systems, the
value of the option must be a full file path — the path to the file containing the shared
library. On OpenVMS systems, the value of the option must be the name of a system-
wide, executive mode logical whose translation value is the full file specification for the
shared library. Any logical referenced by the logical must also be a system-wide, executive
mode logical. Moreover, on OpenVMS systems, the shared library must be installed as a
known image with the OpenVMS INSTALL utility.

MAP_MESSAGE_FILENAME (UNIX or NT file specification; OpenVMS exec-mode
logical name)
This option is used to supply the name of a site-developed, shared library which
the popstore will then use to map message filenames to disk devices and directory
trees. The shared library must contain an entry point for a subroutine named
map_message_filename as described in Chapter 14. On UNIX and NT systems, the
value of the option must be a full file path — the path to the file containing the shared
library. On OpenVMS systems, the value of the option must be the name of a system-
wide, executive mode logical whose translation value is the full file specification for the
shared library. Any logical referenced by the logical must also be a system-wide, executive
mode logical. Moreover, on OpenVMS systems, the shared library must be installed as a
known image with the OpenVMS INSTALL utility.

MESSAGE_FILENAME_VERSION (non-negative integer)
This option is intended for use with a site-supplied map_message_filename subroutine
as described in Section 14.2. The value of this option modulo 36 is used to generate the
last character appearing in the names of the files used to store messages. The value of
the option is also passed to the site supplied map_message_filename subroutine. When
not specified in the option file, this option assumes the default value of 0.

QUOTA_WARNING (0 <= integer <= 100)
The POP3 server can optionally generate quota warnings when a user’s current storage
exceeds a given percentage of their primary storage quota. The warning takes the effect
of a virtual e-mail message. That is, the user appears to have a new e-mail message

3–5

Options
popstore Specific Options

in their inbox which warns about their quota usage. However, this message does not
actually exist: the POP server dynamically generates it.

By default, these quota warnings are not generated. This corresponds to the option
setting QUOTA_WARNING=0. To warn users when they have reached 90% of their allowed
primary quota, specify QUOTA_WARNING=90.

Note that the POP server OVER_QUOTA_MSG_FILE option may be used to specify a
file containing customized warning message text. This option is specified in the
PMDF_POP3_CONFIG_FILE configuration file for the legacy POP server and in the
PMDF_IMAPPOP_CONFIG_FILE configuration file for the MessageStore POP server. See
the PMDF System Manager’s Guide for details.

RETURN_AFTER (non-negative integer)
Non-negative integer value specifying in units of days, how long to retain messages in the
store. Any message exceeding the specified age will be silently deleted from the message
store. A non-delivery notice is sent back to the message’s originator, if one or more of the
message’s recipients had not read the message. To retain messages indefinitely, specify
a value of zero, RETURN_AFTER=0.

When no RETURN_AFTER value is specified, a maximum message age of 14 days is
assumed, RETURN_AFTER=14.

Units other than days can be selected by immediately following the numeric value with
a single character unit specifier chosen from the table below:

M, m Units of minutes
H, h Units of hours
D, d Units of days
W, w Units of weeks

For instance, the default value of 14 days might be specified as

RETURN_AFTER=2w

where the value 2w indicates two weeks.

USER_DOMAINS (0 or 1)
By default, all popstore accounts are considered to be part of the same user domain called
the default domain. This is true regardless of the e-mail address used to reach the
account’s mailbox. This default behavior corresponds to the setting USER_DOMAINS=0.

By setting USER_DOMAINS=1, the use of user domains is enabled. This allows distinct
domains of users to be established, each domain distinguished by the host name
associated with the e-mail address used for the accounts in that domain.

Note that if you are using USER_DOMAINS=0 and have more than one host listed in the
delivery channel’s definition,

popstore defragment holdexquota
official-host-name
second-host-name
third-host-name
fourth-host-name
...

3–6

Options
popstore Specific Options

then setting USER_DOMAIN=1 will cause the mailboxes for the second, third, fourth,
etc. hosts to appear to disappear. Specifically, with the above channel definition and
USER_DOMAINS=0, all the mailboxes for all those hosts are stored in the same user
domain: the default user domain. For example, the e-mail addresses sue@official-
host-name and bob@third-host-name correspond, respectively, the the accounts sue
and bob in the default user domain. When USER_DOMAINS=1 is set, only the mailboxes
for the first host, official-host-name, are associated with the default domain. Mail
for bob@third-host-name will be for the account bob in the user domain named third-
host-name. That mail will bounce until such time that the bob account is moved from
the default user domain to the third-host-name domain, or a new bob account is
added to the third-host-name domain.

Note: You must not use the filter channel keyword on the popstore or MessageStore delivery
channel if USER_DOMAINS=1 is set. So doing will cause the wrong filters to be used for
users in domains other than the default domain.

Note: The legacy POP3 server does not support user domains.

USERNAME_CHARSET (0-9)
The USERNAME_CHARSET option specifies the character set used for popstore account
usernames and is only used when USERNAME_STYLE=1 is set.1 This character set
information is in turn used by the popstore to perform upper case to lower case
conversions on usernames presented to the popstore. The valid values for this option
are

Value Character Set Value Character Set

0 ASCII, DEC-MCS 5 Latin 5 (ISO-8859-5)
1 Latin 1 (ISO-8859-1) 6 Latin 6 (ISO-8859-6)
2 Latin 2 (ISO-8859-2) 7 Latin 7 (ISO-8859-7)
3 Latin 3 (ISO-8859-3) 8 Latin 8 (ISO-8859-8)
4 Latin 4 (ISO-8859-4) 9 Latin 9 (ISO-8859-9)

The default character set, when no USERNAME_CHARSET option is specified, is Latin 1
and corresponds to USERNAME_CHARSET=1.

3.5 MessageStore Specific Options
The following options are specific to the MessageStore and are specified in the

MesageStore option file.

DEFAULT_ACL (Access Control List)
This option sets the default Access Control List ACL used when creating top-level,
public folders. An ACL is a list of pairs, each pair containing an identifier and a set of
rights represented as single letters. The identifier can be anyone to represent all users,
group:groupname to represent all users in a management group, or a user name to
represent just that user. The rights are shown in Table 3–1.

1 The character sets used for stored messages is controlled through a PMDF CHARSET-CONVERSION mapping table.
Consult the PMDF System Manager’s Guide for details.

3–7

Options
MessageStore Specific Options

Table 3–1 MessageStore ACL Rights

Letter Rights Usage

a Administrative Permits ACLs to be changed

c Create Permit the creation of sub-folders

d Delete Permit the deletion of messages and folders

i Insert Permit messages to be directly appended to a folder

l Lookup Permit the folder to be seen in listings

p Post Permit sending e-mail messages to the folder (currently only implemented
for anyone)

r Read Permit reading of messages in the folder

s Seen Permit saving seen information between sessions

w Write Permit shared IMAP flags to be set

The default setting is

DEFAULT_ACL=anyone lrs

The value

DEFAULT_ACL=anyone lrsp

will simplify administration as it allows messages to be delivered directly to all newly
created top-level, public folders. You can also want to use a value like

DEFAULT_ACL=anyone lrsp manager lrspicdwa

to allow the user manager to manage all folders. See RFC 2086 for technical details
about IMAP access control lists.

FILE_DEBUG (bit encoded integer value)
A value of -1 sets full debugging on the low-level file operations used by the Message-
Store. The debugging output goes to the server thread log file with the IMAP, POP and
HTTP servers, to the channel log file for the msgstore channel, and to the display
with the command-line management utility.

POST_USER (string)
This option sets the reserved account name which will be used for delivery to public
folders. By default, mail addressed to

post+folder@host

will be delivered to the public folder named folder if the ACL on the folder has the p
right for the anyone identifier.

3–8

4 Web-based Management Interface

This chapter provides a description of both the popstore’s web-based management
interface as well as the HTTP CGI supporting that interface. The description of the
interface itself, Section 4.1, is intentionally brief as the interface is intended to be
self-documenting; use the HELP buttons provided in the interface to obtain operating
instructions.

Sites which are familiar with the Hypertext Markup Language (HTML), can
customize the interface or redesign it entirely. This is where an understanding of the
HTTP CGI used by the popstore is needed. See Section 4.3 for details.

4.1 Using the Management Interface
Before attempting to use the web-based management interface, you must first

configure the PMDF Dispatcher and HTTP server. This is accomplished by running
the Dispatcher configuration utility as described in the PMDF Installation Guide. If you
have not configured the Dispatcher, then do so now.

In order to use the management interface, you will need a web client which supports
HTML tables. The management interface is accessed via the URL

http://host:7633/popstore/admin.html

In place of host, use the actual IP host name of the system running the PMDF HTTP
server. If you chose to run the PMDF HTTP server on a port other than port 7633, then
specify that port number in place of 7633 in the above URL.

To manage a user domain other than the default user domain, instead specify the
URL

http://host:7633/popstore/domain/admin.html

where domain is the name of the user domain to manage.

If you are met with an ‘‘Access Forbidden’’ message when you attempt to access the
above URL, then you need to check:

1. that you have configured the PMDF Dispatcher and HTTP server;

2. that you have an HTTP_ACCESS mapping table in your PMDF mapping file;

3. that if you created or changed the HTTP_ACCESS mapping table that you have
recompiled your configuration if using a compiled configuration; and,

4. that you have started the PMDF Dispatcher and that it is running.

Note further that if you change the HTTP_ACCESS mapping table, then you will need
to restart the HTTP server in order for those changes to take effect.

4–1

Web-based Management Interface
Using the Management Interface

When you issue the first command which requires access to the popstore itself,
your web client will prompt you for your popstore account name and password. You
must supply the correct name and password of a popstore account which has popstore
management privileges.1 Management privileges can only be granted to popstore
accounts using the command line management utility. See Chapters 6 and 7 for directions
on the use of that utility.

To obtain help for a given popstore management function, click on the HELP button
associated with that function. A form’s RESET button resets the form’s entries to their
default values.

4.1.1 Restricting Access
Would-be managers of the popstore must be able to supply the correct name and

password for a popstore account which has management privileges. You can impose
further restrictions through the use of an HTTP_ACCESS mapping table. For instance,
you can deny access to the management interface from all but a few IP addresses. See
the description of the HTTP_ACCESS mapping table in the PMDF System Manager’s
Guide for directions on how to use the HTTP_ACCESS mapping table.

The web management interface only allows managers to access and manage accounts
contained within their own management group as described in Section 1.3.4. Moreover,
only a manager with management privileges for the world group can create new
management groups or modify the structure of existing groups.

4.1.2 Location of the Management Interface
The GIF, HTML, and formatting files which comprise the web-based management

interface are located in the /pmdf/www/popstore/ directory tree on UNIX and NT
systems and PMDF_ROOT:[WWW.POPSTORE] directory on OpenVMS systems. Sites
wanting to customize the interface or develop their own interface can use these files
as a starting point. However, do not make changes to the supplied files themselves: any
changes will be lost when you upgrade PMDF. Instead, make copies of the files and access
them via the appropriate URL; e.g.,

http://host:7633/popstore/x-admin.html

Details on developing your own formatting files are given in Section 4.3.

1 Presently, the popstore CGI uses the HTTP Basic Authentication scheme. This is currently the only standardized HTTP
authentication scheme. Unfortunately, with this authentication scheme, the account name and plain text password are
transmitted in the clear from the client to the server.

4–2

Web-based Management Interface
Using the Password Change Interface

4.2 Using the Password Change Interface
The web-based user interface password change page (see Chapter 5) can also be

used by managers to change a user’s password. This is accomplished by specifying for
authentication the username and password of either the pmdf account, or the system
account (root on Unix, SYSTEM on OpenVMS, or Administrator on Windows).

Note that if you are modifying the password on behalf of a user, and the username
and password are stored in multiple locations (for example, in the PMDF password
database as well as in a system account), and there is a failure while changing the
password, that the passwords could be left in an inconsistent state (i.e. some locations
have the old password and some have the new password). The way to fix this is to keep
attempting to change the password until it succeeds.

4.3 The Management CGI
In order to customize the management interface, it is first necessary to understand

how the management CGI processes HTTP requests and formulates HTTP responses.
This is described in Section 4.3.1 and Section 4.3.2. Following those descriptions,
Section 4.3.4 describes the individual commands which can be embedded in those
requests.

4.3.1 Processing HTTP Requests
The management CGI only processes HTTP POST requests. GET requests are

relayed to a generic processor used by PMDF and can only be used to retrieve entities
(e.g., HTML, GIF, etc. files) from the /pmdf/www/popstore/ directory tree (UNIX and
NT) or PMDF_ROOT:[WWW.POPSTORE] directory (OpenVMS).

The CGI interface responds to HTTP POST requests by parsing the request for a
management command and generating the appropriate response. The content of the
POST request is the management command and takes the general form

command=command-name¶meter-name-1=parameter-value-1&
...¶meter-name-N=parameter-value-N

(The above line has been wrapped for typographic reasons.) The ellipses, ..., in
the above indicate additional parameter-name=parameter-value pairs which might
appear in the command. The allowed command names and associated parameters are
described in Section 4.3.4. The commands are case-insensitive: the command and
parameter names can be specified in either upper, lower, or mixed case.

If the command cannot be extracted from the request, an HTTP 5yz error response
is sent back to the client. If the command can be extracted but cannot be parsed or
successfully executed, a successful HTTP 200 response is sent back; the content of the
HTTP response will be formatted as per the error formatting directions specified in the
management command. If those directions could not be extracted from the command,
then an HTTP 500 error response is returned. See Section 4.3.2 for further details.

4–3

Web-based Management Interface
The Management CGI

4.3.2 Generating HTTP Responses
After processing an HTTP request from a client, the result of processing the command

is sent back as an HTTP response to the client. The format of the response is governed
by formatting files specified in the command from the client. That is, the request from
the client includes the names of formatting files on the CGI server system that are to be
used to format the response sent back to the client. On OpenVMS systems, these files
must reside in the PMDF_ROOT:[WWW.POPSTORE] directory; on UNIX and NT systems,
these files must reside in the /pmdf/www/popstore/ directory tree.

The formatting files can contain text to be copied verbatim into the HTTP response
as well as directives to substitute in values associated with the results of a particular
command. There are three basic types of formatting files: success, error, and command-
specific files.

After the CGI parses a request and executes it, the results of the operation are sent
back to the HTTP client using the following formatting steps:

1. The command-specific formatting files are used to format the data collected by the
command. The files can be consulted multiple times such as when generating a list
or table of information (e.g., account listings).

2. If the preceeding step is successful, the content of the success formatting file is used
as the response to the client. Each line of the file is copied to the content of the HTTP
response. Any line beginning with %s is replaced with the formatted data generated
in the first step. The HTTP response sent back to the client will have an HTTP 200
status code.

3. If the first step failed, the content of the error formatting file is sent as the response
to the client. Each line of the file is copied to the content of the HTTP response. Any
line beginning with %s is replaced with the output, if any, of the first step as well as
any error messages. The HTTP response sent back to the client will have an HTTP
200 status code.

In the command-specific formatting files, command-specific substitution strings can
appear. These strings all begin with the percent character, %. When such a string is
encountered, the value it references is substituted into the HTTP response. For instance,
the formatting file

%none{No users found matching your search criterion}
%first{<TABLE><TR><TH>Username<TH>Messages}
<TR><TD>%username<TD>%message_count
%last{</TABLE>}

might be used in conjunction with the list_users command to produce an HTML table
of the popstore users and how many messages each have stored; e.g.,

<TABLE><TR><TH>Username<TH>Messages
<TR><TD>asmith<TD>11
<TR><TD>jdoe<TD>7
<TR><TD>mfreed<TD>8
<TR><TD>wrobinson<TD>12
<TR><TD>zsmith<TD>0
</TABLE>

4–4

Web-based Management Interface
The Management CGI

In the tables describing each substitution string, the type of data associated with
the substitution string is stated. These types are:

Type Description

int Signed integer

float Single precision floating point number

string ASCII text string

uint Unsigned integer

In addition, the default formatting string used to format the data is also shown in
the tables. The formatting strings follow the C programming language convention for
formatting strings passed to the sprintf() C run-time library subroutine. Alternate
formatting strings can be used by enclosing them in braces, {}, and appending them
to the substitution string. For instance,

%quota_used{%.1f} Kbyte%s

might be used to limit the %quota_used to a single digit of precision after the decimal
point.

Five substitution strings, %first, %last, %!first, %!last, and %none, deserve
special attention. These first four strings substitute into the output specific text when
formatting, respectively, the first, the last, not the first, or not the last instance of the
data to be formatted. The text to be substituted in must be enclosed in braces, {},
following the substitution string.3 For example, suppose that a list of popstore users is
to be formatted using the following formatting file:

%first{<TABLE>}
<TD>%username
%last{</TABLE>}

In the above, when information for the first popstore account is formatted, the text
<TABLE> will be output followed by the username (%username). When information for
the last account is formatted, the text </TABLE> will be output following the username.

The %none substitution string supplies text to output when there are no instances
of the collected data to display. For example, when there are no messages to list for a
given user account.

3 At present, substitution strings appearing within the text to be substituted are ignored and treated as literal text.

4–5

Web-based Management Interface
The Management CGI

4.3.3 An Example
Interested readers should consult the file admin_cmd.html which can be found in

the /pmdf/www/popstore/ directory on UNIX and NT systems, and on OpenVMS sys-
tems in the PMDF_ROOT:[WWW.POPSTORE] directory. That file is the main management
page for the popstore’s web-based management interface. As such, the file shows most
all of the commands described in Section 4.3.4 in use. Familiarity with HTML, especially
the HTML <FORM> tag and its related tags, is helpful in understanding the contents of
the admin.html file.

4.3.4 Management Commands
As described in Section 4.3.1, management commands take the general form

command=command-name¶meter-name-1=parameter-value-1&
...¶meter-name-N=parameter-value-N

In the above, command-name gives the name of the command to execute. It is then
followed by two or more parameters which provide supplemental information relevant to
the operation to be performed. When parameter names are duplicated in the command,
only the right most instance of the parameter=value pair is honored. Two exceptions to
this are the username and flag parameters which for many commands can be repeated
with significance.

For those parameters whose values are file specifications, the file specifications must
be relative file paths specifying files in the /pmdf/www/popstore/ directory tree on
UNIX and NT systems, or the directory PMDF_ROOT:[WWW.POPSTORE] on OpenVMS
systems.

The valid command names are listed in the table below and described in the following
sections.

Command name Section Description

add_group 4.3.4.1 Add a new management group

add_user 4.3.4.2 Add a new user account

copy_user 4.3.4.3 Use an existing user account as the basis for a new user account

delete 4.3.4.5 Synonym for delete_message

delete_group 4.3.4.4 Delete a management group

delete_message 4.3.4.5 Delete one or more messages for a user account

delete_messages 4.3.4.6 Delete all stored messages for a user account

delete_user 4.3.4.7 Remove a user account

forward 4.3.4.8 Establish a forwarding address

list_forward 4.3.4.9 List forwarding addresses

list_groups 4.3.4.10 List management groups

list_users 4.3.4.11 List user accounts

4–6

Web-based Management Interface
The Management CGI

Command name Section Description

modify_group 4.3.4.12 Modify a management group definition

modify_user 4.3.4.13 Modify an existing user account

rename_user 4.3.4.14 Change the username associated with a user account

show 4.3.4.16 Synonym for show_message

show_counters 4.3.4.15 Show channel counters for the popstore or other PMDF channels

show_message 4.3.4.16 Show a stored message

show_user 4.3.4.17 Show settings for a user account

unforward 4.3.4.18 Remove a forwarding address

4.3.4.1 add_group Command: add a new management group

The add_group command adds a new management group to the popstore. Parame-
ter names and associated values accepted by the command are listed in the Table 4–1.

Table 4–1 add_group command parameters

parameter=value Description

group=name Required Name of the management group, name, to create. The
name can be one to sixteen bytes long.

group_blist=blist Optional Byte delimited list of subgroups to be contained within
the new group. The first byte in blist is the delimiter
which is then used to delimit each group name in the
string; e.g., |name-1|name-2|name-3. The length
of the string blist can not exceed 236 bytes.

group_list=list Optional Comma delimited list of subgroups to be contained
within the new group. For instance, name-1,name-
2,name-3. Leading and trailing white space around
each group name is ignored. The length of the string
blist can not exceed 236 bytes.

log=bvalue Optional Boolean value, 0 or 1. When bvalue is 1, then a
status message will be output indicating a successful
operation. The default is bvalue=0. Note that errors
are always reported.

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

When creating a new management group, at most one of group_list or group_blist
should be specified. If neither are specified, then the new group will contain no subgroups.
If the specified group name conflicts with an existing group name, then an error will be
issued and the pre-existing group definition left unchanged.

4–7

Web-based Management Interface
The Management CGI

4.3.4.2 add_user Command: add a new user account

The add_user command adds one or more user accounts to the popstore. Parameter
names and associated values accepted by the command are listed in the Table 4–2.

Table 4–2 add_user command parameters

parameter=value Description

flag=fvalue
flag0=fvalue
flag1=fvalue
flag2=fvalue
flag3=fvalue
flag4=fvalue

Optional Usage flags for the account. fvalue must be one of
dismail, nodismail, disuser, nodisuser,
lockpwd, or nolockpwd. The flag0, flag1, ...
parameters are provided for use in instances in HTML
where the same parameter name cannot be used more
than once in the same form.

group_name=name Optional Name of the management group, name, to place the
new account in. The account must be placed into a
group to which the manager creating the account has
access to. When a group name is not specified for the
new account, a zero length group name is assumed thus
placing the new account into the world group.

log=bvalue Optional Boolean value, 0 or 1. When bvalue is 1, then a
status message will be output indicating a successful
operation. The default is bvalue=0. Note that errors
are always reported.

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

overdraft=qvalue Optional Amount of storage overdraft to allow the new account.
qvalue is a non-negative, floating point value.

overdraft_units=qunits Optional Storage units in which the overdraft quota qvalue is
expressed. Must be one of b (bytes), kb (kilobytes), mb
(megabytes), or gb (gigabytes). If this parameter is not
specified, storage units of kb are assumed.

owner=string Optional Name of the owner of the account. This string has a
maximum length of 40 bytes.

password=string Required The account password. This string has a maximum
length of 32 bytes. A zero-length password allows
anyone to access the account.

private=string Optional Data to store in the account’s site-defined private data
area. This string has a maximum length of 64 bytes.

quota=qvalue Optional Primary message storage quota for the account. A
qvalue of zero grants the account unlimited storage
quota. If the quota_units parameter is not specified,
then units of kilobytes, kb, are assumed. qvalue is a
non-negative, floating point value.

quota_units=qunits Optional Storage units in which the quota qvalue is expressed.
Must be one of b (bytes), kb (kilobytes), mb
(megabytes), or gb (gigabytes).

4–8

Web-based Management Interface
The Management CGI

Table 4–2 (Cont.) add_user command parameters

parameter=value Description

username=string Required Username to associate with the account. This string has
a maximum length of 32 bytes and can not contain wild
card characters.

When creating a new account, values for omitted, optional parameters will be set to
‘‘zero’’: numeric values will be set to zero and string values will have a zero length.

If the username parameter is repeated, then multiple accounts are created, one
with each username value. Each account so created will have the same password, flags,
primary and overdraft quotas, etc.

As an example, consider the command

command=add_user&username=jdoe&password=SeCrEt&owner=Jane Doe&
success_format=add_success.txt&error_format=add_error.txt

which creates the new account jdoe with password SeCrEt and owner field Jane Doe.

To set more than one usage flag, repeat the flag parameter. For instance,

command=add_user&username=jdoe&password=SeCrEt&owner=Jane Doe&
flag=nodismail&flag=nodisuser&flag=lockpwd&
success_format=add_success.txt&error_format=add_error.txt

which sets the account’s usage flags to nodismail, nodisuser, and lockpwd.

4.3.4.3 copy_user Command: copy an existing user account

The copy_user command creates a new account whose settings duplicate those of an
existing account. Note that accounting information and stored messages are not copied.

The parameter names and associated values accepted by the command are listed in
Table 4–3.

Table 4–3 copy_user command parameters

parameter=value Description

flag=fvalue
flag0=fvalue
flag1=fvalue
flag2=fvalue
flag3=fvalue
flag4=fvalue

Optional Usage flags for the new account. fvalue must be one
of dismail, nodismail, disuser, nodisuser,
lockpwd, or nolockpwd. The flag0, flag1, ...
parameters are provided for use in instances in HTML
where the same parameter name cannot be used more
than once in the same form.

log=bvalue Optional Boolean value, 0 or 1. When bvalue is 1, then a
status message will be output indicating a successful
operation. The default is bvalue=0. Note that errors
are always reported.

4–9

Web-based Management Interface
The Management CGI

Table 4–3 (Cont.) copy_user command parameters

parameter=value Description

group_name=name Optional Name of the management group, name, to place the
new account in. The account must be placed into a
group to which the manager creating the account has
access to. When a group name is not specified for
the new account, the group name of the account being
copied is assumed.

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

overdraft=qvalue Optional Amount of storage overdraft to allow the new account.
qvalue is a non-negative, floating point number.

overdraft_units=qunits Optional Storage units in which the overdraft quota qvalue is
expressed. Must be one of b (bytes), kb (kilobytes), mb
(megabytes), or gb (gigabytes). If this parameter is not
specified, storage units of kb are assumed.

owner=string Optional Name of the owner of the new account. This string has
a maximum length of 40 bytes.

password=string Optional The password for the new account. This string has a
maximum length of 32 bytes. A zero-length password
allows anyone to access the account.

private=string Optional Data to store in the new account’s site-defined private
data area. This string has a maximum length of 64
bytes.

quota=qvalue Optional Primary message storage quota for the new account. A
qvalue of zero grants the account unlimited storage
quota. If the quota_units parameter is not specified,
then units of kilobytes, kb, are assumed. qvalue is a
non-negative, floating point number.

quota_units=qunits Optional Storage units in which the quota qvalue is expressed.
Must be one of b (bytes), kb (kilobytes), mb
(megabytes), or gb (gigabytes).

username=string Required First instance of this parameter gives the name of the
existing account to copy. Subsequent instances give
the names of the new accounts to create. These strings
each have a maximum length of 32 bytes and can not
contain wild card characters.

The username parameter must appear at least twice. The first instance, when
reading the command from left to right, gives the name of the account to copy. The
second and subsequent instances give the names of the accounts to create. Values for
account fields not specified in the command will be drawn from the account being copied.

As an example, consider the command

4–10

Web-based Management Interface
The Management CGI

command=copy_user&username=default&username=jdoe&
password=SeCrEt&owner=Jane Doe&success_format=copy_success.txt&
error_format=copy_error.txt

which creates a new account jdoe which is a copy of the account default. The new
account is given the password SeCrEt and owner field Jane Doe. All other fields
duplicate those of the default account.

As an aside, note that the add_user command is actually implemented as a
copy_user command with the default account being the account which is copied.

4.3.4.4 delete_group Command: delete a management group

Use the delete_group command to delete a management group definition. Sub-
groups contained within the group are only deleted when recur=1 is explicitly specified.
Note that any accounts contained in the group are not deleted; only the group definitions
are deleted. Parameter names and associated values accepted by the command are listed
in the Table 4–4.

Table 4–4 delete_group command parameters

parameter=value Description

group=name Required Name of the management group, name, to delete. The
name can be one to sixteen bytes long.

log=bvalue Optional Boolean value, 0 or 1. When bvalue is 1, then a
status message will be output indicating a successful
operation. The default is bvalue=0. Note that errors
are always reported.

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

recur=bvalue Optional Boolean value, 0 or 1. When bvalue is 1, the
definitions of all subgroups contained within the group
are also deleted. When bvalue=0, the default, only
the group definition of name is deleted.

4.3.4.5 delete_message Command: delete a user’s message

A specific message stored for a user account can be deleted with the delete_message
command. The message to be deleted is identified by means of a UIDL as returned by
the %msgr_uidl substitution string of the show_users command.

If a return_messages parameter with a bvalue of 1 is specified, then a non-
delivery notice will be sent to the message’s originator if the message is unread. Note
that if the message has multiple recipients, those recipient’s copies of the message are
not affected by this command.

4–11

Web-based Management Interface
The Management CGI

Parameter names and associated values accepted by the command are listed in
Table 4–5.

Table 4–5 delete_message command parameters

parameter=value Description

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

log=bvalue Optional Boolean value, 0 or 1. When bvalue is 1, then a
status message will be output indicating a successful
operation. The default is bvalue=0. Note that errors
are always reported.

return_messages=bvalue Optional Boolean value, 0 or 1, indicating whether (1) or not (0)
a non-delivery notice should be sent if the message has
not been read by the user. By default, a non-delivery
notice is not sent; this corresponds to a bvalue of 0.
When bvalue is 1, a non-delivery notice is sent should
the message prove to be unread.

uidl=string Required UIDL for this user’s instance of the message to be
deleted.

username=string Required Username of the account for which to delete the stored
messages. This string has a maximum length of 32
bytes and can not contain wild card characters.

Only a single instance of the username and uidl parameters can appear.

As an example, consider the following command which deletes the message with
UIDL !!!!01234 for the account sue:

command=delete_message&username=sue&uidl=!!!!01234&
return_messages=1&on_success=delmsg_success.txt&
on_error=delmsg_error.txt

As return_messages=1 is specified, a non-delivery notice is sent for each unread
message which is deleted.

4.3.4.6 delete_messages Command: delete a user’s messages

Messages stored for a popstore account can be deleted with the delete_messages
command. If a return_messages parameter with a bvalue of 1 is specified, then a
non-delivery notice will be sent for unread messages. Parameter names and associated
values accepted by the command are listed in Table 4–6. Note that if the messages have
other recipients, those other recipients’ copies of the messages are not effected by this
command.

4–12

Web-based Management Interface
The Management CGI

Table 4–6 delete_messages command parameters

parameter=value Description

group=name Optional Delete the messages stored for the matching accounts
contained within the specified management group and
subgroups thereof. The name of the group, name,
can not contain wild card characters. This parameter
should only be used when then value specified with the
username parameter contains wild cards.

log=bvalue Optional Boolean value, 0 or 1. When bvalue is 1, then a
status message will be output indicating a successful
operation. The default is bvalue=0. Note that errors
are always reported.

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

return_messages=bvalue Optional Boolean value, 0 or 1, indicating whether (1) or not
(0) non-delivery notices should be sent for unread
messages. By default, non-delivery notices are not sent;
this corresponds to a bvalue of 0. When bvalue is
1, non-delivery notices are sent for unread messages.

username=string Required Username of the account for which to delete the stored
messages. This string has a maximum length of 32
bytes and can contain wild card characters.

When multiple instances of the username parameter are provided, messages for
each of the specified accounts are deleted. When the value specified with a username
parameter contains wild card characters, the operation will be confined to any matching
user name within the management group and subgroups of the manager requesting the
operation. If a group name is also specified, then the operation will be further confined
to that group and subgroups.

As an example, consider the following command which deletes the messages for the
accounts sue and tom:

command=delete_messages&username=sue&username=tom&return_messages=1&
on_success=delmsgs_success.txt&on_error=delmsgs_error.txt

As return=1 is specified, non-delivery notices are sent for each unread message which
is deleted.

4.3.4.7 delete_user Command: delete a user account

Popstore accounts can be deleted with the delete_user command. Parameter
names and associated values accepted by the command are listed in Table 4–7.

4–13

Web-based Management Interface
The Management CGI

Table 4–7 delete_user command parameters

parameter=value Description

group=name Optional Delete the matching accounts contained within the
specified management group and subgroups thereof.
The name of the group, name, can not contain wild card
characters. This parameter should only be used when
then value specified with the username parameter
contains wild cards.

log=bvalue Optional Boolean value, 0 or 1. When bvalue is 1, then a
status message will be output indicating a successful
operation. The default is bvalue=0. Note that errors
are always reported.

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

return_messages=bvalue Optional Boolean value, 0 or 1, indicating whether (1) or not
(0) unread messages stored for the account should be
returned to their originator. By default, unread messages
are not returned; this corresponds to a bvalue of 0.
A bvalue of 1 requests that unread messages be
returned.

username=string Required Username associated with the account to delete. This
string has a maximum length of 32 bytes and can contain
wild card characters.

When multiple instances of the username parameter are provided, each of the
associated accounts are deleted. When the value specified with a username parameter
contains wild card characters, the operation will be confined to any matching user names
within the management group and subgroups of the manager requesting the operation.
If a group name is also specified, then the operation will be further confined to that group
and subgroups.

As an example, consider the following command which deletes the accounts sue and
tom:

command=delete_user&username=sue&username=tom&
on_success=delusr_success.txt&on_error=delusr_error.txt

Since the return_messages parameter is not specified, any unread messages will be
deleted.

4–14

Web-based Management Interface
The Management CGI

4.3.4.8 forward Command: establish a forwarding address

The forward command establishes a forwarding address for a given name in the
popstore’s addressing name space. The name need not correspond to an existing popstore
account. Parameter names and associated values accepted by the command are listed in
Table 4–8.

Table 4–8 forward command parameters

parameter=value Description

fwd_from=username Required Username for which to establish the forwarding.
Maximum string length is 32 bytes.

fwd_override=bvalue Optional Boolean value, 0 or 1, indicating whether or not to
establish a forwarding for an existing popstore account.
If bvalue is 0, then the forwarding will be disallowed
if the fwd_from username corresponds to an existing
account. Otherwise, the forwarding is permitted. When
this parameter is omitted, a bvalue of 1 is assumed.

fwd_to=address Required Single RFC822 address to which to forward messages.
The address can be either another popstore address or
an address external to the popstore. Maximum length of
the string is 252 bytes.

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

As an example, consider establishing a forwarding address for the existing user
account jdoe to the RFC822 address Jane.Doe@example.com:

command=forward&fwd_from=jdoe&fwd_to=jane.doe@example.com&
on_success=fwd_success.txt&on_error=fwd_error.txt

4.3.4.9 list_forward Command: list forwarding addresses

The list_forward command is used to list popstore forwardings. The parameter
names and associated values accepted by the command are listed in Table 4–9.

Table 4–9 list_forward command parameters

parameter=value Description

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

pformat=file-spec Required Name of the formatting file to use to format each
forwarding address. The recognized substitution strings
for this formatting file are listed in Tables 4–10 and 4–11.

4–15

Web-based Management Interface
The Management CGI

Table 4–9 (Cont.) list_forward command parameters

parameter=value Description

rooted=bvalue Optional Boolean value, 0 or 1, indicating whether or not an
exact lookup is performed. When bvalue is 0, only
the entry, if any, exactly matching the username string is
returned. When bvalue is 1, then the username string
is treated as a prefix and any forwarding beginning with
the supplied username string will be returned. When not
specified, a bvalue of 0 is assumed.

username=string Optional Username for which to list the forwarding. If omitted, all
forwardings are listed. Maximum length of string is
32 bytes. The string can not contain wild cards.

The username parameter can appear in the command at most once. If the username
parameter is omitted and rooted=1 is specified, then all forwardings will be returned.
Note that username lookups are done in a case-insensitive manner.

An example command to list all forwardings starting with the letter d is shown
below:

command=list_forward&username=d&rooted=1&pformat=lfwd.txt&
on_success=lfwd_success.txt&on_error=lfwd_error.txt

A sample formatting file is shown in Example 4–1. This is the formatting file used by
the interactive, command line management utility.

Example 4–1 list_forward formatting file

%none{No forwardings exist}
%first{Username Forwarding address}
%first{--}
%fwd_from{%-32s} %fwd_to

Table 4–10 General substitution strings

Substitution string Type Format Description

%last string %s Text string to display if this is the last formatting pass.

%none string %s Text string to display if there is no information to format.

%first string %s Text string to display if this is the first formatting pass.

%!first string %s Text string to display if this is not the first formatting
pass.

%!last string %s Text string to display if this is not the last formatting pass.

4–16

Web-based Management Interface
The Management CGI

Table 4–10 (Cont.) General substitution strings

Substitution string Type Format Description

%S string S Output an uppercase letter ‘‘S’’ if the previously displayed
numeric value had a non-singular value. See the text
for a description of how to output different strings
depending upon whether or not the last numeric value
was non-singular.

%s string s Output a lowercase letter ‘‘s’’ if the previously displayed
numeric value had a non-singular value. See the text
for a description of how to output different strings
depending upon whether or not the last numeric value
was non-singular.

%host string %s Display the TCP/IP domain name of the CGI server host
on which the popstore information was collected.

%image_ident string %s PMDF version number as recorded in the PMDF shared
library.

%image_link_date string %s Date and time the PMDF shared library was linked.

%time string %s Display the date and time at which the data was
collected.

The formatting strings for the %s and %S substitution strings work differently from
most substitution strings. The formatting strings specify the text to display when the
previous numeric value was non-singular. If the formatting text contains a vertical bar,
|, then the text to the left of the vertical bar is displayed when the previous numeric
value is singular while the text to the right of the vertical bar is displayed when the
previous numeric value is non-singular. For instance, the formatting instructions

Repl%s{y|ies}

generate the output Reply when the previously displayed numeric value is singular and
the Replies otherwise.

Table 4–11 list_forward command substitution strings

Substitution string Type Format Description

%fwd_from string %s Username being forwarded.

%fwd_to string %s Address to which the username is being forwarded.

4–17

Web-based Management Interface
The Management CGI

4.3.4.10 list_groups Command: list management groups

Listings of management group definitions are produced with the list_groups
command. Parameter names and associated values accepted by the command are listed
in the Table 4–12.

Table 4–12 list_groups command parameters

parameter=value Description

group=name Optional Name of the management groups, name, to list. The
name can be one to sixteen bytes long and can contain
wild card characters.

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

pformat=file-spec Required Name of the formatting file to use to format each group
definition. The recognized substitution strings for this
formatting file are listed in Tables 4–10 and 4–13.

Table 4–13 list_groups command substitution strings

Substitution string Type Format Description

%group string %s Group name.

%group_blist string %s Byte delimited representation of the group’s subgroups,
if any. If the group contains no subgroups, then a zero
length string is substituted.

%group_delimiter string %s Delimiter character used in the byte delimited
representation.

%group_list string %s Comma delimited representation of the group’s
subgroups, if any. If the group contains no subgroups,
then a zero length string is substituted.

4.3.4.11 list_users Command: list user accounts

The list_users command is used to list accounts. Note that only accounts
contained within the manager’s management group will be listed. The parameter names
and associated values accepted by the command are listed in Table 4–14.

Table 4–14 list_users command parameters

parameter=value Description

group=name Optional Restrict the listing to only accounts contained in the
specified group, name. When not specified, the group
associated with the manager generating the listing is
assumed. Wild cards are not permitted.

4–18

Web-based Management Interface
The Management CGI

Table 4–14 (Cont.) list_users command parameters

parameter=value Description

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

pformat=file-spec Required Name of the formatting file to use to format each account
listing. The recognized substitution strings for this
formatting file are listed in Tables 4–10 and 4–15.

rooted=bvalue Optional Boolean value, 0 or 1, indicating whether or not an
exact lookup is performed. When bvalue is 0, only
the entry, if any, exactly matching the username string is
returned. When bvalue is 1, then the username string
is treated as a prefix and any forwarding beginning with
the supplied username string will be returned. When not
specified, a bvalue of 0 is assumed.

username=string Optional List accounts whose username match the pattern
specified by string. string can contain wild cards.
If this parameter is omitted, then * is assumed and a
listing of all accounts is generated.

The username parameter can appear in the command at most once. If the username
parameter is omitted and rooted=1 is specified, then all accounts will be returned. Note
that username lookups are done in a case-insensitive manner.

An example command to list all accounts starting with the letter d is shown below:

command=list_users&username=d&rooted=1&pformat=lusr.txt&
on_success=lusr_success.txt&on_error=lusr_error.txt

An example formatting file is shown in Example 4–2. This is the formatting file used by
the interactive, command line management interface.

Example 4–2 list_users formatting file

%first{ Quota Message Quota used}
%first{ Username (kbytes) Count (kbytes)}
%first{ --}
%flags_manage{ |*}%username{%-32s} %quota_k{%10.2f} %message_count{%7u} %quota_used_k{%8.2f}
%last{ --}
%last{*Note: privileged users are flagged with an asterisk}

Table 4–15 list_users command substitution strings

Substitution string Type Format Description

%filename string %-s Full file specification for the profile file
representing the account.

4–19

Web-based Management Interface
The Management CGI

Table 4–15 (Cont.) list_users command substitution strings

Substitution string Type Format Description

%flags string %s Comma separated string
representation of the account’s
usage flags. Built from the words
DELETE, DISUSER, DISMAIL,
LOCKPWD, MANAGE, MIGRATED, and
PWD_ELSEWHERE.

%flags_delete string Disabled|Enabled See text.

%flags_dismail string Disabled|Enabled See text.

%flags_disuser string Disabled|Enabled See text.

%flags_lockpasswd string Disabled|Enabled See text.

%flags_manage string Disabled|Enabled See text.

%flags_migrated string Disabled|Enabled See text.

%flags_pwd_elsewhere string Disabled|Enabled See text.

%glen uint %u Length in bytes of the contents of the
group_name field.

%group_name uint %s Contents of the group_name field.

%last_billing string %s Date and time when the account was
last billed. This field is initialized to the
creation date and time for the acount
after which it is subsequently set by
site-supplied account procedures.

%last_connect string %s Date and time of last connect (i.e., date
and time when the user last connected
to the POP3 server with their POP3
client).

%last_disconnect string %s Date and time of last disconnect (i.e.,
date and time when the user last
disconnected from the POP3 server
with their POP3 client).

%last_pwd_change string %s Date and time that this user’s
password was last changed.

%message_count uint %u Count of stored messages.

%olen uint %u Length in bytes of the contents of the
owner field.

%overdraft_b uint %u Message overdraft quota in units of
bytes.

%overdraft_k
%overdraft_m
%overdraft_g

float %.2f Message overdraft quota in units of,
respectively, kbytes (_k), mbytes (_m),
or gbytes (_g).

%owner string %s Contents of the owner field.

%past_block_days uint %u Accumulated message storage for past
(i.e., deleted) messages as measured
in units of block days.

4–20

Web-based Management Interface
The Management CGI

Table 4–15 (Cont.) list_users command substitution strings

Substitution string Type Format Description

%past_block_days_remainder uint %u Accumulated round off of the past_
block_days field as measured in units
of byte minutes.

%private string %s Contents of the site-specific private
data storage field.

%quota_b uint %u Primary message storage quota in
units of bytes.

%quota_k
%quota_m
%quota_g

float %.2f Primary message storage quota in
units of, respectively, kbytes (_k),
mbytes (_m), or gbytes (_g).

%quota_used_b uint %u Storage in bytes consumed by
messages currently stored for the
account.

%quota_used_g
%quota_used_k
%quota_used_m

float %.2f Storage in kbytes (_k), mbytes (_m),
or gbytes (_g) consumed by messages
currently stored for the account.

%received_bytes uint %u Cumulative count of message bytes
stored for the account.

%received_messages uint %u Cumulative count of messages stored
for the account.

%slen uint %u Length in bytes of the contents of the
private field.

%store uint popstore|MessageStore|native See text.

%total_connect_s uint %u Total elapsed connect time expressed
in units of seconds.

%total_connect_m
%total_connect_h
%total_connect_d

float %.2f Total elapsed connect time expressed,
respectively, in units of minutes (_m),
hours (_h), or days (_d).

%total_connect_dhms string %s Total, elapsed connect time expressed
in a format showing days, hours,
minutes, and seconds: dd hh:mm:ss.

%total_connections uint %u Total number of connections made to
the account.

%ulen uint %u Length in bytes of the contents of the
username field.

%username string %s Username field.

%version uint %u Profile file version format field.

The formatting fields for the %store and %flags_ substitution strings work
differently than other substitution strings. These fields are interpreted, respectively,
as three and two strings separated by a vertical bar, |. In the case of the %store
substitution string, the first string is substituted when the account is a popstore account,
the second when it is a MessageStore account, and the third when it is a profile file
marked as being native. In the case of the %flags_ substitution strings, the first string
is that substituted when the associated flag is not set and the second string that when
the field is set. For instance, the formatting instructions

4–21

Web-based Management Interface
The Management CGI

Management privileges: %flags_manage{Disabled|Enabled}

produce the output

Management privileges: Disabled

for an account which does not have the MANAGE usage flag set. For an account with
the MANAGE usage flag set, the output would instead be

Management privileges: Enabled

4.3.4.12 modify_group Command: modify a management group definition

The modify_group command modifies a management group definition. The only
reason to modify a management group definition is to add, change, or remove the list of
subgroups contained by the group.

Parameter names and associated values accepted by the command are listed in the
Table 4–16.

Table 4–16 modify_group command parameters

parameter=value Description

group=name Required Name of the management group, name, to modify. The
name can be one to sixteen bytes long.

group_blist=blist Optional Byte delimited list of subgroups to be contained within
the group. The first byte in blist is the delimiter which
is then used to delimit each group name in the string;
e.g., |name-1|name-2|name-3. The length of the
string blist can not exceed 236 bytes.

group_list=list Optional Comma delimited list of subgroups to be contained within
the group. For instance, name-1,name-2,name-3.
Leading and trailing white space around each group
name is ignored. The length of the string blist can
not exceed 236 bytes.

log=bvalue Optional Boolean value, 0 or 1. When bvalue is 1, then a
status message will be output indicating a successful
operation. The default is bvalue=0. Note that errors
are always reported.

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

When modifying a management group, at most one of group_list or group_blist
should be specified. If neither are specified, then the group is modified such that it
contains no subgroups.

4–22

Web-based Management Interface
The Management CGI

4.3.4.13 modify_user Command: modify a user account

The modify_user command changes settings for one or more user accounts. Param-
eter names and associated values accepted by the command are listed in Table 4–17.

Table 4–17 modify_user command parameters

parameter=value Description

flag=fvalue
flag0=fvalue
flag1=fvalue
flag2=fvalue
flag3=fvalue
flag4=fvalue
flag5=fvalue

Optional Usage flags for the account. fvalue must be
one of pop, imap, dismail, nodismail,
disuser, nodisuser, lockpwd,
nolockpwd, migrated, nomigrated,
pwd_elsewhere, or nopwd_elsewhere.
The flag0, flag1, ... parameters are provided
for use in instances in HTML where the same
parameter name cannot be used more than once
in the same form.

group=name Optional Restrict the modifications to accounts contained
within the specified management group and
subgroups thereof. The group name, name, can
not contain wild card characters. This parameter
should only be used when the value supplied with
the username parameter contains wild cards.

group_name=name Optional Name of the management group, name, to move
the account to. The account can only be moved
to a group to which the manager modifying the
account has access to.

last_connect=0 Optional Resets the recorded last connect time to indicate
that no connection has yet been made.

last_disconnect=0 Optional Resets the recorded last connect time to indicate
that no connection has yet been made.

log=bvalue Optional Boolean value, 0 or 1. When bvalue is 1,
then a status message will be output indicating a
successful operation. The default is bvalue=0.
Note that errors are always reported.

message_count=count Optional Set the account’s stored message count to the
specified value, count. If the account’s current
stored message count, c_count, exceeds
this value, then the oldest c_count - count
messages are deleted.

on_error=file-spec Required Name of the formatting file to use to format the
results when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the
results when the command succeeds.

overdraft=qvalue Optional Amount of storage overdraft quota to allow the
account. qvalue is a non-negative, floating
point value.

overdraft_orig=string Optional See text.

4–23

Web-based Management Interface
The Management CGI

Table 4–17 (Cont.) modify_user command parameters

parameter=value Description

overdraft_units=qunits Optional Storage units in which the overdraft quota
qvalue is expressed. Must be one of b
(bytes), kb (kilobytes), mb (megabytes), or
gb (gigabytes). If this parameter is not specified,
storage units of kb are assumed.

owner=string Optional Name of the owner of the account. string has
a maximum length of 40 bytes.

password=string Optional The account password. string has a maximum
length of 32 bytes. A zero-length password
allows anyone to access the account.

past_block_days=value Optional Set the past block days to the specified value,
value, and clear the past block days remainder
field. value is a non-negative integer.

pre_expire=pevalue Optional Used to mark the account as pre-expired or
not. If the account is marked as pre-expired,
the last_pwd_change value is set to "No
time recorded". If the account is marked as
not pre-expired the last_pwd_changefield
is set to the current time. pevalue must be
one of dont-change, pre-expire, or
un-pre-expire.

private=string Optional Data to store in the account’s site-defined private
data area. string has a maximum length of 64
bytes.

quota=qvalue Optional Primary message storage quota for the account.
A qvalue of zero grants the account unlimited
storage quota. If the quota_units parameter
is not specified, then units of kilobytes are
assumed. qvalue is a non-negative, floating
point number.

quota_orig=string Optional See text.

quota_units=qunits Optional Storage units in which the quota qvalue
is expressed. Must be one of b (bytes), kb
(kilobytes), mb (megabytes), or gb (gigabytes).

received_bytes=rvalue Optional Cumulative count of received message bytes.
If the received_bytes parameter is not
specified, then units of kilobytes are assumed.
rvalue is a non-negative, floating point number.

received_bytes_orig=string Optional See text.

received_byte_units=runits Optional Storage units in which the received bytes
rvalue is expressed. Must be one of b
(bytes), kb (kilobytes), mb (megabytes), or
gb (gigabytes).

received_messages=mvalue Optional Cumulative count of received messages.
mvalue is a non-negative, integer.

4–24

Web-based Management Interface
The Management CGI

Table 4–17 (Cont.) modify_user command parameters

parameter=value Description

total_connect=tvalue Optional Set the total connect time to the specified
value, tvalue. If units are not specified with
the total_connect_units parameter,
units of seconds are assumed. tvalue is a
non-negative, floating point value.

total_connect_orig=string Optional See text.

total_connect_units=tunits Optional Time units in which the total connect tvalue
is expressed. Must be one of s (seconds), m
(minutes), h (hours), or d (days).

total_connections=value Optional Set the cumulative count of connections to the
value, value.

username=string Required Username of the account to modify. This string
has a maximum length of 32 bytes and can
contain wild card characters.

When multiple instances of the username parameter are provided, each of the
associated accounts are modified. When the value specified with a username parameter
contains wild card characters, the operation will be confined to any matching user names
within the management group and subgroups of the manager requesting the operation.
If a group name is also specified, then the operation will be further confined to that group
and subgroups.

One important usage model for the modify_user command involves presenting a
manager with a form whose input fields display an account’s current settings. The
manager is then free to change the values in only a few of the fields and then post
the form to the management CGI via a submit button. The posted form will, however,
carry values for every field: both those values which were and were not changed by
the manager. Thus, the CGI will set every account field. This is acceptable in those
cases where the displayed value reflects exactly the actual value stored for the account.
However, this is not the case for those values which are displayed as fixed precision,
floating point numbers. Specifically, the quota, overdraft quota, received bytes, and total
connect time fields.

Hence the parameters overdraft_orig, quota_orig, received_bytes_orig,
and total_connect_orig. The string values for these parameters should be the
original string representation of the value presented in the form along with a unit
specifier. For instance, suppose an account has a quota of 500,000 bytes and this is
displayed in a form as 0.5 megabytes (524,288 bytes). If the manager doesn’t change
the quota field, then the CGI will see a request to change the quota to 0.5 megabytes
and thus to increase the account’s quota by 24,288 bytes. To avoid this mistake, the
quota_orig parameter should be supplied:

quota_orig=0.5m

When the management CGI receives a quota_orig parameter, it compares the param-
eter value to that specified with the quota and quota_units parameters. If the two
values are identical, then the account’s quota field is not changed.

4–25

Web-based Management Interface
The Management CGI

Thus, the values of the overdraft_orig, quota_orig, received_bytes_orig,
and total_connect_orig parameters should be, respectively, representations of the
overdraft, quota, received_bytes, and total_connect values initially presented
in a form. The values should immediately be followed by a unit specifier: b (bytes), k
(kilobytes), m (megabytes), g (gigabytes), or s (seconds), m (minutes), h (hours), d (days).
For example, a HTML form might appear as

<FORM ACTION="/popstore/" METHOD="POST">
<INPUT TYPE="hidden" NAME="quota_orig" VALUE="0.5m">
<INPUT TYPE="text" NAME="quota" VALUE="0.5">
<SELECT NAME="quota_units" SIZE=1>
<OPTION>bytes<OPTION>kbytes<OPTION SELECTED>mbytes

</SELECT>
<ENDFORM>

4.3.4.14 rename_user Command: rename a user account

The rename_user command changes the username associated with an account.
No other attribute of the account is changed. Parameter names and associated values
accepted by the command are listed in Table 4–18.

Table 4–18 rename_user command parameters

parameter=value Description

log=bvalue Optional Boolean value, 0 or 1. When bvalue is 1, then a
status message will be output indicating a successful
operation. The default is bvalue=0. Note that errors
are always reported.

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

username=string Required The first instance of this parameter gives the old
username and the second instance gives the new
username. string has a maximum length of 32 bytes.

The username parameter must appear twice in the command. The first instance,
when reading the command from left to right, gives the name of the account to rename.
The second instance gives the new name to assign to the account.

As an example, consider the command

command=rename_user&username=jdoe&username=jane.doe&
success_format=rename_success.txt&error_format=rename_error.txt

which renames the account jdoe to jane.doe.

4–26

Web-based Management Interface
The Management CGI

4.3.4.15 show_counters Command: show channel counters

The show_counters command is used to display channel counters for PMDF
channels such as the popstore channel. The parameter names and associated values
accepted by the command are listed in Table 4–19.

Table 4–19 show_counters command parameters

parameter=value Description

channel=name Optional Name of the channel for which to display information If
omitted, then information on all channels is displayed.
name can contain wild card characters.

mformat=file-spec Optional Name of the formatting file to use to format each set of
channel counters. The recognized substitution strings for
this formatting file are listed in Tables 4–10 and 4–20. At
least one of mformat or pformat must be specified.

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

pformat=file-spec Optional Name of the formatting file to use to format each set of
channel counters. The recognized substitution strings for
this formatting file are listed in Tables 4–10 and 4–20. At
least one of mformat or pformat must be specified.

rooted=bvalue Optional Boolean value, 0 or 1, indicating whether or not an exact
channel name match is performed. When bvalue is
0, only the channel, if any, exactly matching the channel
name string is returned. When bvalue is 1, then
the channel name string is treated as a prefix and any
channels with names beginning with the supplied name
will be returned. When not specified, a bvalue of 0 is
assumed.

At least one of mformat and pformat must appear in the command. Both can appear in
which case the output generated by both formatting files will be included in the response.4

An example command to show channel counters for the popstore channel is shown
below:

command=show_counters&channel=popstore&pformat=counters.txt&
on_success=counters_success.txt&on_error=counters_error.txt

A sample formatting file is shown in Example 4–3.

4 The utility of specifying both mformat and pformat lies in having one format normal channel counter information
and the other format popstore message and profile counts. That then allows a command to optionally display just channel
counters or both channel counters and popstore message and profile counts. Note that counting the number of popstore
messages can be slow which is why a manager can not want to always view that information.

