
PMDF System Manager’s Guide

Order Number: N-5301-66-NN-N

February 2020

This document describes the configuration and usage of version 6.8 of the PMDF, PMDF-
MTA, and PMDF-TLS software.

Revision/Update Information: This manual supersedes the V6.7 PMDF System Man-
ager’s Guide

Software Version: PMDF V6.8

Operating System and Version: Red Hat Enterprise Linux 7 or later on x86_64; (or other
compatible Linux distribution)

OpenVMS Alpha V7.3-2 or later;

OpenVMS I64 V8.2 or later;

Copyright ©2020 Process Software, LLC.
Unpublished — all rights reserved under
the copyright laws of the United States

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in any form or by any means electronic,
mechanical, magnetic, optical, chemical, or otherwise without the prior written permission of:

Process Software, LLC
959 Concord Street
Framingham, MA 01701-4682 USA
Voice: +1 508 879 6994; FAX: +1 508 879 0042
info@process.com

Process Software, LLC (‘‘Process’’) makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties of merchantability or fitness for any
particular purpose. Furthermore, Process Software reserves the right to revise this publication and to
make changes from time to time in the content hereof without obligation of Process Software to notify
any person of such revision or changes.

Use of PMDF, PMDF-MSGSTORE, PMDF-MTA, and/or PMDF-TLS and associated documentation
is authorized only by a Software License Agreement. Such license agreements specify the number of
systems on which the software is authorized for use, and, among other things, specifically prohibit use
or duplication of software or documentation, in whole or in part, except as authorized by the Software
License Agreement.

Restricted Rights Legend

Use, duplication, or disclosure by the government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in

Technical Data and Computer Software clause at DFARS 252.227-7013
or as set forth in the Commercial Computer Software —

Restricted Rights clause at FAR 52.227-19.

The PMDF mark and all PMDF-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States and other countries and are

used under license.

AlphaMate is a registered trademark of Motorola, Inc.

ALL-IN-1, Alpha AXP, AXP, Bookreader, DEC, DECnet, HP, I64, IA64, Integrity, MAILbus,

MailWorks, Message Router, MicroVAX, OpenVMS, Pathworks, PSI, RMS, TeamLinks,

TOPS-20, Tru64, TruCluster, ULTRIX, VAX, VAX Notes, VMScluster, VMS, and WPS-

PLUS are registered trademarks of Hewlett-Packard Company.

cc:Mail is a trademark of cc:Mail, Inc., a wholly-owned subsidiary of Lotus

Development Corporation. Lotus Notes is a registered trademark of Lotus

Development Corporation.

AS/400, CICS, IBM, Office Vision, OS/2, PROFS, and VTAM are registered trademarks

of International Business Machines Corporation. CMS, DISOSS, OfficeVision/VM,

OfficeVision/400, OV/VM, and TSO are trademarks of International Business Machines

Corporation.

RC2 and RC4 are registered trademarks of RSA Data Security, Inc.

dexNET is a registered trademark of Fujitsu Imaging Systems of America, Inc. Ethernet is a registered trademark of Xerox Corporation.

FaxBox is a registered trademark of DCE Communications Group Limited. GIF and ‘‘Graphics Interchange Format’’ are trademarks of CompuServe,

Incorporated.

InterConnections is a trademark of InterConnections, Inc. InterDrive is a registered trademark of FTP Software, Inc.

LANmanager and Microsoft are registered trademarks of Microsoft Corporation. Memo is a trade mark of Verimation ApS.

MHS, Netware, and Novell are registered trademarks of Novell, Inc. LaserJet and PCL are registered trademarks of Hewlett-Packard Company.

PGP and Pretty Good Privacy are registered trademarks of Pretty Good Privacy, Inc. Jnet is a registered trademark of Wingra, Inc.

Attachmate is a registered trademark and PathWay is a trademark of Attachmate

Corporation.

Pine and Pico are trademarks of the University of Washington, used by

permission.

PostScript is a registered trademark of Adobe Systems Incorporated. Solaris, Sun, and SunOS are trademarks of Sun Microsystems, Inc.

