
PreciseMail Anti-Spam
Gateway Programming
Guide

September 2019

This manual provides documentation for public programming interfaces
provided as part of PreciseMail Anti-Spam Gateway.

Software Version: PreciseMail Anti-Spam Gateway V3.3

Process Software

13 September 2019

Copyright (c) 2019 Process Software, LLC. All Rights Reserved. Unpublished — all
rights reserved under the copyright laws of the United States

No part of this publication may be reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or computer language, in any form
or by any means electronic, mechanical, magnetic, optical, chemical, or otherwise
without the prior written permission of:

Process Software, LLC
959 Concord Street
Framingham, MA 01701-4682 USA
Voice: +1 508 879 6994; FAX: +1 508 879 0042
info@process.com

Process Software, LLC (‘‘Process’’) makes no representations or warranties with
respect to the contents hereof and specifically disclaims any implied warranties of
merchantability or fitness for any particular purpose. Furthermore, Process Software
reserves the right to revise this publication and to make changes from time to time in
the content hereof without obligation of Process Software to notify any person of such
revision or changes.

Use of PreciseMail Anti-Spam Gateway software and associated documentation is
authorized only by a Software License Agreement. Such license agreements specify
the number of systems on which the software is authorized for use, and, among other
things, specifically prohibit use or duplication of software or documentation, in whole
or in part, except as authorized by the Software License Agreement.

Restricted rights legend

Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013 or as set forth in the Commercial Computer Software
— Restricted Rights clause at FAR 52.227-19.

MultiNet is a registered trademark of Process Software, LLC.

TCPware is a trademark of Process Software, LLC.

PMDF is a trademark of Process Software, LLC.

All other trademarks are the property of their respective owners.

Contents

PREFACE vii

CHAPTER 1 USER DATABASE API 1–1

1.1 USING THE API 1–1

1.2 EXAMPLE PROGRAMS 1–2

1.3 USER DATABASE API FUNCTIONS 1–4
USERCHECKDBPASSWORD 1–5
USERCREATENEW 1–6
USERDELETE 1–7
USEREXISTS 1–8
USERGETDISCARDOPTIONS 1–9
USERGETGUINOPOPUPS 1–10
USERGETOPTIN 1–11
USERGETQUARANTINEOPTIONS 1–12
USERGETQUARANTINESORTORDER 1–13
USERGETQUARDISPLAYALL 1–14
USERGETQUARNOTICEENABLED 1–15
USERGETTAGAPPEND 1–16
USERGETTAGOPTIONS 1–17
USERGETTAGTEXT 1–18
USERLIST 1–19
USEROPTIN 1–20
USEROPTOUT 1–21
USERRENAME 1–22
USERSETDISCARDOPTIONS 1–23
USERSETGUINOPOPUPS 1–24
USERSETPASSWORD 1–25
USERSETQUARANTINEOPTIONS 1–26
USERSETQUARANTINESORTORDER 1–27
USERSETQUARDISPLAYALL 1–28
USERSETQUARNOTICEENABLED 1–29
USERSETTAGAPPEND 1–30
USERSETTAGOPTIONS 1–31
USERSETTAGTEXT 1–32

1.4 CONCURRENCY ISSUES 1–33

iii

Contents

INDEX

iv

Preface

This manual provides documentation for public programming interfaces

provided as part of PreciseMail Anti-Spam Gateway.

vii

1 User Database API

The PreciseMail user database stores user-specific options for message

filtering and the web user interface. The contents of the user database are

roughly the same as the options displayed in the Preferences section of the

web user interface. Every user who modifies their preferences from the

system defaults has an entry automatically created for them in the user

database.

Prior to version 2.4 of PreciseMail Anti-Spam Gateway, the user database

could only be accessed through the web interface and the pmasadmin tool.

This document describes an application programming interface (API) that

allows PreciseMail sites to develop their own custom software that reads

and modifies entries in the user database.