4–27

Web-based Management Interface
The Management CGI

Example 4–3 show_counters formatting file

%none{No matching channels found}
%first{Channel Stored messages}
%first{---}
%counter_channel{%-40s} %counter_stored_messages

4–28

Web-based Management Interface
The Management CGI

Table 4–20 show_counters command substitution strings

Substitution string Type Format Description

%counter_channel string %s The channel’s name.

%counter_delivered_messages int %d Total cumulative count of messages
processed (dequeued) by the channel.

%counter_delivered_recipients int %d Total cumulative count of message
recipients processed (dequeued) by
the channel.

%counter_delivered_volume_b
%counter_delivered_volume_k
%counter_delivered_volume_m
%counter_delivered_volume_g

float %.2f Total cumulative count of message
volume processed (dequeued) by the
channel as measured in bytes (_b),
kbytes (_k), mbytes (_m), and gbytes
(_g).

%counter_received_messages int %d Total cumulative count of messages
sent to the channel (messages
enqueued to the channel).

%counter_received_recipients int %d Total cumulative count of message
recipients sent to the channel
(recipients enqueued to the channel).

%counter_received_volume_b
%counter_received_volume_k
%counter_received_volume_m
%counter_received_volume_g

float %.2f Total cumulative count of message
volume sent to the channel (enqueued
to the channel) as measured in bytes
(_b), kbytes (_k), mbytes (_m), and
gbytes (_g).

%counter_stored_message_files uint %u Count of message files currently stored
in the popstore.

%counter_stored_messages int %d Count of messages currently enqueued
(sent) to the channel.

%counter_stored_profile_files uint %u Count of popstore user accounts
(profile files).

%counter_stored_recipients int %d Count of recipients currently enqueued
to the channel.

%counter_submitted_messages int %d Total cumulative count of messages
sent by the channel (enqueued by the
channel).

%counter_submitted_recipients int %d Total cumulative count of message
recipients sent to by the channel
(enqueued to by the channel).

%counter_submitted_volume_b
%counter_submitted_volume_k
%counter_submitted_volume_m
%counter_submitted_volume_g

float %.2f Total cumulative count of message
volume sent by the channel (enqueued
by the channel) as measured in bytes
(_b), kbytes (_k), mbytes (_m), and
gbytes (_g).

4–29

Web-based Management Interface
The Management CGI

4.3.4.16 show_message Command: show a user’s message

The show_message command is used to display a message stored in the popstore.
The message to display is identified by its file name as given by the %msg_filename
substitution string of the show_user command. Note that the message to be displayed is
first checked to ensure that at least on of its recipients are in the manager’s management
group.

The parameter names and associated values accepted by the command are listed in
Table 4–21.

Table 4–21 show_message command parameters

parameter=value Description

filename=file-spec Required File name for the message file to display. Note that this
is not a full file path but rather a path relative to the
popstore message file directory tree.

mformat=file-spec Required Name of the formatting file to use to format the message.
The recognized substitution strings for this formatting file
are listed in Table 4–10 and Table 4–22.

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

An example command to show the message file A0123450 is shown below:

command=show_message&filename=A0123450&mformat=msg.txt&
on_success=msg_success.txt&on_error=msg_error.txt

A sample formatting file is shown in Example 4–4.

Example 4–4 show_message formatting file

Recipient count: %msg_rcpt_count
Reference count: %msg_ref_count

From: %msg_env_from
To: %msg_env_to

%msg_content

Table 4–22 show_message command substitution strings

Substitution string Type Format Description

%msg_channel string %s Name of the channel which delivered the message to the
popstore.

4–30

Web-based Management Interface
The Management CGI

Table 4–22 (Cont.) show_message command substitution strings

Substitution string Type Format Description

%msg_content string %s Content of the message (both RFC822 message header
and body). Each line of the message content will be
formatted using the formatting string and terminated with a
CRLF pair.

%msg_created string %s Date and time at which the message file was created.

%msg_env_from string %s Message’s envelope From: address.

%msg_env_id string %s Message’s envelope identifier.

%msg_env_to string %s Message’s envelope To: address. When there is more
than one envelope To: address, each address will listed
with comma separators.

%msg_filename string %-s Name of the file containing this message.

%msg_header string %s The message’s RFC822 header. Each line of the message
header will be formatted using the formatting string and
terminated with a CRLF pair.

%msg_id string %s Content of the message’s RFC822 Message-id: header
field.

%msg_rcpt_count uint %u Number of popstore users which were recipients of this
message.

%msg_ref_count uint %u Number of popstore users which currently have references
to this message. This is the number of popstore users
who have not deleted their copy of this message.

%msg_size_b uint %u Size of the message content as measured in bytes.

%msg_size_k
%msg_size_m
%msg_size_b

float %.2f Size of the message content as measured, respectively, in
kbytes (_k), mbytes (_m), or gbytes (_g).

%msg_version uint %u Value of the message file’s format version field.

4.3.4.17 show_user Command: show a user account

The show_user command is used to display information about a given user.
The parameter names and associated values accepted by the command are listed in
Table 4–23.

Table 4–23 show_user command parameters

parameter=value Description

mformat=file-spec Optional Name of the formatting file to use to format each
message reference in the account’s list of stored
messages. The recognized substitution strings for
this formatting file are listed in Tables 4–10 and 4–24.

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

4–31

Web-based Management Interface
The Management CGI

Table 4–23 (Cont.) show_user command parameters

parameter=value Description

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

pformat=file-spec Required Name of the formatting file to use to format each account
listing. The recognized substitution strings for this
formatting file are listed in Table 4–10 and 4–15.

username=string Required Name of the account to display. string has a
maximum length of 32 bytes. Wild cards are not
permitted.

The username parameter can appear more than once in which case information for
each account will be displayed.

An example command to display the jdoe account is shown below:

command=show_user&username=jdoe&pformat=susr.txt&mformat=smsg.txt
on_success=susr_success.txt&on_error=susr_error.txt

Sample formatting files are shown in Example 4–5 and Example 4–6. These are the
formatting files used by the interactive command line management utility.

Example 4–5 show_users account formatting file

Username: %username
Owner: %owner
Group: %group_name
Store Type: %store
Usage flags: %flags
Site-defined: %private

Last pwd change: %last_pwd_change
Last connect: %last_connect
Last disconnect: %last_disconnect
Total connect time: %total_connect_dhms
Total connections: %total_connections
Past block days: %past_block_days
Last billing: %last_billing

Message count: %message_count{%10u} (%received_messages total message%s received
Quota used: %quota_used_k{%10.2f} Kbyte%s
Primary quota: %quota_k{%10.2f} Kbyte%s
Overdraft quota: %overdraft_k{%10.2f} Kbyte%s

4–32

Web-based Management Interface
The Management CGI

Example 4–6 show_users message list formatting file

%none{User has no stored messages}
%msgr_id{%4u}. Filename: %msgr_filename

Received: %msgr_created
Size: %msgr_size_k K
Flags: %msgr_flags

The formatting field for the %msgr_flags_read substitution string works differ-
ently from other substitution strings. The formatting field is interpreted as two strings
separated by a vertical bar, |. The first string is that substituted when the message
read flag is not set and the second string that when the field is set. For instance, the
formatting instructions

Message read: %msgr_flags_read{No|Yes}

produces the output

Message read: No

for a message not marked as read. For a message which is marked as having been read,
the output would instead be

Message read: Yes

Table 4–24 show_user mformat command substitution strings

Substitution string Type Format Description

%msgr_created string %s Creation date and time for the referenced message file.

%msgr_filename string %-s Name of the message file containing the referenced
message.

%msgr_flags string %s Comma separated string representation of flags associated
with the state of the message. Presently the only flag is
READ which appears when the message is marked as
having been read.

%msgr_flags_read string Unread|Read See text.

%msgr_id uint32 %u Index of the message in the list of stored messages. The
first message has an index of 1, the second an index of
2, etc.

%msgr_size_b uint32 %u Size in bytes of the message content.

%msgr_size_k
%msgr_size_m
%msgr_size_g

float %.2f Size of the message content as measured, respectively, in
kbytes (_k), mbytes (_m), or gbytes (_g).

%msgr_uidl string %-s UIDL for this instance of the message.

4–33

Web-based Management Interface
The Management CGI

4.3.4.18 unforward Command: remove a forwarding address

Previously established forwarding addresses can be undone with the unforward
command. Parameter names and associated values accepted by the command are listed
in Table 4–25.

Table 4–25 unforward command parameters

parameter=value Description

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

username=string Required Username for which to remove the forwarding. string
has a maximum length of 32 bytes and can not contain
wild cards.

When multiple instances of the username parameter are provided, the forwardings
for each of the specified usernames are removed.

As an example, consider the command which removes the forwardings for the two
usernames sue and tom:

command=unforward&username=sue&username=tom&
on_success=unforward_success.txt&on_error=unforward_error.txt

4–34

5 Web-based User Interface

The popstore and MessageStore provides a web-based user interface. This interface
is intended to provide a simple, safe mechanism with which popstore and MessageStore
users can change their password and see basic usage information about their account.
Primitive viewing of stored messages is also permitted (for popstore accounts only).

So as to maintain a solid brick wall between the web-based management interface
and this web-based user interface, separate HTTP CGIs are used for each. Indeed, the
web-based user interface takes the form of two distinct CGIs: one for showing account
information and stored messages and another for changing passwords. This simplifies
using the HTTP_ACCESS mapping table to restrict access: different sets of access controls
can be placed on the management, user password, and user account information CGIs.
Despite being separate CGIs, however, the HTTP commands used for the three interfaces
are identical in the sense that the user interface commands are a small, tightly controlled
subset of the management interface commands.

This chapter provides a description of both the web-based user interface as well as
the HTTP CGIs supporting that interface.

Sites which are familiar with the Hypertext Markup Language (HTML), can
customize the interface or redesign it entirely. This is where an understanding of the
HTTP CGI used by the popstore and MessageStore is needed. See Section 5.2 for details.

5.1 Using the User Interface
Before attempting to use the web-based user interface, you must first configure the

PMDF Dispatcher and HTTP server. This is accomplished by running the Dispatcher
configuration utility as described in the PMDF Installation Guide. If you have not
configured the Dispatcher, do so now.

In order to use the user interface, you will need a web client which supports HTML
tables. The user CGIs are accessed via the URLs

http://host:7633/msps_user/

and

http://host:7633/chng_pwd/

The first URL accesses the user information CGI and the second the password changing
CGI.

In place of host above, use the actual IP host name of the system running the PMDF
HTTP server. If you chose to run the PMDF HTTP server on a port other than port 7633,
then specify that port number in place of 7633 in the above URL.

5–1

Web-based User Interface
Using the User Interface

If you are met with an ‘‘Access Forbidden’’ message when you attempt to access the
above URL, then you need to check:

1. that you have configured the PMDF Dispatcher and HTTP server;

2. that you have an HTTP_ACCESS mapping table in your PMDF mapping file;

3. that if you created or changed the HTTP_ACCESS mapping table that you have
recompiled your configuration if using a compiled configuration; and,

4. that you have started the PMDF Dispatcher and that it is running.

Note further that if you change the HTTP_ACCESS mapping table, then you will need to
restart the HTTP server in order for those changes to take effect.

When a user attempts to access either URL, their web client will prompt them for
their popstore/MessageStore account name and password. The user must supply the
correct name and password of a popstore or MessageStore account. 1

Note that the password change page can be used by system managers to change a
password on behalf of a user, as well as used by users to change their own passwords.
When users are changing their own passwords, the user must specify their own username
and existing password when prompted. System managers must specify the username and
password of either the pmdf account, or the system account (root on Unix, SYSTEM on
OpenVMS, or Administrator on Windows).

5.1.1 Restricting Access
Users of the popstore/MessageStore must be able to supply the correct name and

password for a popstore/MessageStore account. You can impose further restrictions
through the use of an HTTP_ACCESS mapping table. For instance, you can deny
access to the user interfaces from all external IP addresses. See the description of the
HTTP_ACCESS mapping table in the PMDF System Manager’s Guide for directions on
how to use the HTTP_ACCESS mapping table.

5.1.2 Location of the User Interface
The GIF, HTML, and formatting files which comprise the web-based management

interface are located in the /pmdf/www/msps_user/ and /pmdf/www/chng_pwd/
directory trees on UNIX and NT systems, and the PMDF_ROOT:[WWW.MSPS_USER]
and PMDF_ROOT:[WWW.CHNG_PWD] directories on OpenVMS systems. Sites wanting to
customize the interface or develop their own interface can use these files as a starting
point. However, do not make changes to the supplied files themselves: any changes will

1 Presently, the popstore/MessageStore CGIs use the HTTP Basic Authentication scheme. This is currently the only
standardized HTTP authentication scheme. Unfortunately, with this authentication scheme, the account name and plain
text password are transmitted in the clear from the client to the server.

5–2

Web-based User Interface
Using the User Interface

be lost when you upgrade PMDF. Instead, make copies of the files and access them via
the appropriate URL; e.g.,

http://host:7633/msps_user/x-main-page.html

Details on developing your own formatting files are given in Section 5.2.

5.2 The User CGIs
In order to customize the management interface, it is first necessary to understand

how the CGIs process HTTP requests and formulate HTTP responses. This is described
in Section 4.3.1 and Section 4.3.2. Section 5.2.1 describes the individual commands which
can be embedded in those requests.

5.2.1 User Interface Commands
When a command is sent to the user interface, the command is applied to the

popstore/MessageStore account whose name is given with the HTTP authentication.
That is, the HTTP command carries with it a popstore/MessageStore username and
password. If the username and password are valid, then the command is applied to
the popstore/MessageStore account denoted by the username.

As described in Section 4.3.1, commands take the general form

command=command-name¶meter-name-1=parameter-value-1&
...¶meter-name-N=parameter-value-N

In the above, command-name gives the name of the command to execute. It is then
followed by two or more parameters which provide supplemental information relevant to
the operation to be performed. When parameter names are duplicated in the command,
only the right most instance of the parameter=value pair is honored.

For those parameters whose values are file specifications, the file specifications must
be relative file paths specifying files in the /pmdf/www/msps_user/ or
/pmdf/www/chng_pwd/ directory trees on UNIX and NT systems, or the directories
PMDF_ROOT:[WWW.MSPS_USER] and PMDF_ROOT:[WWW.CHNG_PWD] on OpenVMS sys-
tems.

The valid command names are listed in the table below and described in the following
sections.

Command name Section Description

delete 5.2.1.1 Delete a message stored for the user (popstore only)

set_pwd 5.2.1.3 Change the password for the user

show 5.2.1.2 Show a message stored for the user (popstore only)

5–3

Web-based User Interface
The User CGIs

Command name Section Description

show_user 5.2.1.4 Show settings for the user account

5.2.1.1 delete command: delete a stored message (popstore only)

A specific message stored for a popstore user account can be deleted with the delete
command. The message to be deleted is identified by means of a UIDL as returned by
the %msgr_uidl substitution string of the show_user command.

This command must be presented to the user information CGI via the URL

http://host:7633/msps_user/

Parameter names and associated values accepted by the command are listed in Ta-
ble 5–1.

Table 5–1 delete Command Parameters

parameter=value Description

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

log=bvalue Optional Boolean value, 0 or 1. When bvalue is 1, then a
status message will be output indicating a successful
operation. The default is bvalue=0. Note that errors
are always reported.

uidl=string Required UIDL for this user’s instance of the message to be
deleted.

As an example, consider the following command which deletes the message with
UIDL !!!!01234:

command=delete&uidl=!!!!01234&
on_success=delmsg_success.txt&
on_error=delmsg_error.txt

5.2.1.2 show command: show a stored message (popstore only)

The show command is used to display a message stored in the popstore. The message
to display is identified by its file name as given by the %msg_filename substitution string
of the show_user command.

This command must be presented to the user information CGI which uses the URL

http://host:7633/msps_user/

The parameter names and associated values accepted by the command are listed in
Table 5–2.

5–4

Web-based User Interface
The User CGIs

Table 5–2 show Command Parameters

parameter=value Description

filename=file-spec Required File name for the message file to display. Note that this
is not a full file path but rather a path relative to the
popstore message file directory tree. A user can only
display a message file referenced in his or her profile’s
list of stored messages. As such, user’s cannot try
displaying random file names in the hopes of seeing
another user’s mail.

trim=bvalue Optional Boolean value, 0 or 1. Only honored when part is
also specified. When bvalue is 1 header trimming will
be applied. When bvalue is 0, no header trimming is
applied. The default is bvalue=1.

mformat=file-spec Required Name of the formatting file to use to format the message.
The recognized substitution strings for this formatting file
are listed in Table 4–10 and Table 4–22.

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

part=bvalue Optional Non-negative integer value indicating which message
part to display. To display the entire message, specify
part=0. The first message part is part=1, the second
part=2, and so on.

An example command to show the message file A0123450 is shown below:

command=show&filename=A0123450&mformat=msg.txt&
on_success=msg_success.txt&on_error=msg_error.txt

A sample formatting file is shown in Example 5–1.

Example 5–1 show_message Formatting File

%none{Message could not be accessed or no longer exists}

<PRE>
%msg_content
</PRE>

When the part parameter is specified, the message will be interpreted as a MIME-
formatted message and displayed all at once, but divided into parts. Binary parts will be
represented by hypertext links which can be clicked on to download the associated data.
Header trimming will be applied to the message’s outer header as well as any internal
headers. To suppress this trimming, specify trim=0 in the command. Header trimming
uses a default header trimming option file. Sites can supply their own header trimming
option file if they want. See Section 5.2.2 for further details.

5–5

Web-based User Interface
The User CGIs

5.2.1.3 set_pwd command: change the user’s password

The set_pwd command is used to change a user’s password. This command must
be presented to the password changing CGI which uses the URL

http://host:7633/chng_pwd/

The parameter names and associated values accepted by the command are listed in
Table 5–3.

Table 5–3 set_pwd Command Parameters

parameter=value Description

newp=string1 Required New password to use for the account. Length of this
string can not exceed a length of 32 bytes.

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

username=string3 Required The name of the account whose password to change.
Length of this string can not exceed a length of 32 bytes.

verp=string2 Required Verification copy of the new password to use for the
account. The value of string2 must be identical to
the value of string1 given by the newp parameter.
Length of this string can not exceed a length of 32 bytes.

An example command is shown below:

command=set_pwd&username=myacct&newp=SeCReT&verp=SeCReT&
on_success=pwd_success.txt&on_error=pwd_error.txt

5.2.1.4 show_user command: show information about the user’s account

The show_user command is used to display information about a given user. The
parameter names and associated values accepted by the command are listed in Table 5–4.

This command must be presented to the user information CGI via the URL

http://host:7633/msps_user/

Table 5–4 show_user Command Parameters

parameter=value Description

mformat=file-spec Optional (popstore only) Name of the formatting file to use to
format each message reference in the account’s list of
stored messages. The recognized substitution strings for
this formatting file are listed in Tables 4–10 and 4–24.

on_error=file-spec Required Name of the formatting file to use to format the results
when the command fails.

5–6

Web-based User Interface
The User CGIs

Table 5–4 (Cont.) show_user Command Parameters

parameter=value Description

on_success=file-spec Required Name of the formatting file to use to format the results
when the command succeeds.

pformat=file-spec Required Name of the formatting file to use to format each account
listing. The recognized substitution strings for this
formatting file are listed in Table 4–10 and 4–15.

An example command is shown below:

command=show_user&pformat=susr.txt&mformat=smsg.txt
on_success=susr_success.txt&on_error=susr_error.txt

Sample formatting files are shown in Example 5–2 and Example 5–3. These are the
formatting files used by the interactive command line management utility.

Example 5–2 show_user Account Formatting File

Username: %username
Owner: %owner
Group: %group_name
Store Type: %store
Usage flags: %flags
Site-defined: %private

Last pwd change: %last_pwd_change
Last connect: %last_connect
Last disconnect: %last_disconnect
Total connect time: %total_connect_dhms
Total connections: %total_connections
Past block days: %past_block_days
Last billing: %last_billing

Message count: %message_count{%10u} (popstore only)
Quota used: %quota_used_k{%10.2f} Kbyte%s
Primary quota: %quota_k{%10.2f} Kbyte%s
Overdraft quota: %overdraft_k{%10.2f} Kbyte%s

Example 5–3 show_user Message List Formatting File (popstore only)

%none{User has no stored messages}
%msgr_id{%4u}. Filename: %msgr_filename

Received: %msgr_created
Size: %msgr_size_k K
Flags: %msgr_flags

5–7

Web-based User Interface
The User CGIs

5.2.2 Header trimming of displayed messages
Header trimming is applied to the displayed message’s header when the part

parameter is supplied to the show command. The user CGI uses a default header
trimming option file, popstore_cgi_headers.opt, file located in the PMDF table
directory. To use different options, create a new header trimming option file named
popstore_site_cgi_headers.opt. Place that file in the PMDF_table directory. (On
UNIX systems, ensure that the file is owned by the PMDF account.) When that file
is detected, it will be used instead of the Process Software-supplied file. The Process
Software-supplied file will be ignored and only those options specified in the site-supplied
file used.

See the PMDF System Manager’s Guide for information on the use and format of
header trimming option files.

5–8

6 UNIX & Windows Command Line Management Utility

The command line management utility is an interactive, command oriented interface
for managing popstore and MessageStore accounts. Users with operating system
privileges as well as users with privileged popstore or MessageStore accounts can use
the utility. Also, the utility can be used as a report generator as described briefly in
Section 6.15.2 and more completely in Chapter 9.

The utility is invoked with the command

pmdf popstore

or

pmdf msgstore

Use the exit or quit commands to exit the utility. Table Table 6–1 summarizes the
recognized commands; see Section 6.18 for complete command descriptions.

Table 6–1 Summary of command line management commands (UNIX & NT)

Command Description

add Add a new user account
copy Copy a user account (popstore only)
delete Delete a user account or messages
exit Exit the utility
forward Establish a forwarding address
group Manipulate management groups
login Enable privileges by ‘‘logging in’’ to a privileged popstore/msgstore account
logout Disable privileges
modify Modify a user account
noforward Remove a forwarding address
quit Exit the utility
rename Rename a user’s account (popstore only)
set Select user domain or set units used for expression of storage and time
show Display information about user accounts, messages, or forwardings

On UNIX, the command recall and editing capabilities are provided by the open
source software libedit (also known as editline). By default, the standard "vi" key
bindings are defined. You can change various elements of the editing environment, such
as using "Emacs" key bindings instead of "vi", by creating in your home directory a file
called .editrc. See the editrc manpage for more information.

6–1

UNIX & Windows Command Line Management Utility
Basic operation

6.1 Basic operation
Popstore and MessageStore accounts are managed using four basic commands: add,

delete, modify, and show. These four commands add accounts, remove accounts,
modify accounts, and display information about accounts. For popstore accounts, two
additional commands, copy and rename, can be used to create new accounts which look
like existing accounts and to change the name of an existing account.

When an account is created with the add command, you can also specify various
account settings such as the account password, the name of the account’s owner, and
storage quotas. Once the account is created, you can subsequently change these settings
with the modify command.

Some of the account settings involve the use of values expressed in units of storage
or time. By default, the units of storage are kbytes (1024 bytes), and the units of time
are days. Within a session with the utility, these units can be changed with the set
command; see the command descriptions in Section 6.18 for details.

6.2 Adding new accounts
New accounts can be added in one of two ways: by creating a new account or (for

popstore only) copying an existing account. The former is done with the add command
while the latter with the copy command. Regardless of the method chosen, when a
new account is added a name and password to associate with the account should be
chosen. This is the name and password which the owner of the account must use in
order to access messages stored for the account. Specify -flags=pwd_elsewhere to
create the account with an externally stored password (e.g., an /etc/passwd password).
Optionally, account quotas and an ownership field identifying the owner of the account
can also be specified. Quotas not specified will be copied from the default account.

See Section 1.3.1 for a discussion of the name space allowed for account usernames.

For instance, suppose that Jane Doe is to be given the account jdoe with the
password SecRet. The command to add the account would then be

popstore> add jdoe -password=SecRet -owner="Jane Doe"
popstore> show jdoe
Username: jdoe
Owner: Jane Doe
Group:
Store Type: popstore
Usage flags:
Site-defined:

Last pwd change: Fri Nov 15 12:02:22 2012
Last connect: No time recorded
Last disconnect: No time recorded
Total connect time: 0 00:00:00
Total connections: 0
Past block days: 0
Last billing: Fri Nov 15 12:02:22 2012

6–2

UNIX & Windows Command Line Management Utility
Adding new accounts

Message count: 1 (1 total messages received)
Quota used: 0.71 Kbytes
Quota: 2048.00 Kbytes
Overdraft: 20.00 Kbytes

Note that POP passwords are case sensitive.

It is important to note that when the popstore was configured, default account
settings were specified. These settings are kept in the form of a default account named
default. Whenever an account is added with the add command, the popstore actually
copies the default account to the new account thereby using the default account’s
settings as the basis for the new account.

Copying an existing popstore account with the copy command also creates a new
account. In the example below, the new account doe is created by copying the account
ariel:

popstore> show ariel

Username: ariel
Owner: Tempest Ariel
Group:
Store Type: popstore
Usage flags:
Site-defined:

Last pwd change: Fri Oct 18 09:12:23 2012
Last connect: Fri Nov 15 16:09:38 2012
Last disconnect: Fri Nov 15 16:09:39 2012
Total connect time: 0 00:10:03
Total connections: 145
Past block days: 123953
Last billing: Fri Oct 18 09:12:23 2012

Message count: 0 (189 total messages received)
Quota used: 0.00 Kbytes
Quota: 102400.00 Kbytes
Overdraft: 10.00 Kbytes

popstore> copy ariel doe -password=secret -owner="John Doe"
popstore> show doe

Username: doe
Owner: John Doe
Group:
Store Type: popstore
Usage flags:
Site-defined:

Last pwd change: Fri Nov 15 13:23:18 2012
Last connect: No time recorded
Last disconnect: No time recorded
Total connect time: 0 00:00:00
Total connections: 0
Past block days: 0
Last billing: Fri Nov 15 13:23:18 2012

6–3

UNIX & Windows Command Line Management Utility
Adding new accounts

Message count: 0 (0 total messages received)
Quota used: 0.00 Kbytes
Quota: 102400.00 Kbytes
Overdraft: 10.00 Kbytes

Note that when an account is copied to make a new account, the new account does not
inherit the messages or accounting information of the original account.

Note: Your PMDF-POPSTORE license controls the number of popstore user accounts which you
can have at any one time. When you reach this limit, you will not be allowed to create
additional accounts without first deleting some accounts or obtaining a new license with
an increased limit. Sites without a PMDF-POPSTORE license are allowed to use the
popstore and create up to ten user accounts. This limit does not include the default
account. Use the show -count_users command to display the number of currently
defined accounts as well as the limit allowed by your license.

6.3 Listing accounts
Verbose and brief listings of accounts can be generated with the show command.

When no username parameter is supplied, all accounts are listed:

popstore> show -brief
Quota Message Quota used

Username (kbytes) Count (kbytes)
--
crw 33333.00 0 0.00
david 102400.00 0 0.00
*dan 33333.00 0 0.00
default 1024.00 0 0.00
kevin 40960.00 0 0.00
kristin 10240.00 0 0.00
pekie 40960.00 0 0.00
--
*Note: privileged users are flagged with an asterisk

In the above output, an asterisk is displayed by each account which has the management
privilege. The -brief switch, causes a brief listing to be generated. Omitting that switch
generates a much more detailed listing.

When a username parameter is specified, wild cards can be used:

popstore> show -brief d*
Quota Message Quota used

Username (kbytes) Count (kbytes)
--
david 102400.00 0 0.00
*dan 33333.00 0 0.00
default 1024.00 0 0.00
--
*Note: privileged users are flagged with an asterisk

As discussed in Section 6.15.2, the -format switch of the show command can be
used to generate custom listings. Section 6.11 describes how to use the -forwardings
switch to display mail forwardings.

6–4

UNIX & Windows Command Line Management Utility
Listing accounts

6.4 Modifying accounts
The modify command can be used to change fields associated with an account. For

instance, to reset accounting information, change a password, or to increase or decrease
an account quota. In the following example, the password for the account jdoe is changed
to MYDUCKY:

popstore> modify jdoe -password=MYDUCKY

The modify command does not accept wild cards and the username parameter must
be specified.

Note that the last connect and disconnect time accounting fields can only be reset
to signify a ‘‘never connected’’ state. They can not be changed to an arbitrary time. Also
note that when the message count is set to zero, any messages stored for the account
are deleted. If the count is reduced but not set to zero then starting with the oldest
message, messages are deleted until the desired count is reached. For instance, if the
current message count is 5 messages and the count is set to 2 messages, then messages
1, 2, and 3 will be deleted.

6.5 Removing accounts
Accounts are removed with the delete command. By default, any messages stored

for the account are deleted silently. Use the -return switch to return as undelivered
any unread messages.

In the example below, the delete command is used to delete the jdoe account.

popstore> show -brief jdoe
Quota Message Quota used

Username (kbytes) Count (kbytes)
--
jdoe 1000.00 2 6.42
--
*Note: privileged users are flagged with an asterisk

popstore> delete -return jdoe
popstore> show -brief jdoe
%POPMGR-E-CANTSHOW, cannot show data

popstore error #68: No such user

To delete more than one account, issue multiple delete commands, or use wild
cards in the username parameter, or use the -group switch. For instance, to delete all
accounts in the class97 group, issue the command

popstore> delete -group=class97

6–5

UNIX & Windows Command Line Management Utility
Changing new account defaults

6.6 Changing new account defaults
Recall that when a new account is created with the add command, the default

account is used as a source of defaults for the new account. Thus, by changing the
settings for the default account with the modify command, you change the defaults
which will be applied to subsequently created accounts. For instance, to change the
default account quota to 100 kbytes with an overdraft quota of 10 kbytes, you would
modify the default account accordingly:

popstore> modify default -quota=100 -overdraft=10

Note that the settings for the default account only applies to new accounts created
with the add command. The default account settings do not apply to all existing accounts.

6.7 Bulk loading accounts
To create many accounts at once, use the run command. Before using that command,

first create a text file containing commands with one command per line. For instance,

cat a.com
add jdoe -owner "John Doe" -password 133458
add csmith -owner "Cathy Smith" -password 244587
add rbrown -owner "Randy Brown" -password 569214
...
#

Then use the run command to execute the commands from the file:

pmdf popstore
popstore> run -log a.com
popstore> add bjames -owner "Bob Jones" -password 133458
popstore> add csmith -owner "Cathy Smith" -password 244587
popstore> add rbrown -owner "Randy Brown" -password 569214
popstore> ...
popstore> quit
#

Each command will be read from the specified file and executed. By default, if an error
occurs, it will be reported and processing of the file will be aborted. Use the -ignore
switch to cause processing to continue despite any errors which might occur.

6.8 Returning or deleting messages
A user’s stored messages can be deleted with the delete -messages command.

When the -return switch is also specified, any unread messages are returned as unread
to their sender. For instance, to delete the messages for the account jdoe, returning any
unread messages, use the command

popstore> delete -messages -return jdoe

6–6

UNIX & Windows Command Line Management Utility
Returning or deleting messages

Note that the -return switch can also be used with the delete command as
described in Section 6.5.

6.9 Account quotas
Account quotas are used to control how much mail a user can store. Each account

has a primary quota and an overdraft quota which are established when the account is
created and can be changed with the modify command. An account can not receive a new
message if either the account’s present storage exceeds the account’s quota, or storage
of the message would cause the account to exceed the sum of its quota and overdraft
quota.1

Quotas are set and changed with the -quota and -overdraft switches of the add,
copy, and modify commands. An account can be granted unlimited quota with the
-noquota switch. By default, quotas are expressed in units of kbytes (1024 bytes).
Alternate units can be selected with the set storage_units command.

6.10 Blocking access, blocking new mail, and locking passwords
There are three account flags which can be set to influence account access:

dismail
The dismail flag is used to prevent an account from receiving new mail messages. When
this flag is set for an account, new messages are rejected and returned to their sender.
The account owner can, however, read any existing messages they might have unless the
account is also flagged with the disuser flag.

disuser
The disuser flag is used to deny access to an account. The account can, however,
continue to receive new messages unless it is either over quota or also flagged with the
dismail flag.

lockpwd
The lockpwd flag prevents users from changing the account’s password. The password
can only be changed by a user with the management privilege or operating system
privileges.

These flags are set on an account with the modify -flags command. A flag can
be negated by prefixing the name with no; for example, nodismail. In the following
example, the jdoe account is marked dismail and disuser:

popstore> modify jdoe -flags=(dismail,disuser)

To undo those settings, issue the command:

popstore> modify jdoe -flags=(nodismail,nodisuser)

1 See Section 1.3.3 for a discussion of the rationale behind the use of an overdraft quota.

6–7

UNIX & Windows Command Line Management Utility
Forwarding mail

6.11 Forwarding mail
Mail to the popstore can automatically be forwarded to other addresses. The

addresses can be within the popstore or outside of it; the forwarding can be for actual
popstore accounts or for non-existent accounts.

For example, suppose the host name associated with the popstore is naples.example.com.
Suppose further that the popstore user jdoe would like her mail forwarded to the ad-
dress jane.doe@naples.example.com. This forwarding would be accomplished with the
forward command:

popstore> forward jdoe jane.doe@naples.example.com
popstore> show -forwardings
Username Forwarding address

jdoe jane.doe@naples.example.com

To forward mail for jdoe to herself and her assistant aclarke@naples.example.com,
you would use the command

popstore> forward jdoe "jdoe,aclarke@naples.example.com"
popstore> show -forwardings
Username Forwarding address

jdoe jdoe@naples.example.com, aclarke@naples.example.com

Use the noforward command to remove a forwarding address:

popstore> noforward jdoe

As mentioned earlier, forwarding can be established for non-existent accounts. For
instance, suppose that the address list@naples.example.com is to be forwarded to
a PMDF mailing list list@example.com. This is accomplished with the forward
command:

popstore> forward list list@example.com

Note that currently stored messages are not affected by a forwarding address. Only
new messages are affected: new incoming messages will be routed to the forwarding
address and not stored. Note also that the presence of a forwarding address does not
prevent a user from reading any stored messages which they might have.

6.12 Management groups
Management groups are manipulated with the group command. This command has

four variants:

group -add Add a new management group
group -delete Delete a management group
group -list List one or more management groups and any subgroups
group -modify Modify an existing management group

It is important to note that use of management groups is not required by the

6–8

UNIX & Windows Command Line Management Utility
Management groups

popstore. Moreover, when you place an account into a management group, that group is
automatically created if it was not already defined. As such, you only need to use the
group command to establish group-subgroup relationships and to delete groups which
are no longer being used.

Use the group -add command to add a new management group. If the group already
exists, then an error will ensue and the existing group left unchanged. In that case, use
the group -modify command to modify the existing group.

To add the management groups class_97, class_98, class_99, and class_00 use
the commands

popstore> group -add class_97
popstore> group -add class_98
popstore> group -add class_99
popstore> group -add class_00

To then make a new group named students containing these four groups, issue the
command

popstore> group -add students class_97,class_98,class_99,class_00

The results can then be listed with the group -list command

popstore> group -list students
Group name: Subgroups contained within

--
students: class_97, class_98, class_99, class_00
class_97:
class_98:
class_99:
class_00:

popstore>

After the Class of 2010 has graduated and left and the Class of 2014 arrives, the
class_10 group can be removed, the class_14 group added, and the students group
modified as follows

popstore> group -add class_14
popstore> group -modify students class_11,class_12,class_13,class_14
popstore> group -delete class_10
popstore> group -list students

Group name: Subgroups contained within
--

students: class_11, class_12, class_13, class_14
class_11:
class_12:
class_13:
class_14:

popstore>

Note that the group -delete command deletes just the specified group. It will
recursively delete the subgroups contained within the specified group only when -recur
is specified. Also, it does not delete the accounts contained within the group; to do that,
use the delete -group=group_name * command; e.g.,

popstore> delete -group=class_97 -return -log -noconfirm *

6–9

UNIX & Windows Command Line Management Utility
Management groups

It is also important to note that a group can contain only a limited number of
subgroups as immediate subgroups. Those subgroups can, of course, contain other
subgroups. The limit on the number of immediate subgroups of a given group is controlled
by the length in bytes of the names of each of those immediate subgroups. If there are
to be N immediate subgroups and their combined name lengths are L, then N+L must
be less than 236. If a group needs to contain more subgroups than allowed by that limit,
nest its definition an extra level. For example,

popstore> group -add blah_x blah_01,blah_02,blah_03,...,blah_29
popstore> group -add blah_y blah_30,blah_33,blah_34,...,blah_52
popstore> group -add blah blah_x,blah_y

In the above example, the names blah_01, ..., blah_52 are collectively too long to be
contained as immediate subgroups of a given group. Therefore they are split between the
two groups blah_x and blah_y. Those two groups are then made subgroups of blah.
Consequently, the group blah contains the all of the groups blah_01, ..., blah_52 as
subgroups despite the length limitation.

6.13 User domains
By default, all popstore accounts for a given installation share the same name

space. This means that if the two distinct e-mail addresses sandy@example.com and
sandy@example.org are directed to the same popstore, then e-mail to either of these
addresses will be delivered to the same user account sandy. At some sites, however, it is
useful to have distinct communities of users, each with their own name spaces. This is
achieved with the popstore2 through the use of ‘‘user domains’’. Please see Section 1.3.5
for a basic discussion of popstore user domains. This section focuses on the mechanics of
creating and managing user domains and assumes knowledge of the material presented
in Section 1.3.5.

Note that all e-mail messages for all user domains are co-mingled in the same
directory tree. That is, messages for one user domain are not stored distinct from other
user domains.

6.13.1 Enabling user domains
To enable the use of user domains, specify USER_DOMAINS=1 in the popstore option

file. See Section 3.4 for further details including an important note for sites who are
already associating more than one Internet host name with the popstore.

Note: You must not use the filter channel keyword on the popstore or MessageStore delivery
channel if USER_DOMAINS=1 is set. So doing will cause the wrong filters to be used for
users in domains other than the default domain.

2 The PMDF MessageStore does not at present support the use of user domains.

6–10

UNIX & Windows Command Line Management Utility
User domains

6.13.2 Creating a new user domain
New user domains are created with the add -domain command. For example, to

create the user domain example.org, issue the command

popstore> add -domain example.org

This will create a new sub-directory tree in the popstore profiles directory. In that sub-
directory tree, all profile files for the example.org user domain will be stored.

Issuance of the add -domain command also creates a default user account in the
new user domain. This new account will be a copy of the default account from the
default user domain.

A list of existing user domains can be obtained with the show -domains command:

popstore> show -domains
Cannonicalized domain name

default
example.org

6.13.3 Managing a user domain
When you invoke the command-line management utility, it will be set to manage

the default user domain. To manage a different user domain, you need to issue a set
domain command. This command tells the utility that all further commands will affect
the specified user domain. For instance, to manage the example.org domain, issue the
command

popstore> set domain example.org

If you are logged in to a privileged management account at the time you issue the set
domain command, then you will automatically be logged out unless the management
account was in the default user domain and not in any management group. This is a
reflection of the management policy that only privileged accounts in the default user
domain and in no management group can manage all accounts in all user domains.

Once the user domain has been selected, all subsequent commands will affect
accounts in only that user domain. The default user domain can be re-selected with
either the command set domain default or, more succinctly, set domain (no domain
name parameter). The currently selected user domain can be shown by issuing the set
command without any parameters:

popstore> set
Using the "default" user domain
...
popstore> set domain naples
popstore> set
Using the "example.org" user domain
...

6–11

UNIX & Windows Command Line Management Utility
User domains

Note that presently, no commands are provided to copy or rename an account
between user domains. The popstore API does, however, provide this functionality via
the POPSTORE_user_copy_d subroutine.

6.13.4 Deleting a user domain
Owing to the rarity of the event, no single command is provided with which to delete

an existing user domain. To delete an existing user domain, first select that domain and
then delete every account within the domain. This ensures that messages for the account
are deleted and that license limits are correctly credited for the deleted accounts. For
example,

popstore> set domain example.org
popstore> delete -noconfirm *
Delete the specified accounts [Yes/No/Quit]? yes
User account "aalan" deleted
User account "aabe" deleted
...

Then, delete the example.org directory in the popstore profiles directory (usually,
/pmdf/user/).

6.14 Use of the utility by non-privileged users
The command line utility requires operating system privileges in order to operate. So

as to control who can or cannot use the utility, the utility requires that the operator either
have the necessary operating system privileges or that they have a popstore account
which has the manage flag set. (The manage flag is also required to use the web-based
management interface.) Thus, a user lacking operating system privileges can use the
utility to manage the popstore provided that a privileged user first creates them an
account and grants that account the manage flag:

popstore> add oper -password=secret -owner="popstore operator" -flag=manage

In the above command, a ‘‘privileged’’ popstore account named oper with password secret
is created. The account’s privileges can then be used to manage the popstore via the
login command:

popstore> login oper
Password: secret
Login succeeded; management capabilities enabled
popstore>

Once logged in, the utility will allow the user to perform management functions on
any account within the same management group and user domain as the user. If the
user’s account is in no management group — that is has a zero length group name —
then the account can manage all accounts within the same user domain. If the user’s
account is in no management group and is in the default user domain, then the user
can manage all accounts in all groups and all user domains.

6–12

UNIX & Windows Command Line Management Utility
Use of the utility by non-privileged users

6.15 Information display formats
Formatting files control the choice and format of information presented with the show

and group commands. These formatting files are located in the /pmdf/www/popstore/
directory. To display different choices of information or to change the formatting of the
information, do not edit the Process Software supplied formatting files — your changes
will be lost when you next upgrade PMDF. Instead, create new formatting files and use
them instead. Once you have created a new formatting file, you can configure the utility
to always use it, as described in Section 6.15.1. Or, you can use it occassionally such
as to generate a monthly report. Such occassional usage is effected with the -format
switch as described in Section 6.15.2.

6.15.1 Changing default display formats
You can change this utility’s default display formats through the use of an option

file. The file is a PMDF-style option file named /pmdf/table/popstore_formats.
Each option setting in the file takes the form

option-name=option-value

where option-name is the name of an option to set and option-value is the value
to set for that option. The recognized option names and their default values are shown
below

Option name Default value Used with

FORWARD_FORMAT popmgr_forward.txt show -forwardings
GROUP_FORMAT popmgr_groups.txt group -list
MSG_FORMAT popmgr_message.txt show -messages
MSG_BRIEF_FORMAT popmgr_message_brief.txt show -messages -brief
PROFILE_FORMAT popmgr_profile.txt show
PROFILE_BRIEF_FORMAT popmgr_profile_brief.txt show -brief

As an example, suppose you want to change the show command’s output. You could
then copy the popmgr_profile.txt file to, say, site/profile.txt and then edit the
new file.3 Then, create the /pmdf/table/popstore_formats file and in it place the
line

PROFILE_FORMAT=site/profile.txt

Make sure that these file are world readable and owned by the PMDF account. Once you
have done this, the show output will by default use your new formatting file. Note that
if you make this change while running the utility, you will need to exit it and restart it
in order for the change to be seen.

3 Recall that these files are stored in the /pmdf/www/popstore/ directory tree.

6–13

UNIX & Windows Command Line Management Utility
Information display formats

6.15.2 Report generation
Customized reports can be generated using the -format_file switch of the show

command. With that switch, a formatting file can be specified. The file will then be used
to format the information to be displayed. For example, The syntax of formatting files
is described in Section 4.3.4. suppose that the file /pmdf/www/popstore/usage.txt
contains the lines

%first{ Quota}
%first{ Owner Used}
%first{--}
%owner{%40s} %quota_used_k{%8.2f}
%last{--}

That file could then be used as follows:

pmdf popstore show -format_file=usage.txt
Quota

Owner Used
--

John Doe 24.02
Anne Clarke 8.56
Andy Harris 36.72

Default user profile 0.00
Karen Russo 133.98
Deanne Fagan 73.22

--
#

Note that for security reasons, the formatting files must be kept in the directory
tree /pmdf/www/popstore/. This is enforced so as to prevent users with popstore
management privileges from using the -format_file switch as a means of displaying
protected files from other directories.

See Chapter 9 for further discussion of generating reports.

6.16 Recreating the Default Account
Should you accidentally delete the default account, you can recreate it using the

x-add-default command:

popstore> x-add-default

You can then set settings for the default account using the modify command:

popstore> modify default -quota=1000 -overdraft=15

6–14

UNIX & Windows Command Line Management Utility
Recreating the User Database

6.17 Recreating the User Database
Should the user database become corrupted or be accidentally deleted, you can

recreate it using the x-build-user-db command:

popstore> x-build-user-db

This utility will create a new user database and populate it with entries found by scanning
the profile directory tree.

6.18 Command descriptions
The remainder of this chapter describes the individual utility commands.

6–15

UNIX & NT Command Line Management Commands
add

add—Add a new account

Add a new user account to the popstore or MessageStore.

SYNTAX add username
add -domain domain-name

Command Switches
-confirm
-domain
-flags=flags
-log
-overdraft=value
-owner=owner
-password=password
-private=data
-prompt
-pwdexpired
-quota=value

PARAMETERS

username
Username to associate with the account or accounts being created.

domain-name
Name of the user domain to create.

DESCRIPTION The add command is used to create a new popstore user accounts. Initial settings
for the account are taken from the default account. Those settings can then be
overridden with the command line switches described below.

If a supplied username conflicts with an existing account, no new account is created
and an error message is issued. Note that account usernames are case insensitive.
That is the usernames JDOE, JDoe, and jdoe are all identical.

To create a new user domain, specify the -domain switch. If the domain already
exists, an error will be issued. Otherwise, it will be created and a default user
account for that domain created. The new default account will be a copy of
the default account from the default domain. To begin creating accounts in
the new domain, use the set domain command. The maximum length of a user
domain name is 40 bytes.

Note: Your PMDF-POPSTORE license controls the number of popstore user accounts
which you can have at any one time. When you reach this limit, you will not
be allowed to create additional accounts without first deleting some accounts

6–16

UNIX & NT Command Line Management Commands
add

or obtaining a new license with an increased limit. Sites without a PMDF-
POPSTORE license are allowed to use the popstore and create up to ten user
accounts. This limit does not include the default account. Use the show -
count_users command to display the number of currently defined accounts as
well as the limit allowed by your license.

COMMAND
SWITCHES

-confirm
-noconfirm (default)
Prompt for positive confirmation before carrying out the indicated operation.
-noconfirm is the default behavior.

-domain
Create a new user domain. This switch can not be used in conjunction with any
of the other add command switches.

-flags=(flag[,...])
Specify one or more usage flags to associate with the new account. The recognized
flags are as follows:

dismail User is not allowed to receive new mail messages.

disuser User is not allowed to access their account.

lockpwd User is not allowed to change their password.

manage User is allowed to manage popstore accounts.

migrated Internal flag used by the PMDF migration utilities.

pwd_elsewhere Password information is stored outside of the popstore.

nodismail User is allowed to receive new mail messages.

nodisuser User is allowed to access their account.

nolockpwd User is allowed to change their password.

nomanage User is not allowed to manage popstore accounts.

nomigrated Internal flag used by the PMDF migration utilities.

nopwd_elsewhere Password information is stored within the popstore.

-log
-nolog (default)
When the operation is successful, output a status message stating that the
operation succeeded. Note that error messages are always indicated. -nolog
is the default behavior.

-overdraft=value
-nooverdraft
The -overdraft switch specifies the amount of message storage by which the
account can exceed its message storage quota. If the account is currently using
less than its storage quota, then a new message can be stored provided that it will

6–17

UNIX & NT Command Line Management Commands
add

not result in the account’s storage exceeding the sum of its storage and overdraft
quotas.

By default, this quantity is specified in units of kbytes; however, the set
storage_units command can be used to change the units used.

The -nooverdraft switch is equivalent to specifying -overdraft=0 and indi-
cates that the account has no overdraft quota.

The maximum value is 4 gigabytes minus 1. If the value specified exceeds the
maximum, the value is set to zero (no overdraft quota).

-owner=owner
A text string specifying the name of the owner of the account. The length of the
string can not exceed 40 bytes. The owner field is not used by the popstore itself;
it is generally used by humans to associate account usernames with the actual
owner of the account.

-password=password
-nopassword
Specifies the account’s access password. The length of the password can not exceed
32 bytes. Access by non-managers to the account requires knowledge of this
password. For instance, to access the account from a POP3 client, the correct
username and password associated with the account must be supplied.

When -nopassword is specified, the account has no password and anyone can
access it.

Note that passwords are case sensitive.

-private=data
Site-specific account data can be stored in the account profile file using this switch.
The data string can not exceed a length of 64 bytes. This data is not used by the
popstore itself but can be used by site-developed procedures which access account
profiles.

-prompt (default)
-noprompt
By default if a wildcard is used, even if -noconfirm is specified, one confirmation
prompt is issued. If -noprompt is specified, there is no prompting at all.

-pwdexpired
-nopwdexpired (default)
If -pwdexpired is specified, then the account is marked as pre-expired. This
means that if password expiration is enabled through the PASSWORD_LIFETIME
option, then the user must change their password immediately.

If -nopwdexpired is specified (the default), then the account is marked as
not pre-expired. The time of last password change is set to the current time. If
password expiration is enabled, then the user does not have to change the password
until the PASSWORD_LIFETIME has run out.

6–18

UNIX & NT Command Line Management Commands
add

-quota=value
-noquota
The account’s message storage quota. The account can continue to receive new
messages so long as the storage consumed by its currently stored messages does
not exceed its message storage quota. See also -overdraft.

A quota value of zero, conveys unlimited storage. That is, to grant an account
unlimited storage set its quota to zero.

By default, this quantity is specified in units of kbytes; however, the set
storage_units command can be used to change the units used.

When -noquota is specified, the account is granted unlimited storage quota.
-noquota is equivalent to -quota=0.

The maximum value is 4 gigabytes minus 1. If the value specified exceeds the
maximum, the value is set to zero (unlimited quota).

EXAMPLES

To create the account jdoe for Jane Doe with the password SeCrEt, and a quota
of 10 Mbytes (10240 Kbytes), use the command

popstore> add jdoe -password=SeCrEt -owner="Jane Doe" -quota=10240
popstore> show jdoe
Username: jdoe
Owner: Jane Doe
Group:
Store Type: popstore
Usage flags:
Site-defined:

Last pwd change: Fri 15 Nov 15:33:02 2012
Last connect: No time recorded
Last disconnect: No time recorded
Total connect time: 0 00:00:00
Total connections: 0
Past block days: 0
Last billing: Fri 15 Nov 15:33:02 2012

Message count: 0 (0 total messages received)
Quota used: 0.00 Kbytes
Quota: 10240.00 Kbytes
Overdraft: 20.00 Kbytes

6–19

UNIX & NT Command Line Management Commands
copy

copy—Duplicate an account

Create a new account which duplicates an existing account (popstore only).

SYNTAX copy from-username to-username

Command Switches
-confirm
-flags=flags
-group_name=name
-log
-overdraft=value
-owner=owner
-password=password
-private=data
-prompt
-pwdexpired
-quota=value

PARAMETERS

from-username
The name of the popstore account to copy.

to-username
The name of the popstore account to create.

DESCRIPTION Use the copy command to create a new popstore account which duplicates
an existing popstore account. Note that the new account will have its usage
accounting fields set to zero (e.g., last connect, total connect, past block days, etc.).
Also, the new account will not have any stored messages, even if the account being
duplicated has stored messages.

If the username of the new account conflicts with an existing account, no new
account is created and an error message is issued.

See also the rename command.

Note: Your PMDF-POPSTORE license controls the number of popstore user accounts
which you can have at any one time. When you reach this limit, you will not
be allowed to create additional accounts without first deleting some accounts
or obtaining a new license with an increased limit. Sites without a PMDF-
POPSTORE license are allowed to use the popstore and create up to ten user
accounts. This limit does not include the default account. Use the show -
count_users command to display the number of currently defined accounts as
well as the limit allowed by your license.

6–20

UNIX & NT Command Line Management Commands
copy

COMMAND
SWITCHES

-confirm
-noconfirm (default)
Prompt for positive confirmation before carrying out the indicated operation.
-noconfirm is the default behavior.

-flags=(flag[,...])
Specify one or more usage flags to associate with the new account. The recognized
flags are as follows:

dismail User is not allowed to receive new mail messages.

disuser User is not allowed to access their account.

lockpwd User is not allowed to change their password.

manage User is allowed to manage popstore accounts.

migrated Internal flag used by the PMDF migration utilities.

pwd_elsewhere Password information is stored outside of the popstore.

nodismail User is allowed to receive new mail messages.

nodisuser User is allowed to access their account.

nolockpwd User is allowed to change their password.

nomanage User is not allowed to manage popstore accounts.

nomigrated Internal flag used by the PMDF migration utilities.

nopwd_elsewhere Password information is stored within the popstore.

-group_name=name
Place the new account into the specified management group. If not specified, the
the management group of the account being copied is assumed. A manager can
not create an account into a group which they cannot manage.

-log
-nolog (default)
When the operation is successful, output a status message stating that the
operation succeeded. Note that error messages are always indicated. -nolog
is the default behavior.

-overdraft=value
-nooverdraft
The -overdraft switch specifies the amount of message storage by which the new
account can exceed its message storage quota. If the account is currently using
less than its storage quota, then a new message can be stored provided that it
will not result in the account’s storage exceeding the sum of the its storage and
overdraft quotas.

By default, this quantity is specified in units of kbytes; however, the set
storage_units command can be used to change the units used.

The -nooverdraft switch is equivalent to -overdraft=0 and indicates that the
new account has no overdraft quota.

The maximum value is 4 gigabytes minus 1. If the value specified exceeds the
maximum, the value is set to zero (no overdraft quota).

6–21

UNIX & NT Command Line Management Commands
copy

-owner=owner
A text string specifying the name of the owner of the new account. The length of
the string can not exceed 40 bytes. The owner field is not used by the popstore
itself; it is generally used by humans to associate account usernames with the
actual owner of the account.

-password=password
-nopassword
Specifies the new account’s access password. The length of the password can not
exceed 32 bytes. Access by non-managers to the account requires knowledge of
this password. For instance, to access the account from a POP3 client, the correct
username and password associated with the account must be supplied.

Specifying -nopassword indicates that the new account does not require a
password to access it.

Note that passwords are case sensitive.

-private=data
Site-specific account data for the new account can be stored in the account profile
file using this switch. The data string can not exceed a length of 64 bytes. This
data is not used by the popstore itself but can be used by site-developed procedures
which access account profiles.

-prompt (default)
-noprompt
By default if a wildcard is used, even if -noconfirm is specified, one confirmation
prompt is issued. If -noprompt is specified, there is no prompting at all.

-pwdexpired
-nopwdexpired (default)
If -pwdexpired is specified, then the account is marked as pre-expired. This
means that if password expiration is enabled through the PASSWORD_LIFETIME
option, then the user must change their password immediately.

If -nopwdexpired is specified (the default), then the account is marked as
not pre-expired. The time of last password change is set to the current time. If
password expiration is enabled, then the user does not have to change the password
until the PASSWORD_LIFETIME has run out.