SPARC is a trademark of SPARC International, Inc. TCPware and MultiNet are registered trademarks of Process Software.

UNIX is a registered trademark of UNIX System Laboratories, Inc. TIFF is a trademark of Aldus Corporation.

Gold-Mail is a trademark of Data Processing Design, Inc. Copyright (c) 1990-2000 Sleepycat Software. All rights reserved.

libedit/editline is Copyright (c) 1992, 1993, The Regents of the University of California.

All rights reserved.

Contents

PREFACE xlvii

Volume I

CHAPTER 1 STRUCTURE AND OVERVIEW 1–1

1.1 THE STRUCTURE OF PMDF 1–1

1.2 THE PMDF CONFIGURATION FILE: CHANNELS AND REWRITE
RULES 1–4
1.2.1 Channels 1–6
1.2.2 Domain Rewriting Rules 1–7

1.3 ENABLING PMDF TO RECEIVE MESSAGES 1–7

1.4 PROCESSING JOBS 1–7
1.4.1 Immediate Message Submission Jobs 1–8
1.4.2 Manually Starting an Immediate Message Submission

Job 1–8
1.4.3 The Periodic Message Delivery Retry Job 1–9

1.4.3.1 Adjusting Periodic Delivery Retry Job Frequency • 1–10
1.4.3.2 Clean Up Tasks Performed by the Periodic Delivery Job • 1–11

1.4.4 Returning Undeliverable Messages 1–11
1.4.4.1 Adjusting Return Job Frequency • 1–12
1.4.4.2 Clean Up Tasks Performed by the Return Job • 1–13

1.4.5 Managing Processing Job Execution on OpenVMS 1–14
1.4.6 Running Processing Jobs Under a Username Other than

SYSTEM on OpenVMS 1–15

1.5 STORAGE OF MESSAGE FILES ON DISK 1–15
1.5.1 Channel Queue Formats 1–16
1.5.2 Message File Structure 1–17

1.6 OTHER IMPORTANT FILES 1–18

1.7 INSTALLATION ENVIRONMENT: LOGICALS (OpenVMS), TAILOR
FILE (UNIX), REGISTRY (NT) 1–21

1.8 COMPLIANCE WITH STANDARDS 1–22

CHAPTER 2 THE CONFIGURATION FILE: DOMAIN REWRITE RULES
& THE CHANNEL/HOST TABLE 2–1

2.1 STRUCTURE OF THE CONFIGURATION FILE 2–1
2.1.1 Blank Lines in the Configuration File 2–2
2.1.2 Comments in the Configuration File 2–2
2.1.3 Continuation Lines in the Configuration File 2–2
2.1.4 Including Other Files in the Configuration File 2–2

2.2 DOMAIN REWRITING RULES 2–3

iii

Contents

2.2.1 The Purpose of Domain Rewriting Rules 2–3
2.2.2 Location and Format of Domain Rewriting Rules 2–3
2.2.3 Application of Domain Rewriting Rules to Addresses 2–4

2.2.3.1 Extraction of the First Host/domain Specification • 2–5
2.2.3.2 Scanning the Rewrite Rules • 2–6
2.2.3.3 Applying the Rewrite Rule Template • 2–8
2.2.3.4 Finishing the Rewriting Process • 2–8
2.2.3.5 Rewrite Rule Failure • 2–9
2.2.3.6 Syntax Checks After Rewriting • 2–9
2.2.3.7 Handling of Domain Literals • 2–9

2.2.4 Patterns and Tags 2–10
2.2.4.1 A Rule to Match Percent Hacks • 2–12
2.2.4.2 A Rule to Match Bang-style (UUCP) Addresses • 2–12
2.2.4.3 A Rule to Match Any Address • 2–12
2.2.4.4 Tagged Rewrite Rule Sets • 2–12

2.2.5 Templates 2–13
2.2.5.1 Ordinary Rewriting Templates, A@B or A%B@C • 2–14
2.2.5.2 Repeated Rewritings Template, A%B • 2–14
2.2.5.3 Specified Route Rewriting Templates, A@B@C or