Machine-readable indexed files are used to store the user database. Each

entry in the database consists of a unique email address and the values

of several user options. This API allows those options to be read and/or

modified on a user-by-user basis. Note that only users who have changed

their settings from the system defaults will have entries in the user

database.

This document assumes that you already have a basic understanding

of the options that can be set on a user-by-user basis in PreciseMail.

Knowledge of how the PreciseMail filtering engine scores messages and

treats messages identified as spam or possible spam is also assumed. See

the PreciseMail Manager’s Guide for more information about these topics.

1.1 Using The API
The PreciseMail user database API consists of two files: a header include

file (userdb_api.h), and a shareable image (PMAS_USERDB_API.EXE) for

VMS, or a shareable object (libpmas_userdb.so) for UNIX. Include userdb_

api.h in any source file that makes use of the API. Below are the first few

lines from a sample C program showing the included user database header

file:

#include <stdlib.h>
#include <stdio.h>
#include "userdb_api.h"

The exact syntax required to link against the libpmas_userdb shareable

will depend upon your compiler and linker, but in general the following

syntax should work:

Linux

$ export LD_RUN_PATH=/pmas/bin
$ gcc -fPIC -c -o program.o program.c
$ gcc -L/pmas/bin/ -o program program.o -lpmas_userdb

1–1

User Database API

Solaris

$ gcc -fPIC -c -o program.o program.c
$ gcc -L/pmas/bin/ -o program program.o -lpmas_userdb

Tru64

$ cc -Wl,-rpath,/pmas/bin/ -L/pmas/bin/ -o program program.c -lpmas_userdb

OpenVMS

$ LINK program,PMAS_COM:pmas_userdb_api.opt/OPT

Programs that access the PreciseMail user database need to be run by a

user who has sufficient privileges to access the database files. On VMS,

the SYSTEM user should always have sufficient privileges. On UNIX,

the root user should always have sufficient privileges. In addition, UNIX

sites using PreciseMail integrated with PMDF can use the pmdf user;

PreciseMail integrated with Sendmail can use the daemon user.

1.2 Example Programs
Six example programs that use the user database API are included in the

PreciseMail distribution. Fully commented source code and build files are

available in the /pmas/api/userdb/ directory on UNIX and the PMAS_

ROOT:[API.USERDB] directory on OpenVMS.

To build the example programs on UNIX, run the make command

specifying the example makefile:

$ make -f userdb_api_makefile
gcc -c -o userdb_api_example1.o userdb_api_example1.c
gcc -o userdb_api_example1 -R/pmas/bin -L/pmas/bin userdb_api_example1.o -lpmas_userdb

[...]

gcc -c -o userdb_api_example6.o userdb_api_example6.c
gcc -o userdb_api_example6 -R/pmas/bin -L/pmas/bin userdb_api_example6.o -lpmas_userdb
$

To build the example programs on OpenVMS, run MMS or MMK:

$ MMS/DESCRIP=USERDB_API_DESCRIP.MMS

The six example programs are:

userdb_api_example1

Checks that a user specified on the command line exists in the user

database, and then opts the user into message filtering. Sample run:

$./example1 user@example.com
Successfully opted-in user@example.com
$

userdb_api_example2

Reads a list of users from a file specified on the command line, and deletes

them the user database. Schools might want to run a similar program at

the end of a semester to remove graduating students. Sample run:

1–2

User Database API

$./example2 graduates.txt\BOLD
user1@example.com deleted
user2@example.com deleted
bogus@example.com does not exist in user database
user3@example.com deleted
$

userdb_api_example3

Print the specified user’s threshold settings if the password supplied on

the command line is correct. Sample run:

$./example3 user@example.com secret
Thresholds for user@example.com
Tagging: system
Quarantine: enabled, 5.000
Discard: disabled, 20.000
$

userdb_api_example4

Prints a list of every user who has enabled discarding and their discard

threshold. Sample run:

$./example4
user1@example.com, 50.000
user2@example.com, system
user3@example.com, system
user4@example.com, 20.500
$

userdb_api_example5

Renames every user whose address belongs to the first domain specified

on the command line to the second domain specified on the command line.