-quota=value
-noquota
The new account’s message storage quota. The account can continue to receive
new messages so long as the storage consumed by its currently stored messages
does not exceed its message storage quota. See also -overdraft.

A quota value of zero, conveys unlimited storage. That is, to grant an account
unlimited storage set its quota to zero. Specifying -noquota is equivalent to
-quota=0.

By default, this quantity is specified in units of kbytes; however, the set
storage_units command can be used to change the units used.

The maximum value is 4 gigabytes minus 1. If the value specified exceeds the
maximum, the value is set to zero (unlimited quota).

6–22

UNIX & NT Command Line Management Commands
copy

EXAMPLES

To create a new account jdoe for Jane Doe which duplicates the account bsmith
but has different owner and password fields, use the command

popstore> copy bsmith jdoe -password=SeCrEt -owner="Jane Doe"

6–23

UNIX & NT Command Line Management Commands
delete

delete—Remove a user account or a user’s
messages

Remove user accounts from the popstore or delete users’ stored messages.

SYNTAX delete username

Command Switches
-confirm
-group=name
-log
-messages
-prompt
-return -noreturn

PARAMETERS

username
Name of the account to delete. Can contain wild card characters.

DESCRIPTION Use the delete command to remove a user account. By default, stored messages
for the account are deleted silently. To cause unread messages to be returned to
their originator as undelivered, specify -return.

Use the -messages switch to delete or return a user’s messages. The account
itself will not be deleted.

When the username parameter contains wild card characters, all matching
accounts within the manager’s management group and subgroups thereof will be
deleted. The -group switch can be used to further constrain which accounts are
deleted.

COMMAND
SWITCHES

-confirm
-noconfirm
Prompt for positive confirmation before carrying out the indicated operation. When
wild cards are not used, -noconfirm is the default. When wild cards are used,
-confirm is the default and a prompt is issued for each account to be operated
upon. Moreover, when wild cards are used, -noconfirm causes only a single
prompt to be issued—it does not eliminate the prompt altogether.

6–24

UNIX & NT Command Line Management Commands
delete

-group=name
Name of a management group to constrain the operation to. This switch can be
used in conjunction with a username parameter containing wild card characters
so as to further constrain the delete operation.

-log
-nolog
When the operation is successful, output a status message stating that the
operation succeeded. Note that error messages are always indicated. -nolog
is the default behavior unless wild card characters are used in which case -log is
the default.

-messages
When the -messages switch is specified, only the user’s messages are deleted or
returned. The account itself is not deleted.

-prompt (default)
-noprompt
By default if a wildcard is used, even if -noconfirm is specified, one confirmation
prompt is issued. If -noprompt is specified, there is no prompting at all.

-return
-noreturn (default)
When -return is specified, unread messages are returned to their originator as
undelivered. By default unread messages are deleted without sending a non-
delivery notice back to their originators.

EXAMPLES

To delete the account jdoe, issue the command

popstore> delete jdoe

6–25

UNIX & NT Command Line Management Commands
exit

exit—Exit the utility

Exit the utility.

SYNTAX exit

Command Switches
None

PARAMETERS None.

DESCRIPTION The exit command exits the utility.

6–26

UNIX & Command Line Management Commands
forward

forward—Establish a forwarding address

Establish a forwarding address.

SYNTAX forward username forward-to-address

Command Switches
-override -override

PARAMETERS

username
Username for which to establish a forwarding address.

forward-to-address
Address to which to forward messages. Must be a single, fully-qualified RFC822
address—specifically, an RFC822 ‘‘addr-spec’’.

DESCRIPTION Messages destined for the popstore can be automatically forwarded to a different
popstore addressee or to another address outside of the popstore altogether.
This is done by establishing a forwarding address with the forward command.
For instance, to forward all mail for the popstore user sandy to the address
sandra@example.com, issue the command

popstore> forward sandy sandra@example.com

The username supplied (e.g., sandy) need not correspond to an actual popstore
account.

Note that if more than one forwarding address is supplied, then each address
should be separated by commas and all the addresses enclosed in a set of double
quotes. For example,

popstore> forward sandy "sandy, sandra@example.com"

When a forwarding address is established for an actual popstore user, that user will
no longer receive mail in the popstore unless the forwarding includes their account
in the list of addresses to forward to. For instance, the first example above would
cause the account sandy to no longer receive into the popstore mail sent to it. The
mail is instead directed to sandra@example.com. In the second example, however,
mail will still be stored into the popstore for the account sandy. In addition, a
copy of the mail will be forwarded to sandra@example.com.

6–27

UNIX & Command Line Management Commands
forward

COMMAND
SWITCHES

-override (default)
-nooverride
By default, forwarding addresses can be established for existing popstore users.
Specify -nooverride to prevent inadvertently forwarding an existing user’s
messages elsewhere.

A manager can not establish a forwarding address which will override a popstore
account outside of their own management group.

6–28

UNIX & NT Command Line Management Commands
group

group—Manipulate management groups

Manipulate management groups.

SYNTAX group -add [group-name [subgroup-name[,...]]]
group -delete group-name
group -list [group-name]
group -modify group-name [subgroup-name[,...]]

Command Switches
-add
-confirm
-delete
-format_file=file-spec
-list
-log
-modify
-output=file-spec
-prompt
-recur

PARAMETERS

group-name
Name of the group to add, delete, list, or modify. Wild cards can be used in
conjunction with the -list switch.

subgroup-name[,...]
A comma separated list group names to associated with the group being added or
modified. The listed groups will become subgroups of the group being added or
modified.

DESCRIPTION The group command is used to manipulate the popstore management groups.
Only managers with either operating system privileges or a privileged popstore
account with access to the world group can use this command. In regards to the
latter case, that means that the manager’s account must have the MANAGE usage
flag set and either have no group name associated with the account—the empty
group—or be in a management group which contains as a subgroup the world
group. The one exception to this rule is that a manager can always use the -list
switch to list their own management group and subgroups thereof.

For further details on the usage of this command as well as usage examples, see
Section 6.12.

6–29

UNIX & NT Command Line Management Commands
group

COMMAND
SWITCHES

-add
This switch indicates that a new management group is to be added. If a group
already exists with the same name, then an error will be output.

-confirm
-noconfirm (default)
Prompt for positive confirmation before carrying out the indicated operation.
-noconfirm is the default behavior.

-delete
This switch indicates that the specified management group is to be deleted. Note
that subgroups contained within the group are not deleted unless -recur is also
specified. Moreover, the actual accounts in the group are not deleted either. They
can only be deleted with a delete -group=group_name * command.

-format_file=file-spec
Specify a formatting file to use to format the output of a group -list command.

-list
List the specified groups and subgroups. When this switch is used, the group-
name parameter can contain wild card characters. When the parameter is omitted,
* is assumed.

-log
-nolog (default)
When the operation is successful, output a status message stating that the
operation succeeded. Note that error messages are always indicated. -nolog
is the default behavior.

-modify
Modify the specified group, replacing its list of subgroups with the specified list.
If no list is specified, then the group is changed to contain no subgroups.

-output=file-spec
Write the output to the specified file rather than to the terminal. The file will be
created as a new file each time it is specified.

-prompt (default)
-noprompt
By default if a wildcard is used, even if -noconfirm is specified, one confirmation
prompt is issued. If -noprompt is specified, there is no prompting at all. This
qualifier can be used in conjunction with the -add, -delete, or -modify switches.

-recur
-norecur (default)
This qualifier can be used in conjunction with the -delete switch. By default,
only the specified group is deleted. Subgroups of that group are not deleted unless
-recur is also specified.

6–30

UNIX & NT Command Line Management Commands
login

login—Activate management privileges

Activate management privileges.

SYNTAX login [username]

Command Switches
None

PARAMETERS

username
Name of the account under which to log in.

DESCRIPTION Popstore users who have popstore management privileges but lack operating
system privileges must log in to their account with the login command in order
to perform management operations. Once logged in, the utility will then allow
the user to perform management operations. Users who have operating system
privileges need not log in to their account.

To log in to a popstore account, the popstore account’s username should be supplied
using the username parameter to the login command. If the username parameter
is omitted, the utility will use the name of the operating system account under
which the user is logged in. The utility will then prompt for a password. If
the correct password for the popstore account is supplied, and the account has
the manage flag set, then the utility will allow management operations to be
undertaken using the utility’s image privileges.

A popstore account is granted management privileges by specifying

-flags=manage

when creating or modifying it with the add or modify commands.

See also the logout command.

EXAMPLES

To log in to the account bob, issue the command

popstore> login bob
Password: santaclaus
Login succeeded; management capabilities enabled

6–31

UNIX & NT Command Line Management Commands
logout

logout—Deactivate management privileges

Deactivate management privileges.

SYNTAX logout

Command Switches
None

PARAMETERS None.

DESCRIPTION Use the logout command to deactivate privileges activated with the login
command. Note that management privileges are also deactivated when the utility
is exited.

6–32

UNIX & NT Command Line Management Commands
modify

modify—Change an existing account

Change characteristics of one or more existing accounts.

SYNTAX modify username

Command Switches
-confirm
-flags=flags
-group=name
-group_name=name
-last_connect
-last_disconnect
-log
-message_count=value
-overdraft=value
-owner=owner
-password=password
-past_block_days=value
-private=data
-prompt
-pwdexpired
-quota=value
-received_bytes=value
-received_messages=value
-total_connect=value
-total_connections=value

PARAMETERS

username
Name of the account for which to make the modifications. Can contain wild card
characters.

DESCRIPTION The modify command changes one or more characteristics of an existing account.
Characteristics not specified with switches in the command are left unchanged.

When the username parameter contains wild card characters, all matching
accounts within the manager’s management group and subgroups thereof will be
modified. The -group switch can be used to further constrain which accounts are
modified.

6–33

UNIX & NT Command Line Management Commands
modify

COMMAND
SWITCHES

-confirm
-noconfirm
Prompt for positive confirmation before carrying out the indicated operation. When
wild cards are not used, -noconfirm is the default. When wild cards are used,
-confirm is the default and a prompt is issued for each account to be operated
upon. Moreover, when wild cards are used, -noconfirm causes only a single
prompt to be issued.

-flags=(flag[,...])
Change the usage flags associated with the account. The recognized flags are as
follows:

dismail User is not allowed to receive new mail messages.

disuser User is not allowed to access their account.

lockpwd User is not allowed to change their password.

manage User is allowed to manage popstore accounts.

migrated Internal flag used by the PMDF migration utilities.

pwd_elsewhere Password information is stored outside of the popstore.

nodismail User is allowed to receive new mail messages.

nodisuser User is allowed to access their account.

nolockpwd User is allowed to change their password.

nomanage User is not allowed to manage popstore accounts.

nomigrated Internal flag used by the PMDF migration utilities.

nopwd_elsewhere Password information is stored within the popstore.

-group=name
Name of a management group to constrain the operation to. This switch can be
used in conjunction with a username parameter containing wild card characters
so as to further constrain the modify operation.

-group_name=name
Change the accounts to be in the specified management group. A manager can
not change an account’s management group to be a group outside of the manager’s
group.

-last_connect
Clear the user’s last connect time field.

-last_disconnect
Clear the user’s last disconnect time field.

-log
-nolog
When the operation is successful, output a status message stating that the
operation succeeded. Note that error messages are always indicated. -nolog
is the default behavior.

6–34

UNIX & NT Command Line Management Commands
modify

-message_count=value
Reduce the user’s message count to the specified value, deleting stored messages
if necessary. The act of deleting stored message will change the past block days
field.

-overdraft=value
-nooverdraft
Change the account’s overdraft quota which is the amount of message storage
by which the account can exceed its primary message storage quota. By default,
this quantity is specified in units of kbytes; however, the set storage_units
command can be used to change the units used.

Specifying -nooverdraft is equivalent to specifying -overdraft=0.

The maximum value is 4 gigabytes minus 1. If the value specified exceeds the
maximum, the value is set to zero (no overdraft quota).

-owner=owner
Change the accounts ownership field. The length of the string can not exceed 40
bytes. The owner field is not used by the popstore itself; it is generally used by
humans to associate account usernames with the actual owner of the account.

-password=password
-nopassword
Change the account’s password. The length of the password can not exceed 32
bytes. Access by non-managers to the account requires knowledge of this password.
For instance, to access the account from a POP3 client, the correct username and
password associated with the account must be supplied.

When -nopassword is specified, the account is changed to not require any
password in order to access it.

Note that passwords are case sensitive.

-past_block_days=value
Set the user’s past block days field to the specified, integer value. Changing this
value clears the past block days remainder field.

-private=data
Change the site-specific account data stored in the account profile file. The data
string can not exceed a length of 64 bytes. This data is not used by the popstore
itself but can be used by site-developed procedures which access account profiles.

-prompt (default)
-noprompt
By default if a wildcard is used, even if -noconfirm is specified, one confirmation
prompt is issued. If -noprompt is specified, there is no prompting at all.

-pwdexpired
-nopwdexpired
If -pwdexpired is specified, then the account is marked as pre-expired. This
means that if password expiration is enabled through the PASSWORD_LIFETIME
option, then the user must change their password immediately.

6–35

UNIX & NT Command Line Management Commands
modify

If -nopwdexpired is specified, then the account is marked as not pre-
expired. The time of last password change is set to the current time. If password
expiration is enabled, then the user does not have to change the password until
the PASSWORD_LIFETIME has run out.

The default is to not change the pre-expired status of the account.

-quota=value
-noquota
Change the account’s message storage quota. The account can continue to receive
new messages so long as the storage consumed by its currently stored messages
does not exceed its message storage quota. See also -overdraft.

A quota value of zero, conveys unlimited storage. That is, to grant an account
unlimited storage set its quota to zero. This can be done by specifying either
-quota=0 or -noquota.

By default, this quantity is specified in units of kbytes; however, the set
storage_units command can be used to change the units used.

The maximum value is 4 gigabytes minus 1. If the value specified exceeds the
maximum, the value is set to zero (unlimited quota).

-received_bytes=value
Set the cumulative count of received message bytes to the specified, integer
value. By default, this quantity is specified in units of kbytes; however, the set
storage_units command can be used to change the units used. The maximum
value is 4 gigabytes minus 1. If the value specified exceeds the maximum, the
value is set to zero.

-received_messages=value
Set the cumulative count of received messages to the specified, integer value.

-total_connect=value
Set the user’s total connect field to the specified, integer value.

-total_connections=value
Set the user’s count of total connections to the specified, integer value.

EXAMPLES

In the following example, the quota and password fields are changed for the user
jdoe:

popstore> modify jdoe -password=TodaY -quota=20000

6–36

UNIX & NT Command Line Management Commands
noforward

noforward—Remove a forwarding address

Remove a forwarding address.

SYNTAX noforward username

Command Switches
None

PARAMETERS

username
Username for which to remove the forwarding.

DESCRIPTION Forwarding addresses are removed with the unforward command. If the supplied
username also matches an existing popstore account, then that account will resume
receiving new mail messages.

6–37

UNIX & NT Command Line Management Commands
quit

quit—Exit the utility

Exit the utility.

SYNTAX quit

Command Switches
None

PARAMETERS None.

DESCRIPTION The quit command exits the utility. The quit command is a synonym for the
exit command.

6–38

UNIX & NT Command Line Management Commands
rename

rename—Rename an account

Change the username associated with an account (popstore only).

SYNTAX rename old-username new-username

Command Switches
-confirm
-log
-prompt

PARAMETERS

old-username
The old name of the account.

new-username
The new name for the account.

DESCRIPTION The rename command changes the username associated with a popstore account.
Once an account is renamed, it can no longer receive mail under the old name
unless a forwarding from the old name to the new name is also established with
the forward command.

COMMAND
SWITCHES

-confirm
-noconfirm (default)
Prompt for positive confirmation before carrying out the indicated operation.
-noconfirm is the default behavior.

-log
-nolog (default)
When the operation is successful, output a status message stating that the
operation succeeded. Note that error messages are always indicated. -nolog
is the default behavior.

-prompt (default)
-noprompt
By default if a wildcard is used, even if -noconfirm is specified, one confirmation
prompt is issued. If -noprompt is specified, there is no prompting at all.

6–39

UNIX & NT Command Line Management Commands
rename

EXAMPLES

To rename the popstore account jdoe to janedoe, issue the command:

popstore> rename jdoe janedoe

6–40

UNIX & NT Command Line Management Commands
run

run—Run commands from a file

Execute commands from a file.

SYNTAX run file-spec

Command Switches
-ignore
-log

PARAMETERS

file-spec
Name of the file to read commands from.

DESCRIPTION The run command reads lines from the specified file and then interprets the lines
as commands and executes them. Any command recognized by this utility can be
specified, including the run command itself. By default, if an error is encountered,
it is reported and processing of the file is aborted. Specify -ignore to cause
processing to continue when errors are encountered and reported. The -log switch
command can be used to cause the commands to be echoed to the terminal as they
are executed.

COMMAND
SWITCHES

-ignore
-noignore (default)
By default, processing of commands from the input file is aborted when an error
is encountered. This behavior corresponds to the -noignore switch. Specify
-ignore to cause command processing to not abort when an error occurs.

-log
-nolog (default)
When -log is specified, each command is echoed to the terminal as it is executed.

EXAMPLES

To process the commands from the file doit.com, issue the command

popstore> run doit.com

To cause the commands to be echoed to the screen, instead use the command

popstore> run -log doit.com

6–41

UNIX & NT Command Line Management Commands
set domain

set domain—Set user domain

Select the user domain to manage.

SYNTAX set domain domain-name

Command Qualifiers
None

PARAMETERS

domain-name
Name of the user domain to manage.

DESCRIPTION By default, the default user domain is managed with this utility. To manage a
different user domain, select that domain with the set domain command.

For example, to manage the example.com domain, specify

popstore> set
Using the "default" user domain
...
popstore> set domain example.com
popstore> set
Using the "example.com" user domain
...
popstore>

6–42

OpenVMS Command Line Management Commands
set storage_units

set storage_units—Set storage units

Set the units used to measure byte-counted values.

SYNTAX set storage_units type

Command Switches
None

PARAMETERS

type
Type of units to use. Must be one of bytes, kbytes, mbytes, or gbytes.

DESCRIPTION By default, units of kbytes (1024 bytes) are used when specifying values for byte-
count valued fields such as message quotas.

To select a unit of measure other than kbytes, use the set storage_units
command. bytes selects bytes, kbytes selects 1024 bytes, mbytes selects 1024
kbytes, and gbytes selects 1024 mbytes.

After issuing a set storage_units command, all byte-count valued numbers
input on the command line will be interpreted as being measured in the newly
selected units. Note that displayed values are displayed in the units called for by
the formatting template used to generate the display.

For example, to use units of mbytes, specify

popstore> set storage_units mbytes

6–43

UNIX & NT Command Line Management Commands
set time_units

set time_units—Set time units

Set the units used to measure time-valued fields.

SYNTAX set time_units type

Command Switches
None

PARAMETERS

type
Type of units to use. Must be one of seconds, minutes, hours, or days.

DESCRIPTION By default, time units of days are used when specifying values for time-valued
fields. Presently, the only time-valued field is the total connect time field which
can be modified with the -total_connect switch of the modify command.

To select a unit of measure other than days, use the set time_units command.
After issuing a set time_units command, all time-valued numbers input on the
command line will be interpreted as being measured in the newly selected units.
Note that displayed values are displayed in the units called for by the formatting
template used to generate the display. For example, to use units of hours, specify

popstore> set time_units hours

6–44

UNIX & NT Command Line Management Commands
show

show—Show information about user profiles

Display user accounts.

SYNTAX show username

Command Switches
-all
-brief
-count_users
-domains
-format_file=file-spec
-forwardings
-group=name
-messages
-output=file-spec
-store=store-type

PARAMETERS

username
Name of the account for which to display information. Wild cards are permitted.

DESCRIPTION The show command shows settings for one or more user profiles, displays
established forwarding addresses, and lists information about messages received
by users. The username parameter can contain wild cards when displaying
account information; it can not contain wild cards when listing forwardings.

Use the show -forwardings and show -domains commands to generate listings
of, respectively, user e-mail forwardings and user domains.

Use the show -count_users command to list the number of currently defined
accounts as well as any licensing limits.

COMMAND
SWITCHES

-all
By default, only popstore accounts are displayed: MessageStore and native
accounts are not displayed. Specify -all to list all accounts. Note that -all
and -store=all are synonyms.

6–45

UNIX & NT Command Line Management Commands
show

-brief
Generate a brief profile or message listing. By default, the formatting file
popmgr_profile_brief.txt is used to format the output for profile displays
and popmgr_messsage_brief.txt for message displays. This switch can not be
used in conjunction with the -forwardings switch.

-count_users
Display the number of currently defined user accounts as well as the number
allowed by your PMDF-POPSTORE license. Specify -all to see both the popstore
and MessageStore counts.

-domains
Generate a list of defined user domains. By default, the formatting file pop-
mgr_domains.txt is used to format the output.

-format_file=file-spec
Specify a formatting file to use to format the output.

-forwardings
Display information about established forwarding addresses. By default, the
formatting file popmgr_forward.txt is used to format the output.

-group=name
Confine the listing to the specified management group and its subgroups.

-full (default)
Generate verbose output. By default, the formatting file popmgr_profile.txt
is used to format profile information; popmgr_message.txt for message listings;
popmgr_domains.txt for domain listings; and, popmgr_forward.txt for for-
warding addresses. Those formatting files are found with the other formatting
files in the /pmdf/www/popstore/ directory tree.

-messages
Display information on the users’ messages. By default, the formatting file
popmgr_message.txt is used to format the display.

-output=file-spec
Write the output to the specified file rather than to the terminal. The file will be
created as a new file each time it is specified.

-store=store-type
By default, only popstore accounts are displayed: MessageStore and native ac-
counts are not displayed. Specify -store=all to list all accounts; -store=msgstore
or -store=imap to list only MessageStore accounts; -store=popstore or -
store=pop to list only popstore accounts; and, -store=native to list only profiles
marked as being native.

EXAMPLES

In the following example, full and brief listings are generated for the default
popstore account:

6–46

UNIX & NT Command Line Management Commands
show

popstore> show default

Username: default
Owner: Default user profile
Group:
Store Type: popstore
Usage flags:
Site-defined:

Last pwd change: No time recorded
Last connect: No time recorded
Last disconnect: No time recorded
Total connect time: 0 00:00:00
Total connections: 0
Past block days: 0
Last billing: Fri Nov 15 10:23:54 2012

Message count: 0 (0 total messages received)
Quota used: 0.00 Kbytes
Quota: 1024.00 Kbytes
Overdraft: 51.00 Kbytes

popstore> show -brief default
Quota Message Quota used

Username (kbytes) Count (kbytes)
--
default 1024.00 0 0.00
--
*Note: privileged users are flagged with an asterisk

6–47

UNIX & NT Command Line Management Commands
test

test—Test site-supplied subroutines

Test optional, site-supplied subroutines to verify that they load and function correctly.

SYNTAX test -block_days image-spec starting-time ending-time
size remainder

test -connect image-spec starting-time ending-time
test -message_mapping image-spec
test -paths path-file-spec
test -profile_mapping image-spec

Command Switches
-block_days
-connect
-message_mapping
-paths
-profile_mapping

PARAMETERS

image-spec
File specification for the shared image containing the subroutine to test.

starting-time
Starting time value to pass to the compute_connect or compute_block_days
subroutine.

ending-time
Ending time value to pass to the compute_connect or compute_block_days
subroutine.

size
Size value to pass to the compute_block_days subroutine.

remainder
Remainder value to pass to the compute_block_days subroutine.

path-file-spec
File specification for the file of directory paths to check.

6–48

UNIX & NT Command Line Management Commands
test

DESCRIPTION The test command provides a mechanism to test site-supplied subroutines
intended for use with the popstore. The purpose and usage of those subroutines
is described in Chapter 14.

The test -message_mapping and test -profile_mapping commands test,
respectively, map_message_filename and map_profile_filename subroutines.
The command will load the subroutine from the specified image and then, for
each stored message or profile file, run the filename through the subroutine. The
input and output file names for each file will be displayed along with diagnostic
information, should an error occur.

The test -connect and test -block_days commands test, respectively, the
compute_connect and compute_block_days subroutines. With each command,
you can specify the values of the input arguments to be passed to those subroutines.
The results produced by the subroutine will then be displayed. Should an error
occur, diagnostic information will be displayed.

Text files intended for use as a /pmdf/table/popstore_message_paths or
/pmdf/table/popstore_profiles_paths file can be tested with the test -
paths command. The command will scan the directory trees listed in the specified
file, displaying the files found in each directory.

COMMAND
SWITCHES

-block_days
Test the compute_block_days subroutine from the shared image image-spec.

-connect
Test the compute_connect subroutine from the shared image image-spec.

-message_mapping
Test the map_message_filename subroutine from the shared image image-spec.

-profile_mapping
Test the map_profile_filename subroutine from the shared image image-spec.

-paths
List the files from the directory trees specified in the path file path-file-spec.

6–49

7 OpenVMS Command Line Management Utility

The command line management utility is an interactive, command oriented interface
for managing popstore and MessageStore accounts. Users with operating system
privileges as well as users with privileged popstore or MessageStore accounts can use
the utility. Also, the utility can be used as a report generator as described briefly in
Section 7.15.2 and more completely in Chapter 9.

To run the utility, issue the DCL command

$ PMDF POPSTORE

or

$ PMDF MSGSTORE

Use the EXIT or QUIT command to exit the utility. Table Table 7–1 summarizes the
recognized commands; see Section 7.18 for complete command descriptions.

Table 7–1 Summary of command line management commands (OpenVMS)

Command Description

ADD Add new user accounts
COPY Copy user accounts (popstore only)
DELETE Delete user accounts or messages
EXIT Exit the utility
FORWARD Establish forwarding addresses
GROUP Manipulate management groups
LOGIN Enable privileges by ‘‘logging in’’ to a privileged popstore/msgstore account
LOGOUT Disable privileges
MODIFY Modify user accounts
NOFORWARD Remove forwarding addresses
QUIT Exit the utility
RENAME Rename user accounts (popstore only)
SET Select user domain or set units used for expression of storage and time
SHOW Display information about user accounts, messages, or forwardings

7.1 Basic Operation
Popstore and MessageStore accounts are managed using four basic commands: ADD,

DELETE, MODIFY, and SHOW. These four commands add accounts, remove accounts, modify
accounts, and display information about accounts. For popstore accounts, two additional
commands, COPY and RENAME, can be used to create new accounts which look like existing
accounts and to change the name of an existing account.

7–1

OpenVMS Command Line Management Utility
Basic Operation

When an account is created with the ADD command, you can also specify various
account settings such as the account password, the name of the account’s owner, and
storage quotas. Once the account is created, you can subsequently change these settings
with the MODIFY command.

Some of the account settings involve the use of values expressed in units of storage
or time. By default, the units of storage are kbytes (1024 bytes), and the units of time
are days. Within a session with the utility, these units can be changed with the SET
command; see the command descriptions in Section 7.18 for details.

7.2 Adding New Accounts
New accounts can be added in one of two ways: by creating a new account or (for

popstore only) copying an existing account. The former is done with the ADD command
while the latter with the COPY command. Regardless of the method chosen, when a
new account is added a name and password to associate with the account should be
chosen. This is the name and password which the owner of the account must use in
order to access messages stored for the account. Specify -flags=pwd_elsewhere to
create the account with an externally stored password (e.g., an /etc/passwd password).
Optionally, account quotas Optionally, account quotas and an ownership field identifying
the owner of the account can also be specified. Quotas not specified will be copied from
the default account.

See Section 1.3.1 for a discussion of the name space allowed for account usernames.

For instance, suppose that Jane Doe is to be given the account jdoe with the
password SecRet. The command to add the account would then be

popstore> ADD JDOE/PASSWORD="SecRet"/OWNER="Jane Doe"
popstore> SHOW JDOE
Username: jdoe
Owner: Jane Doe
Group:
Store Type: popstore
Usage flags:
Site-defined:

Last pwd change: Fri Nov 15 12:02:22 2012
Last connect: No time recorded
Last disconnect: No time recorded
Total connect time: 0 00:00:00
Total connections: 0
Past block days: 0
Last billing: Fri Nov 15 12:02:22 2012

Message count: 0 (0 total messages received)
Quota used: 0.00 Kbytes
Quota: 2048.00 Kbytes
Overdraft: 20.00 Kbytes

Note that POP passwords are case sensitive. Moreover, the utility will lower case strings
not placed within quotes. As such, it is necessary to quote strings such as passwords
which contain upper case characters which must be preserved.

7–2

OpenVMS Command Line Management Utility
Adding New Accounts

It is important to note that when the popstore was configured, default account
settings were specified. These settings are kept in the form of a default account named
default. Whenever an account is added with the ADD command, the popstore actually
copies the default account to the new account thereby using the default account’s
settings as the basis for the new account.

Copying an existing popstore account with the COPY command also creates a new
account. In the example below, the new account jones is created by copying the account
adams:

popstore> SHOW ADAMS

Username: adams
Owner: David Adams
Group:
Store Type: popstore
Usage flags:
Site-defined:

Last pwd change: Fri Oct 18 09:12:23 2012
Last connect: Fri Nov 15 16:09:38 2012
Last disconnect: Fri Nov 15 16:09:39 2012
Total connect time: 0 00:10:03
Total connections: 145
Past block days: 123953
Last billing: Fri Oct 18 09:12:23 2012

Message count: 0 (189 total messages received)
Quota used: 0.00 Kbytes
Quota: 102400.00 Kbytes
Overdraft: 10.00 Kbytes

popstore> COPY ADAMS JONES/PASSWORD=SECRET/OWNER="Daniel Jones"
popstore> SHOW JONES

Username: jones
Owner: Daniel Jones
Group:
Store Type: popstore
Usage flags:
Site-defined:

Last pwd change: Fri Nov 15 13:23:18 2012
Last connect: No time recorded
Last disconnect: No time recorded
Total connect time: 0 00:00:00
Total connections: 0
Past block days: 0
Last billing: Fri Nov 15 13:23:18 2012

Message count: 0 (0 total messages received)
Quota used: 0.00 Kbytes
Quota: 102400.00 Kbytes
Overdraft: 10.00 Kbytes

Note that when an account is copied to make a new account, the new account does not
inherit the messages or accounting information of the original account.

Note: Your PMDF-POPSTORE license controls the number of popstore user accounts which
you can have at any one time. When you reach this limit, you will not be allowed

7–3

OpenVMS Command Line Management Utility
Adding New Accounts

to create additional accounts without first deleting some accounts or obtaining a new
license with an increased limit. Sites without a PMDF-POPSTORE license are allowed
to use the popstore and create up to ten user accounts. This limit does not include
the default account. Use the SHOW/COUNT_USERS command to display the number of
currently defined accounts as well as the limit allowed by your license.

7.3 Listing Accounts
Verbose and brief listings of accounts can be generated with the SHOW command.

When no username parameter is supplied, all accounts are listed:

popstore> SHOW/BRIEF
Quota Message Quota used

Username (kbytes) Count (kbytes)
--
anne 33333.00 0 0.00
david 102400.00 0 0.00
*deanna 33333.00 0 0.00
default 1024.00 0 0.00
kevin 40960.00 0 0.00
karen 10240.00 0 0.00
marty 40960.00 0 0.00
--
*Note: privileged users are flagged with an asterisk

In the above output, an asterisk is displayed by each account which has the management
privilege. The /BRIEF qualifier, causes a brief listing to be generated. Omitting that
qualifier generates a much more detailed listing.

When a username parameter is specified, wild cards can be used:

popstore> SHOW/BRIEF D*
Quota Message Quota used

Username (kbytes) Count (kbytes)
--
david 102400.00 0 0.00
*deanna 33333.00 0 0.00
default 1024.00 0 0.00
--
*Note: privileged users are flagged with an asterisk

As discussed in Section 7.15.2, the /FORMAT qualifier of the SHOW command can be
used to generate custom listings. Section 7.11 describes how to use the /FORWARDINGS
qualifier to display mail forwardings.

7–4

OpenVMS Command Line Management Utility
Modifying Accounts

7.4 Modifying Accounts
The MODIFY command can be used to change fields associated with an account. For

instance, to reset accounting information, change a password, or to increase or decrease
an account quota. In the following example, the password for the account jdoe is changed
to MORGAN:

popstore> MODIFY JDOE/PASSWORD="MORGAN"

The MODIFY command does not accept wild cards and the username parameter must
be specified.

Note that the last connect and disconnect time accounting fields can only be reset
to signify a ‘‘never connected’’ state. They can not be changed to an arbitrary time. Also
note that when the message count is set to zero, any messages stored for the account
are deleted. If the count is reduced but not set to zero then starting with the oldest
message, messages are deleted until the desired count is reached. For instance, if the
current message count is 5 messages and the count is set to 2 messages, then messages
1, 2, and 3 will be deleted.

7.5 Removing Accounts
Accounts are removed with the DELETE command. By default, any messages stored

for the account are deleted silently. Use the /RETURN qualifier to return as undelivered
any unread messages.

In the example below, the DELETE command is used to delete the jdoe account.

popstore> SHOW/BRIEF JDOE
Quota Message Quota used

Username (kbytes) Count (kbytes)
--
jdoe 1000.00 2 6.42
--
*Note: privileged users are flagged with an asterisk

popstore> DELETE/RETURN JDOE
popstore> SHOW/BRIEF JDOE
%POPMGR-E-CANTSHOW, cannot show data

popstore error #68: No such user

To delete more than one account, issue multiple DELETE commands, or use wild
cards in the username parameter, or use the /GROUP qualifier. For instance, to delete
all accounts in the class97 group, issue the command

popstore> DELETE/GROUP=class97

7–5

OpenVMS Command Line Management Utility
Changing New Account Defaults

7.6 Changing New Account Defaults
Recall that when a new account is created with the ADD command, the default

account is used as a source of defaults for the new account. Thus, by changing the
settings for the default account with the MODIFY command, you change the defaults
which will be applied to subsequently created accounts. For instance, to change the
default account quota to 100 kbytes with an overdraft quota of 10 kbytes, you would
modify the default account accordingly:

popstore> MODIFY DEFAULT/QUOTA=100/OVERDRAFT=10

Note that the settings for the default account only applies to new accounts created
with the ADD command. The default account settings do not apply to all existing accounts.

7.7 Bulk Loading Accounts
To create many accounts at once, use the @ command to execute commands from a

command file. Before using that command, first create a file containing commands with
one command per line. For instance,

$ TYPE A.COM
ADD BJAMES/OWNER="Bob James"/PASSWORD=837271
ADD CSMITH/OWNER="Cathy Smith"/PASSWORD=382374
ADD RBROWN/OWNER="Randy Brown"/PASSWORD=383838
...
$

Then use the @ command to execute the commands from the file:

$ PMDF POPSTORE
popstore> @A.COM
popstore> ADD BJAMES/OWNER="Bob James"/PASSWORD=837271
popstore> ADD CSMITH/OWNER="Cathy Smith"/PASSWORD=382374
popstore> ADD RBROWN/OWNER="Randy Brown"/PASSWORD=383838
popstore> ...
popstore> QUIT
$

Each command will be read from the specified file and executed. If an error occurs, it
will be reported and processing of the file will continue. Each command from the file will
be echoed as it is executed. Use the @@ command to suppress the command echo,

$ PMDF POPSTORE
popstore> @A.COM
popstore> QUIT
$

Any command recognized by this utility can be used in the command file, including
@ and @@ commands.

7–6

OpenVMS Command Line Management Utility
Bulk Loading Accounts

7.8 Returning or Deleting Messages
A user’s stored messages can be deleted with the DELETE/MESSAGES command.

When the /RETURN qualifier is also specified, any unread messages are returned as
unread to their sender. For instance, to delete the messages for the account jdoe,
returning any unread messages, use the command

popstore> DELETE/MESSAGES/RETURN JDOE

Note that the /RETURN qualifier can also be used with the DELETE command as
described in Section 7.5.

7.9 Account Quotas
Account quotas are used to control how much mail a user can store. Each account

has a primary quota and an overdraft quota which are established when the account is
created and can be changed with the MODIFY command. An account can not receive a new
message if either the account’s present storage exceeds the account’s quota, or storage
of the message would cause the account to exceed the sum of its quota and overdraft
quota.1

Quotas are set and changed with the /QUOTA and /OVERDRAFT qualifiers of the ADD,
COPY, and MODIFY commands. An account can be granted unlimited quota with the
/NOQUOTA qualifier. By default, quotas are expressed in units of kbytes (1024 bytes).
Alternate units can be selected with the SET STORAGE_UNITS command.

7.10 Blocking Access, Blocking New Mail, and Locking Passwords
There are three account flags which can be set to influence account access:

DISMAIL
The DISMAIL flag is used to prevent an account from receiving new mail messages. When
this flag is set for an account, new messages are rejected and returned to their sender.
The account owner can, however, read any existing messages they might have unless the
account is also flagged with the DISUSER flag.

DISUSER
The DISUSER flag is used to deny access to an account. The account can, however,
continue to receive new messages unless it is either over quota or also flagged with the
DISMAIL flag.

LOCKPWD
The LOCKPWD flag prevents users from changing the account’s password. The password
can only be changed by a user with the management privilege or operating system
privileges.

1 See Section 1.3.3 for a discussion of the rationale behind the use of an overdraft quota.

7–7

OpenVMS Command Line Management Utility
Blocking Access, Blocking New Mail, and Locking Passwords

These flags are set on an account with the MODIFY/FLAGS command. A flag can
be negated by prefixing the name with NO; for example, NODISMAIL. In the following
example, the jdoe account is marked DISMAIL and DISUSER:

popstore> MODIFY JDOE/FLAGS=(DISMAIL,DISUSER)

To undo those settings, issue the command:

popstore> MODIFY JDOE/FLAGS=(NODISMAIL,NODISUSER)

7.11 Forwarding Mail
Mail to the popstore can automatically be forwarded to other addresses. The

addresses can be within the popstore or outside of it; the forwarding can be for actual
popstore accounts or for non-existent accounts.

For example, suppose the host name associated with the popstore is naples.example.com.
Suppose further that the popstore user jdoe would like her mail forwarded to the ad-
dress jane.doe@naples.example.com. This forwarding would be accomplished with the
FORWARD command:

popstore> FORWARD JDOE jane.doe@naples.example.com
popstore> SHOW/FORWARDINGS
Username Forwarding address

jdoe jane.doe@naples.example.com

To forward mail for jdoe to herself and her assistant aclarke@naples.example.com,
you would use the command

popstore> FORWARD JDOE "jdoe,aclarke@naples.example.com"
popstore> SHOW/FORWARDINGS
Username Forwarding address

jdoe jdoe@naples.example.com, aclarke@naples.example.com

Use the NOFORWARD command to remove a forwarding address:

popstore> NOFORWARD JDOE

As mentioned earlier, forwarding can be established for non-existent accounts. For
instance, suppose that the address list@naples.example.com is to be forwarded to
a PMDF mailing list list@example.com. This is accomplished with the FORWARD
command:

popstore> FORWARD list list@example.com

Note that currently stored messages are not affected by a forwarding address. Only
new messages are affected: new incoming messages will be routed to the forwarding
address and not stored. Note also that the presence of a forwarding address does not
prevent a user from reading any stored messages which they might have.

7–8

OpenVMS Command Line Management Utility
Management Groups

7.12 Management Groups
Management groups are manipulated with the GROUP command. This command has

four variants:

GROUP/ADD Add a new management group
GROUP/DELETE Delete a management group
GROUP/LIST List one or more management groups and any subgroups
GROUP/MODIFY Modify an existing management group

It is important to note that use of management groups is not required by the
popstore. Moreover, when you place an account into a management group, that group is
automatically created if it was not already defined. As such, you only need to use the
GROUP command to establish group-subgroup relationships and to delete groups which
are no longer being used.

Use the GROUP/ADD command to add a new management group. If the group already
exists, then an error will ensue and the existing group left unchanged. In that case, use
the GROUP/MODIFY command to modify the existing group.

To add the management groups class_97, class_98, class_99, and class_00 use
the commands

popstore> GROUP/ADD class_97
popstore> GROUP/ADD class_98
popstore> GROUP/ADD class_99
popstore> GROUP/ADD class_00

To then make a new group named students containing these four groups, issue the
command

popstore> GROUP/ADD STUDENTS CLASS_97,CLASS_98,CLASS_99,CLASS_00

The results can then be listed with the GROUP/LIST command as shown below.2

popstore> GROUP/LIST STUDENTS
Group name: Subgroups contained within

--
students: class_97, class_98, class_99, class_00
class_97:
class_98:
class_99:
class_00:

popstore>

After the Class of 2010 has graduated and left and the Class of 2014 arrives, the
class_10 group can be removed, the class_14 group added, and the students group
modified as follows

2 Note that group names are case insensitive and that the popstore converts all group names to lower case.

7–9

OpenVMS Command Line Management Utility
Management Groups

popstore> GROUP/ADD class_14
popstore> GROUP/MODIFY students class_11,class_12,class_13,class_14
popstore> GROUP/DELETE class_10
popstore> GROUP/LIST students

Group name: Subgroups contained within
--

students: class_11, class_12, class_13, class_14
class_11:
class_12:
class_13:
class_14:

popstore>

Note that the GROUP/DELETE command deletes just the specified group. It will
recursively delete the subgroups contained within the specified group only when /RECUR
is specified. Also, it does not delete the accounts contained within the group; to do that,
use the DELETE/GROUP=group_name * command; e.g.,

popstore> DELETE/GROUP=class_97/RETURN/LOG/NOCONFIRM *

It is also important to note that a group can contain only a limited number of
subgroups as immediate subgroups. Those subgroups can, of course, contain other
subgroups. The limit on the number of immediate subgroups of a given group is controlled
by the length in bytes of the names of each of those immediate subgroups. If there are
to be N immediate subgroups and their combined name lengths are L, then N+L must
be less than 236. If a group needs to contain more subgroups than allowed by that limit,
nest its definition an extra level. For example,

popstore> GROUP/ADD blah_x blah_01,blah_02,blah_03,...,blah_29
popstore> GROUP/ADD blah_y blah_30,blah_33,blah_34,...,blah_52
popstore> GROUP/ADD blah blah_x,blah_y

In the above example, the names blah_01, ..., blah_52 are collectively too long to be
contained as immediate subgroups of a given group. Therefore they are split between the
two groups blah_x and blah_y. Those two groups are then made subgroups of blah.
Consequently, the group blah contains the all of the groups blah_01, ..., blah_52 as
subgroups despite the length limitation.

7.13 User Domains
By default, all popstore accounts for a given installation share the same name

space. This means that if the two distinct e-mail addresses sandy@example.com and
sandy@example.org are directed to the same popstore, then e-mail to either of these
addresses will be delivered to the same user account sandy. At some sites, however, it is
useful to have distinct communities of users, each with their own name spaces. This is
achieved with the popstore3 through the use of ‘‘user domains’’. Please see Section 1.3.5
for a basic discussion of popstore user domains. This section focuses on the mechanics of
creating and managing user domains and assumes knowledge of the material presented
in Section 1.3.5.

3 The PMDF MessageStore does not at present support the use of user domains.

7–10

OpenVMS Command Line Management Utility
User Domains

Note that all e-mail messages for all user domains are co-mingled in the same
directory tree. That is, messages for one user domain are not stored distinct from other
user domains.

7.13.1 Enabling User Domains
To enable the use of user domains, specify USER_DOMAINS=1 in the popstore option

file. See Section 3.4 for further details including an important note for sites who are
already associating more than one Internet host name with the popstore.

Note: You must not use the filter channel keyword on the popstore or MessageStore delivery
channel if USER_DOMAINS=1 is set. So doing will cause the wrong filters to be used for
users in domains other than the default domain.

7.13.2 Creating a New User Domain
New user domains are created with the ADD/DOMAIN command. For example, to

create the user domain example.org, issue the command

popstore> ADD/DOMAIN example.org

This will create a new sub-directory tree in the popstore profiles directory. In that sub-
directory tree, all profile files for the example.org user domain will be stored.

Issuance of the ADD/DOMAIN command also creates a default user account in the
new user domain. This new account will be a copy of the default account from the
default user domain.

A list of existing user domains can be obtained with the SHOW/DOMAINS command:

popstore> SHOW/DOMAINS
Cannonicalized domain name

default
example.org

7.13.3 Managing a User Domain
When you invoke the command-line management utility, it will be set to manage

the default user domain. To manage a different user domain, you need to issue a SET
DOMAIN command. This command tells the utility that all further commands will affect
the specified user domain. For instance, to manage the example.org domain, issue the
command

7–11

OpenVMS Command Line Management Utility
User Domains

popstore> SET DOMAIN example.org

If you are logged in to a privileged management account at the time you issue the SET
DOMAIN command, then you will automatically be logged out unless the management
account was in the default user domain and not in any management group. This is a
reflection of the management policy that only privileged accounts in the default user
domain and in no management group can manage all accounts in all user domains.

Once the user domain has been selected, all subsequent commands will affect
accounts in only that user domain. The default user domain can be re-selected with
either the command ‘‘SET DOMAIN default’’ or, more succinctly, SET DOMAIN (no domain
name parameter). The currently selected user domain can be shown by issuing the SET
command without any parameters:

popstore> SET
Using the "default" user domain
...
popstore> SET DOMAIN example.org
popstore> SET
Using the "example.org" user domain
...

Note that presently, no commands are provided to copy or rename an account
between user domains. The popstore API does, however, provide this functionality via
the POPSTORE_user_copy_d subroutine.

7.13.4 Deleting a User Domain
Owing to the rarity of the event, no single command is provided with which to delete

an existing user domain. To delete an existing user domain, first select that domain and
then delete every account within the domain. This ensures that messages for the account
are deleted and that license limits are correctly credited for the deleted accounts. For
example,

popstore> SET DOMAIN example.org.
popstore> DELETE/NOCONFIRM *
Delete the specified accounts [Yes/No/Quit]? yes
User account "aalan" deleted
User account "aabe" deleted
...

Then, delete the example.org.dir directory in the popstore profiles directory
(usually, PMDF_POPSTORE_PROFILES:[000000]).

7–12

OpenVMS Command Line Management Utility
Use of the Utility by Non-privileged Users

7.14 Use of the Utility by Non-privileged Users
The command line utility requires operating system privileges in order to operate. So

as to control who can or cannot use the utility, the utility requires that the operator either
have the necessary operating system privileges or that they have a popstore account
which has the MANAGE flag set. (The manage flag is also required to use the web-based
management interface.) Thus, a user lacking operating system privileges can use the
utility to manage the popstore provided that a privileged user first creates them an
account and grants that account the MANAGE flag:

popstore> ADD OPER/PASSWORD=secret/OWNER="popstore operator"/FLAG=MANAGE

In the above command, a ‘‘privileged’’ popstore account named oper with password secret
is created. The account’s privileges can then be used to manage the popstore via the
LOGIN command:

popstore> LOGIN OPER
Password: secret
Login succeeded; management capabilities enabled
popstore>

Once logged in, the utility will allow the user to perform management functions on
any account within the same management group as the user. If the user’s account is in
no management group — that is has a zero length group name — then the account can
manage all accounts in the popstore. If the user’s account is in no management group
and is in the default user domain, then the user can manage all accounts in all groups
and all user domains.

7.15 Information Display Formats
Formatting files control the choice and format of information presented with the

SHOW and GROUP commands. These files are located in the pmdf_root:[www.popstore]
directory. To display different choices of information or to change the formatting of the
information, do not edit the Process Software supplied formatting files — your changes
will be lost when you next upgrade PMDF. Instead, create new formatting files and use
them instead. Once you have created a new formatting file, you can configure the utility
to always use it, as described in Section 7.15.1. Or, you can use it occasionally to generate
a monthly report. Such occasional usage is effected with the /FORMAT switch as described
in Section 7.15.2.

7.15.1 Changing Default Display Formats
You can change this utility’s default display formats through the use of an option

file. The file is a PMDF-style option file named PMDF_TABLE:popstore_formats.;.
Each option setting in the file takes the form

7–13

OpenVMS Command Line Management Utility
Information Display Formats

option-name=option-value

where option-name is the name of an option to set and option-value is the value
to set for that option. The recognized option names and their default values are shown
below

Option name Default value Used with

FORWARD_FORMAT popmgr_forward.txt SHOW/FORWARDINGS
GROUP_FORMAT popmgr_groups.txt GROUP/LIST
MSG_FORMAT popmgr_message.txt SHOW/MESSAGES
MSG_BRIEF_FORMAT popmgr_message_brief.txt SHOW/MESSAGES/BRIEF
PROFILE_FORMAT popmgr_profile.txt SHOW
PROFILE_BRIEF_FORMAT popmgr_profile_brief.txt SHOW/BRIEF

As an example, suppose you want to change the show command’s output. You could
then copy the popmgr_profile.txt file to, say, site_profile.txt and then edit the
new file.4 Then, create the PMDF_TABLE:popstore_formats.; file and in it place the
line

PROFILE_FORMAT=site_profile.txt

Make sure that these file are world readable and owned by the PMDF account. Once you
have done this, the SHOW command output will by default use your new formatting file.
Note that if you make this change while running the utility, you will need to exit it and
restart it in order for the change to be seen.

7.15.2 Report Generation
Customized reports can be generated using the /FORMAT_FILE qualifier of the SHOW

command. With that qualifier, a formatting file can be specified. The file will then be used
to format the information to be displayed. The syntax of formatting files is described in
Section 4.3.4. For example, suppose that the file PMDF_ROOT:[WWW.POPSTORE]usage.txt
contains the lines

%first{ Quota}
%first{ Owner Used}
%first{--}
%owner{%40s} %quota_used_k{%8.2f}
%last{--}

That file could then be used as follows:

4 Recall that these files are stored in the pmdf_root:[www.popstore] directory.

7–14

OpenVMS Command Line Management Utility
Information Display Formats

$ PMDF POPSTORE SHOW/FORMAT_FILE=USAGE.TXT
Quota

Owner Used
--

Russ Barnes 24.02
Orla Sheehan 8.56
Deanne Fagan 36.72

Default user profile 0.00
Marty Rolfe 133.98
Karen Russo 73.22

--

$

Note that for security reasons, the formatting files must be kept in the directory
PMDF_ROOT:[WWW.POPSTORE]. This is enforced so as to prevent users with popstore
management privileges from using the /FORMAT_FILE qualifier as a means of displaying
protected files from other directories.

See Chapter 9 for further discussion of generating reports.

7.16 Recreating the Default Account
Should you accidentally delete the default account, you can recreate it using the

x-add-default command:

popstore> x-add-default

You can then set settings for the default account using the modify command:

popstore> MODIFY DEFAULT/QUOTA=1000/OVERDRAFT=15

7.17 Recreating the User Database
Should the user database become corrupted or be accidentally deleted, you can

recreate it using the x-build-user-db command:

popstore> x-build-user-db

This utility will create a new user database and populate it with entries found by scanning
the profile directory tree.

7.18 Command Descriptions
The remainder of this chapter describes the individual utility commands.

7–15

OpenVMS Command Line Management Commands
ADD

ADD—Add a new account

Add a new user account to the popstore or MessageStore.

SYNTAX ADD username[,...]
ADD/DOMAIN domain-name

Command Qualifiers
/CONFIRM
/DOMAIN
/FLAGS=flags
/LOG
/OVERDRAFT=value
/OWNER=owner
/PASSWORD=password
/PRIVATE=data
/PROMPT
/PWDEXPIRED
/QUOTA=value

PARAMETERS

username
Username to associate with the account or accounts being created.

DESCRIPTION The ADD command is used to create one or more new popstore user accounts. An
account will be created for each username supplied on the command line. Initial
settings for the accounts are taken from the default account. Those settings can
then be overridden with the command line qualifiers described below.

If a supplied username conflicts with an existing account, no new account is created
and an error message is issued. Note that account usernames are case insensitive.
That is the usernames JDOE, JDoe, and jdoe are all identical.

To create a new user domain, specify the /DOMAIN qualifier. If the domain already
exists, an error will be issued. Otherwise, it will be created and a default user
account for that domain created. The new default account will be a copy of
the default account from the default domain. To begin creating accounts in
the new domain, use the SET DOMAIN command. The maximum length of a user
domain name is 40 bytes.

Note: Your PMDF-POPSTORE license controls the number of popstore user accounts
which you can have at any one time. When you reach this limit, you will not
be allowed to create additional accounts without first deleting some accounts
or obtaining a new license with an increased limit. Sites without a PMDF-
POPSTORE license are allowed to use the popstore and create up to ten

7–16

OpenVMS Command Line Management Commands
ADD

user accounts. This limit does not include the default account. Use the
SHOW/COUNT_USERS command to display the number of currently defined accounts
as well as the limit allowed by your license.

COMMAND
QUALIFIERS

/CONFIRM
/NOCONFIRM (default)
Prompt for positive confirmation before carrying out the indicated operation.
/NOCONFIRM is the default behavior.

/DOMAIN
Create a new user domain. This switch can not be used in conjunction with any
of the other ADD command qualifiers.

/FLAGS=(flag[,...])
Specify one or more usage flags to associate with the new account. The recognized
flags are as follows:

DISMAIL User is not allowed to receive new mail messages.

DISUSER User is not allowed to access their account.

LOCKPWD User is not allowed to change their password.

MANAGE User is allowed to manage popstore accounts.

MIGRATED Internal flag used by the PMDF migration utilities.

PWD_ELSEWHERE Password information is stored outside of the popstore.

NODISMAIL User is allowed to receive new mail messages.

NODISUSER User is allowed to access their account.

NOLOCKPWD User is allowed to change their password.

NOMANAGE User is not allowed to manage popstore accounts.

NOMIGRATED Internal flag used by the PMDF migration utilities.

NOPWD_
ELSEWHERE

Password information is stored within the popstore.

/LOG
/NOLOG (default)
When the operation is successful, output a status message stating that the
operation succeeded. Note that error messages are always indicated. /NOLOG
is the default behavior.

/OVERDRAFT=value
/NOOVERDRAFT
The /OVERDRAFT qualifier specifies the amount of message storage by which the
account can exceed its message storage quota. If the account is currently using
less than its storage quota, then a new message can be stored provided that it will
not result in the account’s storage exceeding the sum of its storage and overdraft
quotas.

The /NOOVERDRAFT qualifier is equivalent to specifying /OVERDRAFT=0 and
indicates that the account has no overdraft quota.

7–17

OpenVMS Command Line Management Commands
ADD

By default, this quantity is specified in units of kbytes; however, the SET
STORAGE_UNITS command can be used to change the units used.

The maximum value is 4 gigabytes minus 1. If the value specified exceeds the
maximum, the value is set to zero (no overdraft quota).

/OWNER=owner
A text string specifying the name of the owner of the account. The length of the
string can not exceed 40 bytes. The owner field is not used by the popstore itself;
it is generally used by humans to associate account usernames with the actual
owner of the account.

/PASSWORD=password
/NOPASSWORD
Specifies the account’s access password. The length of the password can not exceed
32 bytes. Access by non-managers to the account requires knowledge of this
password. For instance, to access the account from a POP3 client, the correct
username and password associated with the account must be supplied.