A@B@C@D • 2–14
2.2.5.4 Case Sensitivity in Rewrite Rule Templates • 2–15

2.2.6 Template Substitutions and Rewrite Rule Control
Sequences 2–15
2.2.6.1 Username and Subaddress Substitution, $U, $0U, $1U • 2–17
2.2.6.2 Host/domain and IP Literal Substitutions, $D, $H, $nD, $nH,

$L • 2–17
2.2.6.3 Literal Character Substitutions, $$, $%, $@ • 2–18
2.2.6.4 LDAP Query URL Substitutions, $]...[• 2–18
2.2.6.5 General Database Substitutions, $(...) • 2–19
2.2.6.6 Apply Specified Mapping, ${...} • 2–19
2.2.6.7 Customer-supplied Routine Substitutions, $[...] • 2–20
2.2.6.8 Single Field Substitutions, $&, $!, $*, $# • 2–21
2.2.6.9 Unique String Substitutions • 2–21
2.2.6.10 Source Channel-specific Rewrite Rules, $M, $N • 2–22
2.2.6.11 Destination Channel-specific Rewrite Rules, $C, $Q • 2–23
2.2.6.12 Direction and Location-specific Rewrites, $B, $E, $F, $R • 2–23
2.2.6.13 Host Location-specific Rewrites, $A, $P, $S, $X • 2–24
2.2.6.14 Changing the Current Tag Value, $T • 2–24
2.2.6.15 Controlling Error Messages Associated with Rewriting,

$? • 2–25
2.2.7 Rewrite Rules Example 2–26
2.2.8 Testing Domain Rewriting Rules 2–27
2.2.9 Handling Large Numbers of Rewrite Rules 2–28
2.2.10 Using Rewrites to Illegal Addresses 2–30
2.2.11 Other Address Manipulations 2–31

2.3 THE CHANNEL/HOST TABLE 2–31
2.3.1 Overview 2–31
2.3.2 Channel Definitions: the Channel/host Table 2–32

2.3.2.1 First Line: Channel Name and Keywords • 2–32
2.3.2.2 Second Line: System Name and Local Host Alias • 2–32
2.3.2.3 Additional Lines: Systems Reachable via the Channel • 2–33

iv

Contents

2.3.3 Envelope vs. Header Addresses: Channel-level Name
Translations 2–34

2.3.4 Channel Table Keywords 2–35
2.3.4.1 Address Types and Conventions (822, 733, uucp,

header_822, header_733, header_uucp) • 2–59
2.3.4.2 Address Interpretation (bangoverpercent,

nobangoverpercent) • 2–60
2.3.4.3 Routing Information in Addresses (exproute, noexproute,

improute, noimproute) • 2–60
2.3.4.4 Short Circuiting Rewriting of Routing Addresses

(routelocal) • 2–61
2.3.4.5 Address Rewriting Upon Message Dequeue (connectalias,

connectcanonical) • 2–61
2.3.4.6 Channel-specific Rewrite Rules (rules, norules) • 2–62
2.3.4.7 Channel Directionality (master, slave,

bidirectional) • 2–62
2.3.4.8 Channel Operation Type (submit) • 2–62
2.3.4.9 Channel Service Periodicity (immediate, immnonurgent,

immnormal, immurgent, periodic, period) • 2–62
2.3.4.10 Message Size Affecting Priority (urgentblocklimit,

normalblocklimit, nonurgentblocklimit) • 2–63
2.3.4.11 Priority of Messages to be Handled by Periodic Jobs

(minperiodicnonurgent, minperiodicnormal,
minperiodicurgent, maxperiodicnonurgent,
maxperiodicnormal, maxperiodicurgent) • 2–64

2.3.4.12 Immediate Delivery Job Service Actions (serviceall,
noserviceall) • 2–64

2.3.4.13 Channel Connection Information Caching (cacheeverything,
cachesuccesses, cachefailures, nocache) • 2–65

2.3.4.14 Number of Addresses or Message Files to Handle per Service
Job or File (addrsperjob, filesperjob, maxjobs) • 2–65