Sites that are changing their domain name might want to run a program

like this. (Note that this only renames the user database entry - other

programs will need to handle user rule files and quarantined messages.)

Sample run:

$./example5 example.org example.com
Renamed user1@example.org to user1@example.com
Renamed user2@example.org to user2@example.com
Renamed user3@example.org to user3@example.com
Renamed user4@example.org to user4@example.com
$

userdb_api_example6

Gets a list of every user in the user database, and checks each one whose

address ends in .de to see if Subject line tagging is enabled. If tagging is

enabled, the tag text is changed to ABFALL (German for "trash".) Sample

run:

$./example6
Changed tag for hans@example.de
Changed tag for jacob@example.de
Changed tag for gunther@example.de
$

Note: Like any program that accesses the user database, these examples

must be run by a user with sufficient privileges to access the user

database files.

1–3

User Database API

1.3 User Database API Functions
This section contains a complete list of the user database API functions,

arranged in alphabetical order. Entries in the user database are indexed

by the user’s email address, so the terms "user" and "email" are used

interchangeably. All strings are standard NULL-terminated ASCII

strings.

1–4

userCheckDBPassword

userCheckDBPassword

C status = userCheckDBPassword
(email, password)

argument
information int userCheckDBPassword(char *email, char *password)

ARGUMENTS email
The user whose password is being checked.

password
The supplied password that will be checked against the user’s stored
password.

DESCRIPTION Checks password to see if it matches the user’s password in the

PreciseMail password database. Note that this does not authenticate

users against other authentication sources, such as an LDAP directory

server. The use of this function is demonstrated in userdb_api_example3.

RETURN
VALUES -1 An error occurred and the password couldn’t be

checked

0 Supplied password is incorrect

1 Supplied password is correct

1–5

userCreateNew

userCreateNew

C status = userCreateNew
(email, password)

argument
information int userCreateNew(char *email, char *password);

ARGUMENTS email
The email address of the user being created.

password
If not NULL, the user’s password inside the PreciseMail user database.

DESCRIPTION Creates a new user in the PreciseMail user database. If password is a

non-NULL value, it will be stored as the user’s password in the database.

(This password will be checked when the user authenticates if the PMAS

authentication method is specified in the auth_methods configuration

variable. See Chapter 2 of the PreciseMail Administrator’s Guide for more

information.)

RETURN
VALUES 0 Failure

1 Success

1–6

userDelete

userDelete

C status = userDelete
(email)

argument
information int userDelete(char *email);

ARGUMENTS email
The user to remove from the user database.

DESCRIPTION Deletes the specified user and all of their settings from the user database.

Database entries cannot be recovered if accidentally deleted, so use this

function carefully. The use of this function is demonstrated in userdb_api_

example2.

RETURN
VALUES 0 Failure

1 Success

1–7

userExists

userExists

C status = userExists
(email)

argument
information int userExists(char *email);

ARGUMENTS email
The user whose existence is being checked.

DESCRIPTION Checks for the existence of a user named email in the PreciseMail

password database. The use of this function is demonstrated in userdb_

api_example1 and userdb_api_example2.

RETURN
VALUES 0 User does not exist in database

1 User exists in database

1–8

userGetDiscardOptions

userGetDiscardOptions

C status = userGetDiscardOptions
(email, enabled, threshold, system)

argument
information int userGetDiscardOptions(char *email, int *enabled, double *threshold,

int *system);

ARGUMENTS email
The user to retrieve discard settings for.

enabled
Set to 1 if discarding is enabled for the user.

threshold
The message score threshold above which messages for this user are
discarded.

system
Set to 1 if the user is using the system defaults for discarding.