The /NOPASSWORD qualifier specifies that the account does not require a password
to access it.

Note that passwords are case sensitive. Note further that the command line reader
will convert to lower case any string not enclosed in quotes. As such, a password
containing upper case characters must be enclosed in quotes.

/PRIVATE=data
Site-specific account data can be stored in the account profile file using this
qualifier. The data string can not exceed a length of 64 bytes. This data is not
used by the popstore itself but can be used by site-developed procedures which
access account profiles.

/PROMPT (default)
/NOPROMPT
By default if a wildcard is used, even if /NOCONFIRM is specified, one confirmation
prompt is issued. If /NOPROMPT is specified, there is no prompting at all.

/PWDEXPIRED
/NOPWDEXPIRED (default)
If /PWDEXPIRED is specified, then the account is marked as pre-expired. This
means that if password expiration is enabled through the PASSWORD_LIFETIME
option, then the user must change their password immediately.

If /NOPWDEXPIRED is specified (the default), then the account is marked as
not pre-expired. The time of last password change is set to the current time. If
password expiration is enabled, then the user does not have to change the password
until the PASSWORD_LIFETIME has run out.

/QUOTA=value
/NOQUOTA
The /QUOTA qualifier specifies the account’s message storage quota. The account
can continue to receive new messages so long as the storage consumed by its

7–18

OpenVMS Command Line Management Commands
ADD

currently stored messages does not exceed its message storage quota. See also
/OVERDRAFT.

A quota value of zero, as specified with /NOQUOTA or /QUOTA=0, conveys unlimited
storage. That is, to grant an account unlimited storage set its quota to zero.

By default, this quantity is specified in units of kbytes; however, the SET
STORAGE_UNITS command can be used to change the units used.

The maximum value is 4 gigabytes minus 1. If the value specified exceeds the
maximum, the value is set to zero (unlimited quota).

EXAMPLES

To create the account jdoe for Jane Doe with the password SeCrEt, and a quota
of 10 Mbytes (10240 Kbytes), use the command

popstore> ADD JDOE/PASSWORD="SeCrEt"/OWNER="Jane Doe"/QUOTA=10240
popstore> SHOW JDOE
Username: jdoe
Owner: Jane Doe
Group:
Store Type: popstore
Usage flags:
Site-defined:

Last pwd change: Fri 15 Nov 15:33:02 2012
Last connect: No time recorded
Last disconnect: No time recorded
Total connect time: 0 00:00:00
Total connections: 0
Past block days: 0
Last billing: Fri Nov 15 5 15:33:02 2012

Message count: 0 (0 total messages received)
Quota used: 0.00 Kbytes
Quota: 10240.00 Kbytes
Overdraft: 20.00 Kbytes

7–19

OpenVMS Command Line Management Commands
COPY

COPY—Duplicate an account

Create a new account which duplicates an existing account (popstore only).

SYNTAX COPY from-username to-username[,...]

Command Qualifiers
/CONFIRM
/FLAGS=flags
/GROUP_NAME=name
/LOG
/OVERDRAFT=value
/OWNER=owner
/PASSWORD=password
/PRIVATE=data
/PROMPT
/PWDEXPIRED
/QUOTA=value

PARAMETERS

from-username
The name of the popstore account to copy.

to-username
The name of the popstore account or accounts to create.

DESCRIPTION Use the COPY command to create a new popstore account which duplicates
an existing popstore account. Note that the new account will have its usage
accounting fields set to zero (e.g., last connect, total connect, past block days, etc.).
Also, the new account will not have any stored messages, even if the account being
duplicated has stored messages.

If the username of the new account conflicts with an existing account, no new
account is created and an error message is issued.

See also the RENAME command.

Note: Your PMDF-POPSTORE license controls the number of popstore user accounts
which you can have at any one time. When you reach this limit, you will not
be allowed to create additional accounts without first deleting some accounts
or obtaining a new license with an increased limit. Sites without a PMDF-
POPSTORE license are allowed to use the popstore and create up to ten
user accounts. This limit does not include the default account. Use the
SHOW/COUNT_USERS command to display the number of currently defined accounts
as well as the limit allowed by your license.

7–20

OpenVMS Command Line Management Commands
COPY

COMMAND
QUALIFIERS

/CONFIRM
/NOCONFIRM (default)
Prompt for positive confirmation before carrying out the indicated operation.
/NOCONFIRM is the default behavior.

/FLAGS=(flag[,...])
Specify one or more usage flags to associate with the new account. The recognized
flags are as follows:

DISMAIL User is not allowed to receive new mail messages.

DISUSER User is not allowed to access their account.

LOCKPWD User is not allowed to change their password.

MANAGE User is allowed to manage popstore accounts.

MIGRATED Internal flag used by the PMDF migration utilities.

PWD_ELSEWHERE Password information is stored outside of the popstore.

NODISMAIL User is allowed to receive new mail messages.

NODISUSER User is allowed to access their account.

NOLOCKPWD User is allowed to change their password.

NOMANAGE User is not allowed to manage popstore accounts.

NOMIGRATED Internal flag used by the PMDF migration utilities.

NOPWD_
ELSEWHERE

Password information is stored within the popstore.

/GROUP_NAME=name
Place the new account into the specified management group. If not specified, the
the management group of the account being copied is assumed. A manager can
not create an account into a group which they cannot manage.

/LOG
/NOLOG (default)
When the operation is successful, output a status message stating that the
operation succeeded. Note that error messages are always indicated. /NOLOG
is the default behavior.

/OVERDRAFT=value
/NOOVERDRAFT
The /OVERDRAFT qualifier specifies the amount of message storage by which the
new account can exceed its message storage quota. If the account is currently
using less than its storage quota, then a new message can be stored provided that
it will not result in the account’s storage exceeding the sum of the its storage and
overdraft quotas.

By default, this quantity is specified in units of kbytes; however, the SET
STORAGE_UNITS command can be used to change the units used.

The /NOOVERDRAFT qualifier is equivalent to /OVERDRAFT=0 and specifies that
the new account has no overdraft quota.

7–21

OpenVMS Command Line Management Commands
COPY

The maximum value is 4 gigabytes minus 1. If the value specified exceeds the
maximum, the value is set to zero (no overdraft quota).

/OWNER=owner
A text string specifying the name of the owner of the new account. The length of
the string can not exceed 40 bytes. The owner field is not used by the popstore
itself; it is generally used by humans to associate account usernames with the
actual owner of the account.

/PASSWORD=password
/NOPASSWORD
Specifies the new account’s access password. The length of the password can not
exceed 32 bytes. Access by non-managers to the account requires knowledge of
this password. For instance, to access the account from a POP3 client, the correct
username and password associated with the account must be supplied.

The /NOPASSWORD qualifier specifies that the new account does not require a
password to access it.

Note that passwords are case sensitive. Note further that the command line reader
will convert to lower case any string not enclosed in quotes. As such, a password
containing upper case characters must be enclosed in quotes.

/PRIVATE=data
Site-specific account data for the new account can be stored in the account profile
file using this qualifier. The data string can not exceed a length of 64 bytes. This
data is not used by the popstore itself but can be used by site-developed procedures
which access account profiles.

/PROMPT (default)
/NOPROMPT
By default if a wildcard is used, even if /NOCONFIRM is specified, one confirmation
prompt is issued. If /NOPROMPT is specified, there is no prompting at all.

/PWDEXPIRED
/NOPWDEXPIRED (default)
If /PWDEXPIRED is specified, then the account is marked as pre-expired. This
means that if password expiration is enabled through the PASSWORD_LIFETIME
option, then the user must change their password immediately.

If /NOPWDEXPIRED is specified (the default), then the account is marked as
not pre-expired. The time of last password change is set to the current time. If
password expiration is enabled, then the user does not have to change the password
until the PASSWORD_LIFETIME has run out.

/QUOTA=value
/NOQUOTA
The /QUOTA qualifier specifies the new account’s message storage quota. The
account can continue to receive new messages so long as the storage consumed by
its currently stored messages does not exceed its message storage quota. See also
/OVERDRAFT.

A quota value of zero, as specified with either /QUOTA=0 or /NOQUOTA, conveys
unlimited storage. That is, to grant an account unlimited storage set its quota to

7–22

OpenVMS Command Line Management Commands
COPY

zero.

By default, this quantity is specified in units of kbytes; however, the SET
STORAGE_UNITS command can be used to change the units used.

The maximum value is 4 gigabytes minus 1. If the value specified exceeds the
maximum, the value is set to zero (unlimited quota).

EXAMPLES

To create a new account jdoe for Jane Doe which duplicates the account bsmith
but has different owner and password fields, use the command

popstore> COPY BSMITH JDOE/PASSWORD="SeCrEt"/OWNER="Jane Doe"

7–23

OpenVMS Command Line Management Commands
DELETE

DELETE—Remove a user account or a user’s
messages

Remove user accounts from the popstore or delete users’ messages.

SYNTAX DELETE username[,...]

Command Qualifiers
/CONFIRM
/GROUP=name
/LOG
/MESSAGES
/PROMPT
/RETURN /NORETURN

PARAMETERS

username
Name of the account to delete. Can contain wild card characters.

DESCRIPTION Use the DELETE command to remove one or more user accounts. By default, stored
messages for the accounts are deleted silently. To cause unread messages to be
returned to their originators as undelivered, specify /RETURN.

Use the /MESSAGES qualifier to delete or return a user’s messages. The account
itself will not be deleted.

When the username parameter contains wild card characters, all matching
accounts within the manager’s management group and subgroups thereof will be
deleted. The /GROUP qualifier can be used to further constrain which accounts are
deleted.

COMMAND
QUALIFIERS

/CONFIRM
/NOCONFIRM
Prompt for positive confirmation before carrying out the indicated operation. When
wild cards are not used, /NOCONFIRM is the default. When wild cards are used,
/CONFIRM is the default and a prompt is issued for each account to be operated
upon. Moreover, when wild cards are used, /NOCONFIRM causes only a single
prompt to be issued—it does not eliminate the prompt altogether.

7–24

OpenVMS Command Line Management Commands
DELETE

/GROUP=name
Name of a management group to constrain the operation to. This qualifier can be
used in conjunction with a username parameter containing wild card characters
so as to further constrain the delete operation.

/LOG
/NOLOG
When the operation is successful, output a status message stating that the
operation succeeded. Note that error messages are always indicated. /NOLOG is
the default behavior unless wild cards are used in which case /LOG is the default.

/MESSAGES
When the /MESSAGES qualifier is specified, only the user’s messages are deleted
or returned. The account itself is not deleted.

/PROMPT (default)
/NOPROMPT
By default if a wildcard is used, even if /NOCONFIRM is specified, one confirmation
prompt is issued. If /NOPROMPT is specified, there is no prompting at all.

/RETURN
/NORETURN (default)
When /RETURN is specified, unread messages are returned to their originator as
undelivered. By default unread messages are deleted without sending a non-
delivery notice back to their originators.

EXAMPLES

To delete the accounts jdoe and bsmith, issue the command

popstore> DELETE JDOE,BSMITH

7–25

OpenVMS Command Line Management Commands
EXIT

EXIT—Exit the utility

Exit the utility.

SYNTAX EXIT

Command Qualifiers
None

PARAMETERS None.

DESCRIPTION The EXIT command exits the utility.

7–26

OpenVMS Command Line Management Commands
FORWARD

FORWARD—Establish a forwarding address

Establish a forwarding address.

SYNTAX FORWARD username forward-to-address

Command Qualifiers
/OVERRIDE /OVERRIDE

PARAMETERS

username
Username for which to establish a forwarding address.

forward-to-address
Address to which to forward messages. Must be a single, fully-qualified RFC822
address—specifically, a RFC822 ‘‘addr-spec’’.

DESCRIPTION Messages destined for the popstore can be automatically forwarded to a different
popstore addressee or to another address outside of the popstore altogether.
This is done by establishing a forwarding address with the FORWARD command.
For instance, to forward all mail for the popstore user sandy to the address
sandra@example.com, issue the command

popstore> FORWARD SANDY SANDRA@EXAMPLE.COM

The username supplied (e.g., sandy) need not correspond to an actual popstore
account.

Note that if more than one forwarding address is supplied, then each address
should be separated by commas and all the addresses enclosed in a set of double
quotes. For example,

popstore> FORWARD SANDY "SANDY,SANDRA@EXAMPLE.COM"

When a forwarding address is established for an actual popstore user, that user will
no longer receive mail in the popstore unless the forwarding includes their account
in the list of addresses to forward to. For instance, the first example above would
cause the account sandy to no longer receive into the popstore mail sent to it. The
mail is instead directed to sandra@example.com. In the second example, however,
mail will still be stored into the popstore for the account sandy. In addition, a
copy of the mail will be forwarded to sandra@example.com.

7–27

OpenVMS Command Line Management Commands
FORWARD

COMMAND
QUALIFIERS

/OVERRIDE (default)
/NOOVERRIDE
By default, forwarding addresses can be established for existing popstore users.
Specify /NOOVERRIDE to prevent inadvertently forwarding an existing user’s
messages elsewhere.

A manager cannot establish a forwarding address which will override a popstore
account outside of their own management group.

7–28

OpenVMS Command Line Management Commands
GROUP

GROUP—Manipulate management groups

Manipulate management groups.

SYNTAX GROUP/ADD [group-name [subgroup-name[,...]]]
GROUP/DELETE group-name
GROUP/LIST [group-name]
GROUP/MODIFY group-name [subgroup-name[,...]]

Command Qualifiers
/ADD
/CONFIRM
/DELETE
/FORMAT_FILE=file-spec
/LIST
/LOG
/MODIFY
/OUTPUT=file-spec
/PROMPT
/RECUR

PARAMETERS

group-name
Name of the group to add, delete, list, or modify. Wild cards can be used in
conjunction with the /LIST qualifier.

subgroup-name[,...]
A comma separated list group names to associated with the group being added or
modified. The listed groups will become subgroups of the group being added or
modified.

DESCRIPTION The GROUP command is used to manipulate the popstore management groups.
Only managers with either operating system privileges or a privileged popstore
account with access to the world group can use this command. In regards to the
latter case, that means that the manager’s account must have the MANAGE usage
flag set and either have no group name associated with the account—the empty
group—or be in a management group which contains as a subgroup the world
group. The one exception to this rule is that a manager can always use the /LIST
qualifier to list their own management group and subgroups thereof.

For further details on the usage of this command as well as usage examples, see
Section 7.12.

7–29

OpenVMS Command Line Management Commands
GROUP

COMMAND
QUALIFIERS

/ADD
This qualifier indicates that a new management group is to be added. If a group
already exists with the same name, then an error will be output.

/CONFIRM
/NOCONFIRM (default)
Prompt for positive confirmation before carrying out the indicated operation.
/NOCONFIRM is the default behavior.

/DELETE
This qualifier indicates that the specified management group is to be deleted. Note
that subgroups contained within the group are not deleted by default. Specify /RE-
CUR to also delete any subgroups. Moreover, the actual accounts in the group are
not deleted either. They can only be deleted with a DELETE/GROUP=group_name
* command.

/FORMAT_FILE=file-spec
Specify a formatting file to use to format the output of GROUP/LIST command.

/LIST
List the specified groups and subgroups. When this qualifier is used, the group-
name parameter can contain wild card characters. When the parameter is omitted,
* is assumed.

/LOG
/NOLOG (default)
When the operation is successful, output a status message stating that the
operation succeeded. Note that error messages are always indicated. /NOLOG
is the default behavior.

/MODIFY
Modify the specified group, replacing its list of subgroups with the specified list.
If no list is specified, then the group is changed to contain no subgroups.

/OUTPUT=file-spec
Write the output to the specified file rather than to the terminal.

/PROMPT (default)
/NOPROMPT
By default if a wildcard is used, even if /NOCONFIRM is specified, one confirmation
prompt is issued. If /NOPROMPT is specified, there is no prompting at all. This
qualifier can be used in conjunction with the /ADD, /DELETE, or /MODIFY switches.

/RECUR
/NORECUR (default)
This qualifier can be used in conjunction with /DELETE. By default, only the
specified group is deleted. Subgroups of that group are not deleted unless /RECUR
is also specified.

7–30

OpenVMS Command Line Management Commands
LOGIN

LOGIN—Activate management privileges

Activate management privileges.

SYNTAX LOGIN [username]

Command Qualifiers
None

PARAMETERS

username
Name of the account under which to log in.

DESCRIPTION Popstore users who have popstore management privileges but lack operating
system privileges must log in to their account with the LOGIN command in order
to perform management operations. Once logged in, the utility will then allow
the user to perform management operations. Users who have operating system
privileges (e.g., SYSPRV and SYSLCK privileges on OpenVMS), need not log in to
their account.

To log in to a popstore account, the popstore account’s username should be supplied
using the username parameter to the LOGIN command. If the username parameter
is omitted, the utility will use the name of the operating system account under
which the user is logged in. The utility will then prompt for a password. If
the correct password for the popstore account is supplied, and the account has
the manage flag set, then the utility will allow management operations to be
undertaken using the utility’s image privileges.

A popstore account is granted management privileges by specifying

/FLAGS=MANAGE

when creating or modifying it with the ADD or MODIFY commands.

See also the LOGOUT command.

EXAMPLES

To log in to the account bob, issue the command

popstore> LOGIN BOB
Password: santaclaus
Login succeeded; management capabilities enabled

7–31

OpenVMS Command Line Management Commands
LOGOUT

LOGOUT—Deactivate management privileges

Deactivate management privileges.

SYNTAX LOGOUT

Command Qualifiers
None

PARAMETERS None.

DESCRIPTION Use the LOGOUT command to deactivate privileges activated with the LOGIN
command. Note that management privileges are also deactivated when the utility
is exited.

7–32

OpenVMS Command Line Management Commands
MODIFY

MODIFY—Change an existing account

Change characteristics of one or more existing accounts.

SYNTAX MODIFY username[,...]

Command Qualifiers
/CONFIRM
/FLAGS=flags
/GROUP=name
/GROUP_NAME=name
/LAST_CONNECT
/LAST_DISCONNECT
/LOG
/MESSAGE_COUNT=value
/OVERDRAFT=value
/OWNER=owner
/PASSWORD=password
/PAST_BLOCK_DAYS=value
/PRIVATE=data
/PROMPT
/PWDEXPIRED
/QUOTA=value
/RECEIVED_BYTES=value
/RECEIVED_MESSAGES=value
/TOTAL_CONNECT=value
/TOTAL_CONNECTIONS=value

PARAMETERS

username
Name of the account for which to make the modifications. Can contain wild card
characters.

DESCRIPTION The MODIFY command changes one or more characteristics of an existing account.
Characteristics not specified with qualifiers in the command are left unchanged.

When the username parameter contains wild card characters, all matching
accounts within the manager’s management group and subgroups thereof will be
modified. The /GROUP qualifier can be used to further constrain which accounts
are modified.

7–33

OpenVMS Command Line Management Commands
MODIFY

COMMAND
QUALIFIERS

/CONFIRM
/NOCONFIRM
Prompt for positive confirmation before carrying out the indicated operation. When
wild cards are not used, /NOCONFIRM is the default. When wild cards are used,
/CONFIRM is the default and a prompt is issued for each account to be operated
upon. Moreover, when wild cards are used, /NOCONFIRM causes only a single
prompt to be issued—it does not eliminate the prompt altogether.

/FLAGS=(flag[,...])
Change the usage flags associated with the account. The recognized flags are as
follows:

DISMAIL User is not allowed to receive new mail messages.

DISUSER User is not allowed to access their account.

LOCKPWD User is not allowed to change their password.

MANAGE User is allowed to manage popstore accounts.

MIGRATED Internal flag used by the PMDF migration utilities.

PWD_ELSEWHERE Password information is stored outside of the popstore.

NODISMAIL User is allowed to receive new mail messages.

NODISUSER User is allowed to access their account.

NOLOCKPWD User is allowed to change their password.

NOMANAGE User is not allowed to manage popstore accounts.

NOMIGRATED Internal flag used by the PMDF migration utilities.

NOPWD_
ELSEWHERE

Password information is stored within the popstore.

/GROUP=name
Name of a management group to constrain the operation to. This qualifier can be
used in conjunction with a username parameter containing wild card characters
so as to further constrain the modify operation.

/GROUP_NAME=name
Change the accounts to be in the specified management group. A manager can
not change an account’s management group to be a group outside of the manager’s
group.

/LAST_CONNECT
Clear the user’s last connect time field.

/LAST_DISCONNECT
Clear the user’s last disconnect time field.

/LOG
/NOLOG
When the operation is successful, output a status message stating that the
operation succeeded. Note that error messages are always indicated. /NOLOG is
the default behavior unless wild cards are used in which case /LOG is the default.

7–34

OpenVMS Command Line Management Commands
MODIFY

/MESSAGE_COUNT=value
Reduce the user’s message count to the specified value, deleting stored messages
if necessary. The act of deleting stored message will change the past block days
field.

/OVERDRAFT=value
/NOOVERDRAFT
Change the account’s overdraft quota which is the amount of message storage
by which the account can exceed its primary message storage quota. By default,
this quantity is specified in units of kbytes; however, the SET STORAGE_UNITS
command can be used to change the units used.

The /NOOVERDRAFT qualifier is equivalent to specifying /OVERDRAFT=0 and
indicates that the account has no overdraft quota.

The maximum value is 4 gigabytes minus 1. If the value specified exceeds the
maximum, the value is set to zero (no overdraft quota).

/OWNER=owner
Change the accounts ownership field. The length of the string can not exceed 40
bytes. The owner field is not used by the popstore itself; it is generally used by
humans to associate account usernames with the actual owner of the account.

/PASSWORD=password
/NOPASSWORD
Change the account’s password. The length of the password can not exceed 32
bytes. Access by non-managers to the account requires knowledge of this password.
For instance, to access the account from a POP3 client, the correct username and
password associated with the account must be supplied.

The /NOPASSWORD qualifier specifies that the account does not require a password
to access it.

Note that passwords are case sensitive. Note further that the command line reader
will convert to lower case any string not enclosed in quotes. As such, a password
containing upper case characters must be enclosed in quotes.

/PAST_BLOCK_DAYS=value
Set the user’s past block days field to the specified, integer value. Changing this
value clears the past block days remainder field.

/PRIVATE=data
Change the site-specific account data stored in the account profile file. The data
string can not exceed a length of 64 bytes. This data is not used by the popstore
itself but can be used by site-developed procedures which access account profiles.

/PROMPT (default)
/NOPROMPT
By default if a wildcard is used, even if /NOCONFIRM is specified, one confirmation
prompt is issued. If /NOPROMPT is specified, there is no prompting at all.

/PWDEXPIRED
/NOPWDEXPIRED
If /PWDEXPIRED is specified, then the account is marked as pre-expired. This
means that if password expiration is enabled through the PASSWORD_LIFETIME
option, then the user must change their password immediately.

7–35

OpenVMS Command Line Management Commands
MODIFY

If /NOPWDEXPIRED is specified, then the account is marked as not pre-
expired. The time of last password change is set to the current time. If password
expiration is enabled, then the user does not have to change the password until
the PASSWORD_LIFETIME has run out.

The default is to not change the pre-expired status of the account.

/QUOTA=value
/NOQUOTA
Change the account’s message storage quota. The account can continue to receive
new messages so long as the storage consumed by its currently stored messages
does not exceed its message storage quota. See also /OVERDRAFT.

A quota value of zero, as specified with /NOQUOTA or /QUOTA=0, conveys unlimited
storage. That is, to grant an account unlimited storage set its quota to zero.

A quota value of zero, conveys unlimited storage. That is, to grant an account
unlimited storage set its quota to zero.

By default, this quantity is specified in units of kbytes; however, the SET
STORAGE_UNITS command can be used to change the units used.

The maximum value is 4 gigabytes minus 1. If the value specified exceeds the
maximum, the value is set to zero (unlimited quota).

/RECEIVED_BYTES=value
Set the cumulative count of received message bytes to the specified, integer
value. By default, this quantity is specified in units of kbytes; however, the set
storage_units command can be used to change the units used. The maximum
value is 4 gigabytes minus 1. If the value specified exceeds the maximum, the
value is set to zero.

/RECEIVED_MESSAGES=value
Set the cumulative count of received messages to the specified, integer value.

/TOTAL_CONNECT=value
Set the user’s total connect field to the specified, integer value.

/TOTAL_CONNECTIONS=value
Set the user’s count of total connections to the specified, integer value.

EXAMPLES

In the following example, the quota and password fields are changed for the user
jdoe:

popstore> MODIFY JDOE/PASSWORD="TodaY"/QUOTA=20000

7–36

OpenVMS Command Line Management Commands
NOFORWARD

NOFORWARD—Remove a forwarding address

Remove a forwarding address.

SYNTAX NOFORWARD username[,...]

Command Qualifiers
None

PARAMETERS

username
Username for which to remove the forwarding.

DESCRIPTION Forwarding addresses are removed with the UNFORWARD command. If the supplied
username also matches an existing popstore account, then that account will resume
receiving new mail messages.

7–37

OpenVMS Command Line Management Commands
QUIT

QUIT—Exit the utility

Exit the utility.

SYNTAX QUIT

Command Qualifiers
None

PARAMETERS None.

DESCRIPTION The QUIT command exits the utility. The QUIT command is a synonym for the
EXIT command.

7–38

OpenVMS Command Line Management Commands
RENAME

RENAME—Rename an account

Change the username associated with an account (popstore only).

SYNTAX RENAME old-username new-username

Command Qualifiers
/CONFIRM
/LOG
/PROMPT

PARAMETERS

old-username
The old name of the account.

new-username
The new name for the account.

DESCRIPTION The RENAME command changes the username associated with a popstore account.
Once an account is renamed, it can no longer receive mail under the old name
unless a forwarding from the old name to the new name is also established with
the FORWARD command.

COMMAND
QUALIFIERS

/CONFIRM
/NOCONFIRM (default)
Prompt for positive confirmation before carrying out the indicated operation.
/NOCONFIRM is the default behavior.

/LOG
/NOLOG (default)
When the operation is successful, output a status message stating that the
operation succeeded. Note that error messages are always indicated. /NOLOG
is the default behavior.

/PROMPT (default)
/NOPROMPT
By default if a wildcard is used, even if /NOCONFIRM is specified, one confirmation
prompt is issued. If /NOPROMPT is specified, there is no prompting at all.

7–39

OpenVMS Command Line Management Commands
RENAME

EXAMPLES

To rename the popstore account jdoe to janedoe, issue the command:

popstore> RENAME JDOE JANEDOE

7–40

OpenVMS Command Line Management Commands
SET DOMAIN

SET DOMAIN—Set user domain

Select the user domain to manage.

SYNTAX SET DOMAIN domain-name

Command Qualifiers
None

PARAMETERS

domain-name
Name of the user domain to manage.

DESCRIPTION By default, the default user domain is managed with this utility. To manage a
different user domain, select that domain with the SET DOMAIN command.

For example, to manage the example.com domain, specify

popstore> SET
Using the "default" user domain
...
popstore> SET DOMAIN EXAMPLE.COM
popstore> SET
Using the "example.com" user domain
...
popstore>

7–41

OpenVMS Command Line Management Commands
SET STORAGE_UNITS

SET STORAGE_UNITS—Set storage units

Set the units used to measure byte-counted values.

SYNTAX SET STORAGE_UNITS type

Command Qualifiers
None

PARAMETERS

type
Type of units to use. Must be one of BYTES, KBYTES, MBYTES, or GBYTES.

DESCRIPTION By default, units of KBYTES (1024 bytes) are used when specifying values for byte-
count valued fields such as message quotas.

To select a unit of measure other than KBYTES, use the SET STORAGE_UNITS
command. BYTES selects bytes, KBYTES selects 1024 bytes, MBYTES selects 1024
KBYTES, and GBYTES selects 1024 MBYTES.

After issuing a SET STORAGE_UNITS command, all byte-count valued numbers
input on the command line will be interpreted as being measured in the newly
selected units. Note that displayed values are displayed in the units called for by
the formatting template used to generate the display.

For example, to use units of megabytes, specify

popstore> SET STORAGE_UNITS MBYTES

7–42

OpenVMS Command Line Management Commands
SET TIME_UNITS

SET TIME_UNITS—Set time units

Set the units used to measure time-valued fields.

SYNTAX SET TIME_UNITS type

Command Qualifiers
None

PARAMETERS

type
Type of units to use. Must be one of SECONDS, MINUTES, HOURS, or DAYS.

DESCRIPTION By default, time units of DAYS are used when specifying values for time-valued
fields. Presently, the only time-valued field is the total connect time field which
can be modified with the /TOTAL_CONNECT qualifier of the MODIFY command.

To select a unit of measure other than DAYS, use the SET TIME_UNITS command.
After issuing a SET TIME_UNITS command, all time-valued numbers input on the
command line will be interpreted as being measured in the newly selected units.
Note that displayed values are displayed in the units called for by the formatting
template used to generate the display. For example, to use units of HOURS, specify

popstore> SET TIME_UNITS HOURS

7–43

OpenVMS Command Line Management Commands
SHOW

SHOW—Show information about user profiles

Display user accounts.

SYNTAX SHOW username[,...]

Command Qualifiers
/ALL
/BRIEF
/COUNT_USERS
/DOMAINS
/FORMAT_FILE=file-spec
/FORWARDINGS
/GROUP=name
/MESSAGES
/OUTPUT=file-spec
/STORE=store-type

PARAMETERS

username
Names of the accounts for which to display information. Wild cards are permitted.

DESCRIPTION The SHOW command shows settings for one or more user profiles, displays
established forwarding addresses, and lists information about messages received
by users. The username parameter can contain wild cards when displaying account
information; it can not contain wild cards when listing forwardings.

Use the SHOW/FORWARDINGS and SHOW/DOMAINS commands to generate listings
of, respectively, user e-mail forwardings and user domains.

Use the SHOW/COUNT_USERS command to list the number of currently defined
accounts as well as any licensing limits.

COMMAND
QUALIFIERS

/ALL
By default, only popstore accounts are displayed: MessageStore and native
accounts are not displayed. Specify /ALL to list all accounts. Note that /ALL
and /STORE=ALL are synonyms.

7–44

OpenVMS Command Line Management Commands
SHOW

/BRIEF
Generate a brief profile or message listing. By default, the formatting file
popmgr_profile_brief.txt is used to format the output for profile displays
and popmgr_messsage_brief.txt for message displays. This qualifier has no
effect when used in conjunction with the /FORWARDINGS qualifier.

/COUNT_USERS
Display the number of currently defined user accounts as well as the number
allowed by your PMDF-POPSTORE license. Specify /ALL to see both the popstore
and MessageStore counts.

/DOMAINS
Generate a list of defined user domains. By default, the formatting file pop-
mgr_domains.txt is used to format the output.

/FORMAT_FILE=file-spec
Specify a formatting file to use to format the output.

/FORWARDINGS
Display information about established forwarding addresses. By default, the
formatting file popmgr_forward.txt is used to format the output.

/FULL (default)
Generate verbose output. By default, the formatting file popmgr_profile.txt
is used to format profile information; popmgr_message.txt for message listings;
popmgr_domains.txt for domain listings; and, popmgr_forward.txt for for-
warding addresses. Those formatting files are found with the other formatting
files in the PMDF_ROOT:[WWW.POPSTORE] directory.

/GROUP=name
Confine the listing to the specified management group and its subgroups.

/MESSAGES
Display information on the users’ messages. By default, the formatting file
popmgr_message.txt is used to format the display.

/OUTPUT=file-spec
Write the output to the specified file rather than to the terminal.

/STORE=store-type
By default, only popstore accounts are displayed: MessageStore and native
accounts are not displayed. Specify /STORE=ALL to list all accounts; use a store-
type of MSGSTORE or IMAP to list only MessageStore accounts; use a store-type of
POPSTORE or POP to list only popstore accounts; and, use a store-type of NATIVE
to list only profiles marked as being native.

EXAMPLES

In the following example, full and brief listings are generated for the default
popstore account:

7–45

OpenVMS Command Line Management Commands
SHOW

popstore> SHOW DEFAULT

Username: default
Owner: Default user profile
Group:
Store Type: popstore
Usage flags:
Site-defined:

Last pwd change: No time recorded
Last connect: No time recorded
Last disconnect: No time recorded
Total connect time: 0 00:00:00
Total connections: 0
Past block days: 0
Last billing: Fri Nov 15 10:23:54 2012

Message count: 0 (0 total messages received)
Quota used: 0.00 Kbytes
Quota: 1024.00 Kbytes
Overdraft: 51.00 Kbytes

popstore> SHOW/BRIEF DEFAULT
Quota Message Quota used

Username (kbytes) Count (kbytes)
--
default 1024.00 0 0.00
--
*Note: privileged users are flagged with an asterisk

7–46

OpenVMS Command Line Management Commands
TEST

TEST—Test site-supplied subroutines

Test optional, site-supplied subroutines to verify that they load and function correctly.

SYNTAX TEST/BLOCK_DAYS image-spec starting-time ending-time
size remainder

TEST/CONNECT image-spec starting-time ending-time
TEST/MESSAGE_MAPPING image-spec
TEST/PATHS path-file-spec
TEST/PROFILE_MAPPING image-spec

Command Qualifiers
/BLOCK_DAYS
/CONNECT
/MESSAGE_MAPPING
/PATHS
/PROFILE_MAPPING

PARAMETERS

image-spec
Executive mode logical whose translation value is the file specification for the
shareable image containing the subroutine to test.

starting-time
Starting time value to pass to the compute_connect or compute_block_days
subroutine.

ending-time
Ending time value to pass to the compute_connect or compute_block_days
subroutine.

size
Size value to pass to the compute_block_days subroutine.

remainder
Remainder value to pass to the compute_block_days subroutine.

path-file-spec
File specification for the file of directory paths to check.

7–47

OpenVMS Command Line Management Commands
TEST

DESCRIPTION The TEST command provides a mechanism to test site-supplied subroutines
intended for use with the popstore. The purpose and usage of those subroutines is
described in Chapter 14. Note that the shareable image containing the subroutine
to be tested must be installed as a known image with the DCL INSTALL CREATE
command. Moreover, an executive mode logical must be used to reference the
image. The name of that logical is specified with the image-spec parameter.
And, any logical referenced by that logical must also be an executive mode
logical. These requirements are OpenVMS requirements and are enforced by
LIB$FIND_IMAGE_SYMBOL, the run-time library subroutine used by the popstore
to dynamically load and link to the subroutine.

Note that if you use the TEST command and then subsequently change your
subroutine, then you will need to exit the utility and restart it before you can
retest your subroutine. This is because LIB$FIND_IMAGE_SYMBOL won’t reload
the subroutine a second time. Also, when rebuilding a shareable image, be sure to
use the DCL INSTALL REPLACE command to install the new version of the image.

The TEST/MESSAGE_MAPPING and TEST/PROFILE_MAPPING commands test, re-
spectively, map_message_filename and map_profile_filename subroutines.
The command will load the subroutine from the specified image and then, for each
stored message or profile file, run the filename through the subroutine. The in-
put and output file names for each file will be displayed along with diagnostic
information, should an error occur.

The TEST/CONNECT and TEST/BLOCK_DAYS commands test, respectively, the
compute_connect and compute_block_days subroutines. With each command,
you can specify the values of the input arguments to be passed to those subroutines.
The results produced by the subroutine will then be displayed. Should an error
occur, diagnostic information will be displayed.

Text files intended for use as PMDF_TABLE:popstore_message_paths. or
PMDF_TABLE:popstore_profiles_paths. files can be tested with the TEST
/PATHS command. The command will scan the directory trees listed in the
specified file, displaying the files found in each directory tree.

COMMAND
QUALIFIERS

/BLOCK_DAYS
Test the compute_block_days subroutine from the shareable image image-spec.

/CONNECT
Test the compute_connect subroutine from the shareable image image-spec.

/MESSAGE_MAPPING
Test the map_message_filename subroutine from the shareable image image-
spec.

/PROFILE_MAPPING
Test the map_profile_filename subroutine from the shareable image image-
spec.

7–48

OpenVMS Command Line Management Commands
TEST

/PATHS
List the files from the directory trees specified in the path file path-file-spec.

EXAMPLES

In the following example, the map_profile_filename subroutine of Example 14–5
is tested with the TEST/PROFILE_MAPPING command on an OpenVMS Alpha system.

$ DEFINE/SYSTEM/EXECUTIVE_MODE POP_MAP_PROFILES -
_$ DISK3:[IMAGES]MAP_PROFILES.EXE
$ CC MAP_PROFILES.C
$ LINK/SHAREABLE=POP_MAP_PROFILES MAP_PROFILES.OBJ,SYS$INPUT:/OPT
SYMBOL_VECTOR=(map_profile_filename=PROCEDURE)
CTRL/Z

$ INSTALL CREATE POP_MAP_PROFILES
$ PMDF POPSTORE
popstore> TEST/PROFILE_MAPPING POP_MAP_PROFILES
PMDF_POPSTORE_PROFILES:[C.R.W]CRW.;1 -> DISK0:[PROFILES.C.R.W]CRW.;
PMDF_POPSTORE_PROFILES:[D.A.D]DAVID.;1 -> DISK0:[PROFILES.D.A.D]DAVID.;
PMDF_POPSTORE_PROFILES:[D.A.N]DAN.;1 -> DISK0:[PROFILES.D.A.N]DAN.;
PMDF_POPSTORE_PROFILES:[D.E.T]DEFAULT.;1 -> DISK0:[PROFILES.D.E.T]DEFAULT.;
PMDF_POPSTORE_PROFILES:[K.E.N]KEVIN.;1 -> DISK0:[PROFILES.K.E.N]KEVIN.;
PMDF_POPSTORE_PROFILES:[K.R.N]KRISTIN.;1 -> DISK0:[PROFILES.K.R.N]KRISTIN.;
PMDF_POPSTORE_PROFILES:[P.E.E]PEKIE.;1 -> DISK1:[PROFILES.P.E.E]PEKIE.;
PMDF_POPSTORE_PROFILES:[T.E.T]TEST.;1 -> DISK1:[PROFILES.T.E.T]TEST.;
popstore>

7–49

8 Migration

This chapter discusses two different forms of migration. In Section 8.1, the subject of
moving the popstore from one machine to another is discussed. In Section 8.2, migrating
Berkeley and VMS MAIL mailboxes to the popstore is discussed.

8.1 Migrating the popstore to Another Platform
Should you want to migrate the popstore to another platform, then you can simply

copy the profile and message directory trees to the other platform: the files are architec-
ture and operating system independent. On UNIX and NT, these are the directory trees
/pmdf/user/ and /pmdf/popstore/messages/. On OpenVMS, these are the directory
trees PMDF_POPSTORE_PROFILES:[*...] and PMDF_POPSTORE_MESSAGES:[*...].

However, PMDF database files are not in general architecture or operating system
independent. They can only be exchanged between OpenVMS systems (Alpha, VAX, or
I64). So, when moving the popstore to a different operating system or between Solaris
SPARC and Solaris x86 systems, you will need to regenerate the popstore’s management
databases as described below.

User database
Once the profile files have been moved, simply run the PMDF POPSTORE utility and
issue the X-BUILD-USER-DB command. The utility will create a new user database and
populate it with entries found by scanning the profile directory tree.

Group database
Before moving the popstore, on the old system run the PMDF POPSTORE utility and
issue the command

popstore> group -list -format=dump_groups_2unix.txt -output=groups.com

On OpenVMS systems, instead issue the command

popstore> GROUP/LIST/FORMAT=DUMP_GROUPS_2UNIX.TXT/OUTPUT=GROUPS.COM

If moving to an OpenVMS system, use the name dump_groups_2vms.txt in place of
dump_groups_2unix.txt in the above commands.

The resulting file, groups.com, can then be used with the PMDF POPSTORE utility
on the new system to build a new group database. If the new system is a UNIX or NT
platform, then on the new system issue the command

popstore> run groups.com

If the new system is an OpenVMS system, instead issue the command

popstore> <<GROUPS.COM

8–1

Migration
Migrating the popstore to Another Platform

Forwarding database
Before moving the popstore, on the old system run the PMDF POPSTORE utility and
issue the command

popstore> show -forwardings -format=dump_forwardings.txt -output=forwardings.com

On OpenVMS systems, instead issue the command

popstore> SHOW/FORWARDINGS/FORMAT=DUMP_FORWARDINGS.TXT/OUTPUT=FORWARDINGS.COM

The resulting file, forwardings.com can then be used with the PMDF POPSTORE
utility on the new system to build a new forwarding database. If the new system is a
UNIX or NT platform, then on the new system issue the command

popstore> run forwardings.com

If the new system is an OpenVMS system, issue the command

popstore> <<FORWARDINGS.COM

Once the three databases have been built, the migration should be completed. Of
course, you still have to configure PMDF on the new system.

8.2 Migrating Mailboxes
The popstore provides a migration utility which can be used to migrate mail

mailboxes for login accounts to either the PMDF MessageStore or the PMDF popstore:

• On UNIX platforms, the utility migrates BSD-style mail files to the popstore or
MessageStore as well as migrating popstore accounts to the MessageStore.

• On OpenVMS platforms, the utility migrates VMS MAIL NEWMAIL folders to the
popstore, migrates entire VMS MAIL mail.mai files to the MessageStore, and
migrates popstore accounts to the Message Store.

• On NT platforms the utility can migrate popstore accounts to the MessageStore.

The utility, described below, can be used to simultaneously migrate one or many
accounts. It can either create new accounts as it runs (e.g., when migrating native mail
boxes to the popstore or MessageStore), or use pre-created accounts (e.g., when moving
popstore accounts to the MessageStore).

8.2.1 Migrating UNIX and NT Mailboxes
On UNIX and NT platforms, the migration utility is the pmdf movein utility. Its

usage is described below.

8–2

MOVEIN utility on UNIX and NT
MOVEIN

MOVEIN—Move a mailbox

Migrate mail files between message stores or between accounts.

SYNTAX pmdf movein [username [password]]

Command Switches Default
-before=time
-debug -nodebug
-destination=store-type
-dstdmn=user-domain
-dstusername=dest-usernamesource username
-exception_file=file-spec
-force_migrate -noforce_migrate
-forward -forward
-help
-host=hostname
-inbox=file-spec
-input=file-spec
-log -log
-since=time
-source=store-type -source=native
-srcdmn=user-domain
-use_existing -nouse_existing

restrictions You must be user root to run this utility.

PARAMETERS

username
Optional name of a single source message store user account to migrate. If not
supplied, then the names of accounts to migrate are read from either an input file
or standard input, stdin.

password
Optional password to set for the new account in the destination message store.
Only used when migrating to the popstore or MessageStore.

DESCRIPTION The pmdf movein utility migrates mailboxes from one message store to another,
or from one account to another. The supported message stores are: BSD-style
mail files (the ‘‘native’’ message store), the PMDF MessageStore, and the PMDF
popstore. When moving from or to the native or popstore message stores, only

8–3

MOVEIN utility on UNIX and NT
MOVEIN

messages in the inbox are migrated. For migrations from one msgstore account to
another, messages in all folders are moved.

The pmdf movein utility performs all of the necessary locking so as to allow
migrations to be carried out on an active system without loss of mail. Forwardings
from the source message store account to the destination message store account
are automatically established for each migrated user. Note, however, that use of
the -noforwarding switch can compromise this robustness.

The basic inputs to the utility are: the names of the source and destination
message stores; the names of the source store user accounts to migrate; optionally,
the names of the destination store user accounts to create; and, also optionally,
passwords to set for these new accounts. The source store username is assumed
for the destination store if a desintation username is not specified. That is, by
default, the name of the account in the destination store is the same as that in the
source store.

When a username is supplied on the command line, then just that one user account
is migrated. To migrate multiple accounts, do not specify a username on the
command line and instead use the -input switch. Each line of the input file
specifies the username of a single source store account to migrate. In addition, a
line can specify a password to associate with the new account in the destination
store, and the username to create in the destination store. The password and
destination username, if supplied, must be on the same input line following the
username with one or more white space characters separating each of the three.
If the password contains a space itself, it must be enclosed in double quotes. To
specify a destination username without specifying a password, the password must
be specfied as an empty string (two double-quotes next to each other).

Comment lines can appear in the input file: a comment line is any line which
begins with a # or ! character. Leading and trailing white space characters on
lines are ignored. The following sample input should give the flavor of input files:

A comment line
#
to supply a password and destination username:
angel "alex’s password" alex
bailey blakes-password blake
#
to supply a destination username, but no password:
chris "" casey
#
to supply a password but no destination username:
dana danas-password
#
to supply neither a password nor a destination username:
emile

When no username or input file is specified, input lines are read from standard
input, stdin. The format of those input lines is identical to that of lines read from
an input file. Input is terminated by typing a CTRL/D (EOD).

When migrating to a msgstore or popstore account, the destination account is
automatically created. If a password is supplied, then the password is set in the

8–4

MOVEIN utility on UNIX and NT
MOVEIN

new account. If no password is supplied, then the new account is marked with the
PWD_ELSEWHERE flag. Normally, that causes authentication to then be performed
against /etc/passwd. See the popstore documentation for further information.
When migrating from a BSD-style mail file, the owner field in the new account is
set from the gcos field in the /etc/passwd file. If moving between a popstore and
msgstore account, the owner field of the destination account is set from the source
account.

If there already is a pre-existing msgstore or popstore account—such as when
migrating from the popstore to the msgstore—then the migration fails unless -
use_existing is specified. Moreover, if the existing msgstore or popstore account
has the MIGRATED flag set, then the migration fails unless -force_migrate is
specified. When the account is successfully migrated, the MIGRATED flag is set in
the account.

When migrating to a BSD-style mail file, a login account must already exist for
the user. The account will not automatically be created. Any supplied password
is ignored.

When migrating either to or from BSD-style mail files, the PMDF local delivery
channel’s methodology for locating a user’s BSD-style mailbox file is used: the
user’s .forward file is first consulted, the PMDF profile database is checked, and
as a last resort the path specified with the -inbox switch is used. If that switch
is not specified, then the platform-specific /var/mail location is used as a last
resort.

Note: After a successful migration, the account in the source message store is left intact
with its mail in place. In the case of a BSD-style mail file, the mail file is protected
against further writing. In the case of migration from a popstore to MesageStore
store type with the same username (or vice-versa), the account is changed in place
from the one store type to the other.

The pmdf movein utility is extremely careful to back out of a failed migration,
leaving the user account in the source message store in its original state. When
multiple accounts are migrated, a failure to migrate an account does not terminate
the utility. Instead, the utility backs out of the migration for the failed account
and continues on to the next account. Failures are reported to standard error,
stderr. The -exception_file switch can be used to log errors in an exception
file. The format of the exception file is suitable for re-use as an input file.

COMMAND
SWITCHES

-before=hh:mm:ss:dd-mmm-yyyy (UNIX only)
By default, all messages are migrated. The -before switch can be used to only
migrate those messages stored on or before the specified time. For instance, to
migrate all messages received between 08:30 and 13:00 on 1 April 2012, specify

8–5

MOVEIN utility on UNIX and NT
MOVEIN

-since=8:30:00:1-april-2012 -before=13:00:00:1-april-2012

The actual date and time time specification is parsed by the C run-time library
function strptime. The formatting string used with strptime is

%H:%M:%S:%d-%b-%Y

For further information on specifying date and time specifications, please consult
your platform’s strptime documentation.

-debug
-nodebug (default)
Debug output can be enabled with the -debug switch.

-destination=store-type
This required switch specifies the name of the target message store. The accepted
names are native (BSD-style mail files), msgstore (PMDF MessageStore), and
popstore (PMDF popstore).

-dstdmn=user-domain
The name of the user domain to use in the destination message store. If not
specified, then the default domain is used. Only applicable in conjunction with
destination message stores which support user domains (currently, only popstore).

-dstusername=dest-username
The username to use in the destination message store. If not specified, the source
store username is used.

-exception_file=file-spec
By default, failures are only written to standard error, stderr. Failures can also
be reported to an exception file. The name of the exception file is given with the
-exception_file switch. The file will only be created should a failure occur;
the file will have the permissions 0600. For each account whose migration fails,
an entry will be made to the exception file. The entry takes the form of one or
more lines of comments followed by a line containing the failed username and any
optional password and destination username. The format of the exception file is
such that it can be re-used as an input file.

-force_migrate
-noforce_migrate (default)
This switch can be used in conjunction with the -use_existing switch. See the
description of that switch for further details.

-forward (default)
-noforward
By default, a forwarding address for each migrated user account is established.
This forwarding causes undelivered mail sent to the user’s source message store
address to be automatically forwarded to their account in the destination message
store.

When migrating from the native message store, a forwarding to the account
in the destination store is placed in the PMDF alias database. In addition, a
.forward file with the same forwarding is created in the user’s login directory.
Any previously existing .forward file is renamed to .forward.save. If a file
named .forward.save already exists, the previously existing .forward file is
instead renamed to .forward.save.nnnnnn where nnnnnn is a six-digit number

8–6

MOVEIN utility on UNIX and NT
MOVEIN

between 000000 and 999999. The new .forward file will either have the same
ownership and permissions as the previous file or, if there was no previous file, it
will be owned by the user and have the permissions 0600.

When migrating to the native message store, any forwarding for the account in
the PMDF alias database is removed, and any .forward file is displaced in accord
with the rules cited in the prior paragraph.

When migrating from the popstore or msgstore, a forwarding to the account in the
destination store is added to the msgstore’s forwarding database. When migrating
to the popstore or msgstore, any msgstore forwarding for the destination account
is removed from the msgstore’s forwarding database. If the account is just being
converted from popstore to msgstore (or vice-versa) in place, no forwarding is
necessary.

Specify -noforward to prevent forwardings from being established. Note,
however, that when -noforward is used, undelivered mail directed to the user’s
old address in the source message store can be returned as undeliverable (native
message store) or delivered to the old, unused account (popstore or msgstore) until
such time that the old account is deleted at which point the mail will be returned
as undeliverable.

-host=hostname
Optional switch to specify the host name associated with the destination message
store. If omitted, the host name used will be determined from PMDF configuration
information: the official local host name when the destination store is the native
message store; the host name on the msgstore channel when the destination store
is popstore or msgstore. This host name is only used in conjunction with the
-forward switch to construct a forwarding address for each migrated account.

-inbox=file-spec
This switch can be used when the native message store is used as either a source
or destination message store or both. In those cases, it provides a default file
specification to use when attempting to locate a user’s BSD-style inbox file. The
utility will always first look for a .forward file. If that does not produce an inbox
file location, then the PMDF profile database is consulted. If that does not provide
an inbox file location, then the location specified with the -inbox switch is used.
If that switch is not specified, then /var/mail (Solaris) or /var/spool/mail
(Linux) is used.

The file specification supplied with the -inbox switch can include the following
substitution strings:

%+, %s, %u Substitute in the name of the user account being migrated

%d, %h Substitute in the home directory of the user account being migrated

\x Substitute in the literal character x (e.g., \% substitutes in %).

Thus, for example, on Solaris platforms the default path is -inbox=/var/mail/%s.

-input=file-spec
Specify an input file containing names of user accounts to migrate. Can not be used
in conjunction with the username command line parameter. See the description
above for further information on input files.

8–7

MOVEIN utility on UNIX and NT
MOVEIN

-log (default)
-nolog
By default, the utility reports each successfully migrated account to standard error,
stderr. To suppress this reporting, specify -nolog. Note that errors are always
reported.

-since=hh:mm:ss:dd-mmm-yyyy (UNIX only)
By default, all messages are migrated. The -since switch can be used to only
migrate those messages stored on or after the specified time. See the description
of the -before switch for further details.

-source=store-type
By default, the source message store is assumed to be the native message store.
The permitted values are native, popstore, and msgstore.

-srcdmn=user-domain
The name of the user domain to use in the source message store. If not specified,
then the default domain is used. Only applicable in conjunction with source
message stores which support user domains (currently, only popstore).

-use_existing
-nouse_existing (default)
This switch is only honored when the destination message store is the popstore or
msgstore. It is ignored when migrating to the native message store.

By default, a migration to a popstore or msgstore account will fail when there
already is a pre-existing account with the same name as the requested destination
account name (by default, the name of the source store account being migrated).
To override this behavior, specify -use_existing. However, if the pre-existing
account has the msgstore/popstore MIGRATED flag set, the migration will fail unless
-force_migrate is also specified. Note that when migrating to a pre-existing
account, the password for the account is left unchanged and migrated messages
are added to those already stored for the account.

EXAMPLES

1 # pmdf movein -destination=popstore sue SeCreT
movein: Destination message store host name not supplied; using pop.com
movein: User "sue" successfully migrated (/var/mail/sue)

This example shows migrating to the popstore the login user sue. The password on the
new popstore account is set to SeCreT.

2 # pmdf movein -source=popstore -destination=msgstore -use_existing sue
movein: Destination message store host name not supplied; using imap.com
movein: User "sue" successfully migrated

This example shows migrating the popstore user sue to the MessageStore. The -
use_existing switch instructs the utility to use Sue’s existing profile file for her
MessageStore account. This way, her password and other usage information is
preserved. Note that if -use_existing was not specified, this command would fail.

8–8

MOVEIN utility on UNIX and NT
MOVEIN

3
cat user_list
smith SeCreT jones
williams "" johnson
pmdf movein -destination=msgstore -source=msgstore -input=user_list
movein: Destination message store host name not supplied; using imap.com
movein: "smith" migrated
movein: "williams" migrated

In the above example an input file is used to direct the pmdf movein utility. The
file instructs movein to copy the messages from one msgstore account to another. For
example, in the first case, a jones msgstore account is created, its password is set to
"SeCreT", and all of the messages in the msgstore smith account are copied over.

8–9

Migration
MOVEIN

8.2.2 Migrating OpenVMS Mailboxes
On OpenVMS platforms, the migration utility is the PMDF MOVEIN utility. Its

usage is described below.

8–10

MOVEIN utililty on OpenVMS
MOVEIN

MOVEIN—Move a mailbox

Migrate mail files between message stores or between accounts.

SYNTAX PMDF MOVEIN [username [password]]

Command Qualifiers Default
/BEFORE=time
/DEBUG /NODEBUG
/DESTINATION=store-type
/DSTDMN=user-domain
/DSTUSERNAME=dest-username source username
/EXCEPTION_FILE=file-spec
/FORCE_MIGRATE /NOFORCE_MIGRATE
/FORWARD /FORWARD
/HOST=hostname
/INPUT=file-spec
/LOG /LOG
/LOWERCASE /NOLOWERCASE
/SINCE=time
/SOURCE=store-type /SOURCE=NATIVE
/SRCDMN=user-domain
/USE_EXISTING /NOUSE_EXISTING
/WASTEBASKET /WASTEBASKET

restrictions Operating system privileges are required to run this utility.

PARAMETERS

username
Optional name of a single source message store user account to migrate. If not
supplied, then the names of accounts to migrate are read from either an input file
or SYS$INPUT.

password
Optional password to set for the new account in the destination message store.
Only used when migrating to the popstore or MessageStore.

DESCRIPTION The PMDF MOVEIN utility migrates mailboxes from one message store to another,
or from one account to another. The supported message stores are: VMS MAIL
(the ‘‘native’’ message store), the PMDF MessageStore, and the PMDF popstore.
When moving from or to the popstore, only messages in the inbox are migrated.