2.3.4.15 Multiple Addresses (multiple, addrsperfile, single,
single_sys) • 2–66

2.3.4.16 Expansion of Multiple Addresses (expandlimit,
expandchannel, holdlimit) • 2–67

2.3.4.17 Multiple Subdirectories (subdirs) • 2–67
2.3.4.18 Service Job Queue Usage and Job Deferral (queue,

nonurgentqueue, normalqueue, urgentqueue,
after) • 2–68

2.3.4.19 Deferred Delivery Dates (deferred, nodeferred) • 2–69
2.3.4.20 Undeliverable Message Notification Times

(notices, nonurgentnotices, normalnotices,
urgentnotices) • 2–69

2.3.4.21 Returned Messages (sendpost, nosendpost,
copysendpost, errsendpost) • 2–70

2.3.4.22 Warning Messages (warnpost, nowarnpost, copywarnpost,
errwarnpost) • 2–71

2.3.4.23 Postmaster Returned Message Content (postheadonly,
postheadbody) • 2–71

2.3.4.24 Delivery Receipt Request Style (reportboth, reportheader,
reportnotary, reportsuppress) • 2–71

2.3.4.25 Passing Read Receipt Requests to the VMS MAIL Mailbox
(OpenVMS) (readreceiptmail) • 2–72

v

Contents

2.3.4.26 Gold-Mail Compatible Read Receipts (OpenVMS) (goldmail,
nogoldmail) • 2–72

2.3.4.27 Including Altered Addresses in Notification Messages
(includefinal, suppressfinal) • 2–73

2.3.4.28 Protocol Streaming (streaming) • 2–73
2.3.4.29 Triggering New Threads in Multi-threaded SMTP Channel

(threaddepth) • 2–73
2.3.4.30 PMDF Channel Queue Directories’ Locations (logicaldisk,

nologicaldisk) • 2–74
2.3.4.31 Channel Protocol Selection (smtp, nosmtp) • 2–74
2.3.4.32 SMTP EHLO Command (ehlo, checkehlo, noehlo) • 2–74
2.3.4.33 Sending an SMTP ETRN Command (sendetrn,

nosendetrn) • 2–75
2.3.4.34 Receiving an SMTP ETRN Command (allowetrn,

blocketrn, disableetrn, domainetrn,
silentetrn) • 2–76

2.3.4.35 Sending an SMTP VRFY Command (domainvrfy,
localvrfy, novrfy) • 2–76

2.3.4.36 Responding to SMTP VRFY Commands (vrfyallow,
vrfydefault, vrfyhide) • 2–76

2.3.4.37 TCP/IP Port Number and Interface Address
(interfaceaddress, port) • 2–77

2.3.4.38 TCP/IP Nameserver and MX Record Support (mx,
nomx, nodns, defaultmx, randommx, nonrandommx,
nameservers, defaultnameservers) • 2–77

2.3.4.39 Specify a Last Resort Host (lastresort) • 2–78
2.3.4.40 Reverse DNS lookups on incoming SMTP connections (

identnone, identnonelimited, identnonenumeric,
identnonesymbolic, forwardchecknone,
forwardchecktag, forwardcheckdelete) • 2–78

2.3.4.41 Verify that the domain on the MAIL FROM: line is in the DNS
(mailfromdnsverify, nomailfromdnsverify) • 2–79

2.3.4.42 Select an alternate channel for incoming mail (switchchannel,
allowswitchchannel, noswitchchannel) • 2–79

2.3.4.43 SMTP authentication and SASL (client_auth,
maysasl, maysaslclient, maysaslserver, mustsasl,
mustsaslclient, mustsaslserver, nosasl,
nosaslclient, nosaslserver, saslswitchchannel,
nosaslswitchchannel) • 2–80

2.3.4.44 Use authenticated address from SMTP AUTH in header
(authrewrite) • 2–81

2.3.4.45 Transport Layer Security (maytls, maytlsclient,
maystlsserver, musttls, musttlsclient,
musttlsserver, notls, notlsclient, notlsserver,
tlsswitchchannel) • 2–81

2.3.4.46 MS Exchange gateway channels (msexchange,
nomsexchange) • 2–82

2.3.4.47 Host name to use when correcting incomplete addresses
(remotehost, noremotehost, defaulthost,
nodefaulthost) • 2–82