DESCRIPTION Retrieves a user’s discard options from the user database. Note that

PreciseMail ignores the values of threshold and enabled if system is set to

1. The use of this function is demonstrated in userdb_api_example3 and

userdb_api_example4.

RETURN
VALUES 0 Failure

1 Success

1–9

userGetGUINoPopups

userGetGUINoPopups

C status = userGetGUINoPopups
(email, on)

argument
information int userGetGUINoPopups(char *email, int *on);

ARGUMENTS email
The user to retrieve GUI settings for.

on
Set to 1 if web interface popups are enabled for the user.

DESCRIPTION Retrieves a user’s preferences about the use of popups in the web user

interface. If on is 1, popup windows will be used in place of interstitial

pages for some operations, such as releasing a message from quarantine.

RETURN
VALUES 0 Failure

1 Success

1–10

userGetOptIn

userGetOptIn

C status = userGetOptIn
(email, opt_in)

argument
information int userGetOptIn(char *email, int *opt_in);

ARGUMENTS email
User to get opt-in status for.

opt_in
Set to 1 if user is opted-in.

DESCRIPTION Determines if the specified user is opted-in to message filtering.

RETURN
VALUES 0 Failure

1 Success

1–11

userGetQuarantineOptions

userGetQuarantineOptions

C status = userGetQuarantineOptions
(email, enabled, threshold, system)

argument
information int userGetQuarantineOptions(char *email, int *enabled, double *threshold,

int *system);

ARGUMENTS email
The user to get quarantine settings for.

enabled
Set to 1 if quarantining is enabled for the user’s account.

threshold
The message score threshold above which messages for this user are
quarantined.

system
Set to 1 if the user is using the system defaults for quarantining messages.

DESCRIPTION Retrieves a user’s quarantine options from the user database. Note that

PreciseMail ignores the values of threshold and enabled if system is set to

1. The use of this function is demonstrated in userdb_api_example3.

RETURN
VALUES 0 Failure

1 Success

1–12

userGetQuarantineSortOrder

userGetQuarantineSortOrder

C status = userGetQuarantineSortOrder
(email, sort)

argument
information int userGetQuarantineSortOrder(char *email, int *sort);

ARGUMENTS email
The user to get the default quarantine sort order for.

sort
The method used to sort quarantined messages in the user’s quarantine
listing. The possible values are:

Value Meaning

0 Normal (ascending by time received)

1 Ascending by score

2 Descending by score

3 Ascending by Subject line

4 Descending by Subject line

5 Descending by time received

DESCRIPTION Gets the default sort order for messages on the user’s quarantine listing

page in the web user interface. (Once the quarantine listing is loaded,

users can sort the page any way they want by clicking on a column

header.)

RETURN
VALUES 0 Failure

1 Success

1–13

userGetQuarDisplayAll

userGetQuarDisplayAll

C status = userGetQuarDisplayAll
(email, on)

argument
information int userGetQuarDisplayAll(char *email, int *on);

ARGUMENTS email
The user to retrieve quarantine display settings for.

on
Set to 1 if all of the user’s quarantined messages are displayed by default.

DESCRIPTION Retrieves the specified user’s preferences for the amount of messages

displayed by default in the web user interface. If on is 0, only messages

quarantined for the user during the current calendar day are displayed. If

on is 1, every message quarantined for the user is displayed regardless of

when it was quarantined. Note that generating a listing of all quarantined

messages for a user can require a substantial amount of system resources

if there are a very large number of messages quarantined for the user.

RETURN
VALUES 0 Failure

1 Success

1–14

userGetQuarNoticeEnabled

userGetQuarNoticeEnabled

C status = userGetQuarNoticeEnabled
(email, enabled)

argument
information int userGetQuarNoticeEnabled(char *email, int *enabled);

ARGUMENTS email
The user to retrieve quarantine display settings for.

enabled
Set to 1 if quarantine notification emails are sent to the user.