8–11

MOVEIN utililty on OpenVMS
MOVEIN

For migrations from VMS MAIL to msgstore, or from one msgstore account to
another, messages in all folders are moved.

Forwardings from the source message store account to the destination message
store account are automatically established for each migrated user. Note, however,
that use of the -noforwarding switch can compromise this robustness.

As it is not possible to temporarily block delivery of mail to a user by VMS MAIL,
when migrating mail from a VMS MAIL account, the PMDF MOVEIN utility should
not be run on an active system. Running it on an active system can lead to loss of
mail when the migration utility migrates a user’s NEWMAIL folder and, at the same
time, VMS MAIL delivers a new message to that same folder. Depending upon the
timing, that new message can be left behind and not migrated. To prevent this
from happening, ensure that PMDF’s local delivery channel is not running (e.g.,
stop the MAIL$BATCH queue or whatever queue the l channel runs in) and that
any other VMS MAIL applications are not running (e.g., no login users using VMS
MAIL, no Pathworks users, DECnet MAIL-11 shutdown, etc.).

When migrating mail from a popstore or msgstore account, and to a popstore or
msgstore account, the PMDF MOVEIN utility performs all of the necessary locking so
as to allow migrations to be carried out on an active system without loss of mail.

The basic inputs to the utility are: the names of the source and destination message
store; the names of the source store user accounts to migrate; optionally, the names
of the destination store user accounts to create; and, also optionally, passwords
to set for these new accounts. The source store username is assumed for the
destination store if a desintation username is not specified. That is, by default,
the name of the account in the destination store is the same as that in the source
store.

When a username is supplied on the command line, then just that one user account
is migrated. To migrate multiple accounts, do not specify a username on the
command line and instead use the /INPUT qualifier. Each line of the input file
specifies the username of a single source store account to migrate. In addition, a
line can specify a password to associate with the new account in the destination
store, and the username to create in the destination store. The password and
destination username, if supplied, must be on the same input line following the
username with one or more white space characters separating each of the three.
If the password contains a space itself, it must be enclosed in double quotes. To
specify a destination username without specifying a password, the password must
be specfied as an empty string (two double-quotes next to each other).

Comment lines can appear in the input file: a comment line is any line which
begins with a # or ! character. Leading and trailing white space characters on
lines are ignored. The following sample input should give the flavor of input files:

8–12

MOVEIN utililty on OpenVMS
MOVEIN

! A comment line
!
! to supply a password and destination username:
angel "alex’s password" alex
bailey blakes-password blake
!
! to supply a destination username, but no password:
chris "" casey
!
! to supply a password but no destination username:
dana danas-password
!
! to supply neither a password nor a destination username:
emile

When no username or input file is specified, input lines are read from SYS$INPUT.
The format of those input lines is identical to that of lines read from an input file.
Input is terminated by typing a CTRL/Z.

When migrating to a msgstore or popstore account, the destination account is
automatically created. If a password is supplied, then the password is set in
the new account. If no password is supplied, then the new account is marked
with the PWD_ELSEWHERE flag. Normally, that causes authentication to then be
performed against the SYSUAF database. See the popstore documentation for
further information. When migrating from VMS MAIL, the owner field in the new
account is set using the owner field from the SYSUAF. When migrating between a
popstore and msgstore account, the owner field of the destination account is set
from the source account.

If there already is an pre-existing MessageStore or popstore account—such as when
migrating from the popstore to MessageStore—then the migration fails unless
/USE_EXISTING is specified. Moreover, if the existing account has the MIGRATED
flag set, then the migration fails unless /FORCE_MIGRATE is specified. When the
account is successfully migrated, the MIGRATED flag is set in the account.

Note: After a successful migration, the account in the source message store is left intact
with its mail in place. In the case of migration from a popstore to MesageStore
store type with the same username (or vice-versa), the account is changed in place
from the one store type to the other.

The PMDF MOVEIN utility is extremely careful to back out of a failed migration,
leaving the user account in the source message store in its original state. When
multiple accounts are migrated, a failure to migrate an account does not terminate
the utility. Instead, the utility backs out of the migration for the failed account
and continues on to the next account. Failures are reported to SYS$ERROR. The
/EXCEPTION_FILE qualifier can be used to log errors in an exception file. The
format of the exception file is suitable for re-use as an input file.

8–13

MOVEIN utililty on OpenVMS
MOVEIN

COMMAND
QUALIFIERS

/BEFORE=dd-mmm-yyyy:hh:mm:ss
By default, all messages are migrated. The /BEFORE qualifier can be used to only
migrate those messages stored on or before the specified time. For instance, to
migrate all messages received between 08:30 and 13:00 on 15 November 2012,
specify

/SINCE=15-NOV-2012:8:30:00 /BEFORE=15-NOV-2012:13:00:00

/DEBUG
/NODEBUG (default)
Debug output can be enabled with the /DEBUG qualifier.

/DESTINATION=store-type
This required qualifier specifies the name of the target message store. The accepted
names are MSGSTORE (PMDF MessageStore) and POPSTORE (PMDF popstore).

/DSTDMN=user-domain
The name of the user domain to use in the destination message store. If not
specified, then the default domain is used. Only applicable in conjunction with
destination message stores which support user domains (currently, only popstore).

/DSTUSERNAME=dest-username
The username to use in the destination message store. If not specified, the source
store username is used.

/EXCEPTION_FILE=file-spec
By default, failures are only written to SYS$ERROR. Failures can also be reported
to an exception file. The name of the exception file is given with the /EXCEP-
TION_FILE qualifier. The file will only be created should a failure occur; the file
will have the protection mask (S:RWED,O:RWED,G,W). For each account whose
migration fails, an entry will be made to the exception file. The entry takes the
form of one or more lines of comments followed by a line containing the failed
username and any optional password and destination username. The format of
the exception file is such that it can be re-used as an input file.

/FORCE_MIGRATE
/NOFORCE_MIGRATE (default)
This qualifier can be used in conjunction with the /USE_EXISTING qualifier. See
the description of that qualifier for further details.

/FORWARD (default)
/NOFORWARD
By default, a forwarding address for each migrated user account is established.
This forwarding causes undelivered mail sent to the user’s source message store
address to be automatically forwarded to their account in the destination message
store.

When migrating an account from VMS MAIL, a forwarding for the VMS MAIL
user is is placed both in the PMDF alias database and VMS MAIL’s forwarding

8–14

MOVEIN utililty on OpenVMS
MOVEIN

database. When migrating from the popstore or msgstore, a forwarding to the
account in the destination store is added to the msgstore’s forwarding database.

When migrating to the popstore or msgstore, any msgstore forwarding for the
destination account is removed from the msgstore’s forwarding database. If the
account is just being converted from popstore to msgstore (or vice-versa) in place,
no forwarding is necessary.

Specify /NOFORWARD to prevent forwardings from being established. Note,
however, that when /NOFORWARD is used, undelivered mail directed to the user’s
old address in the source message store can be returned as undeliverable or
delivered to the old, unused account until such time that the old account is deleted
at which point the mail will be returned as undeliverable.

/HOST=hostname
Optional qualifier to specify the host name associated with the destination message
store. If omitted, the host name used will be determined from PMDF configuration
information: the official local host name when the destination store is the native
message store; the host name on the msgstore channel when the destination store
is msgstore or popstore. This host name is only used in conjunction with the
/FORWARD qualifier to construct a forwarding address for each migrated account.

/INPUT=file-spec
Specify an input file containing names of user accounts to migrate. Can not be used
in conjunction with the username command line parameter. See the description
above for further information on input files.

/LOG (default)
/NOLOG
By default, the utility reports each successfully migrated account to SYS$ERROR.
To suppress this reporting, specify /NOLOG. Note that errors are always reported.

/LOWERCASE
/NOLOWERCASE (default)
This qualifier is only used when the source store is VMS MAIL and the destination
store is MessageStore. By default, VMS MAIL folder names are not modified when
they are migrated. This default behavior corresponds to /NOLOWERCASE. When
/LOWERCASE is specified, all migrated folder names are converted to lower case.

/SINCE=dd-mmm-yyyy:hh:mm:ss
By default, all messages are migrated. The /SINCE qualifier can be used to only
migrate those messages stored on or after the specified time. See the description
of the /BEFORE qualifier for further details.

/SOURCE=store-type
By default, the source message store is assumed to be the native message store,
VMS MAIL. The permitted values are NATIVE (VMS MAIL), POPSTORE (PMDF
popstore), and MSGSTORE (PMDF MessageStore).

/SRCDMN=user-domain
The name of the user domain to use in the source message store. If not specified,
then the default domain is used. Only applicable in conjunction with source
message stores which support user domains (currently, only popstore).

8–15

MOVEIN utililty on OpenVMS
MOVEIN

/USE_EXISTING
/NOUSE_EXISTING (default)
By default, a migration to a popstore or msgstore account will fail when there
already is a pre-existing account with the same name as the requested destination
account name (by default, the name of the source store account being migrated).
To override this behavior, specify /USE_EXISTING. However, if the pre-existing
account has the msgstore/popstore MIGRATED flag set, the migration will fail unless
/FORCE_MIGRATE is also specified. Note that when migrating to a pre-existing
account, the password for the account is left unchanged and migrated messages
are added to those already stored for the account.

/WASTEBASKET (default)
/NOWASTEBASKET
When migrating a VMS MAIL user to the MessageStore, the WASTEBASKET folder
will, by default, also be migrated. Specify /NOWASTEBASKET to prevent the
WASTEBASKET folder from being migrated.

EXAMPLES

1 $ PMDF MOVEIN /DESTINATION=POPSTORE SUE "SeCreT"
movein: Destination message store host name not supplied; using pop.com
movein: User "SUE" successfully migrated (D1:[USERS.SUE]MAIL.MAI)

This example shows migrating to the popstore the login user SUE. The password on the
new popstore account is set to SeCreT.

2 $ PMDF MOVEIN /SOURCE=POPSTORE /DESTINATION=MSGSTORE -
_$ /USE_EXISTING SUE
movein: Destination message store host name not supplied; using imap.com
movein: User "SUE" successfully migrated

This example shows migrating the popstore user sue to the MessageStore. The
/USE_EXISTING qualifier instructs the utility to use Sue’s existing profile file for
her MessageStore account. This way, her password and other usage information is
preserved. Note that if /USE_EXISTING was not specified, this command would fail.

3
$ TYPE USERS.LIS
smith SeCreT jones
williams "" johnson
$ PMDF MOVEIN /DESTINATION=MSGSTORE /SOURCE=MSGSTORE -
_$/INPUT=USERS.LIS
movein: Destination message store host name not supplied; using imap.com
movein: "smith" migrated
movein: "williams" migrated

In the above example an input file is used to direct the PMDF MOVEIN utility. The file
instructs MOVEIN to copy the messages from one msgstore account to another. For
example, in the first case, a jones msgstore account is created, its password is set to
"SeCreT", and all of the messages in the msgstore smith account are copied over.

8–16

9 Report Generation

The command line management utility described in Chapters 6 and 7 can be used
to generate reports and account listings.

There are two steps to generating a report:

1. writing a formatting file which formats the desired data, and

2. invoking the command line management utility to process the formatting file.

Each of these steps are discussed in this chapter.

9.1 Writing a Formatting File
Three types of information can be reported:

1. user account information,

2. user account message lists, and

3. listings of forwarding addresses.

The information is formatted using formatting files as described in Section 4.3.2. The
substitution strings allowed in the formatting files are listed in the tables cited below:

Information type Substitution strings

Account information Tables 4–10 and 4–15

Message lists Tables 4–10 and 4–11

Forwarding addresses Tables 4–10 and 4–24

The formatting files, once written, must be stored in the /pmdf/www/popstore/
directory tree on UNIX and NT systems or the in the PMDF_ROOT:[WWW.POPSTORE]
directory on OpenVMS systems.

9.2 Producing a Report
Once a formatting file has been written, it can be used in conjunction with the

command line management utility with a command from the table below:

9–1

Report Generation
Producing a Report

Information type Command

UNIX, NT Account information show -format_file=file-spec [username]

Message lists show -messages -format_file=file-spec
username

Forwarding addresses show -forwardings -format_file=file-spec
[username]

VMS Account information SHOW/FORMAT_FILE=file-spec [username]

Message lists SHOW/MESSAGES/FORMAT_FILE=file-spec
username

Forwarding addresses SHOW/FORWARDINGS/FORMAT_FILE=file-spec
[username]

where file-spec is the name of the formatting file to use and username is the name of
the account to report on. The account name is optional when listing account or forwarding
information.

For example, to list all user accounts using the formatting file list.txt, issue the
command

pmdf popstore show -format_file=list.txt

on UNIX and NT systems. On OpenVMS systems, issue the command

$ PMDF POPSTORE SHOW/FORMAT_FILE=LIST.TXT

9.3 An Example
The following example demonstrates how to generate a report of all popstore

accounts. In the listing, the account name, message count, and total size of stored
messages is shown for each account. The formatting file is shown in Example 9–1 and
provided with PMDF under the name report.txt.

Example 9–1 Account Listing Report

%first{ Message Quota used}
%first{ Username Count (kbytes)}
%first{ --}
%flags_manage{ |*}%username{%-32s} %message_count{%7u} %quota_used_k{%8.2f}
%last{ --}
%last{*Note: privileged users are flagged with an asterisk}

To generate the report on UNIX and NT systems, issue the command:

pmdf popstore show -format_file=report.txt

and on OpenVMS systems, issue the command:

$ PMDF POPSTORE SHOW/FORMAT_FILE=REPORT.TXT

9–2

10Inbound Message Delivery & Message Bouncer

The popstore and MessageStore share a common inbound delivery channel. The
popstore also has a message bouncer process which returns or removes old, undeleted
e-mail from the popstore. The function of these two agents are described in this chapter.
See the PMDF Installation Guide for directions on configuring these agents.

10.1 The Inbound Delivery Channel
The inbound delivery channel runs as a normal PMDF delivery channel. Messages

are queued to it by PMDF for delivery to the popstore or MessageStore. The delivery
channel then processes each inbound message, either delivering it to the popstore or
MessageStore, forwarding it elsewhere, or returning it to its originator as undeliverable.

In the popstore, the messages are stored in a ready-to-download format so that the
POP3 server can simply map them into memory and send the bytes down to the client
without the need for any further processing. Envelope information is also stored in the
message file.

On UNIX systems, the message files are kept in the directory tree specified by the
PMDF_POPSTORE_MESSAGES option in the PMDF tailor file; On NT systems, the message
files are kept in the directory tree specified by the PMDF_POPSTORE_MESSAGES registry
entry; and, on OpenVMS systems, they are stored in the PMDF_POPSTORE_MESSAGES:
directory tree. Read and write access to these files is controlled using private locks.

In the MessageStore, the messages are stored in a ready-to download format for
IMAP, and the index and cache files in the appropriate folder are updated to include pre-
calculated responses to common IMAP queries. This makes the MessageStore delivery
process a bit slower in exchange for making all IMAP queries much faster.

The MessageStore message files are kept in a directory subtree with the user
profiles. On UNIX systems, user profiles are located in the directory tree specified by
the PMDF_POPSTORE_PROFILES option in the PMDF tailor file (usually /pmdf/user); on
Windows NT systems, the directory tree is specified by the PMDF_POPSTORE_PROFILES
registry entry; on OpenVMS systems, they are stored in the PMDF_POPSTORE_PROFILES:
directory tree. Read and write access to these files is controlled using private locks.

10–1

Inbound Message Delivery & Message Bouncer
The Inbound Delivery Channel

10.1.1 Validating Accounts
There is a channel keyword validatelocalmsgstore which is enabled by default

on the inbound delivery channel. This causes PMDF to validate each envelope To:
address destined for the popstore and MessageStore. The checks consist of the following
three steps:

1. Check that the address specifies a valid account. If there is no valid account, the
message is rejected for that addressee using a permanent error response (e.g., a
SMTP 5yz response), unless there is an entry in the forward database with that
account name.

2. If there is a valid account, the account is then checked to see if it is marked
DISMAIL. If it is marked DISMAIL, the message is rejected for that addressee using
a permanent error response.

3. Finally, if the option REJECT_OVER_QUOTA is set to 1, check to see if the user is over
quota. If so, reject the message for that addressee using a temporary error response
(e.g., an SMTP 4yz response). This handling is suppressed for the delivery channel
itself which occasionally needs to requeue messages back to itself.

Use of this channel keyword enables PMDF to perform the above checks as a message
is presented to PMDF. This allows PMDF to reject outright messages which should not
be accepted and thus preventing cases where a message is received only to have to be
bounced back to the sender by PMDF. Since the message is never accepted, network and
CPU resources are not consumed receiving it, generating a non-delivery notification, and
then sending that notification back to the originator.

Account validation may be disabled by specifying the channel keyword validate-
localnone on the inbound delivery channel.

10.1.2 Storage Quotas
At time of delivery, the delivery channel checks the message size against the user’s

current disk usage and allowed quota. If storage of the message would exceed the sum of
the user’s primary and overdraft quotas, then one of the following three actions is taken:

1. If the delivery channel is marked with the exquota channel keyword, then the
message is delivered to the user.

2. If the delivery channel is marked with the holdexquota channel keyword, then
delivery of the message is deferred until either the user has space for the message,
or the message ‘‘times out’’ and is returned by the PMDF message bouncer.

3. If the delivery channel is marked with the noexquota channel keyword, then the
message is returned as undeliverable to its sender.

Case 2 above is the default case. Note that users with a primary quota value of zero
have unlimited storage quota.

10–2

Inbound Message Delivery & Message Bouncer
The Inbound Delivery Channel

10.1.3 Delivery Notifications
The delivery channel supports the generation of delivery notifications as described

in the NOTARY specifications, RFCs 1891 and 1894. Note that the delivery channel itself
handles the success and failure notifications while the PMDF message bouncer process
generates delay notifications.

10.2 The Message Bouncer
The popstore has its own message bouncer job which runs once a day around

midnight and deletes old, stored messages whose age exceeds the maximum allowed
storage age. That age is controlled with the RETURN_AFTER popstore option as described
in Chapter 3. By default, messages older than 14 days are deleted. If one or more of the
message’s recipients have not read the message, a non-delivery notification is sent to the
message’s originator. Through the RETURN_AFTER option, the maximum allowed age can
be changed. When the maximum age is set to zero, messages are retained until explicitly
deleted by their respective recipients or manually deleted by a popstore manager.

In addition, the message bouncer performs sanity checks on the popstore. For
instance, if the system crashes during a message delete operation, it is possible that
the message file can be left behind with no pointers to it. Such orphans are detected by
the message bouncer.1

Note that the message bouncer is not used by the MessageStore.

1 When RETURN_AFTER is set to zero, the message bouncer still performs these sanity checks.

10–3

11 Servers

There are five servers which interact with the popstore and MessageStore: two POP3
servers, the MessageStore’s IMAP server, the poppassd server, and the HTTP server.
Each of these servers are documented in the PMDF System Manager’s Guide.

11.1 POP3 Servers
The configuration of the POP3 servers is discussed in the PMDF Installation Guide.

Refer to that manual for directions on configuring the POP3 server.

On UNIX and OpenVMS platforms, a ‘‘legacy’’ multi-threaded POP3 server which
serves out both native mailboxes as well as popstore mailboxes is provided. Specifically,
on UNIX systems the legacy POP3 server serves out both popstore and BSD-style
mailboxes. On OpenVMS systems the legacy server serves out both popstore and VMS
MAIL mailboxes. When a client attempts to authenticate against the legacy POP3 server,
the server first checks for a popstore account for the username. If there is a match, the
associated popstore mailbox is served out. If there is no match, then the server checks for
a native mailbox and serves it out if there is one. If you are not using the native mailbox
feature, the non-legacy POP3 server should be used instead as it has better performance
and security characteristics.

The ‘‘non-legacy’’ POP3 server is a multi-threaded server which is capable of serving
out both popstore and MessageStore mailboxes. It cannot, however, serve out native
mailboxes. This server has improved performance over the legacy POP3 server. In
addition, this server is required to take advantage of the multiple domain facility of the
popstore.

Both POP3 servers use PMDF’s authentication services and as such supports
plain text passwords as well as APOP, CRAM-MD5 and DIGEST-MD5 authentication.
Additionally, the server supports SASL (RFC 2222). For further information on the POP3
server or authentication services, consult the ‘‘Connection Authentication and Password
Management’’ chapter of the PMDF System Manager’s Guide.

11.2 IMAP Server
The configuration of the IMAP server is discussed in the PMDF Installation Guide.

Refer to that manual for directions on configuring the IMAP server.

The MessageStore IMAP server is a high-performance, multi-threaded server which
serves out MessageStore accounts. The MessageStore stores pre-computed responses to
many IMAP queries at delivery time so that the IMAP server has much less work to do.

11–1

Servers
IMAP Server

The IMAP server uses PMDF’s authentication services and as such supports
plain text passwords as well as APOP, CRAM-MD5 and DIGEST-MD5 authentication.
Additionally, the server supports SASL (RFC 2222). For further information on the POP3
server or authentication services, consult the ‘‘Connection Authentication and Password
Management’’ chapter of the PMDF System Manager’s Guide.

11.3 poppassd Server
Poppassd is an ad hoc protocol for changing POP, IMAP, and native account

passwords. This protocol is used by several clients such as Eudora and Mulberry. PMDF
provides a poppassd server which can be used by clients to change their password. The
server is configured as part of the POP3 and IMAP server configuration process. Consult
the PMDF Installation Guide for details on configuring the POP3 and IMAP servers.

Note that under the poppassd protocol, plain text passwords are exchanged in
the clear between the client and poppassd server — even when the client is otherwise
using APOP, CRAM-MD5, or DIGEST-MD5 for authentication. Owing to this limitation of
poppassd, its usage should be questioned in settings where APOP, CRAM-MD5, DIGEST-
MD5 or similar password security is expected.

11.4 HTTP Server
The PMDF HTTP server is configured as part of the PMDF MTA configuration.

See the PMDF Installation Guide for details. The HTTP server provides the web-
based management interfaces for both the popstore and MessageStore as described in
Chapter 4.

11–2

12Application Program Interface (API)

The popstore provides an application program interface (API). With this interface,
sites can write their own code to directly create, manipulate, and delete user accounts
as well as interface the popstore to billing utilities and other management interfaces.

12.1 Fundamentals
The popstore API is a re-entrant, thread-safe API. User and message contexts are

shared between API client code and the API so as to facilitate the handling of multiple
accounts and messages simultaneously from either single or multi-threaded programs.
Note that writers of multi-threaded API client code should read Section 12.9.

Access to the underlying profile and message files is controlled and coordinated by
the API subroutines. Programs must not attempt to access those files directly. The
contexts used by the API are not opaque: clients of the API are provided with structure
definitions for those contexts and can view the individual data fields in them. However,
these fields must be treated as read only data and must not be changed. Indeed, changes
to them generally will not affect the actual on-disk data. To change the actual, underlying
on-disk data, call the appropriate API subroutines to effect the desired change.

For C programmers, a C header file declaring basic constants, data types, structures,
and API subroutines in provided. This header file is the popstore.h header file and is,
on UNIX and NT platforms, located in the /pmdf/include/ directory. On OpenVMS
platforms, it is located in the PMDF_COM: directory.

In order to use the popstore API, you must first call the POPSTORE_init subroutine
so as to initialize the API. When finished with the API, be sure to call POPSTORE_end.
The sections 12.2–12.8 provide information and code examples for performing common
tasks. Section 12.12 provides complete descriptions for each API subroutine. See
Section 12.10 for information on linking programs against the API.

12.2 Creating Accounts
There are two approaches to creating accounts: either create an account from scratch

with no default settings for fields in the account’s profile, or create the account by copying
fields from another account profile and then subsequently changing desired fields in the
new account. Either approach is acceptable; both methods are described below. The
advantage to the latter approach is that by copying the default account, the site’s
default account settings are used as an initial basis for the new account.

12–1

Application Program Interface (API)
Creating Accounts

12.2.1 From Scratch
The subroutines POPSTORE_user_create_set and POPSTORE_user_create are

used to create an account from scratch. With a variable of type

POPSTORE_user_context *user_context

initialized to NULL, make successive calls to POPSTORE_user_create_set to set values
for the account to be created. The username field must be set, and it is always a
good idea to set a password too unless you genuinely want the account to require no
password to access it. After setting the desired fields, call POPSTORE_user_create
to actually create the account and dispose of the context created by the first call to
POPSTORE_user_create_set. That call will write to disk the profile file for the account
and create an entry in the user database. If the username for the account conflicts with
another existing account, the account will not be created and a POPSTORE_USEREXISTS
error will be returned.

Note that the POPSTORE_user_create_set subroutine will not allow the MANAGE
usage flag to be set or cleared without first calling POPSTORE_manage to explicitly
authorize such actions. (cleared). Note further that regardless of any value set
for the last billing field, that field will be set to the current date and time when
POPSTORE_user_create is called.

An example program which creates the profile

pmdf popstore show joe
Username: joe
Owner: Joe User
Group: staff
Store Type: popstore
Usage flags:
Site-defined:

Last pwd change: No time recorded
Last connect: No time recorded
Last disconnect: No time recorded
Total connect time: 0 00:00:00
Total connections: 0
Past block days: 0
Last billing: Tue Nov 19 10:25:18 2012

Message count: 0 (0 total messages received)
Quota used: 0.00 Kbytes
Primary quota: 90.00 Kbytes
Overdraft quota: 10.00 Kbytes

is shown in Example 12–1. The following items of note are identified with callouts in the
sample program:

1 check is a subroutine used to check the return status from each call to the popstore
API. In the event of an error, an error message is output, the API shutdown, and the
program exited.

2 Before making any other API calls, the API is first initialized with a call to
POPSTORE_initialize.

3 Values for fields in the structure are set as desired.

12–2

Application Program Interface (API)
Creating Accounts

4 The account is created with a call to POPSTORE_user_add.

5 Finally, the API is shutdown.

Example 12–1 Creating a New Account from Scratch

/**
* *
* create_sample.c *
* Sample subroutine to create a popstore account from scratch. *
* *
**/

#include <stdio.h>
#include <stdlib.h>
#ifdef __VMS
include "pmdf_com:popstore.h"
#else
include "/pmdf/include/popstore.h"
#endif

void check (int stat) 1
{
if (stat == POPSTORE_SUCCESS) return;
fprintf (stderr, "Error %d: %s\n", stat, POPSTORE_error_to_text (stat));
(void) POPSTORE_end ();
exit (1);

}

main ()
{
POPSTORE_user_context *ctx;

/*
* Initialize the popstore
*/
check (POPSTORE_init (1, NULL, "create_sample", 13)); 2

/*
* Set values for various fields
*/
ctx = NULL;
check (POPSTORE_user_create_set (&ctx, POPSTORE_SET_USERNAME, 3, "joe")); 3
check (POPSTORE_user_create_set (&ctx, POPSTORE_SET_GROUP_NAME, 5, "staff"));
check (POPSTORE_user_create_set (&ctx, POPSTORE_SET_OWNER, 10, "Joe User"));
check (POPSTORE_user_create_set (&ctx, POPSTORE_SET_PASSWORD, 6, "secret"));
check (POPSTORE_user_create_set (&ctx, POPSTORE_SET_QUOTA, 1024*90));
check (POPSTORE_user_create_set (&ctx, POPSTORE_SET_OVERDRAFT, 1024*10));

/*
* Create the account
*/
check (POPSTORE_user_create (&ctx)); 4

Example 12–1 Cont’d on next page

12–3

Application Program Interface (API)
Creating Accounts

Example 12–1 (Cont.) Creating a New Account from Scratch

/*
* All done
*/
(void) POPSTORE_end (); 5

}

12.2.2 By Copying
New accounts can also be created by copying an old account with the POPSTORE_user_copy_d

subroutine and then changing the value of fields with POPSTORE_user_update. For in-
stance, both of the popstore management interfaces create new accounts by copying the
default account to the new account and then changing the requested fields in the new
account.

Note that the POPSTORE_user_update subroutine will not allow the MANAGE usage
flag can not be set or cleared without first calling POPSTORE_manage to explicitly
authorize such actions.

The code in Example 12–2 creates the account joe by first copying the default ac-
count and then changing fields in the newly created joe account with POPSTORE_user_update.
The account so created is identical to that created from scratch in Example 12–1. The
following items of note are identified with callouts in the example program:

1 check is a subroutine used to check the return status from each call to the popstore
API. In the event of an error, an error message is output, the API shutdown, and the
program exited.

2 A macro to help construct an item list.

3 Before making any other API calls, the API is first initialized with a call to
POPSTORE_initialize.

4 Values for entries in the item list are set. These entries describe settings to make
for fields in the new account.

5 The new account is created. It is identical to the default account except for the
username and password fields.

6 Fields in the new account are changed to reflect the desired values for those fields.

7 Finally, the API is shutdown.

Example 12–2 Creating a New Account by Copying the default Account

Example 12–2 Cont’d on next page

12–4

Application Program Interface (API)
Creating Accounts

Example 12–2 (Cont.) Creating a New Account by Copying the default Account

/**
* *
* copy_sample.c *
* Sample subroutine to create a popstore account by copying *
* the default account. *
* *
**/

#include <stdio.h>
#include <stdlib.h>

#ifdef __VMS
include "pmdf_com:popstore.h"
#else
include "/pmdf/include/popstore.h"
#endif

static POPSTORE_user_context *user_context = NULL;

void check (int stat) 1
{
if (stat == POPSTORE_SUCCESS) return;
fprintf (stderr, "Error %d: %s\n", stat, POPSTORE_error_to_text (stat));
if (user_context) (void) POPSTORE_user_end (user_context);
(void) POPSTORE_end ();
exit (1);

}

#define PUSH(list,code,addr,len) \ 2
list[item_index].item_code = (code); \
list[item_index].item_address = (addr); \
list[item_index++].item_length = (len);

main ()
{
POPSTORE_item_list item_list[5];
int item_index = 0;
char group[] = "staff";
char owner[] = "Joe User";
uint32 quota = 1024*90;
uint32 overdraft = 1024*10;
char errmsg[80];
int errmsg_len;

/*
* Initialize the popstore
*/
check (POPSTORE_init (1, NULL, "copy_sample", 11)); 3

Example 12–2 Cont’d on next page

12–5

Application Program Interface (API)
Creating Accounts

Example 12–2 (Cont.) Creating a New Account by Copying the default Account

/*
* Build an item list describing the fields to set new values for
*/
PUSH (item_list, POPSTORE_SET_GROUP_NAME, group, strlen (group)); 4
PUSH (item_list, POPSTORE_SET_OWNER, owner, strlen (owner));
PUSH (item_list, POPSTORE_SET_QUOTA, "a, 0);
PUSH (item_list, POPSTORE_SET_OVERDRAFT, &overdraft, 0);
PUSH (item_list, POPSTORE_SET_END, NULL, 0);

/*
* Create the new account as a duplicate of the default account but
* with the desired new username and password
*/
check (POPSTORE_user_copy_d (NULL, 0, "default", 7, 5

NULL, 0, "joe", 3,
"secret", 6, 0));

/*
* Change the account settings
*/
check (POPSTORE_user_begin_d (NULL, 0, &user_context, "joe", 3,

POPSTORE_NOACCOUNTING, "copy_sample", 11));
check (POPSTORE_user_update (user_context, item_list, 6

errmsg, &errmsg_len, sizeof(errmsg)));
check (POPSTORE_user_end (user_context));
user_context = NULL;

/*
* All done
*/
POPSTORE_end ();

}

12.3 Modifying Accounts
Fields in an existing account can be modified using the POPSTORE_user_update

subroutine. This subroutine accepts as input a user context created by
POPSTORE_user_begin_d and an item list describing the fields to change and the new
values to use for those fields. Before making any changes, the validity of the entries in
the item list is first determined. Only if the entries are all correct, are any changes then
made. The changes are made atomically: the profile is locked, read, all changes made,
written back to disk, and then unlocked. In the event of an unexpected error, the old
profile data is restored if possible.

An example of using POPSTORE_user_update is given in Example 12–2. When
modifying accounts, keep the following notes in mind:

1. The username field for an account can not be changed with POPSTORE_user_update.
To change that field, use POPSTORE_user_copy_d specifying a non-zero value for the
do_rename argument of that subroutine.

12–6

Application Program Interface (API)
Modifying Accounts

2. The MANAGE flag can only be set or cleared if a prior call to POPSTORE_manage has
been made which enables the ability to set that bit.

3. When changing the count of stored messages for an account, the value can only be
decreased. When the count is decreased from M to the value N, then the oldest M-N
messages are deleted (e.g., when M=N, all messages are deleted). Note that unread
deleted messages are simply deleted: they are not returned to their originator. If
they should instead be returned, use POPSTORE_message_return.

4. When an account’s past block days field is changed, the past block days remainder
field is reset to zero.

5. If just changing the account’s password, consider using POPSTORE_user_pw_change_d.

12.4 Deleting Accounts
Accounts are deleted with POPSTORE_user_delete_d. When an account is deleted,

any unread messages for that account can optionally be returned to their originators.
Shown below is the call which would be made to delete the account jdoe, returning any
unread messages to their originators:

stat = POPSTORE_user_delete_d ("jdoe", 4, 1);

12.5 Listing Accounts
Formatted listings of accounts can be generated with the

POPSTORE_format_profiles_d procedure. Note that this same functionality is pro-
vided at the command line with the POPSTORE utility; see Chapter 9 for details.

In order to use POPSTORE_format_profiles_d, you must first decide upon a layout for
the listing and then implement that layout with a formatting file. See the description of
the POPSTORE_format_profiles_d subroutine for further details. Once a formatting
file has been developed, it can then be used to format listings of user accounts. In the
example code shown in Example 12–4, an actual formatting file used by the POPSTORE
utility is used. That formatting file, as can be seen in Example 12–3, lists for each
account the username, stored message count, and used quota.

Example 12–3 Formatting File for Account Listings

%first{ Message Quota used}
%first{ Username Count (kbytes)}
%first{ --}
%flags_manage{ |*}%username{%-32s} %message_count{%7u} %quota_used_k{%8.2f}
%last{ --}
%last{*Note: privileged users are flagged with an asterisk}

Example 12–4 Generating Account Listings

Example 12–4 Cont’d on next page

12–7

Application Program Interface (API)
Listing Accounts

Example 12–4 (Cont.) Generating Account Listings

/***
* *
* format_sample.c *
* Sample subroutine to generate an account listing. *
* *
***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef __VMS
include "PMDF_COM:popstore.h"
#else
include "/pmdf/include/popstore.h"
#endif

void check (int stat)
{
if (stat == POPSTORE_SUCCESS) return;
fprintf (stderr, "Error %d: %s\n", stat, POPSTORE_error_to_text (stat));
(void) POPSTORE_end ();
exit (1);

}

int output (void *ctx, char *line, int len, int eol, int literal)
{
if (!eol) printf ("%.*s", len, line);
else printf ("%.*s\n", len, line);
return (POPSTORE_SUCCESS);

}

main ()
{
POPSTORE_format_element *format;

/*
* Initialize the popstore
*/
check (POPSTORE_init (0, NULL, "format_sample", 13));

/*
* Read in the formatting file and get a formatting context
*/
check (POPSTORE_format_read (&format, "popmgr_profile_brief.txt", 24,

#ifdef __VMS
"PMDF_HTTP_POPSTORE:[000000]", 27));

#else
"/pmdf/www/popstore/", 19));

#endif

Example 12–4 Cont’d on next page

12–8

Application Program Interface (API)
Listing Accounts

Example 12–4 (Cont.) Generating Account Listings

/*
* Display the profiles
*/
check (POPSTORE_format_profiles_d (format, NULL, 0, NULL, 0, NULL, 0, NULL,

NULL, output));

/*
* Dispose of the formatting context
*/
check (POPSTORE_format_dispose (format));

/*
* All done
*/
(void) POPSTORE_end ();

}

To generate a simple listing of accounts, the POPSTORE_user_list_d subroutine
can prove sufficient. That subroutine is primarily intended for cases where a program
needs to obtain one-by-one the usernames for each account. Sample code using
POPSTORE_user_list_d to list all accounts and then the first account with a username
starting with the letter ‘‘z’’ is given in Example 12–5.

12–9

Application Program Interface (API)
Listing Accounts

Example 12–5 Simple Account Listing

/***
* *
* list_sample.c *
* Sample subroutine to generate an account listing. *
* *
***/

#include <stdio.h>

#ifdef __VMS
include "PMDF_COM:popstore.h"
#else
include "/pmdf/include/popstore.h"
#endif

main ()
{
POPSTORE_list_context *list_context;
int stat, userlen;
char user[POPSTORE_MAX_USER_LEN+1];

/*
* Initialize the popstore
*/
stat = POPSTORE_init (1, NULL, "list_sample", 11);
if (stat != POPSTORE_SUCCESS) exit (1);

/*
* List all accounts
*/
printf ("---- Listing of all accounts ----\n");
list_context = NULL;
stat = POPSTORE_SUCCESS;
while (stat == POPSTORE_SUCCESS) {

stat = POPSTORE_user_list_d (&list_context, "*", 1, NULL, 0, NULL, 0,
user, &userlen, POPSTORE_MAX_USER_LEN + 1);

if (stat == POPSTORE_SUCCESS) printf ("%s\n", user);
}

printf ("\n---- The first account starting with the letter \"z\" ----\n");
list_context = NULL;
stat = POPSTORE_user_list_d (&list_context, "z*", 2, NULL, 0, NULL, 0,

user, &userlen, POPSTORE_MAX_USER_LEN + 1);
if (stat == POPSTORE_SUCCESS) {

printf ("%s\n", user);
/* Done with this context; dispose of it now */
(void) POPSTORE_user_list_abort (&list_context);

}
else printf ("**** No accounts begin with the letter \"z\" ****\n");

/*
* All done
*/
(void) POPSTORE_end ();

}

12–10

Application Program Interface (API)
Billing Accounts

12.6 Billing Accounts
Sites who want to bill users for usage should use the POPSTORE_user_billing_d

subroutine to perform ‘‘atomic’’ billing operations. That subroutine locks a user profile,
extracts billing information, resets accounting fields, writes the user profile back to disk,
unlocks the profile, and then returns the extracted billing information to the caller.

The billing period is the intervening time between when POPSTORE_user_billing_d
was last called and the current billing time supplied to POPSTORE_user_billing_d.
The time when POPSTORE_user_billing_d was last called is stored in each account’s
last billing profile field.1

The extracted billing information includes the total connect time and past block
days of message storage used during the billing period. After that information is
extracted, those two fields are set to the value zero. In addition, the last billing
time fields in the profile and message list are set to the new billing time supplied to
POPSTORE_user_billing_d, and this data is then written out to the on-disk profile
file.

Example 12–6 shows sample code which uses POPSTORE_user_billing_d in
conjunction with POPSTORE_user_list_d to bill each account whose associated username
starts with the letter ‘‘a’’ and is in the students management group.

Example 12–6 Account Billing Operations

/***
* *
* bill_sample.c *
* Sample subroutine to bill each popstore account. *
* *
***/

#include <stdio.h>
#include <times.h>

#ifdef __VMS
include "PMDF_COM:popstore.h"
#else
include "/pmdf/include/popstore.h"
#endif

main ()
{
time_t billing_time;
POPSTORE_user_data data;
POPSTORE_list_context *list_context;
int stat, stat2, userlen;
char user[POPSTORE_MAX_USER_LEN + 1];

Example 12–6 Cont’d on next page

1 For new accounts, that field is initialized to the time at which the account was created.

12–11

Application Program Interface (API)
Billing Accounts

Example 12–6 (Cont.) Account Billing Operations

/*
* Initialize the popstore
*/
stat = POPSTORE_init (1, NULL, "list_sample", 11);
if (stat != POPSTORE_SUCCESS) exit (1);

/*
* Output a heading
*/
printf (" Connect Block\n");
printf ("Username Time Days\n");
printf ("-------------------------------- ------- -------\n");

/*
* Now, loop over each account and bill it
*/
billing_time = time (NULL);
list_context = NULL;
do {

stat = POPSTORE_user_list_d (&list_context, "a", 1, NULL, 0,
"students", 8, user, &userlen,
POPSTORE_MAX_USER_LEN + 1);

if (stat == POPSTORE_SUCCESS) {
stat2 = POPSTORE_user_billing_d (NULL, 0, user, userlen, billing_time,

&data);
if (stat2 == POPSTORE_SUCCESS) {

printf ("%-32s %7u %7u\n", user, data.total_connect,
data.past_block_days);

} else {
fprintf (stderr, "Unable to bill %.*s; error = %d\n", userlen, user,

stat2);
fprintf (stderr, "%s\n", POPSTORE_error_to_text (stat2));

}
}

} while (stat == POPSTORE_SUCCESS);
if (stat != POPSTORE_EOM) {

fprintf (stderr, "POPSTORE_user_list_d returned the error %d\n", stat);
fprintf (stderr, "%s\n", POPSTORE_error_to_text (stat));

}

/*
* All done
*/
(void) POPSTORE_end ();

}

12–12

Application Program Interface (API)
Storing Messages

12.7 Storing Messages
To store a message into the message store, enqueue it as a mail message to PMDF

with the desired popstore recipients given as the message’s envelope To: recipients. See
the PMDF Programmer’s Reference Manual for information on using the PMDF API to
enqueue messages to PMDF.

12.8 Accessing Messages
A user’s messages are accessed by first obtaining a user context, user_context,

with POPSTORE_user_begin_d. The list of stored messages is the array of POP-
STORE_message_ref structures which start at the address

user_context->messages

and contain

user_context->profile->message_count

array elements. For example, the following code fragment counts the number of unread
messages stored for the user sue:

Example 12–7 Message Lists

int i, new_count, stat;
POPSTORE_message_ref *msg_ptr;
POPSTORE_user_context *user_context;

...

stat = POPSTORE_user_begin_d (&user_context, "sue", 3, POPSTORE_NOACCOUNTING,
"new message count", 17);

new_count = 0;
for (i = 0, msg_ptr = user_context->messages;

i < user_context->profile->message_count;
i++, msg_ptr++)

if (!(msg_ptr->flags & POPSTORE_MFLAGS_READ)) new_count++;
stat = POPSTORE_user_end (user_context);
printf ("Sue has %d new messages\n", new_count);

...

Individual messages are accessed and manipulated with the POPSTORE_message
subroutines. When accessing or manipulating a message, the message is referenced
using its ‘‘message index’’. The first message stored for a user has message index value
1, the second index value 2, the third index value 3, and so on.

The code shown in Example 12–8 displays each new message for the user sue,
marking each message as read after displaying it.

12–13

Application Program Interface (API)
Accessing Messages

Example 12–8 Displaying New Messages

/***
* *
* read_sample.c *
* Sample subroutine to display new messages for an account. *
* *
***/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifdef __VMS
include "pmdf_com:popstore.h"
#else
include "/pmdf/include/popstore.h"
#endif

void check (int stat)
{
if (stat == POPSTORE_SUCCESS) return;
fprintf (stderr, "Error %d: %s\n", stat, POPSTORE_error_to_text (stat));
(void) POPSTORE_end ();
exit (1);

}

void display_message (POPSTORE_user_context *user_context, int msg_index)
{
char buffer[1024+1];
int len, message_context, stat;

printf ("===\n");
printf ("Message %d\n", msg_index);
printf ("===\n");

if (POPSTORE_SUCCESS !=
POPSTORE_message_begin (user_context, msg_index, &message_context,

NULL, 0, NULL, 0)) return;
do {

stat = POPSTORE_message_read (message_context, buffer, 1024, &len);
if (stat != POPSTORE_READERROR) {

buffer[len] = ’\0’;
printf ("%s", buffer);

}
} while (stat == POPSTORE_SUCCESS);
(void) POPSTORE_message_end (message_context);
printf ("===\n");

}

main ()
{
POPSTORE_message_ref *msg_ptr;
int i, stat;
POPSTORE_user_context *user_context;

/*
* Initialize the popstore
*/

check (POPSTORE_init (1, NULL, "read_sample", 11));

Example 12–8 Cont’d on next page12–14

Application Program Interface (API)
Accessing Messages

Example 12–8 (Cont.) Displaying New Messages

/*
* Access the popstore account
*/
check (POPSTORE_user_begin_d (NULL, 0, &user_context, "sue", 3,

POPSTORE_ACCOUNTING, "read_sample", 11));

/*
* Display the new messages
*/
msg_ptr = user_context->messages;
for (i = 0, msg_ptr = user_context->messages;

i < user_context->profile->message_count;
i++, msg_ptr++)

if (!(msg_ptr->flags & POPSTORE_MFLAGS_READ)) {
display_message (user_context, i+1);
(void) POPSTORE_message_mark_read (user_context, i+1);

}

/*
* Deaccess the account
*/
(void) POPSTORE_user_end (user_context);

/*
* And shut down the popstore
*/
(void) POPSTORE_end ();

}

12.9 Using the API from Multi-threaded Programs
Multi-threaded programs need to register mutex handling subroutines with the

PMDF API subroutine PMDF_set_mutex prior to initializing either the PMDF or
popstore APIs. In addition, when calling POPSTORE_initialize, supply the address of
the sleep subroutine provided to PMDF_set_mutex.

12.10 Compiling and Linking Programs

OpenVMS Systems

To declare the API subroutines, data structures, and constants, C programs should
use the PMDF_COM:popstore.h header file.

12–15

Application Program Interface (API)
Compiling and Linking Programs

Linking programs to the popstore API is accomplished with a link command of the
form

$ LINK program,PMDF_EXE:pmdfshr_link.opt/OPT

where program is the name of the object file to link.

Solaris Systems

To declare the API subroutines, data structures, and constants, C programs should
use the /pmdf/include/popstore.h header file.

Linking a C program to the API is accomplished with a link command of the form

% cc -R/pmdf/lib/ -L/pmdf/lib/ -o program program.c \
-lpmdf -lsocket -lintl -lnsl -lm -ldb -lldapv3

where program is the name of your program.

NT Systems

To declare the API subroutines, data structures, and constants, C programs should
use the C:\pmdf\include\popstore.h header file.

When linking programs to the API with the Microsoft C/C++ compiler, use the
switches

-mD -D_WIN32_WINNT=0x0400 C:\pmdf\lib\libpmdf.lib

12.11 Basic Constants, Types, and Data Structures
Basic constants and data types used by the popstore are listed in Tables 12–1 and

12–2. The data structures describing a user profile, POPSTORE_user_data, and a mes-
sage list, POPSTORE_message_list, are shown in Sections 12.11.1 and Section 12.11.2.
A user context as obtained from the POPSTORE_user_begin_d subroutine, is a pointer to
a POPSTORE_user_context structure and is described in Section 12.11.3. Fields in that
structure point to data structures containing the user’s profile and message list. All of
these constants, data types, and structures are declared in the popstore.h header file lo-
cated in the /pmdf/include/ directory on UNIX and NT platforms and the PMDF_COM:
directory on OpenVMS.

Table 12–1 Constants

Constant Value Description

ALFA_SIZE 252 A basic PMDF string size
BIGALFA_SIZE 1024 A basic PMDF string size
POPSTORE_FLAGS_DELETE 16 Bit mask for the DELETE usage flag bit
POPSTORE_FLAGS_DISMAIL 2 Bit mask for the DISMAIL usage flag bit

12–16

Application Program Interface (API)
Basic Constants, Types, and Data Structures

Table 12–1 (Cont.) Constants

Constant Value Description

POPSTORE_FLAGS_DISUSER 1 Bit mask for the DISUSER usage flag bit
POPSTORE_FLAGS_LOCKPWD 4 Bit mask for the LOCKPWD usage flag bit
POPSTORE_FLAGS_MANAGE 8 Bit mask for the MANAGE usage flag bit
POPSTORE_FULL_UIDL_LEN 23 Length in bytes of a full message UIDL

derived
POPSTORE_MAX_DOMAIN_LEN 40 Maximum length in bytes of a user domain

name
POPSTORE_MAX_FILE_LEN 1024 Maximum length in bytes for full file paths
POPSTORE_MAX_GROUP_LEN 16 Maximum length in bytes of a

management group name
POPSTORE_MAX_OWN_LEN 40 Maximum length in bytes for the profile

owner field
POPSTORE_MAX_PRIV_LEN 64 Maximum length in bytes for the profile

site-defined private data field
POPSTORE_MAX_PWD_LEN 32 Maximum length in bytes for the profile

password field
POPSTORE_MAX_USER_LEN 32 Maximum length in bytes for the profile

username field
POPSTORE_MFLAGS_READ 1 Bit mask for the READ message flag bit
POPSTORE_MSG_FILE_FORMAT_VERSION 0 Current value for message file format

version
POPSTORE_MSG_NAME_LEN 19 Length in bytes of a message file name
POPSTORE_USERDATA_VERSION 2 Current value for the profile file format

version

Table 12–2 Basic Data Types

Type Size (bytes) Underlying data type

int32 4 int
ubyte 1 unsigned char
uint32 4 unsigned int
ushort 2 unsigned short int

12.11.1 POPSTORE_user_data Structure
User profile information is stored in a POPSTORE_user_data structure of the

form shown below. To change user profile information, the POPSTORE_user_set or
POPSTORE_user_update subroutines should be used. The former is used when creating
an account—an account which does not yet exist. The latter is used to modify an
existing account. The profile information for an existing account is obtained with
the POPSTORE_user_begin_d subroutine. That subroutine returns a pointer to a
POPSTORE_user_context structure; the profile data is pointed at by the profile field
in that structure.

12–17

Application Program Interface (API)
Basic Constants, Types, and Data Structures

The layout of the POPSTORE_user_data structure is shown below:

typedef struct {
ubyte version;
ubyte store_type;
ushort flags;
ubyte ulen;
ubyte plen;
ubyte olen;
ubyte slen;
char username[POPSTORE_MAX_USER_LEN];
char password[POPSTORE_MAX_PWD_LEN];
char owner[POPSTORE_MAX_OWN_LEN];
ubyte private[POPSTORE_MAX_PRIV_LEN];
uint32 quota;
uint32 return_after;
uint32 overdraft;
time_t last_billing;
uint32 total_conntections;
time_t last_connect;
time_t last_pwd_change;
time_t last_disconnect;
uint32 total_connect;
uint32 past_block_days;
uint32 past_block_days_remainder;
uint32 message_count;
uint32 quota_used;
uint32 received_messages;
uint32 received_bytes;
ubyte reserved5[3];
ubyte glen;
char group[POPSTORE_MAX_GROUP_LEN];

} POPSTORE_user_data;

The interpretation of these fields are as follows:

version
Data structure version number. The current version number for the data structure is
given by the POPSTORE_USERDATA_VERSION constant.

store_type
Type of message store used for this profile. Value will typically be zero
POPSTORE_STORE_TYPE_POP.

flags
Bit masked field containing usage flag settings. The bits in this field can be tested with
the POPSTORE_FLAGS_ constants.

ulen
Length in bytes of the value stored in the username field.

plen
Length in bytes of the value stored in the password field. The value of this field is
encrypted.

12–18

Application Program Interface (API)
Basic Constants, Types, and Data Structures

olen
Length in bytes of the value stored in the owner field.

slen
Length in bytes of the value stored in the private field.

username
The account username. This field is not null terminated; the length of the value stored
in this field is given by the value of the ulen field.

password
The account password. The value stored in this field is encrypted and is not null
terminated. The encrypted value of the plen field gives the length of the value stored in
this field.

owner
Account owner information. This field is not null terminated; the length of the value
stored in this field is given by the value of the olen field.

private
Site-defined private data field. The length of the value stored in this field is given by the
value of the slen field. This field is not null terminated.

quota
Primary message storage quota measured in units of bytes. A value of zero for this field
conveys unlimited storage quota.

return_after
Field reserved for future use.

overdraft
Message overdraft storage quota.

last_billing
Time of last billing as measured in seconds since 1 January 1970. This field is set to the
current time when the account is first created.

total_connections
Cumulative count of connections made to the account since either the account was created
or this field last cleared.

last_connect
Time of last connection attempt as measured in seconds since 1 January 1970. This field
is set for both successful and unsuccessful login attempts. The time is recorded when the
user context is created with POPSTORE_user_begin_d and written to the profile when
the context is disposed of with POPSTORE_user_end.

last_pwd_change
Time of last password change as measured in seconds since 1 January 1970. If the
value is 0, then the account is pre-expired. This field is set whenever the password is
successfully changed, or when the account is set to pre-expired or not pre-expired through
the web-based management interface or the command line management utility.

12–19

Application Program Interface (API)
Basic Constants, Types, and Data Structures

last_disconnect
Time of last disconnect as measured in seconds since 1 January 1970. This field is set
for both successful and unsuccessful login attempts. The time is recorded when the user
context is disposed of with POPSTORE_user_end.

total_connect
Total number of seconds spent connected since the account was created or this field last
cleared.

past_block_days
Cumulative block days for previously stored and since deleted or returned messages since
the account was created or this field last cleared. The value of this field does not take
into account messages currently held in the store.

past_block_days_remainder
Remainder field used in computation of block days. This field is measured in units of
byte seconds.

message_count
Count of messages currently stored for the account.

quota_used
Number of bytes currently being consumed to store messages for the account. This value
only takes into consideration the size of the underlying messages themselves and not the
size of the actual container files.

received_messages
Cumulative count of messages received and stored for the account since either the account
was created or this field last cleared.

received_bytes
Cumulative count of message bytes received and stored for the account since either the
account was created or this field last cleared.

reserved5
Field reserved for future use.

glen
Length in bytes of the value stored in the group field.

group
Name of the management group to which this account belongs.

12.11.2 POPSTORE_message_ref Structure
A user’s list of stored messages is stored as an array of zero or more array elements

each of type POPSTORE_message_ref. To change information in the list (e.g., mark
messages for deletion), use the appropriate POPSTORE_message_ subroutine. The
list of an account’s stored messages is obtained with the POPSTORE_user_begin_d
subroutine. That subroutine returns a pointer to a POPSTORE_user_context structure;
the message list is pointed at by the messages field in that structure. The count of stored
messages, and hence the count of array elements in the message list, is given by the user

12–20

Application Program Interface (API)
Basic Constants, Types, and Data Structures

profile information also available from the user context structure. See, for instance,
Example 12–7.

The layout of the POPSTORE_message_ref structure is shown below:

typedef struct {
uint32 size;
uint32 last_billing;
time_t created;
uint32 flags;
char uidl[4];
char filename[POPSTORE_MSG_NAME_LEN];
ubyte pad;

} POPSTORE_message_ref;

The interpretation of these fields are as follows:

size
Size in bytes of the message. This size includes CRLF terminators but does not include
any dots used for dot stuffing.

last_billing
Time at which usage billing was last done for the storage of this message. Measured as
the count of seconds since 1 January 1970.

created
Time at which the message file was created. Measured as the count of seconds since 1
January 1970.

flags
Bit masked field containing message status flag bits. The bits in this field can be tested
with the POPSTORE_MFLAGS_ constants. Currently, only one flag bit is stored in the
message list: the read/unread bit accessed with the POPSTORE_MFLAGS_READ bit mask.

uidl
The message UIDL begins with this field and includes the filename field. The length
in bytes of the UIDL is given by POPSTORE_FULL_UIDL_LEN. This portion of the UIDL
is unique for each recipient of the underlying message file.

filename
This field forms part of the message UIDL and is the same for all popstore recipients of
this particular message. This field also is the name of the underlying file containing the
message.

pad
A padding byte. The value of this byte is set to zero thus making the full UIDL accessible
as a null terminated string.

12–21

Application Program Interface (API)
Basic Constants, Types, and Data Structures

12.11.3 POPSTORE_user_context Structure
Information about a popstore account is returned to callers of

POPSTORE_user_begin_d in the form of a pointer to a structure of type
POPSTORE_user_context—a ‘‘user context’’. Fields in this structure must not be
changed; use the appropriate API subroutines to effect the needed changes. When
through with a user context, call POPSTORE_user_end to dispose of the context. Note
that it is important that that call be made: not only does it dispose of allocated resources,
it also updates accounting information for the account and performs any requested mes-
sage deletion operations.

The layout of the POPSTORE_user_context structure is shown below:

typedef struct {
time_t connect;
uint32 log_subid;
int do_accounting;
uint32 block_days;
uint32 block_days_remainder;
POPSTORE_user_data *profile;
POPSTORE_message_ref *messages;
POPSTORE_string filespec;
char pad[3];
POPSTORE_userdb_data *userdb_data;
void *reserved0;
char domain[POPSTORE_MAX_DOMAIN_LEN];
int dlen;

} POPSTORE_user_context;

The interpretation of these fields are as follows:

connect
Time at which this context was established.

log_subid
Sub-identifier used for logging purposes.

do_accounting
Flag indicating whether or not accounting should be done for this context.

block_days
Accumulated block days for messages deleted with this context.

block_days_remainder
Accumulated block days roundoff for messages deleted with this context.

profile
The user’s profile data. The value of this field is a pointer to the profile information for
this user account.

messages
The user’s list of stored messages. The value of this field is a pointer to an array of
POPSTORE_message_ref elements. This array contains profile->message_count
elements.

12–22

Application Program Interface (API)
Basic Constants, Types, and Data Structures

filespec
File specification for the underlying profile file.

pad
Alignment padding bytes.

userdb_data
This field will usually be NULL. It is a pointer to the account’s user database record.
That record is only obtained when the popstore is performing management operations
and even then only seldom.

reserved0
Field reserved for future use.

domain
User domain associated with this account.

dlen
Length in bytes of the user domain associated with this account. A length of zero indicates
the default domain.

12.12 Subroutine Descriptions
This section documents the individual popstore API subroutines. A brief description

of each subroutine is given in Table 12–3 below.

Table 12–3 Subroutines included in the API

Subroutine name Description

POPSTORE_command Obsolete: use the POPSTORE_command_d subroutine
POPSTORE_command_d Process a management command
POPSTORE_end End usage of the API
POPSTORE_error_to_text Convert a numerical error to a textual error message
POPSTORE_format_counters Format PMDF channel counter information
POPSTORE_format_dispose Dispose of a formatting context
POPSTORE_format_forwarding Obsolete: use the POPSTORE_format_forwarding_d

subroutine
POPSTORE_format_forwarding_d Format forwarding information
POPSTORE_format_message Format a stored message
POPSTORE_format_messages Format a user’s list of stored messages
POPSTORE_format_profile Format a user profile
POPSTORE_format_profiles Obsolete: use the POPSTORE_format_profiles_d

subroutine
POPSTORE_format_profiles_d Format a list of user profiles
POPSTORE_format_read Read and parse a formatting file
POPSTORE_init Initialize the API
POPSTORE_manage Allow changing of the MANAGE usage flag
POPSTORE_message_begin Access a stored message
POPSTORE_message_end Deaccess a stored message
POPSTORE_message_mark_delete Mark a user’s message copy for deletion
POPSTORE_message_mark_nodelete Mark a user’s message to be retained

12–23

Application Program Interface (API)
Subroutine Descriptions

Table 12–3 (Cont.) Subroutines included in the API

Subroutine name Description

POPSTORE_message_mark_noread Mark a user’s message as being unread
POPSTORE_message_mark_read Mark a user’s message as read
POPSTORE_message_read Sequentially read a message
POPSTORE_message_return Return a message to its originator
POPSTORE_user_begin Obsolete: use the POPSTORE_user_begin_d subroutine
POPSTORE_user_begin_d Access a user account
POPSTORE_user_billing Obsolete: use the POPSTORE_user_billing_d subroutine
POPSTORE_user_billing_d Perform billing operations
POPSTORE_user_copy Obsolete: use the POPSTORE_user_copy_d subroutine
POPSTORE_user_copy_d Copy or rename an existing account
POPSTORE_user_create Create a new account
POPSTORE_user_create_dispose Abort creating a new account
POPSTORE_user_create_set Set the value of a field for an account to be created with

POPSTORE_user_create
POPSTORE_user_delete Obsolete: use the POPSTORE_user_delete_d subroutine
POPSTORE_user_delete_d Delete a user account
POPSTORE_user_end Deaccess a user account
POPSTORE_user_exists Obsolete: use the POPOPSTORE_user_exists_d

subroutine
POPSTORE_user_exists_d See if a username specifies a valid account
POPSTORE_user_list Obsolete: use the POPSTORE_user_list_d subroutine
POPSTORE_user_list_abort Prematurely dispose of a list
POPSTORE_user_list_d Return the usernames associated with each account within

an accounting group
POPSTORE_user_pw_change Obsolete: use the POPSTORE_user_pw_change_d

subroutine
POPSTORE_user_pw_change_d Change a user’s password
POPSTORE_user_pw_check Perform an authentication check
POPSTORE_user_update Update a field in an existing account

12–24

Application Program Interface (API)
POPSTORE_command

POPSTORE_command

Obsolete subroutine: use the more general POPSTORE_command_d subroutine.

FORMAT
int POPSTORE_command (command, command_len,

password_required,
user, user_len,
password, password_len,
usage, usage_len,
out_info, out_info_len,
context, output_proc)

char *command;
int command_len;
int password_required
char *user;
int user_len;
char *password;
int password_len;
char *usage;
int usage_len;
char *out_info;
int *out_info_len;
void *context;
int (*output_proc)();

ARGUMENTS command
The command to process. Used for input only.

command_len
Length in bytes of the command specified with command. Used for input only.

password_required
Boolean flag indicating whether or not password authentication is required in order
to process the command. Used for input only.

user
Name of the popstore user account to authenticate against when password
authentication is required. Used for input only.

user_len
Length in bytes of the username specified with user. Used for input only.

password
User-supplied, plain text password to use when performing a password authenti-
cation. Used for input only.

password_len
Length in bytes of the plain text password specified with password. Used for
input only.

12–25

Application Program Interface (API)
POPSTORE_command

usage
Usage description to be passed to site-supplied logging subroutines explaining the
usage. Used for input only.

usage_len
Length in bytes of the usage description specified with usage. Used for input only.

out_info
Output buffer to receive post-processing information. Used for output only.

out_info_len
On input, the maximum length in bytes of the buffer pointed at by out_info.
On output, the length in bytes of the information placed in the out_info buffer.
Used for input and output.

context
Pointer to private client data to be passed to the client-supplied output_proc
procedure. Used for input only.

output_proc
Address of a client-supplied subroutine to receive command processing output.
Used for input only.

DESCRIPTION Although still supported, this subroutine is now obsolete. Use the more general
POPSTORE_command_d subroutine instead.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADARG Null value received for the out_proc argument.

POPSTORE_ERRORS The command was parsed and executed; execution of the
command resulted in some errors which were reported via
the output_proc procedure.

POPSTORE_AUTHFAIL Invalid password or username supplied. The command was
not executed.

POPSTORE_BADHEXVAL The command contained an illegal hexadecimal encoded
character. The command was not executed.

POPSTORE_CMDTOOLONG The command contained too many name=value pairs. The
command was not executed.

POPSTORE_CMDUNKOWN The command contained an unrecognized right-hand-side in
a name=value pair. The command was not executed.

POPSTORE_CMDUNKOWNL The command contained an unrecognized left-hand-side in a
name=value pair. The command was not executed.

POPSTORE_NOMANAGE Specified account lacks management privileges. The
command was not executed.

POPSTORE_PWDREQUIRED A username and password are required. The command was
not executed.

POPSTORE_VMERROR Insufficient virtual memory. The command was not executed.

Any error returned by the output_proc procedure.

12–26

Application Program Interface (API)
POPSTORE_command_d

POPSTORE_command_d

Process a popstore management command.

FORMAT
int POPSTORE_command_d (command, command_len,

password_required,
domain, domain_len
user, user_len,
password, password_len,
usage, usage_len,
out_info, out_info_len,
context, output_proc)

char *command;
int command_len;
int password_required
char *domain;
int domain_len;
char *user;
int user_len;
char *password;
int password_len;
char *usage;
int usage_len;
char *out_info;
int *out_info_len;
void *context;
int (*output_proc)();

ARGUMENTS command
The command to process. Used for input only.

command_len
Length in bytes of the command specified with command. Used for input only.

password_required
Boolean flag indicating whether or not password authentication is required in order
to process the command. Used for input only.

domain
Name of the user domain associated with the user user. Supply a value of NULL
to indicate the default domain. Used for input only.

domain_len
Length in bytes of the user domain name, domain. Supply a value of zero to
indicate the default domain. Used for input only.

user
Name of the popstore user account to authenticate against when password
authentication is required. Used for input only.

12–27

Application Program Interface (API)
POPSTORE_command_d

user_len
Length in bytes of the username specified with user. Used for input only.

password
User-supplied, plain text password to use when performing a password authenti-
cation. Used for input only.

password_len
Length in bytes of the plain text password specified with password. Used for
input only.

usage
Usage description to be passed to site-supplied logging subroutines explaining the
usage. Used for input only.

usage_len
Length in bytes of the usage description specified with usage. Used for input only.

out_info
Output buffer to receive post-processing information. Used for output only.

out_info_len
On input, the maximum length in bytes of the buffer pointed at by out_info.
On output, the length in bytes of the information placed in the out_info buffer.
Used for input and output.

context
Pointer to private client data to be passed to the client-supplied output_proc
procedure. Used for input only.

output_proc
Address of a client-supplied subroutine to receive command processing output.
Used for input only.

DESCRIPTION The management commands documented in Chapter 4 are processed by the POP-
STORE_command_d subroutine. Sites wanting to produce their own management
interfaces can do so by generating management commands in the URL format
described in Chapter 4 and then invoking POPSTORE_command to process those
commands. The commands should reference site-supplied formatting files which
then format the command results in the desired format.2

When called, POPSTORE_command_d will use the active privileges of the caller to
access and manipulate the popstore. The password_required argument can be
used to implement a utility which itself has privileges but requires, for operation,
that the user know the username and password of a popstore account with man-
agement privileges. When a non-zero value is supplied for password_required,
values for the user, user_len, password, and password_len arguments must
be supplied. The supplied plain text password will be authenticated against the
specified account. If the password is correct and the account has the MANAGE
usage flag set, then the indicated command will be processed. Otherwise, a POP-
STORE_AUTHFAIL or POPSTORE_NOMANAGE error will be returned. Moreover, the

2 This is precisely how the Web-based and command line oriented management utilities are implemented.

12–28

Application Program Interface (API)
POPSTORE_command_d

account will only be allowed to perform management functions on other accounts
within the same management group.

When user and user_len arguments are supplied, the operation to be undertaken
will be restricted to accounts within the same management group and subgroups
of user. This behavior is regardless the setting of the password_required
argument.

On return from calling POPSTORE_command, the out_info buffer will contain
the name of the formatting file associated with either the processed command’s
on_success or on_error parameter. If the command was successfully processed,
then the buffer will contain the value specified with the command’s on_success
parameter. If the command was not successfully processed, then the value specified
by the on_error parameter will be returned. If you do not care to have this
information returned, specify a null value for out_info or out_info_len or
both.

The output_proc procedure is called repeatedly to received lines of output
generated as a result of processing the command. The procedure takes the form

int output_proc (context, data, data_len, is_eol, is_literal,
is_error)

void *context;
char *data;
int data_len;
int is_eol;
int is_literal;
int is_error;

where the arguments to output_proc are as follows:

context Pointer to the private client data supplied as input to POPSTORE_command.
data Data to output. This string can not be null terminated.
data_len Length in bytes of the data pointed at by data.
is_eol When is_eol has a non-zero value, the output_proc procedure can

want to output an end-of-line after this batch of formatted data.
is_literal When is_literal has a non-zero value, the output_proc procedure

should not apply any quoting to the output data. The output data is literal data
which was contained within the formatting file.

is_error When is_error has a non-zero value, the output data is an error message
relating to the processed command.

Upon successful completion, output_proc should return the value
POPSTORE_SUCCESS. In the event of an error, some value other than POP-
STORE_SUCCESS should be returned. A user-requested abort can be signified by
returning POPSTORE_ABORT.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADARG Null value received for the out_proc argument.

12–29

Application Program Interface (API)
POPSTORE_command_d

POPSTORE_ERRORS The command was parsed and executed; execution of the
command resulted in some errors which were reported via
the output_proc procedure.

POPSTORE_AUTHFAIL Invalid password or username supplied. The command was
not executed.

POPSTORE_BADHEXVAL The command contained an illegal hexadecimal encoded
character. The command was not executed.

POPSTORE_CMDTOOLONG The command contained too many name=value pairs. The
command was not executed.

POPSTORE_CMDUNKOWN The command contained an unrecognized right-hand-side in
a name=value pair. The command was not executed.

POPSTORE_CMDUNKOWNL The command contained an unrecognized left-hand-side in a
name=value pair. The command was not executed.

POPSTORE_NOMANAGE Specified account lacks management privileges. The
command was not executed.

POPSTORE_PWDREQUIRED A username and password are required. The command was
not executed.

POPSTORE_VMERROR Insufficient virtual memory. The command was not executed.

Any error returned by the output_proc procedure.

Any other popstore error.

12–30

Application Program Interface (API)
POPSTORE_end

POPSTORE_end

End usage of the popstore API.

FORMAT
int POPSTORE_end (void)

ARGUMENTS None.

DESCRIPTION When a program is done using the popstore API subroutines, it should call
POPSTORE_end. This call allows the popstore API to gracefully shut itself down
and deallocate any dynamic memory it can have allocated. Note that this call will
not also call PMDF_done. If you also need to show the PMDF API down, then
follow the POPSTORE_end call with a PMDF_done call.

If a site-supplied logging subroutine is in use, then it will be called by POP-
STORE_end with a log type of POPSTORE_LOG_END.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

12–31

Application Program Interface (API)
POPSTORE_error_to_text

POPSTORE_error_to_text

Convert a numerical popstore error to a textual error message.

FORMAT
char *POPSTORE_error_to_text (error_code)

int error_code;

ARGUMENTS error_code
Numerical popstore error code returned by a popstore API subroutine. Used for
input only.

DESCRIPTION With the exception of POPSTORE_error_to_text, all popstore API subroutines
return a numeric status code indicating success or failure. A brief text mes-
sage explaining a given numeric status code can be obtained by calling POP-
STORE_error_to_text. The return value of POPSTORE_error_to_text will
be a pointer to a static, null terminated string containing the explanation.

RETURN VALUESNone.

12–32

Application Program Interface (API)
POPSTORE_format_counters

POPSTORE_format_counters

Format PMDF channel counter information.

FORMAT
int POPSTORE_format_counters (format, channel, channel_len,

context, output_proc)
POPSTORE_format_element *format;
char *channel;
int channel_len;
void *context;
int (*output_proc)();

ARGUMENTS format
Pointer to a formatting context returned by a previous call to POPSTORE_format_read.
Used for input only.

channel
Name of the channel to display information for. This name can contain wild card
characters. Used for input only.

channel_len
Length in bytes of the string passed in channel. Used for input only.

context
Pointer to private client data to be passed to the client-supplied output_proc
procedure. Used for input only.

output_proc
Address of a client-supplied subroutine to call to output formatted data. Used for
input only.

DESCRIPTION PMDF channel counter information can be formatted with POPSTORE_format_counters.
The channel name is case insensitive and can contain wild card characters. To for-
mat information for all channels, either specify asterisk, ‘‘*’’, for the channel name
or pass a null for channel and the value 0 for channel_len.

The formatting context should be derived from a formatting file using substitution
strings from Tables 4–10 and 4–20.

Formatted data is passed to the output procedure output_proc. That procedure
takes the form

int output_proc (context, data, data_len, is_eol, is_literal)
void *context;
char *data;
int data_len;
int is_eol;
int is_literal;

12–33

Application Program Interface (API)
POPSTORE_format_counters

where the arguments to output_proc are as follows:

context Pointer to the private client data supplied as input to POPSTORE_format_
counters.

data Formatted data to output. This string can not be null terminated.
data_len Length in bytes of the data pointed at by data.
is_eol When is_eol has a non-zero value, the output_proc procedure can

want to output an end-of-line after this batch of formatted data.
is_literal When is_literal has a non-zero value, the output_proc procedure

should not apply any quoting to the formatted data. The formatted data is
literal data which was contained within the formatting file.

Upon successful completion, output_proc should return the value
POPSTORE_SUCCESS. In the event of an error, some value other than POP-
STORE_SUCCESS should be returned. A user-requested abort can be signified by
returning POPSTORE_ABORT.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADARG Bad value passed for the address of the output procedure,
output_proc.

Any error value returned by the output procedure,
output_proc.

12–34

Application Program Interface (API)
POPSTORE_format_dispose

POPSTORE_format_dispose

Dispose of a formatting context.

FORMAT
int POPSTORE_format_dispose (format)

POPSTORE_format_element *format;

ARGUMENTS format
Formatting context to dispose of. Used for input only.

DESCRIPTION POPSTORE_format_dispose should be called to dispose of a formatting context
generated by POPSTORE_format_read. POPSTORE_format_dispose should be
called once for each context generated and no longer needed.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

12–35

Application Program Interface (API)
POPSTORE_format_forwarding

POPSTORE_format_forwarding

Format forwarding information.

FORMAT
int POPSTORE_format_forwarding (format, user, user_len,

is_prefix, context,
output_proc)

POPSTORE_format_element *format;
char *user;
int user_len;
int is_prefix;
void *context;
int (*output_proc)();

ARGUMENTS format
Pointer to a formatting context returned by a previous call to POPSTORE_format_
read. Used for input only.

user
Name of the user to display the forwarding for. This string can not contain wild
cards. The length of this string can not exceed POPSTORE_MAX_USER_LEN
bytes. Used for input only.

user_len
Length in bytes of the username passed in user. Used for input Only.

is_prefix
Boolean flag with value 0 or 1 indicating whether or not to treat the specified
username as a prefix. Used for input only.

context
Pointer to private client data to be passed to the client-supplied output_proc
procedure. Used for input only.

output_proc
Address of a client-supplied subroutine to call to output formatted data. Used for
input only.

DESCRIPTION Although still supported, this subroutine is obsolete. Instead use the more general
POPSTORE_format_forwarding_d subroutine.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADARG Bad value passed for the address of the output procedure,
output_proc.

12–36

Application Program Interface (API)
POPSTORE_format_forwarding

POPSTORE_TOOLONG Username string is too long; it can not exceed a length of
POPSTORE_MAX_USER_LEN bytes.

Any error value returned by the output procedure,
output_proc.

12–37

Application Program Interface (API)
POPSTORE_format_forwarding_d

POPSTORE_format_forwarding_d

Format forwarding information.

FORMAT
int POPSTORE_format_forwarding_d (format, domain, domain_len,

user, user_len, is_prefix,
context, output_proc)

POPSTORE_format_element *format;
char *domain;
int domain_len;
char *user;
int user_len;
int is_prefix;
void *context;
int (*output_proc)();

ARGUMENTS format
Pointer to a formatting context returned by a previous call to POPSTORE_format_
read. Used for input only.

domain
Name of the user domain associated with the user user. Supply a value of NULL
to indicate the default domain. Used for input only.

domain_len
Length in bytes of the user domain name, domain. Supply a value of zero to
indicate the default domain. Used for input only.

user
Name of the user to display the forwarding for. This string can not contain wild
cards. The length of this string cannot exceed POPSTORE_MAX_USER_LEN bytes.
Used for input only.

user_len
Length in bytes of the username passed in user. Used for input Only.

is_prefix
Boolean flag with value 0 or 1 indicating whether or not to treat the specified
username as a prefix. Used for input only.

context
Pointer to private client data to be passed to the client-supplied output_proc
procedure. Used for input only.

output_proc
Address of a client-supplied subroutine to call to output formatted data. Used for
input only.

12–38

Application Program Interface (API)
POPSTORE_format_forwarding_d

DESCRIPTION To generate a formatted display of forwarding information, use
POPSTORE_format_forwarding. The formatting context passed to this subrou-
tine should be derived from a formatting file using substitution strings from Tables
4–10 and 4–11.

The supplied username is treated in a case-insensitive fashion and can not contain
wild cards. An exact match will be done if is_prefix has the value 0. If
is_prefix has a non-zero value, then the value of user will be treated as a prefix
and all forwardings for usernames beginning with that value will be returned.
For instance, if user has the value ‘‘D’’ and is_prefix is non-zero, then all
forwardings for usernames beginning with the letter ‘‘D’’ will be returned. To
return all of the forwardings, supply an empty string for user, the value 0 for
user_len, and a non-zero value for is_prefix.

See the description of the POPSTORE_format_counters subroutine for a descrip-
tion of the output_proc procedure.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADARG Bad value passed for the address of the output procedure,
output_proc.

POPSTORE_TOOLONG Username string is too long; it can not exceed a length of
POPSTORE_MAX_USER_LEN bytes.

Any error value returned by the output procedure,
output_proc.

12–39

Application Program Interface (API)
POPSTORE_format_message

POPSTORE_format_message

Format a stored message.

FORMAT
int POPSTORE_format_message (format, fspec, fpsec_len,

context, output_proc)
POPSTORE_format_element *format;
char *fspec;
int fspec_len;
void *context;
int (*output_proc)();

ARGUMENTS format
Pointer to a formatting context returned by a previous call to
POPSTORE_format_read. Used for input only.

fspec
Message file specification for the message file to display. Used for input only.

fspec_len
Length in bytes of the message file specification. Used for input only.

context
Pointer to private client data to be passed to the client-supplied output_proc
procedure. Used for input only.

output_proc
Address of a client-supplied subroutine to call to output formatted data. Used for
input only.

DESCRIPTION Stored messages can be formatted for display with POPSTORE_format_message.
The formatting context passed to this subroutine should be derived from a
formatting file using substitution strings from Tables 4–10 and 4–22.

Whereas the POPSTORE_message_ subroutines all require message indices such
as the value 9 to reference the ninth message, POPSTORE_format_message
requires a message file name to reference a message file. This is done because
POPSTORE_format_message is typically used in situations where a user context
is no longer available.

The message to display is indicated by the fspec argument. The value of that
argument should be a message file name without directory path information. This
file name can be derived from a user’s message list: the nth message in a user’s
list of messages has the file name

12–40

Application Program Interface (API)
POPSTORE_format_message

user_context->messages[n-1].filename

where user_context is a pointer to a POPSTORE_user_context returned by the
POPSTORE_user_begin_d subroutine.

See the description of the POPSTORE_format_counters subroutine for a descrip-
tion of the output_proc procedure.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADARG Bad value passed for the address of the output procedure,
output_proc, or the message file specification, fspec.

POPSTORE_BADLENGTH Bad length passed for the value of fspec_len.

POPSTORE_FILOPNERR An error occurred while trying to open the message file.

POPSTORE_READERROR An error occurred while trying to read the message file.

POPSTORE_SEEKERROR An error occurred while seeking in the message file.

POPSTORE_TOOLONG Username or file specification is too long. The username
string can not exceed a length of POPSTORE_MAX_USER_
LEN bytes; the file specification can not exceed a length of
1024 bytes.

POPSTORE_VMERROR Insufficient virtual memory.

Any error value returned by the output procedure,
output_proc.

12–41

Application Program Interface (API)
POPSTORE_format_messages

POPSTORE_format_messages

Format a user’s list of stored messages.

FORMAT
int POPSTORE_format_messages (format, user_context, context,

output_proc)
POPSTORE_format_element *format;
POPSTORE_user_context *user_context;
void *context;
int (*output_proc)();

ARGUMENTS format
Pointer to a formatting context returned by a previous call to
POPSTORE_format_read. Used for input only.

user_context
User context for the user to display the messages for. Obtain this context by calling
POPSTORE_user_begin_d. Used for input only.

context
Pointer to private client data to be passed to the client-supplied output_proc
procedure. Used for input only.

output_proc
Address of a client-supplied subroutine to call to output formatted data. Used for
input only.

DESCRIPTION POPSTORE_format_messages can be used to format a user’s list of stored
messages. The formatting context passed to this subroutine should be derived
from a formatting file using substitution strings from Tables 4–10 and 4–24.

See the description of the POPSTORE_format_counters subroutine for a descrip-
tion of the output_proc procedure.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADARG Bad value passed for the address of the output procedure,
output_proc.

Any error value returned by the output procedure,
output_proc.

12–42

Application Program Interface (API)
POPSTORE_format_profile

POPSTORE_format_profile

Format for display a user profile.

FORMAT
int POPSTORE_format_profile (format, user_context, flags,

context, output_proc)
POPSTORE_format_element *format;
POPSTORE_user_context *user_context;
int flags;
void *context;
int (*output_proc)();

ARGUMENTS format
Pointer to a formatting context returned by a previous call to
POPSTORE_format_read. Used for input only.

user_context
User context to display. Obtain this context by calling POPSTORE_user_begin_d.
Used for input only.

flags
Bit mask. Used for input only.

context
Pointer to private client data to be passed to the client-supplied output_proc
procedure. Used for input only.

output_proc
Address of a client-supplied subroutine to call to output formatted data. Used for
input only.

DESCRIPTION POPSTORE_format_profile can be used to format for display a user profile. The
formatting context passed to this subroutine should be derived from a formatting
file using substitution strings from Tables 4–10 and 4–15.

The flags argument is used to control the handling of the %first, %last,
%!first, and %!last substitution strings. When the lowest bit of flags is set,
%first is true. When the second lowest bit is set, %last is true.

See the description of the POPSTORE_format_counters subroutine for a descrip-
tion of the output_proc procedure.

12–43

Application Program Interface (API)
POPSTORE_format_profile

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADARG Bad value passed for the address of the output procedure,
output_proc.

Any error value returned by the output procedure,
output_proc.

12–44

Application Program Interface (API)
POPSTORE_format_profiles

POPSTORE_format_profiles

Obsolete subroutine: use the more general POPSTORE_format_profiles_d subroutine.

FORMAT
int POPSTORE_format_profiles (format, user, user_len,

context, output_proc)
POPSTORE_format_element *format;
char *user;
int user_len;
void *context;
int (*output_proc)();

ARGUMENTS format
Pointer to a formatting context returned by a previous call to POPSTORE_format_
read. Used for input only.

user
Name of the user to display profile information for. This string can contain wild
cards. Used for input only.

user_len
Length in bytes of the username string, user. Length of this string cannot exceed
ALFA_SIZE bytes. Used for input only.

context
Pointer to private client data to be passed to the client-supplied output_proc
procedure. Used for input only.

output_proc
Address of a client-supplied subroutine to call to output formatted data. Used for
input only.

DESCRIPTION While use of this subroutine is still supported, it is now obsolete. Use the more
general POPSTORE_format_profiles_d subroutine instead.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADARG Bad value passed for the address of the output procedure,
output_proc.

POPSTORE_TOOLONG Length of username string exceeds ALFA_SIZE bytes.

Any error value returned by the output procedure,
output_proc.

12–45

Application Program Interface (API)
POPSTORE_format_profiles_d

POPSTORE_format_profiles_d

Format for display a list of user profiles.

FORMAT
int POPSTORE_format_profiles_d (format, domain, domain_len,

group, group_len, user,
user_len, context,
output_proc)

POPSTORE_format_element *format;
char *domain;
int domain_len;
char *group;
int group_len;
char *user;
int user_len;
void *context;
int (*output_proc)();

ARGUMENTS format
Pointer to a formatting context returned by a previous call to POPSTORE_format_
read. Used for input only.

domain
Name of the user domain to use. Supply a value of NULL to indicate the default
domain. Used for input only.

domain_len
Length in bytes of the user domain name, domain. Supply a value of zero to
indicate the default domain. Used for input only.

group
Name of the management group and subgroups thereof to restrict the listing to.
Supply a value of NULL if accounts from any group should be listed. This string
cannot contain wild cards. Used for input only.

group_len
Length in bytes of the group name, group. Specify a value of zero if you do not
want to restrict the listing to a particular group.

user
Name of the user to display profile information for. This string can contain wild
cards. Used for input only.

user_len
Length in bytes of the username string, user. Length of this string can not exceed
ALFA_SIZE bytes. Used for input only.

context
Pointer to private client data to be passed to the client-supplied output_proc
procedure. Used for input only.

12–46

Application Program Interface (API)
POPSTORE_format_profiles_d

output_proc
Address of a client-supplied subroutine to call to output formatted data. Used for
input only.

DESCRIPTION Use POPSTORE_format_profiles_d to generate a listing of popstore user accounts.
When group_len is zero, all accounts matching the username specification, user,
will be formatted for display. When group_len is larger than zero, only those
accounts within the specified management group and matching the username
specification will be formatted for display. The username specification is treated as
a case-insensitive string and can contain wild card characters. To list all accounts
you can simply pass a null value for user or a zero value for user_len or both.

The formatting context passed to this subroutine should be derived from a
formatting file using substitution strings from Tables 4–10 and 4–15.

See the description of the POPSTORE_format_counters subroutine for a descrip-
tion of the output_proc procedure.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADARG Bad value passed for the address of the output procedure,
output_proc.

POPSTORE_TOOLONG Length of username string exceeds ALFA_SIZE bytes.

Any error value returned by the output procedure,
output_proc.

12–47

Application Program Interface (API)
POPSTORE_format_read

POPSTORE_format_read

Read and parse a formatting file.

FORMAT
int POPSTORE_format_read (format, fname, fname_len, path,

path_len)
POPSTORE_format_element **format;
char *fname;
int fname_len;
char *path;
int path_len;

ARGUMENTS format
Pointer to a formatting context generated by reading and parsing the specified
formatting template file. Dispose of the context by calling POPSTORE_format_
dispose. Used for output only.

fname
Name of the formatting template file to read. Used for input only.

fname_len
Length in bytes of the formatting template file, fspec. Used for input only.

path
Full directory path to the directory containing the formatting template file. Used
for input only.

path_len
Length in bytes of the directory path, path. Used for input only.

DESCRIPTION Before calling any of the other POPSTORE_format_ subroutines, you must first
have processed a formatting template file with POPSTORE_format_read. This
will generate a formatting context which can then be used with the other
POPSTORE_format_ subroutines. When finished using a formatting context,
dispose of it with a call to POPSTORE_format_dispose.

The name of the formatting file is specified with the fname argument. The
directory path leading to the file is specified with the path argument.3

Formatting files are described throughout Chapter 4; see Section 4.3.2 for basic
information on formatting files. The particular substitution strings permitted in
a formatting file will depend upon the intended usage of the formatting file; i.e.,
depends upon which POPSTORE_format_ subroutines it will subsequently be used
with.

3 These two parts of the full file path are specified independently so as to simplify the coding of servers which need to ensure
that formatting files are read only from a specific directory tree and not from any user-specified location.

12–48

Application Program Interface (API)
POPSTORE_format_read

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADARG File name argument, fname, is null, or file name length,
fname_len, is zero.

POPSTORE_ILLFILE Directory path and file name result in an illegal file
specification; note that the directory path must be specified
and must have a non-zero length.

POPSTORE_TOOLONG Directory path and file name result in a file specification
whose length exceeds 1024 bytes.

POPSTORE_FILOPNERR Unable to open the formatting file.

POPSTORE_VMERROR Insufficient virtual memory.

12–49

Application Program Interface (API)
POPSTORE_init

POPSTORE_init

Initialize the popstore API.

FORMAT
int POPSTORE_init (init_pmdf, sleep_proc, usage, usage_len)

int init_pmdf;
void (*sleep_proc)();
char *usage;
int usage_len;

ARGUMENTS init_pmdf
Boolean flag, 0 or 1, indicating whether or not to also call PMDF_initialize. Used
for input only.

sleep_proc
Address of a procedure to call to sleep the process or thread. Used for input only.

usage
A short description identifying the usage being made by the popstore API client.
Used for input only.

usage_len
Length in bytes of the usage description, usage. Used for input only.

DESCRIPTION To use the popstore API, you must first initialize the API by calling POP-
STORE_init. When through using the popstore API, call POPSTORE_end. When a
call to POPSTORE_init fails, POPSTORE_end does not need to be called. However,
POPSTORE_end can be called even when a call to POPSTORE_init has failed.

If PMDF has not already been initialized via the PMDF API subroutine PMDF_
initialize, then you must specify a value of 1 for init_pmdf. Otherwise, specify a
value of 0.

A brief description of the intended usage can be specified with the usage argument.
This information will be passed to any site-supplied logging procedure as part of
the POPSTORE_LOG_START logging call.

When the popstore API is used by a multi-threaded process, the address of a
procedure to sleep a single thread should be supplied with the sleep_proc
argument. The procedure takes the form

void sleep (centi_seconds)
unsigned long centi_seconds;

where centi_seconds is the number of hundredths of seconds to sleep the thread
for. When a null is passed for the value of sleep_proc, the popstore API will use

12–50

Application Program Interface (API)
POPSTORE_init

a default sleep procedure.4

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADARG Illegal value specified for the USERNAME_STYLE or
USERNAME_CHARSET options; initialization failed.

POPSTORE_LOADERROR Unable to load a site-supplied callable image; initialization
failed.

POPSTORE_PMDFINITERR Unable to initialize PMDF; initialization failed.

POPSTORE_READERROR Unable to read the popstore option file; initialization failed.

4 Presently, the sleep procedure is only used in the event that a file cannot be opened or created for some unknown reason.
In such situations, the popstore will sleep for a brief period of time and attempt to open or create the file a second time.

12–51

Application Program Interface (API)
POPSTORE_manage

POPSTORE_manage

Allow changing of the MANAGE usage flag for accounts.

FORMAT
int POPSTORE_manage (allow)

int allow;

ARGUMENTS allow
When non-zero, the MANAGE usage flag can be changed. Used for input only.

DESCRIPTION By default, the popstore API subroutines do not allow manipulation of the MANAGE
usage flag for popstore accounts. Specifically, the POPSTORE_user_data_set,
POPSTORE_user_update, POPSTORE_command, and POPSTORE_command_d sub-
routines will not, by default, allow alterations to be made to that flag for any
account. In order to enable the setting or clearing of that flag, POPSTORE_manage
must be called with a non-zero value for the allow argument. To subsequently
disable the ability to set or clear the MANAGE flag, call POPSTORE_manage with a
zero value for allow. Note that even after POPSTORE_manage has been called, a
program cannot alter the MANAGE flag, or any other aspect of a popstore account,
unless it has sufficient privileges to read and write profile files.

Note that POPSTORE_manage does not return a POPSTORE_ status code. Instead,
it returns a value indicating the state prior to calling POPSTORE_manage. If a
value of 0 is returned, then previously the MANAGE flag could not be manipulated.
If a value of 1 is returned, then previously the MANAGE flag could be manipulated.
Thus, a subroutine which needs to briefly impose one state or another can make
that imposition and then restore the prior state:

/* Change the current state */
old_state = POPSTORE_manage (new_state);

...

/* Restore the old state */
(void) POPSTORE_manage (old_state);

RETURN VALUES
0 or 1 The previous state prior to calling POPSTORE_manage.

12–52

Application Program Interface (API)
POPSTORE_message_begin

POPSTORE_message_begin

Access a stored message for reading.

FORMAT
int POPSTORE_message_begin (user_context, message_index,

message_context, env_id,
env_id_len msg_id, msg_id_len)

POPSTORE_user_context *user_context;
int message_index;
int *message_context;
char *env_id;
int *env_id_len;
char *msg_id;
int *msg_id_len;

ARGUMENTS user_context
User context created by a previous call to POPSTORE_user_begin_d. Used for
input only.

message_index
Index of the message to access. Used for input only.

message_context
Message context established by this call. Dispose of the context by calling
POPSTORE_message_end. Used for output only.

env_id
Pointer to a string in which to return the value of the message’s envelope
identification field. Used for output only.

env_id_len
On input, the maximum length in bytes of the buffer to receive the message’s
envelope identification field, env_id. On output, the length in bytes of the
returned envelope identification field. Used for input and output.

msg_id
Pointer to a string in which to return the value of the message’s message
identification field. Used for output only.

msg_id_len
On input, the maximum length in bytes of the buffer to receive the message
identification field, msg_id. On output, the length in bytes of the returned message
identification field. Used for input and output.

12–53

Application Program Interface (API)
POPSTORE_message_begin

DESCRIPTION To access a user’s nth message for purposes of reading it, call POPSTORE_
message_begin with message_index set to the value n. (The first message has
index 1, the second index 2, and so on.) The message context returned can then
be used with POPSTORE_message_read to read the message. When done reading
the message, call POPSTORE_message_end to close the message file and end the
context.

Optionally, the values of the message’s envelope and message identification fields
can be returned. To receive the value for the envelope identification, supply with
env_id the address of a buffer to receive the value. On input, env_id_len should
point to an integer whose value is the maximum size in bytes of that buffer.
On output, the value of that integer will be changed to be the length in bytes
of the returned envelope identification field. The same holds for the message
identification field. To be ensured that that entire field values are returned and
not truncated, the buffers should have lengths of at least ALAFA_SIZE bytes plus
an additional byte to store a null terminator.

If you are not interested in obtaining the envelope identification, you can pass a
null value for env_id. Likewise for the message identification. Note that if site-
supplied logging subroutines are in use, the envelope identification for the message
will not be logged when you supply a null value for env_id. Again, likewise for
the message identification.

An example of using POPSTORE_message_begin is given in Example 12–8.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADMSG Underlying message file is corrupted or otherwise unreadable;
message marked for deletion.

POPSTORE_BADMSGID Message index is less than 1 or greater than user_context-
>message_count.

POPSTORE_DELETED Message has been marked for deletion.

POPSTORE_FILOPNERR Unable to open the underlying message file.

POPSTORE_NULLCONTEXT user_context context is null.

POPSTORE_NULLMSGLIST user_context->messages is null.

POPSTORE_NULLPROFILE user_context->profile context is null.

POPSTORE_TOOLONG File specification for the underlying message file is too long.

12–54

Application Program Interface (API)
POPSTORE_message_end

POPSTORE_message_end

Deaccess a stored message.

FORMAT
int POPSTORE_message_end (message_context);

int message_context;

ARGUMENTS message_context
Message context returned by a previous call to POPSTORE_message_begin. Used
for input only.

DESCRIPTION When finished reading a message, call POPSTORE_message_end to close the
underlying message file and finish the message context. Note that it is not
necessary to call any of the POPSTORE_message_mark_ subroutines before
POPSTORE_message_end as they can be called at any time.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_FILCLSERR Error occurred while closing the underlying message file.

12–55

Application Program Interface (API)
POPSTORE_message_mark_delete

POPSTORE_message_mark_delete

Mark a user’s message copy for deletion.

FORMAT
int POPSTORE_message_mark_delete (user_context,

message_index)
POPSTORE_user_context *user_context;
int message_index;

ARGUMENTS user_context
User context created by a prior call to POPSTORE_user_begin_d. Used for input
only.

message_index
Index of the message to mark for deletion. Used for input only.

DESCRIPTION To mark a user’s stored message for deletion, use POPSTORE_message_mark_delete.
The index of the message to mark for deletion is specified with message_index.
The first message has index 1, the second index 2, and so on.

Note that the message is not immediately deleted. It is retained until the
user context is shut down with POPSTORE_user_end.5 Note further that the
underlying message file will only be deleted when all popstore recipients of the
message have deleted the message.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADMSGID Message index is less than 1 or greater than user_context-
>message_count.

POPSTORE_NULLCONTEXT user_context context is null.

POPSTORE_NULLMSGLIST user_context->messages is null.

POPSTORE_NULLPROFILE user_context->profile context is null.

5 Such deferrals are necessary in order to implement the POP RSET command.

12–56

Application Program Interface (API)
POPSTORE_message_mark_nodelete

POPSTORE_message_mark_nodelete

Mark a user’s message to be retained.

FORMAT
int POPSTORE_message_mark_nodelete (user_context,

message_index)
POPSTORE_user_context *user_context;
int message_index;

ARGUMENTS user_context
User context created by a prior call to POPSTORE_user_begin_d. Used for input
only.

message_index
Index of the message to mark to keep and not delete. Used for input only.

DESCRIPTION To mark a user’s stored message to be retained and not deleted, call POP-
STORE_message_mark_nodelete. The index of the message to retain is specified
with message_index. The first message has index 1, the second index 2, and so
on.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADMSGID Message index is less than 1 or greater than
user_context->message_count.

POPSTORE_NULLCONTEXT user_context context is null.

POPSTORE_NULLMSGLIST user_context->messages is null.

POPSTORE_NULLPROFILE user_context->profile context is null.

12–57

Application Program Interface (API)
POPSTORE_message_mark_noread

POPSTORE_message_mark_noread

Mark a user’s message as being unread.

FORMAT
int POPSTORE_message_mark_noread (user_context,

message_index)
POPSTORE_user_context *user_context;
int message_index;

ARGUMENTS user_context
User context created by a prior call to POPSTORE_user_begin_d. Used for input
only.

message_index
Index of the message to mark as unread. Used for input only.

DESCRIPTION Use POPSTORE_message_mark_noread to mark a user’s stored message as
unread. The index of the message to mark is specified with message_index.
The first message has index 1, the second index 2, and so on.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADMSGID Message index is less than 1 or greater than
user_context->message_count.

POPSTORE_NULLCONTEXT user_context context is null.

POPSTORE_NULLMSGLIST user_context->messages is null.

POPSTORE_NULLPROFILE user_context->profile context is null.

12–58

Application Program Interface (API)
POPSTORE_message_mark_read

POPSTORE_message_mark_read

Mark a user’s message as read.

FORMAT
int POPSTORE_message_mark_read (user_context, message_index)

POPSTORE_user_context *user_context;
int message_index;

ARGUMENTS user_context
User context created by a prior call to POPSTORE_user_begin_d. Used for input
only.

message_index
Index of the message to mark as read. Used for input only.

DESCRIPTION Use POPSTORE_message_mark_read to mark a user’s stored message as being
read. The index of the message to mark is specified with message_index. The
first message has index 1, the second index 2, and so on.

An example of using POPSTORE_message_mark_read is given in Example 12–8.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADMSGID Message index is less than 1 or greater than
user_context->message_count.

POPSTORE_NULLCONTEXT user_context context is null.

POPSTORE_NULLMSGLIST user_context->messages is null.

POPSTORE_NULLPROFILE user_context->profile context is null.

12–59

Application Program Interface (API)
POPSTORE_message_read

POPSTORE_message_read

Sequentially read a message from disk.

FORMAT
int POPSTORE_message_read (message_context, buffer,

buffer_len, bytes_read)
int message_context;
char *buffer;
int buffer_len;
int *bytes_read;

ARGUMENTS message_context
Message context returned by a previous call to POPSTORE_message_begin. Used
for input only.

buffer
Pointer to a buffer into which to read message data. Used for output only.

buffer_len
Maximum length in bytes of the buffer. Used for input only.

bytes_read
On output, the number of bytes read and stored in the buffer. Used for output
only.

DESCRIPTION A message accessed with a call to POPSTORE_message_begin can be sequentially
read with POPSTORE_message_read. POPSTORE_message_read will read up to
buflen-1 bytes of data, storing them in the buffer pointed at by buffer and
terminating the data with a null. POPSTORE_message_read should be repeatedly
called until either POPSTORE_EOM or an error is returned. Note that when
POPSTORE_EOM is returned, data can also have been returned as indicated by a
non-zero value for bytes_read.

Note that the data returned by POPSTORE_message_read will have embedded
CRLF pairs marking the end of message records. Moreover, the data will be ‘‘dot
stuffed’’ as per the POP protocol.

An example of using POPSTORE_message_read is given in Example 12–8.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_EOM End of message reached; normal, successful completion.

POPSTORE_READERROR Error reading message file.

12–60

Application Program Interface (API)
POPSTORE_message_return

POPSTORE_message_return

Return a message to its originator.

FORMAT
int POPSTORE_message_return (user_context, message_index,

reason, reason_len)
POPSTORE_user_context *user_context;
int message_index;
char *reason;
int reason_len;

ARGUMENTS user_context
User context returned by a previous call to POPSTORE_user_begin_d. Used for
input only.

message_index
Index of the message to return. Used for input only.

reason
Pointer to a string containing a brief explanation explaining why the message is
being returned. Used for input only.

reason_len
Length in bytes of the string pointed at by reason. Used for input only.

DESCRIPTION Call POPSTORE_message_return to return a user’s message to its originator. The
reason the message is being returned can be indicated with the reason argument.
If a null value is specified for reason or a zero length for reason_len, then the
reason ‘‘Unable to deliver: recipient has not downloaded this message after X days’’
will be given.

The index of the message to return is specified with message_index where the
first message has index value 1, the second index value 2, and so on.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADMSG Underlying message file is corrupted or otherwise unreadable.

POPSTORE_BADMSGID Message index is less than 1 or greater than
user_context->message_count.

POPSTORE_DELETED Message has been marked for deletion.

POPSTORE_FILOPNERR Unable to open the underlying message file.

POPSTORE_INSUFPRIV The process lacks SYSLCK privilege (OpenVMS only).

POPSTORE_LCKOPNERR Unable to obtain lock information for the profile file.

12–61

Application Program Interface (API)
POPSTORE_message_return

POPSTORE_LOCKERROR Unable to obtain a lock for the profile file.

POPSTORE_NULLCONTEXT user_context context is null.

POPSTORE_NULLMSGLIST user_context->messages is null.

POPSTORE_NULLPROFILE user_context->profile context is null.

POPSTORE_TOOLONG File specification for the underlying message file is too long.

12–62

Application Program Interface (API)
POPSTORE_user_begin

POPSTORE_user_begin

Obsolete subroutine: use the more general POPSTORE_user_begin_d subroutine.

FORMAT
int POPSTORE_user_begin (user_context, user, user_len,

do_accounting, usage, usage_len)
POPSTORE_user_context **user_context;
char *user;
int user_len;
int do_accounting;
char *usage;
int usage_len;

ARGUMENTS user_context
User context returned by a successful call to this subroutine. Used for output only.

user
Name of the popstore user to obtain a user context for. Used for input only.

user_len
Length in bytes of the username string, user. Used for input only.

do_accounting
Boolean flag indicating whether or not to update accounting information for this
user when the user context is disposed of. Used for input only.

usage
A short description identifying the usage being made by the caller. This description
is passed to site-supplied logging subroutines for logging purposes. Used for input
only.

usage_len
Length in bytes of the usage description, usage. Used for input only.

DESCRIPTION While this subroutine is still supported, it is now obsolete. Use the more general
POPSTORE_user_begin_d subroutine.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_FILOPNERR Unable to open the profile file for reading.

POPSTORE_INSUFPRIV Insufficient privileges to access the profile file, or, on
OpenVMS, the process lacks SYSLCK privilege.

POPSTORE_LCKOPNERR Unable to obtain lock information for the profile file.

POPSTORE_LOCKERROR Unable to obtain a lock for the profile file.

12–63

Application Program Interface (API)
POPSTORE_user_begin

POPSTORE_NOSUCHUSR No such user account.

POPSTORE_READERROR An error while attempting to read data from the profile file.

POPSTORE_TOOLONG The resulting profile file name is too long.

POPSTORE_VMERROR Insufficient virtual memory.

12–64

Application Program Interface (API)
POPSTORE_user_begin_d

POPSTORE_user_begin_d

Access a user account.

FORMAT
int POPSTORE_user_begin_d (user_context, domain, domain_len,

user, user_len, do_accounting,
usage, usage_len)

POPSTORE_user_context **user_context;
char *domain;
int domain_len;
char *user;
int user_len;
int do_accounting;
char *usage;
int usage_len;

ARGUMENTS domain
Name of the user domain to use. Supply a value of NULL to indicate the default
domain. Used for input only.

domain_len
Length in bytes of the user domain name, domain. Supply a value of zero to
indicate the default domain. Used for input only.

user_context
User context returned by a successful call to this subroutine. Used for output only.

user
Name of the popstore user to obtain a user context for. Used for input only.

user_len
Length in bytes of the username string, user. Used for input only.

do_accounting
Boolean flag indicating whether or not to update accounting information for this
user when the user context is disposed of. Used for input only.

usage
A short description identifying the usage being made by the caller. This description
is passed to site-supplied logging subroutines for logging purposes. Used for input
only.

usage_len
Length in bytes of the usage description, usage. Used for input only.

12–65

Application Program Interface (API)
POPSTORE_user_begin_d

DESCRIPTION User accounts are accessed with the POPSTORE_user_begin_d subroutine. On
input, provide the username associated with the account you are interested in and
an optional usage string describing the purpose for the access. On output, a pointer
to a POPSTORE_user_context structure is returned. That structure will contain
the profile information for the account as well as the list of stored messages for
the account. See Section 12.11.3 for a description of that structure. When you are
finished using the context, dispose of it with a call to POPSTORE_user_end. This
call is important as it is during the call that accounting information is recorded and
any manipulations of messages actually carried out (e.g., stored messages deleted).

Fields in the returned POPSTORE_user_context must not be changed. Fields
which you want to be changed should be changed by calling the appropriate
API subroutines. For instance, POPSTORE_user_update to change profile fields,
the POPSTORE_message_mark_ subroutines to change the disposition of a stored
message, etc.

When accessing an account, you must indicate whether or not accounting in-
formation should be recorded for the access. This indication is expressed with
the do_accounting argument. Specify for that argument a value of POP-
STORE_ACCOUNTING if accounting information should be recorded; otherwise, spec-
ify a value of POPSTORE_NOACCOUNTING. Accounting should only be recorded when
the access is being done on the behalf of the actual user (i.e., is a billable event).
For example, a POP server when accessing the account for a remote user would
request accounting. A program doing account management would not. Accounting
operations entail recording the time of attempted access and deaccess and updating
the total connect time.

The optional usage description, specified with the usage and usage_len argu-
ments, are passed to any site-supplied logging subroutines. The popstore does not
itself make any use of those strings.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_FILOPNERR Unable to open the profile file for reading.

POPSTORE_INSUFPRIV Insufficient privileges to access the profile file, or, on
OpenVMS, the process lacks SYSLCK privilege.

POPSTORE_LCKOPNERR Unable to obtain lock information for the profile file.

POPSTORE_LOCKERROR Unable to obtain a lock for the profile file.

POPSTORE_NOSUCHUSR No such user account.

POPSTORE_READERROR An error while attempting to read data from the profile file.

POPSTORE_TOOLONG The resulting profile file name is too long.

POPSTORE_VMERROR Insufficient virtual memory.

12–66

Application Program Interface (API)
POPSTORE_user_billing

POPSTORE_user_billing

Obsolete subroutine: use the more general POPSTORE_user_billing_d subroutine.

FORMAT
int POPSTORE_user_billing (user, user_len, last_billing,

user_data)
char *user;
int user_len;
time_t last_billing;
POPSTORE_user_data *user_data;

ARGUMENTS user
Name of the user to perform billing operations for. Used for input only.

user_len
Length in bytes of the username string, user. Used for input only.

last_billing
End time to use for this billing cycle. Used for input only.

user_data
User profile information containing the generated billing information. Used for
output only.

DESCRIPTION While still supported, this subroutine is now obsolete. Instead use the more
general POPSTORE_user_billing_d subroutine.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_FILOPNERR Unable to open the profile file for reading.

POPSTORE_INSUFPRIV Insufficient privileges to access the profile file, or, on
OpenVMS, the process lacks SYSLCK privilege.

POPSTORE_LCKOPNERR Unable to obtain lock information for the profile file.

POPSTORE_LOCKERROR Unable to obtain a lock for the profile file.

POPSTORE_NOSUCHUSR No such user account.

POPSTORE_READERROR An error while attempting to read data from the profile file.

POPSTORE_TOOLONG The resulting profile file name is too long.

POPSTORE_VMERROR Insufficient virtual memory.

12–67

Application Program Interface (API)
POPSTORE_user_billing_d

POPSTORE_user_billing_d

Perform billing operations on an account.

FORMAT
int POPSTORE_user_billing_d (domain, domain_len, user,

user_len, last_billing,
user_data)

char *domain;
int domain_len;
char *user;
int user_len;
time_t last_billing;
POPSTORE_user_data *user_data;

ARGUMENTS domain
Name of the user domain to use. Supply a value of NULL to indicate the default
domain. Used for input only.

domain_len
Length in bytes of the user domain name, domain. Supply a value of zero to
indicate the default domain. Used for input only.

user
Name of the user to perform billing operations for. Used for input only.

user_len
Length in bytes of the username string, user. Used for input only.

last_billing
End time to use for this billing cycle. Used for input only.

user_data
User profile information containing the generated billing information. Used for
output only.

DESCRIPTION Programs wanting to perform billing operations should use the
POPSTORE_user_billing_d subroutine in conjunction with the
POPSTORE_user_list_d subroutine. That latter subroutine provides a conve-
nient way to obtain the name of each popstore account and, with the name in
hand, invoke POPSTORE_user_billing_d to perform billing operations for that
account.

The POPSTORE_user_billing_d subroutine performs ‘‘atomic’’ billing operations.
Specifically, POPSTORE_user_billing_d does the following:

1. Locks the user profile file.

2. Reads the profile file into memory and copies it to the structure pointed at
with the user_data argument.

12–68

Application Program Interface (API)
POPSTORE_user_billing_d

3. Computes the accumulated block days used for the currently stored message
and copies this information to user_data->past_block_days.

4. Clears the total connect and past block days profile fields, and sets the last
billing profile and message list fields to the value of the last_billing
argument.

5. Writes the updated user profile to disk.

6. Unlocks the profile file.

7. Returns the profile data including the total connect time and computed block
days in the structure pointed at by the user_data argument.

In the returned profile data,

• The value of the last billing field, user_data->last_billing, will be the
time of the prior billing, not this current billing.

• The value of the total connect time field, user_data->total_connect,
will be the total connect time accumulated between the times user_data-
>last_billing and last_billing.

• The value of the past block days, user_data->past_block_days, will
be that accumulated between the times user_data->last_billing and
last_billing. This includes the storage used for any messages deleted
or returned during that time as well as the storage used for any messages
presently being stored.

Note that the roundoff associated with computing the past block days is kept in
the user profile file. The returned profile data has the roundoff field set to zero.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_FILOPNERR Unable to open the profile file for reading.

POPSTORE_INSUFPRIV Insufficient privileges to access the profile file, or, on
OpenVMS, the process lacks SYSLCK privilege.