DESCRIPTION Retrieves the specified user’s preferences for receiving quarantine

notification emails when new mail has been quarantined for them since

the last notification was sent. By default, the notification messages are

sent twice a day (the frequency and time of notifications are configurable

by the system administrator). If enabled is set to 0, the user will not

receive quarantine notification emails.

RETURN
VALUES 0 Failure

1 Success

1–15

userGetTagAppend

userGetTagAppend

C status = userGetTagAppend
(email, append)

argument
information int userGetTagAppend(char *email, int *append);

ARGUMENTS email
The user to retrieve Subject line tag settings for.

append()

If set to 1, spam messages are tagged by having a text token appended to
the end of the Subject line. If set to 0 (the default), the tag is prepended to
the front of the Subject line.

DESCRIPTION Retrieves the specified user’s preferences for where a text token is

placed in the Subject line of messages tagged as spam. The current

text token can be obtained by calling userGetTagText, and it can be set

with userSetTagText.

RETURN
VALUES 0 Failure

1 Success

1–16

userGetTagOptions

userGetTagOptions

C status = userGetTagOptions
(email, enabled, threshold, system)

argument
information int userGetTagOptions(char *email, int *enabled, double *threshold,

int *system);

ARGUMENTS email
The user to retrieve tagging settings for.

enabled
Set to 1 if tagging is enabled for the user.

threshold
The message score threshold above which messages for this user are
tagged.

system
Set to 1 if the user is using the system defaults for tagging messages.

DESCRIPTION Retrieves a user’s Subject line tagging options from the user database.

Note that PreciseMail ignores the values of threshold and enabled if

system is set to 1. The use of this function is demonstrated in userdb_api_

example3 and userdb_api_example6.

RETURN
VALUES 0 Failure

1 Success

1–17

userGetTagText

userGetTagText

C status = userGetTagText
(email, text)

argument
information int userGetTagText(char *email, char *text);

ARGUMENTS email
The user to retrieve message tagging settings for.

text
The text placed in the Subject line of messages that cross the tagging
threshold.

DESCRIPTION Retrieves the text placed in the Subject line of tagged messages for the

specified user. By default, the text is [SPAM].

RETURN
VALUES 0 Failure

1 Success

1–18

userList

userList

C users = userList
(num_users)

argument
information char **userList(int *num_users);

ARGUMENTS num_users
Will be set to the number of users in the user database when the function
returns.

DESCRIPTION Generates an array of strings, each corresponding to a user in the user

database. This function is useful if you want to perform an action on

every user or a subset of users in the database. The use of this function is

demonstrated in userdb_api_example4, userdb_api_example5, and userdb_

api_example6.

RETURN
VALUES NULL Failure

An array of character pointers, each of which points
to the name of a user who has a record in the user
database.

1–19

userOptIn

userOptIn

C status = userOptIn
(email)

argument
information int userOptIn(char *email);

ARGUMENTS email
The user to be opted-in to message filtering.

DESCRIPTION Opts the specified user into message filtering. All of the user’s incoming

mail will be scanned by PreciseMail. If the user is already opted-in,

this function will not produce an error. The use of this function is

demonstrated in userdb_api_example1.

RETURN
VALUES 0 Failure

1 Success

1–20

userOptOut

userOptOut

C status = userOptOut
(email)

argument
information int userOptOut(char *email);

ARGUMENTS email
The user to be opted-out of message filtering.

DESCRIPTION Opts the specified user out of message filtering. None of the user’s

incoming mail will be filtered. If the user is already opted-out of filtering,

this function will not produce an error.

RETURN
VALUES 0 Failure

1 Success

1–21

userRename

userRename

C status = userRename
(old_email, new_email)

argument
information int userRename(char *old_email, char *new_email);

ARGUMENTS old_email
The user’s current email address as stored in the user database.

new_email
The new email address that the user’s information should be associated
with in the user database.