POPSTORE_LCKOPNERR Unable to obtain lock information for the profile file.

POPSTORE_LOCKERROR Unable to obtain a lock for the profile file.

POPSTORE_NOSUCHUSR No such user account.

POPSTORE_READERROR An error while attempting to read data from the profile file.

POPSTORE_TOOLONG The resulting profile file name is too long.

POPSTORE_VMERROR Insufficient virtual memory.

12–69

Application Program Interface (API)
POPSTORE_user_copy

POPSTORE_user_copy

Obsolete subroutine: use the more general POPSTORE_user_copy_d subroutine.

FORMAT
int POPSTORE_user_copy (old_user, old_user_len, new_user,

new_user_len, new_password,
new_password_len, do_rename)

char *old_user;
int old_user_len;
char *new_user;
int new_user_len;
char *new_password;
int new_password_len;
int do_rename;

ARGUMENTS old_user
Name of the popstore user to copy or rename. Used for input only.

old_user_len
Length in bytes of the string, old_user. Used for input only.

new_user
Name of the new popstore user to copy or rename the old_user account to. Used
for input only.

new_user_len
Length in bytes of the string, new_user. Used for input only.

new_password
Optional argument specifying a new, plain text password to use for the new or
renamed user profile. Used for input only.

new_password_len
Length in bytes of the new, plain text password string, new_password. Used for
input only.

do_rename
Boolean flag indicating whether to do a rename or a copy operation. Used for input
only.

DESCRIPTION While this subroutine is still supported, it is now obsolete. Use the more general
POPSTORE_user_copy_d subroutine.

12–70

Application Program Interface (API)
POPSTORE_user_copy

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADLENGTH The value of new_user_len is less than 1.

POPSTORE_FILOPNERR Unable to open the old profile file for reading or create the
new profile file for writing.

POPSTORE_INSUFPRIV The calling process lacks SYSLCK privilege (OpenVMS only).

POPSTORE_LCKOPNERR Unable to obtain lock information for one of the profile files.

POPSTORE_LOCKERROR Unable to obtain a lock for one of the profile files.

POPSTORE_NOTINIT The API has not yet been initialized.

POPSTORE_READERROR An error while attempting to read data from the old profile file.

POPSTORE_SEEKERROR an error occurred while attempting to seek to a position in
one of the profile files.

POPSTORE_TOOLONG The length of the new_user string exceeds POPSTORE_
MAX_USER_LEN bytes or is otherwise too long; the
length of the new_password string exceeds a length of
POPSTORE_MAX_PWD_LEN bytes; or a resulting profile file
name is too long.

POPSTORE_USEREXISTS An account with the name new_user already exists.

POPSTORE_VMERROR Insufficient virtual memory to perform requested operation.

POPSTORE_WRITERROR An error occurred while writing data to the new profile file.

12–71

Application Program Interface (API)
POPSTORE_user_copy_d

POPSTORE_user_copy_d

Copy or rename an existing user account.

FORMAT
int POPSTORE_user_copy_d (old_domain, old_domain_len,

old_user, old_user_len,
new_domain, new_domain_len,
new_user, new_user_len,
new_password, new_password_len,
do_rename)

char *old_domain;
int old_domain_len;
char *old_user;
int old_user_len;
char *new_domain;
int new_domain_len;
char *new_user;
int new_user_len;
char *new_password;
int new_password_len;
int do_rename;

ARGUMENTS old_domain
Name of the user domain for the old user account. To use the default domain,
supply a value of NULL. Used for input only.

old_domain_len
Length in bytes of the user domain name, old_domain. To use the default
domain, supply a value of zero. Used for input only.

old_user
Name of the popstore user to copy or rename. Used for input only.

old_user_len
Length in bytes of the string, old_user. Used for input only.

new_domain
Name of the user domain for the new user account. To use the default domain,
supply a value of NULL. Used for input only.

new_domain_len
Length in bytes of the user domain name, new_domain. To use the default
domain, supply a value of zero. Used for input only.

new_user
Name of the new popstore user to copy or rename the old_user account to. Used
for input only.

new_user_len
Length in bytes of the string, new_user. Used for input only.

12–72

Application Program Interface (API)
POPSTORE_user_copy_d

new_password
Optional argument specifying a new, plain text password to use for the new or
renamed user profile. Used for input only.

new_password_len
Length in bytes of the new, plain text password string, new_password. Used for
input only.

do_rename
Boolean flag indicating whether to do a rename or a copy operation. Used for input
only.

DESCRIPTION To duplicate an account or change the username associated with an existing
account, use the POPSTORE_user_copy_d subroutine. A copy operation is
performed when do_rename has a value of zero; otherwise, a change of username
(i.e., rename) operation is performed.

When an account is copied, do_rename=0, the message list and accounting
information is not copied to the new account. The name of the account to copy
is specified with old_user and the name of the new account to copy to is given
by new_user. If an account already exists with the name new_user, an error is
returned and no copy is made.

When an account is renamed, do_rename=1, the entire user account is copied over
to the new account and then the old account is deleted. The stored message list
and accounting information from the old account is copied over to the new account.

An account copy operation is typically used to create new accounts: so as to effect
default settings in the new account, the default account is copied to create the
new account. Non-default settings (e.g., the owner field) are then made with
POPSTORE_user_update. Account rename operations a usually done for one
reason only: to change the username associated with an account. As an example
of performing a copy operation, see Example 12–2.

Optionally, the password for the new or renamed account can be set. To set a new
password, supply the new plain text password and length for the new_password
and new_password_len arguments. If you do not want to set or change the
password, supply a null value for new_password.

When an error occurs, the new account is not created or the old account renamed
or deleted.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADLENGTH The value of new_user_len is less than 1.

POPSTORE_FILOPNERR Unable to open the old profile file for reading or create the
new profile file for writing.

POPSTORE_INSUFPRIV The calling process lacks SYSLCK privilege (OpenVMS only).

12–73

Application Program Interface (API)
POPSTORE_user_copy_d

POPSTORE_LCKOPNERR Unable to obtain lock information for one of the profile files.

POPSTORE_LOCKERROR Unable to obtain a lock for one of the profile files.

POPSTORE_NOTINIT The API has not yet been initialized.

POPSTORE_READERROR An error while attempting to read data from the old profile file.

POPSTORE_SEEKERROR an error occurred while attempting to seek to a position in
one of the profile files.

POPSTORE_TOOLONG The length of the new_user string exceeds POPSTORE_
MAX_USER_LEN bytes or is otherwise too long; the
length of the new_password string exceeds a length of
POPSTORE_MAX_PWD_LEN bytes; or a resulting profile file
name is too long.

POPSTORE_USEREXISTS An account with the name new_user already exists.

POPSTORE_VMERROR Insufficient virtual memory to perform requested operation.

POPSTORE_WRITERROR An error occurred while writing data to the new profile file.

12–74

Application Program Interface (API)
POPSTORE_user_create

POPSTORE_user_create

Create a new popstore account.

FORMAT
int POPSTORE_user_create (user_context)

POPSTORE_user_context **user_context;

ARGUMENTS user_context
Address of a pointer to a POPSTORE_user_context structure created by a prior
call to POPSTORE_user_create_set. Used for input and output.

DESCRIPTION Once a POPSTORE_user_context structure has been initialized with calls to POP-
STORE_user_create_set, a user account is then created with
POPSTORE_user_create. POPSTORE_user_create will create a new profile
file and user database entry containing the information contained in the POP-
STORE_user_context structure. Once the account is created, it can then begin
receiving mail and be accessed by POP clients.

When the account is created, the last billing field for the account is set to the
creation time for the profile file.

An example of using POPSTORE_user_create and POPSTORE_user_create_set
is given in Example 12–1.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_DBBADLENGTH New user record would not fit in the user database. New
account not created. In practice, this error should never
occur.

POPSTORE_DBERR An unknown error occurred while attempting to add the new
user record to the user database. New account not created.
In practice, this error should never occur.

POPSTORE_DBOPNERR Unable to open the user database. New account not created.

POPSTORE_DBPUTERR Unable to add the new user record to the user database.
New account not created.

POPSTORE_DIRCRTERR Unable to create a directory in the required directory path.
New account not created.

POPSTORE_FILCLSERR An error occurred while closing the new profile file. New
account was created.

POPSTORE_FILOPNERR Unable to create the new profile file for writing. New account
not created.

POPSTORE_ILLUSRNAM Username field has zero length. New account not created.

12–75

Application Program Interface (API)
POPSTORE_user_create

POPSTORE_INSUFPRIV The process lacks SYSLCK privilege (OpenVMS only). New
account not created.

POPSTORE_LCKOPNERR Unable to obtain lock information for the profile file. New
account not created.

POPSTORE_LOCKERROR Unable to obtain a lock for the profile file. New account not
created.

POPSTORE_NOPRIVILEGE MANAGE flag was set but xxx.

POPSTORE_NOSUCHUSER Username contains illegal characters or is too long. New
account not created.

POPSTORE_NULLCONTEXT user_context argument was NULL. New account not
created.

POPSTORE_TOOLONG Resulting file name for the profile file is too long. This error
usually should not occur. New account not created.

POPSTORE_USEREXISTS Username conflicts with an already existing account. New
account not created.

POPSTORE_WRITERROR An error occured while attempting to write the new profile file.
New profile file deleted; new account not created.

12–76

Application Program Interface (API)
POPSTORE_user_create_dispose

POPSTORE_user_create_dispose

Dispose of a context created by POPSTORE_user_create_set.

FORMAT
int POPSTORE_user_create_dispose (user_context)

POPSTORE_user_context **user_context;

ARGUMENTS user_context
Address of a pointer to a POPSTORE_user_context structure created by a prior
call to POPSTORE_user_create_set. Used for input and output.

DESCRIPTION Should you want to cancel creating a user account, then call
POPSTORE_user_create_dispose to dispose of the context created by prior calls
to POPSTORE_user_create_set.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

12–77

Application Program Interface (API)
POPSTORE_user_create_set

POPSTORE_user_create_set

Set the value of a field in a POPSTORE_user_context structure.

FORMAT
int POPSTORE_user_create_set (user_context, operation, ...)

POPSTORE_user_context **user_context;
int operation;

ARGUMENTS user_context
Address of a pointer to a POPSTORE_user_context structure in which to set the
specified items. Used for input and output.

operation
Operation to perform indicating which field in the data structure to set. Used for
input only.

DESCRIPTION POPSTORE_user_create_set is used to set fields in a POPSTORE_user_context
structure which will then subsequently be used with POPSTORE_user_create
to create a new popstore account. POPSTORE_user_create_set cannot be
used to change values for an existing account; use POPSTORE_user_update
for such purposes. An example of using POPSTORE_user_create and POP-
STORE_user_create_set is given in Example 12–1.

POPSTORE_user_create_set is used by calling it repeatedly to set the val-
ues of different fields in a POPSTORE_user_context structure which is the
core structure representing a user account. When setting fields for a new ac-
count, set the user_context variable to NULL prior to the first call to POP-
STORE_user_create_set; e.g.,

POPSTORE_user_context *user_context;

user_context = NULL;
istat = POPSTORE_user_create_set (&user_context, POPSTORE_SET_USERNAME,

username, strlen (username));
istat = POPSTORE_user_create_set (&user_context, POPSTORE_SET_PASSWORD,

password, strlen (password));

On the first call, a context will be allocated and initialized and its address
returned in user_context. This context is then used with subsequent calls for
this particular account. When POPSTORE_user_create is called, the account is
then created and the context deallocated. To create another new account, again
set the user_context to NULL prior to calling POPSTORE_user_create_set. If
you want to abort creating an account, use POPSTORE_user_create_dispose to
dispose of a context created by POPSTORE_user_create_set.

The operation argument specifies the operation to perform. The accepted
values for operation are listed in Table 12–4. Depending upon the selected
operation, one or two additional arguments can need to be specified when

12–78

Application Program Interface (API)
POPSTORE_user_create_set

calling POPSTORE_user_create_set; refer to Table 12–4 for specific details.
Note that the MANAGE usage flag cannot be set or cleared without first calling
POPSTORE_manage to authorize such activity.

Table 12–4 POPSTORE_user_update Operations

Item codes requiring no additional call arguments

Operation Usage

POPSTORE_SET_FLAGS_DELETE Set the DELETE usage flag.
POPSTORE_SET_FLAGS_DISMAIL Set the DISMAIL usage flag.
POPSTORE_SET_FLAGS_DISUSER Set the DISUSER usage flag.
POPSTORE_SET_FLAGS_LOCKPWD Set the LOCKPWD usage flag.
POPSTORE_SET_FLAGS_MANAGE Set the MANAGE usage flag; requires a prior

call to POPSTORE_manage.
POPSTORE_SET_FLAGS_MIGRATED Set the MIGRATED usage flag.
POPSTORE_SET_FLAGS_PWD_
ELSEWHERE

Set the PWD_ELSEWHERE usage flag.

POPSTORE_SET_FLAGS_NO_DELETE Clear the DELETE usage flag.
POPSTORE_SET_FLAGS_NO_DISMAIL Clear the DISMAIL usage flag.
POPSTORE_SET_FLAGS_NO_DISUSER Clear the DISUSER usage flag.
POPSTORE_SET_FLAGS_NO_LOCKPWD Clear the LOCKPWD usage flag.
POPSTORE_SET_FLAGS_NO_MANAGE Clear the MANAGE usage flag; requires a

prior call to POPSTORE_manage.
POPSTORE_SET_FLAGS_NO_MIGRATED Clear the MIGRATED usage flag.
POPSTORE_SET_FLAGS_NO_PWD_
ELSEWHERE

Clear the PWD_ELSEWHERE usage flag.

POPSTORE_SET_STORE_TYPE_IMAP Set the message store type to be IMAP.
POPSTORE_SET_STORE_TYPE_NATIVE Set the message store type to be NATIVE.
POPSTORE_SET_STORE_TYPE_POP Set the message store type to be POP.

12–79

Application Program Interface (API)
POPSTORE_user_create_set

Table 12–4 (Cont.) POPSTORE_user_update Operations

Item codes requiring one additional call argument of type time_t

Item code Usage

POPSTORE_SET_LAST_BILLING Set the value for the last billing time field. The
value of this field is a C time_t type expressing
the number of seconds since 1 January 1970
and is passed as the third argument. Note
that POPSTORE_user_add will override this
field with the current time.

POPSTORE_SET_LAST_CONNECT Set the value of the last connect time field.
The value of this field is a C time_t type
expressing the number of seconds since 1
January 1970 and is passed as the third
argument. Use a value of zero to indicate no
prior connections have been made.

POPSTORE_SET_LAST_DISCONNECT Set the value of the last disconnect time
field. The value of this field is a C time_t
type expressing the number of seconds since
1 January 1970 and is passed as the third
argument. Use a value of zero to indicate that
no prior connections have been made.

POPSTORE_SET_LAST_PWD_CHANGE Set the value of the last password change
time field. The value of this field is a C time_t
type expressing the number of seconds since
1 January 1970 and is passed as the third
argument. Use a value of zero to indicate that
the account password is pre-expired.

Item codes requiring one additional call argument of type uint32

Item code Usage

POPSTORE_SET_OVERDRAFT Set the overdraft storage quota. The value of
this field is measured in units of bytes.

POPSTORE_SET_PAST_BLOCK_DAYS Set the past block days accounting field. The
value of this field is measured in units of block
days where a block is 1024 bytes.

POPSTORE_SET_QUOTA Set the primary storage quota.
POPSTORE_SET_RECEIVED_BYTES Set the cumulative count of received message

bytes.
POPSTORE_SET_RECEIVED_MESSAGES Set the cumulative count of received

messages.
POPSTORE_SET_TOTAL_CONNECT Set the elapsed total connect time. The value

of this field is measured in units of seconds.
POPSTORE_SET_TOTAL_CONNECTIONS Set the elapsed count of total connections

time.

12–80

Application Program Interface (API)
POPSTORE_user_create_set

Table 12–4 (Cont.) POPSTORE_user_update Operations

Item codes requiring two additional call arguments of types int, char *

Item code Usage

POPSTORE_SET_GROUP_NAME Set the value of the group field. The third
argument to POPSTORE_user_data_set
should be the length in bytes of the string
value and the fourth argument a pointer to the
string value. The length of the string value can
not exceed POPSTORE_MAX_GROUP_LEN
bytes.

POPSTORE_SET_OWNER Set the value of the owner field. The third
argument to POPSTORE_user_data_set
should be the length in bytes of the string
value and the fourth argument a pointer to the
string value. The length of the string value
can not exceed POPSTORE_MAX_OWN_LEN
bytes.

POPSTORE_SET_PASSWORD Set the value of the password field. The
third argument to POPSTORE_user_data_set
should be the length in bytes of the string
value and the fourth argument a pointer to
the string value. The password should be
supplied in plain text form; it will automatically
be encrypted. The length of the string value
can not exceed POPSTORE_MAX_PWD_LEN
bytes.

POPSTORE_SET_PRIVATE Set the value of the site-defined private data
field. The third argument to POPSTORE_
user_data_set should be the length in bytes
of the string value and the fourth argument
a pointer to the string value. The length of
the string value can not exceed POPSTORE_
MAX_PRIV_LEN bytes.

POPSTORE_SET_USERNAME Set the value of the username field. The
third argument to POPSTORE_user_data_set
should be the length in bytes of the string
value and the fourth argument a pointer to the
string value. The length of the string value can
not exceed POPSTORE_MAX_USER_LEN
bytes.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADARG Unrecognized value specified for operation.

POPSTORE_BADLENGTH Negative value specified for a length argument.

POPSTORE_NOPRIVILEGE An attempt was made to set or clear the MANAGE flag
without prior authorization via a POPSTORE_manage call.

12–81

Application Program Interface (API)
POPSTORE_user_create_set

POPSTORE_TOOLONG String value exceeds maximum allowed length.

POPSTORE_VMERROR Insufficient virtual memory. Operation failed; no context
created.

12–82

Application Program Interface (API)
POPSTORE_user_delete

POPSTORE_user_delete

Obsolete subroutine: use the more general POPSTORE_user_delete_d subroutine.

FORMAT
int POPSTORE_user_delete (user, user_len, do_return)

char *user;
int user_len;
int do_return;

ARGUMENTS user
Username for the popstore account to delete. Used for input only.

user_len
Length in bytes of the username string, user. Used for input only.

do_return
Boolean flag indicating whether or not unread mail should be silently deleted or
returned as unread. Used for input only.

DESCRIPTION While this subroutine is still supported, it is now obsolete. Use the more general
POPSTORE_user_delete_d subroutine.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_FILDELERR Unable to delete the underlying profile file.

POPSTORE_FILOPNERR Unable to open the profile file for reading.

POPSTORE_INSUFPRIV Insufficient privileges to access the profile file, or, on
OpenVMS, the process lacks SYSLCK privilege.

POPSTORE_LCKOPNERR Unable to obtain lock information for the profile file.

POPSTORE_LOCKERROR Unable to obtain a lock for the profile file.

POPSTORE_NOSUCHUSR No such user account.

POPSTORE_READERROR An error while attempting to read data from the profile file.

POPSTORE_TOOLONG The resulting profile file name is too long.

POPSTORE_VMERROR Insufficient virtual memory.

12–83

Application Program Interface (API)
POPSTORE_user_delete_d

POPSTORE_user_delete_d

Delete a user account.

FORMAT
int POPSTORE_user_delete_d (domain, domain_len, user,

user_len, do_return)
char *domain;
int domain_len;
char *user;
int user_len;
int do_return;

ARGUMENTS domain
Name of the user domain to use. Supply a value of NULL to indicate the default
domain. Used for input only.

domain_len
Length in bytes of the user domain name, domain. Supply a value of zero to
indicate the default domain. Used for input only.

user
Username for the popstore account to delete. Used for input only.

user_len
Length in bytes of the username string, user. Used for input only.

do_return
Boolean flag indicating whether or not unread mail should be silently deleted or
returned as unread. Used for input only.

DESCRIPTION The POPSTORE_user_delete_d subroutine is used to delete a user’s account and,
optionally, to return any unread messages stored for that user. The user argument
specifies the name of the account to delete. When do_return has a non-zero
value, any unread messages stored for the user are returned as unread to their
originators.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_FILDELERR Unable to delete the underlying profile file.

POPSTORE_FILOPNERR Unable to open the profile file for reading.

POPSTORE_INSUFPRIV Insufficient privileges to access the profile file, or, on
OpenVMS, the process lacks SYSLCK privilege.

POPSTORE_LCKOPNERR Unable to obtain lock information for the profile file.

12–84

Application Program Interface (API)
POPSTORE_user_delete_d

POPSTORE_LOCKERROR Unable to obtain a lock for the profile file.

POPSTORE_NOSUCHUSR No such user account.

POPSTORE_READERROR An error while attempting to read data from the profile file.

POPSTORE_TOOLONG The resulting profile file name is too long.

POPSTORE_VMERROR Insufficient virtual memory.

12–85

Application Program Interface (API)
POPSTORE_user_end

POPSTORE_user_end

Deaccess a user account.

FORMAT
int POPSTORE_user_end (user_context)

POPSTORE_user_context *user_context;

ARGUMENTS user_context
User context to dispose of. Used for input only.

DESCRIPTION When finished with a user context, it must be disposed of by calling POPSTORE_
user_end. Not only does this call dispose of allocated resources, it also deletes any
messages marked for deletion, and updates accounting information in the user’s
profile if requested by the do_accounting argument of
POPSTORE_user_begin_d.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_FILOPNERR An error occurred while trying to re-open the user’s profile file
for updating.

POPSTORE_INSUFPRIV The calling process lacks SYSLCK privilege (OpenVMS only).

POPSTORE_LCKOPNERR Unable to obtain lock information for the user’s profile file.

POPSTORE_LOCKERROR Unable to obtain a lock for the user’s profile file.

POPSTORE_READERROR An error occurred while attempting to read data from the
user’s profile file.

POPSTORE_SEEKERROR An error occurred while attempting to seek to a position in the
user’s profile files.

POPSTORE_VMERROR Insufficient virtual memory to perform requested operation.

POPSTORE_WRITERROR An error occurred while writing data to the user’s profile file.

12–86

Application Program Interface (API)
POPSTORE_user_exists

POPSTORE_user_exists

Obsolete subroutine: use the more general POPSTORE_user_exists_d subroutine.

FORMAT
int POPSTORE_user_exists (user, user_len)

char *user;
int user_len;

ARGUMENTS user
Name of the user to check for the existence of. Used for input only.

user_len
Length in bytes of the username string, user. Used for input only.

DESCRIPTION While this subroutine is still supported, it is now obsolete. Use the more general
POPSTORE_user_exists_d subroutine.

RETURN VALUES
POPSTORE_USEREXISTS Username corresponds to an existing popstore account.

POPSTORE_NOSUCHUSER No matching account or the process lacks privileges to
access the profile directories.

12–87

Application Program Interface (API)
POPSTORE_user_exists_d

POPSTORE_user_exists_d

See if a username specifies a valid account.

FORMAT
int POPSTORE_user_exists_d (domain, domain_len, user,

user_len)
char *domain;
int domain_len;
char *user;
int user_len;

ARGUMENTS domain
Name of the user domain to use. Supply a value of NULL to indicate the default
domain. Used for input only.

domain_len
Length in bytes of the user domain name, domain. Supply a value of zero to
indicate the default domain. Used for input only.

user
Name of the user to check for the existence of. Used for input only.

user_len
Length in bytes of the username string, user. Used for input only.

DESCRIPTION To see if a username corresponds to an existing popstore account, call POPSTORE_
user_exists with the username in question specified with the user argument. If
the name corresponds to an existing account, the value POPSTORE_USEREXISTS
is returned. Otherwise, POPSTORE_NOSUCHUSER is returned. Note that if the
process lacks privileges to access the popstore profile directories, POPSTORE_
NOSUCHUSER will be returned.

RETURN VALUES
POPSTORE_USEREXISTS Username corresponds to an existing popstore account.

POPSTORE_NOSUCHUSER No matching account or the process lacks privileges to
access the profile directories.

12–88

Application Program Interface (API)
POPSTORE_user_list

POPSTORE_user_list

Obsolete subroutine: use the more general POPSTORE_user_list_d subroutine.

FORMAT
int POPSTORE_user_list (list_context, pattern, pattern_len,

user, user_len, max_user_len)
POPSTORE_list_context **list_context;
char *pattern;
int pattern_len;
char *user;
int *user_len;
int max_user_len;

ARGUMENTS user_context
List context maintained by POPSTORE_user_list. Used for input and output.

pattern
Optional username pattern. Used for input only.

pattern_len
Length in bytes of the optional username pattern, pattern. Used for input only.

user
Buffer to receive the returned username. Length of this buffer should be at least
POPSTORE_MAX_USER_LEN+1 bytes long. Used for output only.

user_len
Length in bytes of the username returned in user. Used for output only.

max_user_len
Maximum length in bytes of the buffer, user. Used for input only.

DESCRIPTION Although still supported, POPSTORE_user_list is obsolete. Instead use the more
general POPSTORE_user_list_d subroutine.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADARG Bad value supplied for the list_context, user,
user_len, or max_user_len argument.

POPSTORE_DBBADLENGTH Retrieved a record from the database which has an
unexpected length. In practice, this error should never
occur.

POPSTORE_DBERR An unknown error occurred while attempting to read from the
user database. In practice, this error should never occur.

12–89

Application Program Interface (API)
POPSTORE_user_list

POPSTORE_DBOPNERR Unable to open the user database.

POPSTORE_DBMISSING User database does not exist; create it with the X-BUILD-
USER-DB command of the command-line popstore
management utility.

POPSTORE_EOM No more usernames to return

POPSTORE_FILOPNERR Unable to open the profile path file. See Section 14.2 for
details.

POPSTORE_INSUFPRIV Process has insufficient privileges to access the user
database.

POPSTORE_VMERROR Insufficient virtual memory.

12–90

Application Program Interface (API)
POPSTORE_user_list_d

POPSTORE_user_list_d

Return one-by-one the usernames associated with each account.

FORMAT
int POPSTORE_user_list_d (list_context, pattern, pattern_len,

domain, domain_len, group,
group_len, user, user_len,
max_user_len)

POPSTORE_list_context **list_context;
char *pattern;
int pattern_len;
char *domain;
int domain_len;
char group;
int group_len;
char *user;
int *user_len;
int max_user_len;

ARGUMENTS user_context
List context maintained by POPSTORE_user_list_d. Used for input and output.

pattern
Optional username pattern. Used for input only.

pattern_len
Length in bytes of the optional username pattern, pattern. Used for input only.

domain
Name of the user domain to use. Supply a value of NULL to indicate the default
domain. Used for input only.

domain_len
Length in bytes of the user domain name, domain. Supply a value of zero to
indicate the default domain. Used for input only.

group
Optional name of a management group to confine the listing to. Used for input
only.

group_len
Length in bytes of the optional group name, group. Used for input only.

user
Buffer to receive the returned username. Length of this buffer should be at least
POPSTORE_MAX_USER_LEN+1 bytes long. Used for output only.

user_len
Length in bytes of the username returned in user. Used for output only.

12–91

Application Program Interface (API)
POPSTORE_user_list_d

max_user_len
Maximum length in bytes of the buffer, user. Used for input only.

DESCRIPTION POPSTORE_user_list_d can be used to obtain one at a time the usernames
associated with each popstore account. To call POPSTORE_user_list_d, you must
have a variable of type ‘‘POPSTORE_list_context *’’ available, the address of which
you specify with the list_context argument. Prior to calling POPSTORE_user_
list_d for the first time, set the value of that pointer variable to null. That will
signify to POPSTORE_user_list_d that this is the start of a listing. POPSTORE_
user_list_d will create a context and point your pointer variable at that context.
Repeatedly call POPSTORE_user_list_d to obtain each username. When there are
no more usernames to return, the context will be deallocated and POPSTORE_
EOM returned. Sample code is provided in Example 12–3

The optional group and group_len arguments can be used to restrict the listing
to just those accounts contained within the specified management group and
any subgroups thereof. The group name specification can not contain wild card
characters. If you do not want to restrict a listing, then specify null and 0 for these
two parameters.

The optional pattern and pattern_len arguments can be used to specify a
pattern which the returned usernames must match. The pattern can contain wild
card characters. For example, to list all accounts with usernames starting with
the letter ‘‘z’’ supply the string value ‘‘z*’’ and length 2 for these two arguments.
To return all usernames, instead supply the values null and 0.

To prematurely end a listing, call POPSTORE_user_list_abort so as to properly
dispose of the listing context.

While POPSTORE_user_list_d can be used to produce lists of user accounts, often
using POPSTORE_format_profiles is more appropriate. POPSTORE_user_list_d
is intended for situations where code needs to be able to obtain, one at a time,
the usernames for all or some accounts. For instance, to periodically bill all user
accounts with POPSTORE_user_billing_d.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADARG Bad value supplied for the list_context, user,
user_len, or max_user_len argument.

POPSTORE_DBBADLENGTH Retrieved a record from the database which has an
unexpected length. In practice, this error should never
occur.

POPSTORE_DBERR An unknown error occurred while attempting to read from the
user database. In practice, this error should never occur.

POPSTORE_DBOPNERR Unable to open the user database.

12–92

Application Program Interface (API)
POPSTORE_user_list_d

POPSTORE_DBMISSING User database does not exist; create it with the X-BUILD-
USER-DB command of the command-line popstore
management utility.

POPSTORE_EOM No more usernames to return

POPSTORE_FILOPNERR Unable to open the profile path file. See Section 14.2 for
details.

POPSTORE_INSUFPRIV Process has insufficient privileges to access the user
database.

POPSTORE_TOOLONG Length of specified group name is too long.

POPSTORE_VMERROR Insufficient virtual memory.

12–93

Application Program Interface (API)
POPSTORE_user_list_abort

POPSTORE_user_list_abort

Prematurely dispose of a list context generated by POPSTORE_user_list_d or
POPSTORE_user_list.

FORMAT
int POPSTORE_user_list_abort (list_context)

POPSTORE_list_context **list_context;

ARGUMENTS user_context
List context generated by POPSTORE_user_list_d or POPSTORE_user_list. Used
for input and output.

DESCRIPTION List contexts generated by POPSTORE_user_list_d and POPSTORE_user_list will
normally be disposed of automatically when there are no more usernames to be
listed. To prematurely dispose of a list context, call POPSTORE_user_list_abort.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

12–94

Application Program Interface (API)
POPSTORE_user_pw_change

POPSTORE_user_pw_change

Obsolete subroutine: use the more general POPSTORE_user_pw_change_d subrou-
tine.

FORMAT
int POPSTORE_user_pw_change (user, user_len, new_password, new_pas

errmsg, errmsg_len, errmsg_max)
char *user;
int user_len;
char *new_password;
int new_password_len;
char *errmsg;
int *errmsg_len;
int errmsg_max;

ARGUMENTS user
Name of the user to change the password for. Used for input only.

user_len
Length of the username string, user. Used for input only.

new_password
New password to use for the account. Used for input only.

new_password_len
Length in bytes of the new password string, new_password. Used for input only.

errmsg
Address of character array that POPSTORE_user_pw_change can put an error
message into if the password change fails.

errmsg_len
Address of an integer that POPSTORE_user_pw_change can write the length of
the error message that it put into errmsg.

errmsg_max
The size of the array that errmsg points to.

DESCRIPTION While still supported, this subroutine is now obsolete. Use the more general
POPSTORE_user_pw_change_d subroutine.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_FILOPNERR Unable to open the profile file for reading.

12–95

Application Program Interface (API)
POPSTORE_user_pw_change

POPSTORE_INSUFPRIV Insufficient privileges to access the profile file, or, on
OpenVMS, the process lacks SYSLCK privilege.

POPSTORE_LCKOPNERR Unable to obtain lock information for the profile file.

POPSTORE_LOCKERROR Unable to obtain a lock for the profile file.

POPSTORE_NOSUCHUSR No such user account.

POPSTORE_READERROR An error while attempting to read data from the profile file.

POPSTORE_TOOLONG The resulting profile file name is too long.

POPSTORE_VMERROR Insufficient virtual memory.

POPSTORE_WRITERROR An error occurred while writing data to the user’s profile file.

12–96

Application Program Interface (API)
POPSTORE_user_pw_change_d

POPSTORE_user_pw_change_d

Change a user’s password.

FORMAT
int POPSTORE_user_pw_change_d (domain, domain_len, user,

user_len, new_password, new_password
errmsg, errmsg_len, errmsg_max)

char *domain;
int domain_len;
char *user;
int user_len;
char *new_password;
int new_password_len;
char *errmsg;
int *errmsg_len;
int errmsg_max;

ARGUMENTS domain
Name of the user domain to use. Supply a value of NULL to indicate the default
domain. Used for input only.

domain_len
Length in bytes of the user domain name, domain. Supply a value of zero to
indicate the default domain. Used for input only.

user
Name of the user to change the password for. Used for input only.

user_len
Length of the username string, user. Used for input only.

new_password
New password to use for the account. Used for input only.

new_password_len
Length in bytes of the new password string, new_password. Used for input only.

errmsg
Address of character array that POPSTORE_user_pw_change can put an error
message into if the password change fails.

errmsg_len
Address of an integer that POPSTORE_user_pw_change can write the length of
the error message that it put into errmsg.

errmsg_max
The size of the array that errmsg points to.

12–97

Application Program Interface (API)
POPSTORE_user_pw_change_d

DESCRIPTION A user’s password can be changed with POPSTORE_user_pw_change_d. As input,
supply the name of the user to effect the change for as well as the new, plain text
password to use, and the user domain. The length of the new password can not
exceed POPSTORE_MAX_PWD_LEN bytes.

Note that if you already have a user context from POPSTORE_user_begin_d, then
you can call POPSTORE_user_update to change the password.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_FILOPNERR Unable to open the profile file for reading.

POPSTORE_INSUFPRIV Insufficient privileges to access the profile file, or, on
OpenVMS, the process lacks SYSLCK privilege.

POPSTORE_LCKOPNERR Unable to obtain lock information for the profile file.

POPSTORE_LOCKERROR Unable to obtain a lock for the profile file.

POPSTORE_NOSUCHUSR No such user account.

POPSTORE_READERROR An error while attempting to read data from the profile file.

POPSTORE_TOOLONG The resulting profile file name is too long.

POPSTORE_VMERROR Insufficient virtual memory.

POPSTORE_WRITERROR An error occurred while writing data to the user’s profile file.

12–98

Application Program Interface (API)
POPSTORE_user_pw_check

POPSTORE_user_pw_check

Perform an authentication check.

FORMAT
int POPSTORE_user_pw_check (user_context, password,

password_len, auth_type,
challenge, challenge_len,
response, response_len)

POPSTORE_user_context *user_context;
char *password;
int password_len;
int auth_mechanism;
char *challenge;
int challenge_len;
char *response;
int response_len;

ARGUMENTS user_context
User context to authenticate the password against. Used for input only.

password
Plain text password to authenticate against the user context. Used for input only.

password_len
Length in bytes of the plain text password string, password. Used for input only.

auth_mechanism
Authentication mechanism to use to check the password. Used for input only.

challenge
Challenge string presented as part of a challenge-response authentication mecha-
nism. Used for input only.

challenge_len
Length in bytes of the challenge string, challenge. Used for input only.

response
Response to the challenge. Used for input only.

response_len
Length in bytes of the response string, response. Used for input only.

DESCRIPTION To authenticate a user against the information contained in a user profile, call
POPSTORE_user_pw_check supplying the authentication mechanism to use and
the authentication credentials:

12–99

Application Program Interface (API)
POPSTORE_user_pw_check

auth_mechanism Required authentication credentials

POPSTORE_AUTH_MECH_PLAIN Password supplied in the clear; supply the password
and password_len arguments; challenge and
response arguments are ignored.

If the authentication credentials are verified to be correct and the account is not
marked DISUSER, a status of POPSTORE_SUCCESS is returned. Otherwise, a
status of POPSTORE_DISUSERD or POPSTORE_NOMATCH is returned.

Note that the value of the field user_context->profile->password is en-
crypted and as such applications cannot directory validate popstore passwords.

RETURN VALUES
POPSTORE_SUCCESS Authentication successful.

POPSTORE_DISUSERD Account is marked DISUSER; authentication failed.

POPSTORE_NOMATCH Authentication failed; invalid password.

POPSTORE_NULLCONTEXT user_context argument had a null value.

POPSTORE_NULLPROFILE user_context->profile is null.

12–100

Application Program Interface (API)
POPSTORE_user_update

POPSTORE_user_update

Update a field in an existing account.

FORMAT
int POPSTORE_user_update (user_context, item_list

errmsg, errmsg_len, errmsg_max)
POPSTORE_user_context *user_context;
POPSTORE_item_list *item_list;
char *errmsg;
int *errmsg_len;
int errmsg_max;

ARGUMENTS user_context
User context to update. Used for input and output.

item_list
Item list describing the updates to perform. Used for input only.

errmsg
Address of character array that POPSTORE_user_update can put an error
message into if the password change fails.

errmsg_len
Address of an integer that POPSTORE_user_update can write the length of the
error message that it put into errmsg.

errmsg_max
The size of the array that errmsg points to.

DESCRIPTION One or more fields in a popstore profile file can be changed by calling POPSTORE_
user_update. The fields to update and the new values to use are described
using an array of item descriptors, each of which specifies an action and provides
the information needed to perform that action. The list of item descriptors is
terminated with an entry with the POPSTORE_SET_END item code. The list of
item descriptors is referred to as an item list.

When the item list is successfully processed, both the on-disk and in-memory
profile is updated and the POPSTORE_SUCCESS item code is returned.6 Should
an error occur while processing the item list, no updates are made to the underlying
user profile file, and POPSTORE_user_end returns an error status. Depending
upon the nature of the error, the in-memory profile data can have been changed.

Note that the username field can not be changed with POPSTORE_user_update.
Use POPSTORE_user_copy_d with do_rename=1 to change the username field for

6 The in-memory profile is that pointed at by user_context->profile.

12–101

Application Program Interface (API)
POPSTORE_user_update

an existing account. Moreover, the MANAGE usage flag can not be set or cleared
without first calling POPSTORE_manage to authorize such activity.

The item_list argument is a pointer to an array of one or more item descriptors
whose type is given by the POPSTORE_item_list structure shown below:

typedef struct {
int item_code;
void *item_address;
int item_length;

} POPSTORE_item_list;

The interpretation of the three fields in an item descriptor is as follows:

POPSTORE_item_list item descriptor fields

item_code
A signed, longword integer containing a user-supplied symbolic code specifying an
action to be taken by PMDF_user_update. A description of each item code follows
this list of item descriptor fields.

item_address
A pointer to the value to use in updating the profile field indicated by the associated
item_code. Not all actions require that a value be supplied for the item_address
field.

item_length
A signed, longword integer containing the user-supplied length of the data pointed
at by item_address. Not all actions require that an item_length be specified.

The item_code values accepted by POPSTORE_user_update are as follows:

POPSTORE_user_update item codes

POPSTORE_SET_CHAIN
This item code can be used to direct the item list processing to another item list.
The value of the item_address field should be a pointer to another POPSTORE_
item_list structure. The item_length field is ignored.

POPSTORE_SET_END
The end of the item list is indicated by this item code. The item_address and
item_length fields are ignored.

POPSTORE_SET_FLAGS_DELETE
Set the DELETE usage flag. The item_address and item_length fields are
ignored.

POPSTORE_SET_FLAGS_DISMAIL
Set the DISMAIL usage flag. The item_address and item_length fields are
ignored.

12–102

Application Program Interface (API)
POPSTORE_user_update

POPSTORE_SET_FLAGS_DISUSER
Set the DISUSER usage flag. The item_address and item_length fields are
ignored.

POPSTORE_SET_FLAGS_LOCKPWD
Set the LOCKPWD usage flag. The item_address and item_length fields are
ignored.

POPSTORE_SET_FLAGS_MANAGE
Set the MANAGE usage flag. The item_address and item_length fields are
ignored. A prior call to POPSTORE_manage must be made in order to permit
setting the MANAGE flag.

POPSTORE_SET_FLAGS_NO_DELETE
Clear the DELETE usage flag. The item_address and item_length fields are
ignored.

POPSTORE_SET_FLAGS_NO_DISMAIL
Clear the DISMAIL usage flag. The item_address and item_length fields are
ignored.

POPSTORE_SET_FLAGS_NO_DISUSER
Clear the DISUSER usage flag. The item_address and item_length fields are
ignored.

POPSTORE_SET_FLAGS_NO_LOCKPWD
Clear the LOCKPWD usage flag. The item_address and item_length fields
are ignored.

POPSTORE_SET_FLAGS_NO_MANAGE
Clear the MANAGE usage flag. The item_address and item_length fields are
ignored. A prior call to POPSTORE_manage must be made in order to permit
clearing the MANAGE flag.

POPSTORE_SET_GROUP_NAME
Set the value of the group field. The value of the item_address field must point
to a string value. The value of the item_length field must be the length in bytes
of the string value. That length can not exceed POPSTORE_MAX_GROUP_LEN
bytes.

POPSTORE_SET_LAST_BILLING
Set the value for the last billing time field. The value of the item_address field
must point to a time_t value expressing the last billing time as the number of
seconds since 1 January 1970. The item_length field is ignored.

POPSTORE_SET_LAST_CONNECT
Set the value of the last connect time field. The value of the item_address field
must point to a time_t value expressing the last connect time as the number of
seconds since 1 January 1970. The item_length field is ignored.

POPSTORE_SET_LAST_DISCONNECT
Set the value of the last disconnect time field. The value of the item_address
field must point to a time_t value expressing the last disconnect time as the
number of seconds since 1 January 1970. The item_length field is ignored.

12–103

Application Program Interface (API)
POPSTORE_user_update

POPSTORE_SET_LAST_PWD_CHANGE
Set the value of the last password change time field. The value of the item_address
field must point to a time_t value expressing the last password change time as
the number of seconds since 1 January 1970. Use a value of zero to indicate that
the account password is pre-expired. The item_length field is ignored.

POPSTORE_SET_MESSAGE_COUNT
Set the value of the message count field. If the value, V, is less than the count of
currently stored messages, M, then the first M-V stored messages will be deleted.
The value of the item_address field must point to a uint32 value denoting the
new message count. The item_length field is ignored.

POPSTORE_SET_NOOP
This signifies an item descriptor which should be ignored. The item_address
and item_length fields are ignored.

POPSTORE_SET_OVERDRAFT
Set the overdraft storage quota. The value of the item_address field must point
to a uint32 value expressing the overdraft storage quota in units of bytes. The
item_length field is ignored.

POPSTORE_SET_OWNER
Set the value of the owner field. The value of the item_address field must point
to a string value. The value of the item_length field must be the length in bytes
of the string value. That length can not exceed POPSTORE_MAX_OWN_LEN
bytes.

POPSTORE_SET_PASSWORD
Set the value of the password field. The value of the item_address field must
point to a string value. The value of the item_length field must be the length
in bytes of the string value. That length can not exceed POPSTORE_MAX_PWD_
LEN bytes.

POPSTORE_SET_PAST_BLOCK_DAYS
Set the past block days accounting field. The value of the item_address field
must point to a uint32 value expressing the new past block days value to use.
The item_length field is ignored.

Note that when the past block days field is set, the past block days remainder field
is set to a value of zero.

POPSTORE_SET_PRIVATE
Set the value of the site-defined private data field. The value of the item_address
field must point to a string value. The value of the item_length field must be
the length in bytes of the string value. That length can not exceed POPSTORE_
MAX_PRIV_LEN bytes.

POPSTORE_SET_QUOTA
Set the primary storage quota. The value of the item_address field must point
to a uint32 value expressing the primary storage quota in units of bytes. The
item_length field is ignored.

12–104

Application Program Interface (API)
POPSTORE_user_update

POPSTORE_SET_TOTAL_CONNECT
Set the elapsed total connect time. The value of the item_address field must
point to a uint32 value expressing the elapsed total connect time in units of
seconds. The item_length field is ignored.

RETURN VALUES
POPSTORE_SUCCESS Normal, successful completion.

POPSTORE_BADITMCOD Unrecognized item code specified. No changes made to the
on-disk or in-memory user information.

POPSTORE_BADLENGTH Length of a string value is less than zero. No changes made
to the on-disk or in-memory user information.

POPSTORE_CMDBADVAL Attempt made to set the message count to a value exceeding
the count of currently stored messages. No changes made to
the on-disk or in-memory user information.

POPSTORE_FILOPNERR Unable to open the profile file for reading and writing. No
changes made to the on-disk or in-memory user information.

POPSTORE_INSUFPRIV The process lacks SYSLCK privilege (OpenVMS only). No
changes made to the on-disk or in-memory user information.

POPSTORE_LCKOPNERR Unable to obtain lock information for the profile file. No
changes made to the on-disk or in-memory user information.

POPSTORE_LOCKERROR Unable to obtain a lock for the profile file. No changes made
to the on-disk or in-memory user information.

POPSTORE_NOPRIVILEGE Process is not allowed to set or clear the MANAGE usage
flag without a prior call to POPSTORE_manage. No changes
made to the on-disk or in-memory user information.

POPSTORE_NULLCONTEXT user_context is null. No changes made to the on-disk or
in-memory user information.

POPSTORE_NULLPROFILE user_context->profile context is null. No changes
made to the on-disk or in-memory user information.

POPSTORE_PWDLOCKED Cannot change the password; password is locked. No
changes made to the on-disk or in-memory user information.

POPSTORE_READERROR An error occurred while reading data from the profile file. No
changes made to the on-disk or in-memory user information.

POPSTORE_SEEKERROR An error occurred while seeking to a location in the profile
file. No changes made to the on-disk or in-memory user
information.

POPSTORE_TOOLONG Length of string value exceeds permitted length. No changes
made to the on-disk or in-memory user information.

POPSTORE_WRITERROR An error occurred while writing data to the profile file. No
changes made to the on-disk profile information; in-memory
user information has been changed.

12–105

13Logging

There are two logging interfaces for the popstore. The first is the normal PMDF
logging interface as described in Section 13.1. This interface should suit the needs of
most sites.

For sites needing more sophisticated logging facilities, there is a subroutine level
interface. When enabled, the popstore dynamically loads and links to a site-supplied
subroutine and then calls that subroutine each time an event is to be logged. The loggable
events are summarized below and discussed in Section 13.2:

• Account creation, modification, and deletion

• Account access (login, password verification calls, logout)

• Message storage, access, and deletion

• Access to the popstore API (servers, management utilities, third-party applications,
etc.)

Section 13.2.3 shows some sample event logs depicting various activities, recorded
through this subroutine interface.

13.1 PMDF-style Logging
Normal PMDF logging facilities can be used to track messages into the popstore

and POP3 client access to the store. The former is activated with the logging channel
keyword; the latter by enabling logging in the POP3 server itself. Both will produce log
file entries in the PMDF log file, mail.log_current, found in the PMDF log directory.

To use the logging channel keyword, edit the PMDF configuration file, pop-
store.chans found in the PMDF table directory, /pmdf/table/ on UNIX and NT
systems and PMDF_TABLE: on OpenVMS. In that file, add the logging keyword to the
end of the line beginning with holdexquota so that that line reads

holdexquota description "popstore channel" logging

Then save the file. After saving the file, recompile your configuration if using a compiled
configuration. Also, if on OpenVMS, reinstall the configuration after recompiling. If using
the multi-threaded SMTP server, restart it with the PMDF RESTART SMTP command.

See the PMDF System Manager’s Guide for further information on the logging
channel keyword and the format of the PMDF log file.

Use the LOGGING option of the POP3 server to enable logging in that server. See
the POP3 server documentation in the PMDF System Manager’s Guide for details on
enabling that option.

13–1

Logging
PMDF-style Logging

13.2 The Site-Supplied Logging Interface
Sites needing very detailed popstore activity logging can obtain such detail by

providing a subroutine for the popstore to call. The subroutine is provided to the popstore
as a shareable image and made known to the popstore via the LOG_ACTIVITY option
described in Section 3.3. By default, any ‘‘loggable’’ event will be passed to the site
supplied logging routine. Optionally, the LOGGING_ACTIVITY_MASK option can be
used to select which events are logged.

The site-supplied subroutine must have the name log_activity and takes the form

#ifndef __VMS
include "/pmdf/com/popstore.h"
#else
include "PMDF_COM:POPSTORE.H"
#endif

void log_activity (*log_id, log_subid, log_type,
*log_data, log_len)

char *log_id;
uint32 log_subid;
int32 log_type;
void *log_data;
int32 log_len;

where the parameters have the following interpretations:

log_id
Character string of length at most 20 bytes which remains the same amongst a related
sequence of popstore activities bounded by POPSTORE_init() and POPSTORE_end()
calls.

log_subid
Thirty-two bit unsigned integer identifying a related sequence of popstore activities
bounded by POPSTORE_user_begin() and POPSTORE_user_end() calls.

log_type
The type of activity being logged. See Section 13.2.2 for a description of the different
values for this parameter.

log_data
A pointer to the information to be logged. The nature of the data and its organization
varies with the type of activity being logged. Refer to Section 13.2.2 for details.

log_len
The length in bytes of the information to be logged.

The intent behind the log_id and log_subid parameters is to provide a means of
grouping related activity threads together. For instance, if logging activity to a file, then
start each record of the file with the values of the log_id and log_subid parameters.
The log file can then be sorted to produce a file in which related events are grouped
together within the (sorted) file.

13–2

Logging
The Site-Supplied Logging Interface

Each call the popstore makes to the LOG_ACTIVITY subroutine reports an event
which the subroutine can then log or discard as it sees fit. The subroutine does not need
to be reentrant or thread-safe: within a given process context, the popstore will serialize
its calls to the subroutine. However, several processes can simultaneously call the same
subroutine. Consequently, if the subroutine, for instance, appends records to a log file,
the subroutine must ensure that the writes to that file support simultaneous writers.

In the file popstore_log_activity.c, a sample log_activity subroutine is
provided. This file is in the /pmdf/doc/examples directory on UNIX and NT systems
and, on OpenVMS systems, the directory PMDF_ROOT:[DOC.EXAMPLES].

13.2.1 Linking a Shared Library

Solaris Systems

On Solaris systems, linking a C program into a shared library is accomplished with
the command:

cc -mt -KPIC -G -h filename.so -o filename.so filename.c

where filename.c is the name of the program to compile link and filename.so is the
name of the shared library to create.

Linux Systems

On Linux systems, linking a C program into a shared library is accomplished with
the command:

gcc -shared -o filename.so filename.c

where filename.c is the name of the program to compile and link and filename.so
is the name of the shared library to create.

OpenVMS Systems

On OpenVMS VAX systems, the link command should be of the form

$ DEFINE/SYSTEM/EXECUTIVE_MODE POP_LOG_ACTIVITY -
_$ disk:[device]filename.EXE
$ LINK/SHAREABLE=POP_LOG_ACTIVITY object-file-spec,SYS$INPUT:/OPT
UNIVERSAL=log_activity
CTRL/Z

$ INSTALL CREATE POP_LOG_ACTIVITY

and on OpenVMS Alpha or I64 systems,

13–3

Logging
The Site-Supplied Logging Interface

$ DEFINE/SYSTEM/EXECUTIVE_MODE POP_LOG_ACTIVITY -
_$ disk:[device]filename.EXE
$ LINK/SHAREABLE=POP_LOG_ACTIVITY object-file-spec,SYS$INPUT:/OPT
SYMBOL_VECTOR=(log_activity=PROCEDURE)
CTRL/Z

$ INSTALL CREATE POP_LOG_ACTIVITY

where object-file-spec is the name of the object file to be linked to produce the
resulting shared image disk:[device]filename.EXE. The choice of logical name is
arbitrary. Use whatever name you see fit and then use the LOG_ACTIVITY option to tell
the popstore the logical name to use.

When relinking the image, be sure to issue the command

$ INSTALL REPLACE POP_LOG_ACTIVITY

so that the new image is instead used.

13.2.2 Logging Data Types
The value of the log_type parameter indicates the type of activity being logged and

the type of data referenced by the log_data pointer. The symbolic names of the values
are defined in the popstore.h header file and are summarized in Table 13–1. They are
fully discussed below.

Table 13–1 Summary of Logging Data Types

Symbolic name Value log_data data type

POPSTORE_LOG_START 1 char *

POPSTORE_LOG_END 2 NULL

POPSTORE_LOG_LOGIN_START 3 POPSTORE_user_log *

POPSTORE_LOG_LOGIN_PW_MATCH 4 POPSTORE_user_log *

POPSTORE_LOG_LOGIN_PW_NOMATCH 5 POPSTORE_user_log *

POPSTORE_LOG_LOGIN_END 6 POPSTORE_user_log *

POPSTORE_LOG_MSG_STORE 7 POPSTORE_message_log *

POPSTORE_LOG_MSG_OPEN 8 POPSTORE_message_log *

POPSTORE_LOG_MSG_DELETE 9 POPSTORE_message_log *

POPSTORE_LOG_USER_CREATE 10 POPSTORE_user_log *

POPSTORE_LOG_USER_DELETE 11 POPSTORE_user_log *

POPSTORE_LOG_USER_MODIFY 12 POPSTORE_user_log *

By default, the site-supplied logging routine is called for every event. This corresponds
to a setting of LOG_ACTIVITY_MASK=-1. Each bit in the value of LOG_ACTIVITY_MASK
indicates whether a particular event should be logged (and hence when it has a value of
-1 all events are logged). You can therefore control which events are logged by specifying
a non-default value for the LOG_ACTIVITY_MASK option as shown in Table 13–2 below.
In that table, bit 0 is the lowest (first) bit.

13–4

Logging
The Site-Supplied Logging Interface

Table 13–2 LOG_ACTIVITY_MASK Bit Values

Symbolic name Bit to set

POPSTORE_LOG_START Always logged

POPSTORE_LOG_END Always logged

POPSTORE_LOG_LOGIN_START 0

POPSTORE_LOG_LOGIN_PW_MATCH 1

POPSTORE_LOG_LOGIN_PW_NOMATCH 2

POPSTORE_LOG_LOGIN_END 3

POPSTORE_LOG_MSG_STORE 4

POPSTORE_LOG_MSG_OPEN 5

POPSTORE_LOG_MSG_DELETE 6

POPSTORE_LOG_USER_CREATE 7

POPSTORE_LOG_USER_DELETE 8

POPSTORE_LOG_USER_MODIFY 9

Each of these logging data types are described below.

POPSTORE_LOG_START
When log_type has the value POPSTORE_LOG_START, log_data is a pointer to a
character string.

This logging type arises when the POPSTORE_init() subroutine is called and signifies
the initialization of the popstore API by a popstore client program. log_data points
to a string identifying the client program and information about it. Standard popstore
subroutines provide the following usage strings:

00:cgi:user@server-host (server-ip-addr+server-tcp-port):
client@client-host (client-ip-addr+client-tcp-port)
The indicated user on the indicated host is running the popstore’s management HTTP
CGI and is processing a request from the indicated host.