DESCRIPTION Renames a user, preserving all of their personal preferences. The old user

record is not removed until the new user record is successfully created,

preventing any data loss in the event of a software or hardware failure.

The use of this function is demonstrated in userdb_api_example5.

RETURN
VALUES 0 Failure

1 Success

1–22

userSetDiscardOptions

userSetDiscardOptions

C status = userSetDiscardOptions
(email, enabled, threshold, system)

argument
information int userSetDiscardOptions(char *email, int enabled, double threshold,

int system);

ARGUMENTS email
The user to enable or disable discarding for.

enabled
Set to 1 if you want to enable discarding for the user, 0 if you want to
disable discarding.

threshold
The score threshold above which the user’s messages will be discarded.

system
Set to 1 if you want the user to use the system default discard settings, 0
if not.

DESCRIPTION Sets a user’s discard options in the user database. Note that PreciseMail

ignores the values of threshold and enabled if system is set to 1. The

values of threshold and enabled will still be updated in the database, but

it will have no effect on filtering operations.

RETURN
VALUES 0 Failure

1 Success

1–23

userSetGUINoPopups

userSetGUINoPopups

C status = userSetGUINoPopups
(email, on)

argument
information int userSetGUINoPopups(char *email, int on);

ARGUMENTS email
The user to retrieve GUI settings for.

on
Set to 1 to enable web interface popups for the user, 0 to disable them.

DESCRIPTION Sets a user’s preferences about the use of popups in the web user interface.

If on is set to 1, popup windows will be used in place of interstitial pages

for some operations, such as releasing a message from quarantine.

RETURN
VALUES 0 Failure

1 Success

1–24

userSetPassword

userSetPassword

C status = userSetPassword
(email, password)

argument
information int userSetPassword(char *email, char *password);

ARGUMENTS email
The user whose password is to be changed.

password
The user’s new password, in plain text.

DESCRIPTION Sets the user’s password in the user database, replacing any existing

password in the database.

RETURN
VALUES 0 Failure

1 Success

1–25

userSetQuarantineOptions

userSetQuarantineOptions

C status = userSetQuarantineOptions
(email, enabled, threshold, system)

argument
information int userSetQuarantineOptions(char *email, int enabled, double threshold,

int system);

ARGUMENTS email
The user to enable or disable quarantining for.

enabled
Set to 1 if you want to enable quarantining for the user, 0 if you want to
disable quarantining.

threshold
The message score threshold above which messages for this user are
quarantined.

system
Set to 1 if you want the user to use the system default quarantine settings,
0 if not.

DESCRIPTION Sets a user’s quarantine options in the user database. Note that

PreciseMail ignores the values of threshold and enabled if system is

set to 1. The values of threshold and enabled will still be updated in the

database, but it will have no effect on filtering operations.

RETURN
VALUES 0 Failure

1 Success

1–26

userSetQuarantineSortOrder

userSetQuarantineSortOrder

C status = userSetQuarantineSortOrder
(email, sort)

argument
information int userSetQuarantineSortOrder(char *email, int sort);

ARGUMENTS email
The user to set default quarantine listing sort order for.

sort
A value between 0 and 5 inclusive that specifies the way quarantined
messages are sorted in the user’s quarantine listing. The possible values
are:

Value Meaning

0 Normal (ascending by time received)

1 Ascending by score

2 Descending by score

3 Ascending by Subject line

4 Descending by Subject line

5 Descending by time received

DESCRIPTION Changes the way messages are sorted by default on the user’s quarantine

listing page in the web user interface.

RETURN
VALUES 0 Failure

1 Success

1–27

userSetQuarDisplayAll

userSetQuarDisplayAll

C status = userSetQuarDisplayAll
(email, on)

argument
information int userSetQuarDisplayAll(char *email, int on);

ARGUMENTS email
The user to set quarantine display settings for.

on
Set to 1 to display all of the user’s quarantined messages by default, 0 to
show only today’s quarantined messages.