01:user_cgi:user@server-host (server-ip-addr+server-tcp-port):
client@client-host (client-ip-addr+client-tcp-port)
The indicated user on the indicated host is running the popstore’s user-mode informa-
tional HTTP CGI and is processing a request from the indicated host.

02:master:user@host:channel
The indicated user on the indicated host is running the inbound popstore delivery channel
under the indicated channel name, channel.

03:pop3::
This indicates that the POP3 server has initialized the popstore. At this point, the POP3
server does not have useful information to record. However, as it processes connections

13–5

Logging
The Site-Supplied Logging Interface

from POP3 clients, it will provide more detailed information. See the description of the
POPSTORE_LOG_LOGIN_START logging type.

04:popmgr:user@host
The indicated user on the indicated host is running the command line management
utility. The username is the user’s login username on the host and not their popstore
username.

05:poppassd::
This indicates that the poppassd server has initialized the popstore. At this point, the
poppassd server does not have useful information to record. However, as it processes
connections from POP3 clients, it will provide more detailed information. See the
description of the POPSTORE_LOG_LOGIN_START logging type.

06:return:user@host:channel
The indicated user on the indicated host is running the popstore message bouncer under
the indicated channel name, channel.

07:mbxmove:user@host
The indicated user on the indicated host is running the mail box migration utility to
migrate one or more mail boxes to the popstore.

08:pwd_cgi:user@server-host (server-ip-addr+server-tcp-port):
client@client-host (client-ip-addr+client-tcp-port)
The indicated user on the indicated host is running the popstore’s user-mode password
HTTP CGI and is processing a request from the indicated host.

Site-supplied and third-party popstore clients can use other usage strings. Usage strings
beginning with ‘‘00’’ through ‘‘20’’ are reserved for use by Process Software.

POPSTORE_LOG_END
When log_type has the value POPSTORE_LOG_END, log_data has the value NULL and
log_len has the value 0.

This logging type arises when the subroutine POPSTORE_end() is called and signifies
the end of use of the popstore by a popstore client program.

POPSTORE_LOG_LOGIN_START
When log_type has the value POPSTORE_LOG_LOGIN_START, log_data is a pointer to
a POPSTORE_user_log structure. See Section 13.2.4 for a description of that structure.

This logging type arises when the subroutine POPSTORE_user_begin() is called to
begin a user context. The fields of the logging data will be as follows:

Field name Description

stat Set to the value POPSTORE_SUCCESS

profile Set to the value NULL

13–6

Logging
The Site-Supplied Logging Interface

Field name Description

username As supplied by the caller of POPSTORE_user_begin()

ulen As supplied by the caller of POPSTORE_user_begin()

usage As supplied by the caller of POPSTORE_user_begin()

usagelen As supplied by the caller of POPSTORE_user_begin()

The caller supplied fields should be treated as suspect. For instance, the ulen field can
have an incorrect value. Standard popstore subroutines provide the following usage
strings

00:cgi:user@server-host (server-ip-addr+server-tcp-port):
client@client-host (client-ip-addr+client-tcp-port)
The popstore’s management HTTP CGI running on the host server-host is processing a
request from the indicated host, client-host.

01:user_cgi:user@server-host (server-ip-addr+server-tcp-port):
client@client-host (client-ip-addr+client-tcp-port)
The popstore’s user-mode HTTP CGI running on the host server-host is processing a
request from the indicated host, client-host.

03:pop3:server-ip-addr+server-tcp-port:client-ip-addr+client-tcp-port
A POP3 client running on the host with IP address client-ip-addr has made a connection
to the POP3 server at the IP address server-ip-addr.

05:poppassd:user@server-host (server-ip-addr+server-tcp-port):
client@client-host(client-ip-addr+client-tcp-port)
A POP3 client running on the host client-host has made a connection to the poppassd
server on the host server-host.

08:pwd_cgi:user@server-host (server-ip-addr+server-tcp-port):
client@client-host (client-ip-addr+client-tcp-port)
The popstore’s user-mode password HTTP CGI running on the host server-host is
processing a request from the indicated host, client-host.

This logging type also arises when an error is encountered within the API subroutine
POPSTORE_user_begin(). In that case, fields of the logging data will be as shown
below:

Field name Description

stat Set to the popstore error code value indicating the error which occurred

profile Set to the value NULL

username As supplied by the caller of POPSTORE_user_begin()

ulen As supplied by the caller of POPSTORE_user_begin()

13–7

Logging
The Site-Supplied Logging Interface

Field name Description

usage Set to the value NULL

usagelen Set to the value 0

POPSTORE_LOG_LOGIN_PW_MATCH
POPSTORE_LOG_LOGIN_PW_NOMATCH
When log_type has the either the value POPSTORE_LOG_LOGIN_PW_MATCH or the value
POPSTORE_LOG_LOGIN_PW_NOMATCH, log_data is a pointer to a POPSTORE_user_log
structure. See Section 13.2.4 for a description of that structure.

This logging type arises when the subroutine POPSTORE_user_pw_check() has been
called to validate a popstore username and password pair. The first type occurs when
the password or challenge response is correct; the second type when the password or
challenge response is incorrect.

The logging data, which is of type POPSTORE_user_log, will have the field values
indicated below:

Field name Description

stat Return value which will be returned by POPSTORE_user_pw_check() to the
caller

profile Pointer to the popstore user context

username Username associated with the user context

ulen Length of the username associated with the popstore user context

usage Set to the value NULL

usagelen Set to the value 0

POPSTORE_LOG_LOGIN_END
When log_type has the value POPSTORE_LOG_LOGIN_END, log_data is a pointer to a
POPSTORE_user_log structure. See Section 13.2.4 for a description of that structure.

This logging type arises when the subroutine POPSTORE_user_end() has been called
to end a popstore user context. The fields of the logging data will be as follows:

Field name Description

stat Return value which will be returned by POPSTORE_user_end() to the caller

profile Pointer to the popstore user context being ended

username Username associated with the user context

ulen Length of the username associated with the popstore user context

usage Set to the value NULL

usagelen Set to the value 0

13–8

Logging
The Site-Supplied Logging Interface

POPSTORE_LOG_MSG_STORE
When log_type has the value POPSTORE_LOG_MSG_STORE, log_data is a pointer to a
POPSTORE_message_store_log structure. See Section 13.2.6 for a description of that
structure.

This logging type arises when the inbound message delivery subroutine stores a message
into the popstore. The contents of the logging data are as described in Section 13.2.6.

POPSTORE_LOG_MSG_OPEN
When log_type has the value POPSTORE_LOG_MSG_OPEN, log_data is a pointer to a
POPSTORE_message_log structure. See Section 13.2.5 for a description of that structure.

This logging type arises when a stored message file is accessed with the API subroutine
POPSTORE_message_begin(). The contents of the logging data are as described in
Section 13.2.5.

POPSTORE_LOG_MSG_DELETE
When log_type has the value POPSTORE_LOG_MSG_DELETE, log_data is a pointer to a
POPSTORE_message_log structure. See Section 13.2.5 for a description of that structure.

This logging type arises when a stored message file is deleted for one of its recipients.
The contents of the logging data are as described in Section 13.2.5 with the exception
that the four envelope and message id fields will have the values NULL and 0.

POPSTORE_LOG_USER_CREATE
When log_type has the value POPSTORE_LOG_USER_CREATE, log_data is a pointer to
a POPSTORE_user_log structure. See Section 13.2.4 for a description of that structure.

This logging type arises when the subroutine POPSTORE_user_add() has been called
to create a new user account. The fields of the log data will be as follows:

Field name Description

stat Return value which will be returned by POPSTORE_user_add() to the caller

profile Pointer to the user context describing the new account

username Username associated with the user context

ulen Length of the username associated with the user context

usage Set to the value NULL

usagelen Set to the value 0

POPSTORE_LOG_USER_DELETE
When log_type has the value POPSTORE_LOG_USER_DELETE, log_data is a pointer to
a POPSTORE_user_log structure. See Section 13.2.4 for a description of that structure.

This logging type arises when the subroutine POPSTORE_user_delete() has been
called to delete a user account. The fields of the log data will be as follows:

Field name Description

stat Return value which will be returned by POPSTORE_user_add() to the caller

13–9

Logging
The Site-Supplied Logging Interface

Field name Description

profile Pointer to the user context describing the account being deleted

username Username associated with the user context

ulen Length of the username associated with the user context

usage Set to the value NULL

usagelen Set to the value 0

POPSTORE_LOG_USER_MODIFY
When log_type has the value POPSTORE_LOG_USER_MODIFY, log_data is a pointer to
a POPSTORE_user_log structure. See Section 13.2.4 for a description of that structure.

This logging type arises when the subroutine POPSTORE_user_update() has been
called to modify a user account. The fields of the logging data will be as follows:

Field name Description

stat Return value which will be returned by POPSTORE_user_update() to the caller

profile Pointer to an array of two user contexts: the first context describes the original settings
for the account, the second context describes the new settings for the account

username Username associated with the user context

ulen Length of the username associated with the user context

usage Set to the value NULL

usagelen Set to the value 0

13.2.3 Logging Samples
The following samples illustrate some of the logging possibilities realized through

the logging interface. In these examples, the site-supplied log_activity subroutine
outputs records containing the log_id and log_subid values separated by a dot and
then followed by the date and time. That is then followed by the value of the log_type
parameter which is then followed by information pertinent to the type of data being
logged.

In the first example, Example 13–1, the logging samples correspond to the UNIX
login user bob issuing the commands

pmdf popstore
popstore> modify jdoe -quota=20480
popstore> quit

13–10

Logging
The Site-Supplied Logging Interface

Example 13–1 Logging of a user profile modification

X9TC0008T6.1 11:30:11 - POPSTORE_LOG_START:
X9TC0008T6.1 11:30:11 - usage = 04:popmgr:bob@gate.plastic.com
X9TC0008T6.1 11:30:15 - POPSTORE_LOG_USER_MODIFY: user="jdoe"
X9TC0008T6.1 11:30:15 - quota:10240 -> 20480
X9TC0008T6.1 11:30:15 - POPSTORE_LOG_END

Example 13–2 Logging of a POP3 client downloading and deleting a message

27I80009GF.0 11:30:16 - POPSTORE_LOG_START:
27I80009GF.0 11:30:16 - usage = "03:pop3::"
27I80009GF.0 11:31:45 - POPSTORE_LOG_LOGIN_START:
27I80009GF.0 11:31:45 - usage = "03:pop3:192.160.0.1+14080:192.160.0.5+12839"
27I80009GF.0 11:31:45 - user = "jdoe"
27I80009GF.0 11:31:45 - POPSTORE_LOG_LOGIN_PW_MATCH: user="jdoe"
27I80009GF.0 11:32:20 - POPSTORE_LOG_MSG_OPEN
27I80009GF.0 11:32:20 - UIDL = !!!"01IDYVUZOFEO0008IH0
27I80009GF.0 11:32:20 - envelope ID = 01IDYTN79MU2000882@gate.plastic.com
27I80009GF.0 11:32:20 - message ID = <01IDEQPFAOH@foo.albany.edu>
27I80009GF.0 11:32:21 - POPSTORE_LOG_MSG_DELETE:
27I80009GF.0 11:32:21 - user = "jdoe"
27I80009GF.0 11:32:21 - UIDL = !!!"01IDYVUZOFEO0008IH0
27I80009GF.0 11:32:21 - POPSTORE_LOG_LOGIN_END: user="jdoe"
27I80009GF.0 11:32:22 - POPSTORE_LOG_END

Example 13–3 Logging of the storage of a message

GMU8000B5V.0 16:12:39 - POPSTORE_LOG_START:
GMU8000B5V.0 16:12:39 - usage = 02:master:SYSTEM@gate.plastic.com:popstore
GMU8000B5V.0 16:12:43 - 2 recipient, 2218 byte message from a@example.com stored
GMU8000B5V.0 16:12:43 - envelope ID = 01IDZ5RYTUKU000882@gate.plastic.com
GMU8000B5V.0 16:12:43 - message ID = <97008157_132305@emout1.mail.aol.com>
GMU8000B5V.0 16:12:43 - filename = 01IDZ5S85JTU000B5V0
GMU8000B5V.0 16:12:43 - 1 !!!! asmith
GMU8000B5V.0 16:12:43 - 1 !!!" jdoe
GMU8000B5V.0 16:12:45 - POPSTORE_LOG_END

The next example, Example 13–2, corresponds to the popstore user jdoe reading a
mail message and then deleting it with their POP3 client.

The final example, Example 13–3, shows the inbound delivery agent delivering a
message for two recipients to the popstore.

13–11

Logging
The Site-Supplied Logging Interface

13.2.4 POPSTORE_user_log Structure
The POPSTORE_user_log structure is used to log events associated with the

processing of user accounts. The C language declaration of the structure is provided
by the popstore.h header file and shown below:

typedef struct {
int32 stat;
POPSTORE_user_data *profile;
char *username;
int32 ulen;
char *usage;
int32 usagelen;

} POPSTORE_user_log;

The usage of the fields in this structure varies with the value of the log_type parameter.
See Section 13.2.2 for details. Note that the username and usage strings can not be
NULL terminated.

13.2.5 POPSTORE_message_log Structure
The POPSTORE_message_log structure is used to log events associated with the

processing of stored message files. The C language declaration of the structure is provided
by the popstore.h header file and repeated below:

typedef struct {
char *user;
int32 user_len;
char *uidl;
int32 uidl_len;
char *env_id;
int32 env_id_len;
char *msg_id;
int32 msg_id_len;

} POPSTORE_message_log;

The interpretation of these fields are as follows:

user
user_len
The username and length in bytes of the username associated with the popstore account
for which the message operation is being performed. This information can be omitted in
which case the fields will have the values NULL and 0. The username string can not be
NULL terminated.

uidl
uidl_len
UIDL and length in bytes of the UIDL referencing the message. The UIDL string can
not be NULL terminated.

13–12

Logging
The Site-Supplied Logging Interface

env_id
env_id_len
The envelope identification and length in bytes of the envelope identification associated
with the message. This information can not be provided, in which case the fields will have
the values NULL and 0. The envelope identification string can not be NULL terminated.

msg_id
msg_id_len
The value of the message’s RFC822 message-id header line and length in bytes of that
value. This information can not be provided, in which case the fields will have the values
NULL and 0. The message-id string can not be NULL terminated.

13.2.6 POPSTORE_message_store_log Structure
The POPSTORE_message_store_log structure is used to log the delivery a message

to the message store. The C language declaration of the structure is provided by the
popstore.h header file and repeated below:

typedef struct {
uint32 version;
uint32 size;
time_t creation_date;
uint32 recipient_count;
uint32 reference_count;
char *env_from;
int32 env_from_len;
char *env_id;
int32 env_id_len;
char *msg_id;
int32 msg_id_len;
char *filename;
int32 filename_len;
char channel[40];
POPSTORE_recipient_list *users;

} POPSTORE_message_store_log;

The interpretation of these fields are as follows:

version
Message file format version used for the message file.

size
Length in bytes of the stored message content.

creation_date
Creation date and time for the message file as measured in seconds since 0:00:00.00 on
1 January 1970.

recipient_count
Count of popstore envelope recipients for the message.

13–13

Logging
The Site-Supplied Logging Interface

reference_count
Count of active envelope recipients for the message; that is, the number of popstore
accounts with references to the message. This number will be less than or equal to the
recipient_count. Usually it will be equal to the recipient_count, but it can be less
if some sort of problem arose making delivery to a recipient impossible.

env_from
env_from_len
The message’s envelope From: address and length of that address. The env_from field
need not be NULL terminated.

env_id
env_id_len
The message’s envelope id and length of that id. The env_id field need not be NULL
terminated.

msg_id
msg_id_len
The message’s RFC822 message-id and length of that id. The msg_id field need not be
NULL terminated.

filename
filename_len
The name of the file in which the message is stored. The filename field need not be
NULL terminated.

channel
The name of the channel which delivered this message. The channel field is space (0x20
hex) padded and is not NULL terminated.

users
Pointer to an array of POPSTORE_recipient_list structures. The number of entries
in the array is given by the reference_count field. The POPSTORE_recipient_list
structure is described in Section 13.2.7.

13.2.7 POPSTORE_recipient_list Structure
The POPSTORE_recipient_list structure is used to log the envelope recipient list

for a message stored in the popstore. The C language declaration of the structure is
provided by the popstore.h header file and repeated below:

typedef struct {
char *user;
int user_len;
char uidl[4];
int status;

} POPSTORE_recipient_list;

The interpretation of these fields are as follows:

13–14

Logging
The Site-Supplied Logging Interface

user
user_len
Popstore username and length of that username. The username field can not be NULL
terminated.

uidl
The first four characters of the UIDL for this user’s instance of the message.

status
Status of this recipient:

Value Interpretation

1 Message was successfully delivered to this recipient.

2 Message was not delivered to this recipient; temporary error; will retry later.

3 Message was not delivered to this recipient; no such recipient.

4 Message was not delivered to this recipient; recipient is over quota.

5 Message was not delivered to this recipient; recipient is marked DISMAIL.

13–15

14Miscellaneous Subroutines

Sites can override five aspects of the popstore and MessageStore by providing callable
subroutines:

• the algorithm used to compute elapsed connect time,

• the algorithm used to compute past block days, a measure of disk space usage over
time,

• the location in the file system of user profile files,

• the location in the file system of stored message files, and

• the reasonableness checks done on the new password during a password change
operation.

The first two subroutines are only of interest to sites which bill users for connect time
or disk storage and want to change how the popstore and MessageStore computes those
quantities; see Section 14.1 for details. The next two subroutines are of interest to sites
who want to spread the popstore/msgstore user or message files across multiple disks as
described in Section 14.2.1

The last subroutine is of interest to sites who want to increase the security of
popstore/msgstore passwords for example by comparing the proposed password to a
dictionary or to a site-maintained history of previous passwords. See Section 14.3.

14.1 Computation Subroutines
By default, the popstore/msgstore uses straightforward algorithms to compute

elapsed connect times and disk storage over time:

elapsed_time := end_time - start_time
storage := (end_time - start_time) / (86400 seconds/hour) *

size / (1024 bytes/block)

where the quantities above have the following interpretations:

elapsed_time
Elapsed time measured in units of seconds.

end_time
Ending time measured in units of seconds elapsed since 1 January 1970 at 0:00:00.0.

start_time
Starting time measured in units of seconds elapsed since 1 January 1970 at 0:00:00.0.

1 Note that on UNIX systems, this can be done using symbolic links; the popstore/msgstore will correctly follow hard and
symbolic links.

14–1

Miscellaneous Subroutines
Computation Subroutines

storage
Amount of storage as measured in units of block days with 1 block equal to 1024 bytes.

size
Size of the stored object as measured in units of bytes.

Sites wanting to use different algorithms can do so by supplying executable
subroutines via shared images. The subroutine to compute the elapsed time must have
the name compute_connect and be of the form

#include <time.h>
#ifdef __VMS
include "pmdf_com:popstore.h"
#else
include "/pmdf/include/popstore.h"
#endif

uint32 compute_connect (start_time, end_time)
time_t start_time;
time_t end_time;

The calling arguments for compute_connect are as described below and the subroutine
must return the elapsed time, as measured in seconds, between the starting and ending
times:

start_time
Starting time measured in units of seconds elapsed since 1 January 1970 at 0:00:00.0.
Used for input only.

end_time
Ending time measured in units of seconds elapsed since 1 January 1970 at 0:00:00.0.
Used for input only.

A C code realization of the default algorithm used by the popstore/msgstore to
compute connect time is given in Example 14–1.

Example 14–1 Default compute_connect Subroutine

#include <time.h>
#ifdef __VMS
include "pmdf_com:popstore.h"
#else
include "/pmdf/include/popstore.h"
#endif

uint32 compute_connect (start_time, end_time)
time_t start_time;
time_t end_time;

{
return ((uint32)difftime (end_time, start_time));

}

14–2

Miscellaneous Subroutines
Computation Subroutines

The subroutine to compute storage must have the name compute_block_days and
be of the form

#include <time.h>
#ifdef __VMS
include "pmdf_com:popstore.h"
#else
include "/pmdf/include/popstore.h"
#endif

void compute_block_days (start_time, end_time, size, result,
remainder)

time_t start_time;
time_t end_time;
uint32 size;
uint32 *result;
uint32 *remainder;

The input arguments to the subroutine are described below. On output, the subroutine
must return in *result the storage as measured in units of block days. In addition, the
subroutine must return in *remainder any roundoff, as measured in byte seconds.

start_time
Starting time measured in units of seconds elapsed since 1 January 1970 at 0:00:00.0.
Used for input only.

end_time
Ending time measured in units of seconds elapsed since 1 January 1970 at 0:00:00.0.
Used for input only.

result
Amount of storage as measured in units of block days with 1 block equal to 1024 bytes.
Used for output only.

remainder
Roundoff in storage as measured in units of byte seconds. Used for input and output. On
input, this will be the roundoff left over from a previous computation and which should
be incorporated into this new computation. On output, this should be set to the roundoff
resulting from computing the result.

The default subroutine used by the popstore/msgstore is shown in Example 14–2.

The COMPUTE_CONNECT and COMPUTE_BLOCK_DAYS options must be used to point
the popstore/msgstore at the shared image or images containing the compute_connect
and compute_block_days subroutines. See Section 3.4 for details. When linking the
subroutines into shared images, use link commands of the forms shown in Section 13.2.1.
The subroutines can be tested with the TEST command of the command line management
utility.

14–3

Miscellaneous Subroutines
File Locations

Example 14–2 Default compute_block_days Subroutine

#include <time.h>
#ifdef __VMS
include "pmdf_com:popstore.h"
#else
include "/pmdf/include/popstore.h"
#endif

void compute_block_days (start_time, end_time, size, result,
remainder)

time_t start_time;
time_t end_time;
uint32 size;
uint32 *result;
uint32 *remainder;

{
double blocks, days, value;

days = difftime (end_time, start_time) / 86400.0;
blocks = size / 1024.0;
value = (days * blocks) + (*remainder / (86400.0 * 1024.0));
*result = (uint32)value;
*remainder = (uint32)((value - (uint32)value) * 86400.0 * 1024.0);

}

14.2 File Locations
By default, the popstore/msgstore stores all message files on the same disk as

described in Section 1.4. Likewise for account profile files as described in Section 1.3.9.
On UNIX systems, links — symbolic or hard — can be used to relocate subdirectories
in these trees thereby allowing files to be spread across any number of disks. The
popstore/msgstore will automatically handle such links; no special configuration of the
popstore/msgstore is required to accomodate links.

Sites wanting to relocate the entire message or profile directory tree to another disk
should do so using either the UNIX PMDF tailor file, the NT registry, or the OpenVMS
popstore/msgstore logicals. On UNIX and NT systems, manually move the tree in ques-
tion and change the corresponding PMDF_POPSTORE_MESSAGES or PMDF_POPSTORE_PROFILES
entry in the /etc/pmdf_tailor file (UNIX) or registry (NT). On OpenVMS systems,
manually move the directory tree in question and then change the corresponding defini-
tion of the PMDF_POPSTORE_MESSAGES or PMDF_POPSTORE_PROFILES logical. Chang-
ing the values of those logicals is best done by first seeing how they are defined in
the pmdf_startup.com procedure in the SYS$STARTUP: directory. Then, create a
pmdf_site_startup.com command procedure which redefines the logicals, pointing
to the correct disk and directory. Place that command procedure in the PMDF_COM:
directory. It will then be seen and executed by PMDF each time you boot your system.

Now, some sites can want to actually spread message or profile files across more
than one disk. Again, UNIX systems can use symbolic links to accomplish this. However,
OpenVMS systems lack such a mechanism. Consequently, an alternate mechanism for
relocating files is provided for all platforms. This mechanism involves the use of site-
supplied subroutines made available to the popstore/msgstore via shared images. When
the popstore/msgstore needs to access a message or a profile file, it first generates a

14–4

Miscellaneous Subroutines
File Locations

default path to the file and then checks for a site-supplied subroutine. If the subroutine
does not exist, the default path is used. If the subroutine does exist, it is called with
the file path and filename in question. The subroutine can then change the path to
the file; the popstore/msgstore will use the changed path to access the file. In addition
to supplying subroutines, text files listing the path to each directory tree must also be
supplied. These text files are used when the popstore/msgstore must search for a message
or profile file.

Note: Only use this mechanism when actually spreading a profile or message file directory tree
across more than one disk. Using this mechanism when merely moving an entire profile
or message file directory tree to another disk is not worth the effort required and can be
accomplished more easily using previously described mechanisms.

The name of the subroutine to map message file filenames is map_message_filename;
the name of the subroutine to map account profile filenames is map_profile_filename.
Their existence and location are made known to the popstore/msgstore using the MAP_
MESSAGE_FILENAME and MAP_PROFILE_FILENAME options documented in Sec-
tions 3.4 and 3.3, respectively. Sites can supply one or both of these subroutines. When
linking the subroutines into shared images, use link commands of the forms given in
Section 13.2.1.

The subroutines take the form

#ifdef __VMS
include "pmdf_com:popstore.h"
#else
include "/pmdf/include/popstore.h"
#endif

void map_message_filename (version, def_name, def_len, def_path_len,
new_name, new_len, max_new_len, new_path_len)

uint32 version
char *def_name;
int def_len;
int def_path_len;
char *new_name;
int *new_len;
int max_new_len;
int *new_path_len;

void map_profile_filename (version, def_name, def_len, def_path_len,
new_name, new_len, max_new_len, new_path_len)

uint32 version
char *def_name;
int def_len;
int def_path_len;
char *new_name;
int *new_len;
int max_new_len;
int *new_path_len;

The input and output arguments to the subroutines are as follows:

14–5

Miscellaneous Subroutines
File Locations

version
For map_message_filename, this argument is the current value of the
MESSAGE_FILENAME_VERSION option. For map_profile_filename, this argument is
the current value of the PROFILE_FILENAME_VERSION option. Used for input only.

def_name
The default file specification including the full path and filename. This string is NULL
terminated. Used for input only.

def_len
The length in bytes of the default file specification. The length does not include any NULL
terminator. Used for input only.

def_path_len
The length in bytes of the path specification in the default file specification. That is, the
first def_path_len bytes of def_name is the path specification for the file. Used for
input only.

new_name
The new file specification which should be used. This must include both the full path
and filename for the file and must be NULL terminated. Note that the filename portion
of the file specification must not be altered; only the path specification portion of the
file specification can be changed. The default directory name in the path should not
be removed—it is part of the popstore’s user domain naming system. default is the
default user domain. Used for output only.

new_len
The length in bytes, not including the NULL terminator, of the new file specification. Used
for output only.

max_new_len
Maximum length in bytes of new_name, not including a trailing NULL terminator. The
name passed back in new_name can not exceed this length. Used for input only. Note
that the following relationship will always hold:
def_path_len <= 252 bytes <= max_new_len

new_path_len
The length in bytes of the path specification portion of the new file specification. Used
for output only.

The site-supplied subroutine is passed the default file specification and must return
on output a new file specification. If no change is to be made to the file specification,
then the input arguments should simply be copied to the output arguments. If a change
is made, the resulting file specification must have the same filename. The subroutine
can only change the path portion of the file specification. (On OpenVMS systems, this is
the device and directory portion of the specification.) Moreover, for profile file names, the
default directory name should be left untouched. That name is part of the popstore’s
user domain naming system.

Note that for message filenames, the last character in the filename portion of the
specification indicates the value of the MESSAGE_FILENAME_VERSION option which was
in force when the message file in question was initially created. The default value for
that option is 0. When implementing a map_message_filename subroutine, it is a good
idea to increment that value to 1. Then your subroutine can distinguish between files

14–6

Miscellaneous Subroutines
File Locations

generated when no algorithm was in place and files generated when an algorithm was
first used. Yes, there’s no immediate value in doing this. However, should you then
change your algorithm, you will then want to distinguish between your new algorithm
and your old algorithm. When you change your algorithm, then again increment the
version number. You can then distinguish between the no algorithm case, version 0, the
original algorithm case, version 1, and the revised algorithm case, version 2.

The command line management utility includes a TEST command which should be
used to test map_message_filename and map_profile_filename subroutines. Use
that utility to test your subroutines before integrating them into the popstore with the
MAP_MESSAGE_FILENAME and MAP_PROFILE_FILENAME options. Moreover, when you
use that TEST command, the utility will tell you how each message or profile filename
would be mapped by your subroutine. That information is provided for each message
or user account currently used by the popstore. You can use that information to help
relocate each popstore file to the correct new location required by your subroutine.

When a map_message_filename subroutine is provided, you must also supply a
corresponding popstore_message_paths file. That file is a world readable text file
which should be placed in the PMDF table directory. For each top-level directory tree
used to store message files, a path to that tree must be given in the text file. One path
per line in the file. Similarly, when a map_profile_filename subroutine is provided,
a corresponding popstore_profile_paths file must be provided in the PMDF table
directory. These files are then used by the popstore when it must conduct scans for
message or profile files. Scans for profile files are only done to rebuild the user database
or to test a map_profile_filename subroutine. However, scans for message files
happen regularly when the popstore’s message bouncer runs. An example file is given in
Example 14–4.

A sample map_profile_filename is shown in Example 14–3. That sample
subroutine implements, for UNIX systems, a directory tree split as depicted below:

Default filename New filename

/pmdf/user/default/a/* /disk0/profiles/default/a/*

... ...

/pmdf/user/default/m/* /disk0/profiles/default/m/*

/pmdf/user/default/n/* /disk1/profiles/default/n/*

... ...

/pmdf/user/default/z/* /disk1/profiles/default/z/*

/pmdf/user/default/0/* /disk2/profiles/default/0/*

... ...

/pmdf/user/default/9/* /disk2/profiles/default/9/*

For example, the profile file normally stored in /pmdf/user/default/r/o/b/rob is re-
located to /disk1/profiles/default/r/o/b/rob. The popstore_profile_paths
file corresponding to this mapping is shown in Example 14–4.

14–7

Miscellaneous Subroutines
File Locations

Example 14–3 UNIX map_profile_filename Sample Subroutine

#include <string.h>
#include "/pmdf/include/popstore.h"

void map_profile_filename (uint32 version, char *def_name,
int def_len, int def_path_len,
char *new_name, int *new_len,
int max_new_len, int *new_path_len)

{
char c;
/*
* We assume that def_name will be of the form
* /pmdf/user/domain/x/y/z/filename. This assumption is
* governed by the value of the option PMDF_POPSTORE_PROFILES
* in the /etc/pmdf_tailor file.
*/
strcpy (new_name, "/disk#/profiles/");
c = def_name[def_path_len-6];
if (’a’ <= c && c <= ’m’) new_name[5] = ’0’;
else if (’n’ <= c && c <= ’z’) new_name[5] = ’1’;
else new_name[5] = ’2’;
strcat (&new_name[16], &def_name[11]);
*new_path_len = def_path_len + 5;
*new_len = strlen (new_name);

}

Example 14–4 UNIX /pmdf/table/popstore_profile_paths Sample File

/disk0/profiles/
/disk1/profiles/
/disk2/profiles/

A similar example for OpenVMS systems is shown in Examples 14–5 and 14–6. That
sample subroutine implements, the directory tree split as depicted below:

Default filename New filename

PMDF_POPSTORE_PROFILES:[DEFAULT.A...]*.; DISK0:[PROFILES.DEFAULT.A...]*.;

... ...

PMDF_POPSTORE_PROFILES:[DEFAULT.M...]*.; DISK0:[PROFILES.DEFAULT.M...]*.;

PMDF_POPSTORE_PROFILES:[DEFAULT.N...]*.; DISK1:[PROFILES.DEFAULT.N...]*.;

... ...

PMDF_POPSTORE_PROFILES:[DEFAULT.Z...]*.; DISK1:[PROFILES.DEFAULT.Z...]*.;

PMDF_POPSTORE_PROFILES:[DEFAULT.0...]*.; DISK2:[PROFILES.DEFAULT.0...]*.;

14–8

Miscellaneous Subroutines
File Locations

Default filename New filename

... ...

PMDF_POPSTORE_PROFILES:[DEFAULT.9...]*.; DISK2:[PROFILES.DEFAULT.9...]*.;

For example, the profile file normally stored in

PMDF_POPSTORE_PROFILES:[DEFAULT.R.O.B]rob.;

is relocated to

DISK1:[PROFILES.DEFAULT.R.O.B]rob.

The popstore_profile_paths file corresponding to this mapping is shown in Exam-
ple 14–6.

Example 14–5 OpenVMS map_profile_filename Sample Subroutine

#include <string.h>
#include "pmdf_com:popstore.h"

void map_profile_filename (uint32 version, char *def_name,
int def_len, int def_path_len,
char *new_name, int *new_len,
int max_new_len, int *new_path_len)

{
char c;
* We assume that def_name will be of the form
* PMDF_POPSTORE_PROFILES:[DEFAULT.X.Y.Z]filename.
*/
strcpy (new_name, "DISK#:[PROFILES.DEFAULT.X.Y.Z]");
c = def_name[def_path_len-6];
if (’a’ <= c && c <= ’m’) new_name[4] = ’0’;
else if (’n’ <= c && c <= ’z’) new_name[4] = ’1’;
else new_name[4] = ’2’;
strcat (&new_name[16], &def_name[24]);
*new_path_len = def_path_len + 8;
*new_len = strlen (new_name);

}

Example 14–6 OpenVMS PMDF_TABLE:popstore_profile_paths. Sample File

DISK0:[PROFILES...]*.;*
DISK1:[PROFILES...]*.;*
DISK2:[PROFILES...]*.;*

14–9

Miscellaneous Subroutines
Subroutine To Validate A Password

14.3 Subroutine To Validate A Password
The popstore/msgstore has support for certain reasonableness checks on a proposed

password when a user or administrator attempts to change an account’s password. The
validate_password subroutine can be specified by sites who wish to add additional
validation, such as a dictionary or history check.

The validate_password subroutine’s existence and location are made known to
the popstore/msgstore using the VALIDATE_PASSWORD option documented in Section 3.3.
When linking this subroutine into a shared image, use link commands of the forms given
in Section 13.2.1.

The subroutine takes the form

#ifdef __VMS
#include "pmdf_com:popstore.h"
#else
#include "/pmdf/include/popstore.h"
#endif

int validate_password (password, password_len, username, username_len,
errmsg, errmsg_len, errmsg_max)

char *password;
int password_len;
char *username;
int username_len;
char *errmsg;
int *errmsg_len;
int errmsg_max;

The input and output arguments to the subroutines are as follows:

password
The new password. Used for input only.

password_len
The length in bytes of the new password, not including any NULL terminator. Used for
input only.

username
The username of the account whose password is being changed. Used for input only.

username_len
The length in bytes of the username, not including any NULL terminator. Used for input
only.

errmsg
Address of a character array that validate_password should put an error message
into if the password validation fails. The length of the message must not be longer than
errmsg_max bytes. Used for output only.

errmsg_len
The length in bytes of the error message that validate_password put into the errmsg
array. Set this to 0 if no error message was placed there. Used for output only.

14–10

Miscellaneous Subroutines
Subroutine To Validate A Password

errmsg_max
The size in bytes of the character array that errmsg points to. Used for input only.

The validate_password subroutine should return one of the following statuses:

POPSTORE_SUCCESS
If the password passed all validation checks and was accepted.

POPSTORE_PWDNOTOK
If the password failed a validation check and was rejected.

A sample validate_password routine is shown in Example 14–7 and can be found
at, on OpenVMS:

PMDF_ROOT:[DOC.EXAMPLES]POPSTORE_VALIDATE_PASSWORD.C

And on UNIX:

/pmdf/doc/examples/popstore_validate_password.c

14–11

Miscellaneous Subroutines
Subroutine To Validate A Password

Example 14–7 validate_password Sample Subroutine

#ifdef __VMS
#include "pmdf_com:popstore.h"
#else
#include "/pmdf/include/popstore.h"
#endif
#include <string.h>

int validate_password (char *password, int password_len,
char *username, int username_len,
char *errmsg, int *errmsg_len, int errmsg_max)

{
#define MSG "Password rejected by validate_password"

(*errmsg_len) = 0;
errmsg[0] = ’\0’;

/* for example, reject a password of "invalid", otherwise accept */
if ((password_len == 7) &&

(password[0] == ’i’) &&
(password[1] == ’n’) &&
(password[2] == ’v’) &&
(password[3] == ’a’) &&
(password[4] == ’l’) &&
(password[5] == ’i’) &&
(password[6] == ’d’))

{
(*errmsg_len) = (strlen(MSG)>errmsg_max ? errmsg_max : strlen(MSG));
strncpy (errmsg, MSG, (*errmsg_len));
return (POPSTORE_PWDNOTOK);

}
else

return (POPSTORE_SUCCESS);
}

14–12

Index

A
Accounts • 1–3 to 1–15

adding • 6–2 to 6–4, 6–16 to 6–19, 6–20 to 6–23, 7–2 to
7–4, 7–16 to 7–19, 7–20 to 7–23

attributes • 1–3 to 1–5
blocking new mail to • 1–13 to 1–14, 6–7, 7–7 to 7–8
bulk loading • 1–14, 6–6, 7–6
changing • 6–5, 6–33 to 6–36, 7–5, 7–33 to 7–36
creating • 6–2 to 6–4, 6–16 to 6–19, 6–20 to 6–23, 7–2

to 7–4, 7–16 to 7–19, 7–20 to 7–23
default • 1–4

recreating • 6–14, 7–15
defaults

changing • 6–6, 7–6
deleting • 6–24 to 6–25, 7–24 to 7–25
denying access • 1–13 to 1–14, 6–7, 7–7 to 7–8
DISMAIL flag • 1–13 to 1–14, 6–7, 7–7 to 7–8
DISUSER flag • 1–13 to 1–14, 6–7, 7–7 to 7–8

domains
user domains

fields • 1–3 to 1–5
flags • 1–13 to 1–14, 6–7, 7–7 to 7–8
forwarding mail • 6–8, 6–37, 7–8, 7–37

groups

See groups
listing • 6–4, 6–45 to 6–47, 7–4, 7–44 to 7–46

customized • 6–13 to 6–14, 7–13 to 7–15, 9–1 to
9–2

LOCKPWD flag • 1–13 to 1–14, 6–7, 7–7 to 7–8
MANAGE flag • 1–13 to 1–14, 6–12
MessageStore • 2–3 to 2–4
modifying • 6–5, 6–33 to 6–36, 7–5, 7–33 to 7–36
naming • 1–5 to 1–7
overdraft quota • 1–9 to 1–10
passwords • 1–7 to 1–9

/etc/passwd • 1–8 to 1–9
APOP • 1–8
CRAM-MD5 • 1–8
DIGEST-MD5 • 1–8
locking • 1–13 to 1–14, 6–7, 7–7 to 7–8
operating system • 1–8 to 1–9
security • 1–9
SYSUAF • 1–8 to 1–9

primary quota • 1–9 to 1–10
privileges • 1–14, 6–12, 7–13
profile files • 1–15

relocating • 14–4 to 14–9
quotas • 1–9 to 1–10, 6–7, 7–7

Accounts (cont’d)

relocating profile files • 14–4 to 14–9
removing • 6–24 to 6–25, 7–24 to 7–25
renaming • 6–39 to 6–40, 7–39

user domains
user domains

usernames • 1–5 to 1–7
ALFA_SIZE=252 • 12–15
Aliases • 6–8, 6–27 to 6–28, 6–37, 7–8, 7–27 to 7–28, 7–37
APOP • 1–8
availability of PMDF • xiii
AVOID_LOGIN_NAMES option • 3–2

B
BIGALFA_SIZE=1024 • 12–15

C
Command line management

ADD • 6–16 to 6–19, 7–16 to 7–19
COPY • 6–20 to 6–23, 7–20 to 7–23
DELETE • 6–24 to 6–25, 7–24 to 7–25
EXIT • 6–26, 7–26
FORWARD • 6–27 to 6–28, 7–27 to 7–28
GROUP • 6–29 to 6–30, 7–29 to 7–30
LOGIN • 6–31, 7–31
LOGOUT • 6–32, 7–32
MessageStore • 2–5
MODIFY • 6–33 to 6–36, 7–33 to 7–36
NOFORWARD • 6–37, 7–37
NT • 6–1 to 7–1

commands • 6–15 to 7–1
operation • 6–2 to 6–15

OpenVMS • 7–1 to 8–1
commands • 7–15 to 8–1
operation • 7–1 to 7–15
running • 7–1

QUIT • 6–38, 7–38
RENAME • 6–39 to 6–40, 7–39 to 7–40
RUN • 6–41
SET DOMAIN • 6–42, 7–41
SET STORAGE_UNITS • 6–43, 7–42
SET TIME_UNITS • 6–44, 7–43
SHOW • 6–45 to 6–47, 7–44 to 7–46
TEST • 6–48 to 6–49, 7–47 to 7–49
UNIX • 6–1 to 7–1

Index–1

Index

Command line management
UNIX (cont’d)

commands • 6–15 to 7–1
operation • 6–2 to 6–15
running • 6–1

Windows
running • 6–1

Compiling programs • 12–14
COMPUTE_BLOCK_DAYS option • 3–5
compute_block_days subroutine • 14–1 to 14–3

testing • 6–48 to 6–49, 7–47 to 7–49
COMPUTE_CONNECT option • 3–2
compute_connect subroutine • 14–1 to 14–3

testing • 6–48 to 6–49, 7–47 to 7–49
Constants

ALFA_SIZE=252 • 12–15
BIGALFA_SIZE=1024 • 12–15
POPSTORE_FLAGS_DELETE=16 • 12–15
POPSTORE_FLAGS_DISMAIL=2 • 12–15
POPSTORE_FLAGS_DISUSER=1 • 12–15
POPSTORE_FLAGS_LOCKPWD=4 • 12–16
POPSTORE_FLAGS_MANAGE=8 • 12–16
POPSTORE_FULL_UIDL_LEN=23 • 12–16
POPSTORE_MAX_DOMAIN_LEN=14 • 12–16
POPSTORE_MAX_FILE_LEN=1024 • 12–16
POPSTORE_MAX_GROUP_LEN=16 • 12–16
POPSTORE_MAX_OWN_LEN=40 • 12–16
POPSTORE_MAX_PRIV_LEN=32 • 12–16
POPSTORE_MAX_PWD_LEN=32 • 12–16
POPSTORE_MAX_USER_LEN=32 • 12–16
POPSTORE_MFLAGS_READ=1 • 12–16
POPSTORE_MSG_FILE_FORMAT_VERSION=0 •

12–16
POPSTORE_MSG_NAME_LEN=19 • 12–16
POPSTORE_USERDATA_VERSION=2 • 12–16

CRAM-MD5 • 1–8

D
Data types

int32 • 12–16
message list • 12–19
POPSTORE_message_log • 13–12
POPSTORE_message_ref • 12–19
POPSTORE_message_store_log • 13–13
POPSTORE_recipient_list • 13–14
POPSTORE_user_context • 12–21
POPSTORE_user_data • 12–16
POPSTORE_user_log • 13–11
ubyte • 12–16
uint32 • 12–16
user context • 12–21
user profile • 12–16
ushort • 12–16

DEBUG option • 3–2

default account
See accounts, default

DEFAULT_ACL option • 3–7
Delivery notifications • 10–3
DIGEST-MD5 • 1–8

E
Errors

access forbidden HTTP response • 4–1, 5–2

F
File system expectations • 1–15
FILE_DEBUG option • 3–8
Formatting files • 4–4 to 4–5

command specific • 4–4
error • 4–4
example • 4–6
format • 4–4 to 4–5
location • 4–2, 5–2 to 5–3
substitution strings • 4–4

%!first • 4–5
%!last • 4–5
%first • 4–5
%last • 4–5
%none • 4–5

success • 4–4
Forwarding mail • 1–16 to 1–17, 6–8, 6–27 to 6–28, 6–37,

7–8, 7–27 to 7–28, 7–37

G
Groups • 1–10 to 1–12, 6–8 to 6–10, 7–9 to 7–10
world • 1–10

H
HTTP server • 11–2
HTTP_ACCESS mapping table • 4–1, 5–2
HTTP_REALM option • 3–2

Index–2

Index

I
IMAP-based management • 2–5 to 2–6
IMAP server • 11–1 to 11–2
Inbound delivery channel • 10–1 to 10–3

delivery notifications • 10–3
quota handling • 10–2

L
Legacy POP3 server • 11–1
Linking programs • 12–14
Logging • 13–1 to 13–15

data types • 13–4 to 13–10
POPSTORE_LOG_END • 13–6
POPSTORE_LOG_LOGIN_END • 13–8
POPSTORE_LOG_LOGIN_PW_MATCH • 13–8
POPSTORE_LOG_LOGIN_PW_NOMATCH • 13–8
POPSTORE_LOG_LOGIN_START • 13–6
POPSTORE_LOG_MSG_DELETE • 13–9
POPSTORE_LOG_MSG_OPEN • 13–8
POPSTORE_LOG_MSG_STORE • 13–8
POPSTORE_LOG_START • 13–5
POPSTORE_LOG_USER_CREATE • 13–9
POPSTORE_LOG_USER_DELETE • 13–9
POPSTORE_LOG_USER_MODIFY • 13–9

logging channel keyword • 13–1
logging interface • 13–2 to 13–15

examples • 13–10 to 13–11
log_activity subroutine • 13–2

linking • 13–3
PMDF-style • 13–1
POP3 server • 13–1

LOG_ACTIVITY option • 3–2
log_activity subroutine • 13–2
LOG_ACTIVITY_MASK option • 3–3, 13–4 to 13–5

M
Mail forwarding • 1–16 to 1–17, 6–8, 6–27 to 6–28, 6–37,

7–8, 7–27 to 7–28, 7–37
bypassing • 1–16

MANAGE flag • 7–13

Management domains

See user domains
Management groups

See groups

Management interfaces

See command line management

See web-based management
MAP_MESSAGE_FILENAME option • 3–5
map_message_filename subroutine • 14–4 to 14–9

testing • 6–48 to 6–49, 7–47 to 7–49
MAP_PROFILE_FILENAME option • 3–3
map_profile_filename subroutine • 14–4 to 14–9

example • 14–7 to 14–9
testing • 6–48 to 6–49, 7–47 to 7–49

Message bouncer • 10–3
Message path file • 14–7
Messages • 1–15 to 1–16

deleting • 6–6 to 6–7, 6–24 to 6–25, 7–7, 7–24 to 7–25
forwarding • 6–8, 6–37, 7–8, 7–37
relocating message files • 14–4 to 14–9
removing • 6–24 to 6–25, 7–24 to 7–25
returning • 6–6 to 6–7, 7–7

MessageStore
accounts • 2–3 to 2–4
API • 2–7
management • 2–4 to 2–6

command line • 2–5
IMAP based • 2–5 to 2–6
web-based • 2–4 to 2–5

reconstruct utility • 2–6 to 2–7
MESSAGE_FILENAME_VERSION option • 3–5
MESSAGE_PROFILE_VERSION option • 3–3
Migration

moving the popstore • 8–1 to 8–2
user mailboxes • 8–2 to 9–1

msgstore channel • 10–1 to 10–3
quota handling • 10–2

N
Non-legacy POP3 server • 11–1
NOTARY handling • 10–3

O
Options • 3–1 to 3–8

AVOID_LOGIN_NAMES • 3–2
COMPUTE_BLOCK_DAYS • 3–5
COMPUTE_CONNECT • 3–2
DEBUG • 3–2
DEFAULT_ACL • 3–7
FILE_DEBUG • 3–8
HTTP_REALM • 3–2
LOG_ACTIVITY • 3–2
LOG_ACTIVITY_MASK • 3–3, 13–4 to 13–5

Index–3

Index

Options (cont’d)

MAP_MESSAGE_FILENAME • 3–5
MAP_PROFILE_FILENAME • 3–3
MESSAGE_FILENAME_VERSION • 3–5
MESSAGE_PROFILE_VERSION • 3–3
option files

format • 3–1
location • 3–1

PASSWORD_LIFETIME • 3–3
PASSWORD_MINIMUM_LENGTH • 3–3
PASSWORD_REASONABLENESS • 3–4
POST_USER • 3–8
QUOTA_WARNING • 3–5
REJECT_OVER_QUOTA • 3–4
RETURN_AFTER • 3–6
USERNAME_CHARSET • 1–5 to 1–7, 3–7
USERNAME_STYLE • 1–5 to 1–7, 3–4
USER_DOMAINS • 3–6
VALIDATE_PASSWORD • 3–4

ordering PMDF • xiii

Overdraft quota

See accounts, quotas

P
Passwords

See accounts, passwords
PASSWORD_LIFETIME option • 3–3
PASSWORD_MINIMUM_LENGTH option • 3–3
PASSWORD_REASONABLENESS option • 3–4
POP3 servers • 11–1
poppassd server • 11–2
popstore channel • 10–1 to 10–3

delivery notifications • 10–3
quota handling • 10–2

popstore utility

See command line management utility
POPSTORE_FLAGS_DELETE=16 • 12–15
POPSTORE_FLAGS_DISMAIL=2 • 12–15
POPSTORE_FLAGS_DISUSER=1 • 12–15
POPSTORE_FLAGS_LOCKPWD=4 • 12–16
POPSTORE_FLAGS_MANAGE=8 • 12–16
POPSTORE_FULL_UIDL_LEN=23 • 12–16
POPSTORE_MAX_DOMAIN_LEN=40 • 12–16
POPSTORE_MAX_FILE_LEN=1024 • 12–16
POPSTORE_MAX_GROUP_LEN=16 • 12–16
POPSTORE_MAX_OWN_LEN=40 • 12–16
POPSTORE_MAX_PRIV_LEN=32 • 12–16
POPSTORE_MAX_PWD_LEN=32 • 12–16
POPSTORE_MAX_USER_LEN=32 • 12–16
POPSTORE_message_ref structure • 12–19

POPSTORE_MFLAGS_READ=1 • 12–16
POPSTORE_MSG_FILE_FORMAT_VERSION=1 • 12–16
POPSTORE_MSG_NAME_LEN=19 • 12–16
POPSTORE_USERDATA_VERSION=3 • 12–16
POPSTORE_user_context structure • 12–21
POPSTORE_user_data structure • 12–16
POST_USER option • 3–8

Primary quota

See accounts, quotas
Process Software • xiii
Profile path file • 14–7

Q
Quotas

See accounts, quotas
QUOTA_WARNING option • 3–5

R
Reconstruct utility • 2–6 to 2–7
REJECT_OVER_QUOTA option • 3–4
Report generation • 6–14, 7–14 to 7–15, 9–1 to 9–2

example • 9–2
formatting files • 9–1

RETURN_AFTER option • 3–6

S
SASL • 1–8
Servers • 11–1 to 11–2

HTTP • 11–2
IMAP • 11–1 to 11–2
POP3 • 11–1
poppassd • 11–2

Shared images, linking • 13–3 to 13–4

Structures
See data types

Subaddresses • 1–3, 2–3
Subroutines

POPSTORE_command • 12–24
POPSTORE_command_d • 12–27
POPSTORE_end • 12–31
POPSTORE_error_to_text • 12–32
POPSTORE_format_counters • 12–33
POPSTORE_format_dispose • 12–35
POPSTORE_format_forwarding • 12–36
POPSTORE_format_forwarding_d • 12–38

Index–4

Index

Subroutines (cont’d)

POPSTORE_format_message • 12–40
POPSTORE_format_messages • 12–42
POPSTORE_format_profile • 12–43
POPSTORE_format_profiles • 12–45
POPSTORE_format_profiles_d • 12–46
POPSTORE_format_read • 12–48
POPSTORE_init • 12–50
POPSTORE_manage • 12–52
POPSTORE_message_begin • 12–53
POPSTORE_message_end • 12–55
POPSTORE_message_mark_delete • 12–56
POPSTORE_message_mark_nodelete • 12–57
POPSTORE_message_mark_noread • 12–58
POPSTORE_message_mark_read • 12–59
POPSTORE_message_read • 12–60
POPSTORE_message_return • 12–61
POPSTORE_user_begin • 12–63
POPSTORE_user_begin_d • 12–65
POPSTORE_user_billing • 12–67
POPSTORE_user_billing_d • 12–68
POPSTORE_user_copy • 12–70
POPSTORE_user_copy_d • 12–72
POPSTORE_user_create • 12–75
POPSTORE_user_create_dispose • 12–77
POPSTORE_user_create_set • 12–78
POPSTORE_user_delete • 12–83
POPSTORE_user_delete_d • 12–84
POPSTORE_user_end • 12–86
POPSTORE_user_exists • 12–87
POPSTORE_user_exists_d • 12–88
POPSTORE_user_list • 12–89
POPSTORE_user_list_abort • 12–94
POPSTORE_user_list_d • 12–91
POPSTORE_user_pw_change • 12–95
POPSTORE_user_pw_change_d • 12–97
POPSTORE_user_pw_check • 12–99
POPSTORE_user_update • 12–101

Substitution strings

See formatting files
formatting string • 4–5

U
User database

recreating • 7–15
User Database

recreating • 6–15
User domains • 1–12 to 1–13, 6–10 to 6–12, 7–10 to 7–12

adding • 6–16 to 6–19, 7–16
creating • 6–11, 6–16 to 6–19, 7–11, 7–16
deleting • 6–12, 7–12
enabling • 3–6, 6–10, 7–11
listing • 6–11, 7–11

User domains (cont’d)

managing • 6–11 to 6–12, 7–11 to 7–12
selecting • 6–42, 7–41

User interfaces
See web-based user interface

Usernames
See accounts, naming

USERNAME_CHARSET option • 1–5 to 1–7, 3–7
USERNAME_STYLE option • 1–5 to 1–7, 3–4
USER_DOMAINS option • 3–6

V
VALIDATE_PASSWORD option • 3–4
validate_password subroutine • 14–10 to 14–12
Validating Accounts • 10–2

W
Web-based management

access forbidden error • 4–1
access restrictions • 4–2
commands • 4–6 to 4–33

add_group • 4–7
add_user • 4–8 to 4–9
copy_user • 4–9 to 4–11
delete_group • 4–11
delete_message • 4–11 to 4–12
delete_messages • 4–12 to 4–13
delete_user • 4–13 to 4–14
forward • 4–14 to 4–15
list_forward • 4–15 to 4–17
list_groups • 4–17 to 4–18
list_users • 4–18 to 4–21
modify_group • 4–22
modify_user • 4–22 to 4–26
rename_user • 4–26
show_counters • 4–26 to 4–28
show_message • 4–29 to 4–30
show_user • 4–30 to 4–32
summary • 4–6
unforward • 4–32 to 4–33

formatting files

See formatting files
HTTP CGI • 4–3 to 4–33
HTTP requests • 4–3
HTTP responses • 4–4 to 4–5
MessageStore • 2–4 to 2–5
Password Change • 4–3
URL • 4–1
using • 4–1 to 4–2

Index–5

Index

Web-based user interface
access forbidden error • 5–2
access restrictions • 5–2
commands • 5–3 to 5–7

delete • 5–4
set_pwd • 5–6
show • 5–4 to 5–5
show_user • 5–6 to 5–7
summary • 5–3

header trimming • 5–8
HTTP CGIs • 5–3 to 5–8
URL • 5–1
using • 5–1 to 5–2

Index–6