DESCRIPTION Sets the specified user’s preferences for the amount of messages displayed

by default in the web user interface. If you set on to 0, only messages

quarantined for the user during the current calendar day are displayed. If

on is 1, every message quarantined for the user is displayed regardless of

when it was quarantined.

RETURN
VALUES 0 Failure

1 Success

1–28

userSetQuarNoticeEnabled

userSetQuarNoticeEnabled

C status = userSetQuarNoticeEnabled
(email, enabled)

argument
information int userSetQuarNoticeEnabled(char *email, int enabled);

ARGUMENTS email
The user to set quarantine options for.

enabled
Set to 1 to have quarantine notification emails sent to the specified user, 0
to turn off the notifications.

DESCRIPTION Sets the specified user’s preferences for receiving quarantine notification

emails when new mail has been quarantined for them since the last

notification was sent. By default, the notification messages are sent twice

a day (the frequency and time of notifications are configurable by the

system administrator).

RETURN
VALUES 0 Failure

1 Success

1–29

userSetTagAppend

userSetTagAppend

C status = userSetTagAppend
(email, append)

argument
information int userSetTagAppend(char *email, int append);

ARGUMENTS email
The user to set Subject line tag options for.

append
Set to 1 to append the tag to the end of a spam message’s Subject line. Set
to 0 to place the tag at the beginning of the Subject line.

DESCRIPTION Sets the specified user’s preferences for where a text token is placed in the

Subject line of messages tagged as spam.

RETURN
VALUES 0 Failure

1 Success

1–30

userSetTagOptions

userSetTagOptions

C status = userSetTagOptions
(email, enabled, threshold, system)

argument
information int userSetTagOptions(char *email, int enabled, double threshold,

int system);

ARGUMENTS email
The user’s email address.

enabled
Set to 1 if you want to enable tagging for the user, 0 if you want to disable
tagging.

threshold
Message score threshold above which the user’s messages will be tagged

system
Set to 1 if you want the user to use the system default tag settings, 0 if
not.

DESCRIPTION Sets a user’s Subject line tagging options in the user database. Note that

PreciseMail ignores the values of threshold and enabled if system is set

to 1. The values of threshold and enabled will still be updated in the

database, but it will have no effect on filtering operations. The use of this

function is demonstrated in userdb_api_example6.

RETURN
VALUES 0 Failure

1 Success

1–31

userSetTagText

userSetTagText

C status = userSetTagText
(email, text)

argument
information int userSetTagText(char *email, char *text);

ARGUMENTS email
The user to set message tagging settings for.

text
The text placed in the Subject line of messages that cross the tagging
threshold.

DESCRIPTION Sets the text token placed in the Subject line of tagged messages for the

specified user. By default, the text is [SPAM].

RETURN
VALUES 0 Failure

1 Success

1–32

User Database API

1.4 Concurrency Issues
The user database provides automatic granular locking, so multiple writes

will not collide. The data in this particular database is "write rarely, read

often", so it’s unlikely that there will be a data concurrency issue. Still, it’s

important to keep in mind that data in the database can change between

operations performed by your program if users make changes via the

web user interface or other programs. Try to avoid writing your program

in such a way that it depends on data values being constant between

operations.

For example, let’s say you’ve written a program that obtains a list of every

user who has discarding enabled, performs some other processing for 15

minutes, and then opts those users out of filtering. (I don’t know why

you’d want such a program, but it’s a simple example.) In the 15-minute

interval between when your program obtained the list of users and when

they were opted them out, several users could have enabled discarding via

the web interface. Those users would not be opted out, since they didn’t

have discarding enabled when your program obtained the list of users.

To avoid such situations, try to keep your access to the user database as

atomic as possible. In the above example, the program should be rewritten

so the 15 minutes of processing occurs before or after the user database

operations. If it isn’t possible to perform user database operations that

depend on previously obtained database information in a back-to-back

fashion, try to run your program during periods of low system use.

1–33

Index

Index–1