2.3.4.48 Normalizing messages that lack any recipient headers
(missingrecipientpolicy) • 2–83

2.3.4.49 Strip illegal blank recipient headers (dropblank) • 2–83

vi

Contents

2.3.4.50 Eight bit capability (eightbit, eightnegotiate,
eightstrict, sevenbit) • 2–83

2.3.4.51 Automatic character set labelling (charset7, charset8,
charsetesc) • 2–84

2.3.4.52 Restrictions on message line lengths (linelength) • 2–85
2.3.4.53 Delivering foreign format messages to VMS MAIL (OpenVMS)

(foreign, noforeign) • 2–85
2.3.4.54 Conversion of application/octet-stream

material (convert_octet_stream,
noconvert_octet_stream) • 2–86

2.3.4.55 Channel-specific use of the reverse database (reverse,
noreverse) • 2–86

2.3.4.56 Inner header rewriting (noinner, inner) • 2–86
2.3.4.57 Restricted mailbox encoding (restricted,

unrestricted) • 2–86
2.3.4.58 Additional message header lines in VMS MAIL (headerbottom,

headerinc, headeromit) • 2–87
2.3.4.59 Trimming message header lines (headertrim,

noheadertrim, headerread, noheaderread, innertrim,
noinnertrim) • 2–88

2.3.4.60 Encoding header (ignoreencoding,
ignoremessageencoding, ignoremultipartencoding,
interpretencoding, interpretmessageencoding,
interpretmultipartencoding) • 2–89

2.3.4.61 Generation of X-Envelope-to: header lines (x_env_to,
nox_env_to) • 2–89

2.3.4.62 Envelope to address in Received: header (receivedfor,
noreceivedfor, receivedfrom, noreceivedfrom) • 2–89

2.3.4.63 Postmaster address (aliaspostmaster,
returnaddress, noreturnaddress, returnpersonal,
noreturnpersonal) • 2–90

2.3.4.64 Blank envelope return addresses (returnenvelope) • 2–90
2.3.4.65 Mapping Reply-to: header (usereplyto) • 2–91
2.3.4.66 Mapping Resent- headers when gatewaying to non RFC 822

environments (useresent) • 2–91
2.3.4.67 Comments in address message headers (commentinc,

commentomit, commentstrip, commenttotal,
sourcecommentinc, sourcecommentomit,
sourcecommentstrip, sourcecommenttotal) • 2–91

2.3.4.68 Personal names in address message headers (personalinc,
personalomit, personalstrip, sourcepersonalinc,
sourcepersonalomit, sourcepersonalstrip) • 2–92

2.3.4.69 Alias file and alias database probes (aliaslocal) • 2–92
2.3.4.70 Validating local part of address (validatelocalnone,

validatelocalsystem, validatelocalmsgstore) • 2–93
2.3.4.71 Subaddresses (subaddressexact, subaddressrelaxed,

subaddresswild) • 2–93
2.3.4.72 Two or four digit date conversion (datefour, datetwo) • 2–94
2.3.4.73 Day of week in date specifications (dayofweek,

nodayofweek) • 2–95
2.3.4.74 Automatic splitting of long header lines (maxheaderaddrs,

maxheaderchars) • 2–95

vii

Contents

2.3.4.75 Header alignment and folding (headerlabelalign,
headerlinelength) • 2–95

2.3.4.76 Automatic defragmentation of message/partial messages
(defragment, nodefragment) • 2–96

2.3.4.77 Automatic fragmentation of large messages (maxblocks,
maxlines) • 2–96

2.3.4.78 Absolute message size limits (blocklimit, noblocklimit,
linelimit, nolinelimit, sourceblocklimit) • 2–97

2.3.4.79 Specify maximum length header that PMDF will rewrite
(maxprocchars) • 2–98

2.3.4.80 Mail delivery to over quota users (exquota, noexquota,
holdexquota) • 2–98

2.3.4.81 Gateway daemons (daemon) • 2–98
2.3.4.82 Multiple gateways on a single channel (multigate,

nomultigate) • 2–99
2.3.4.83 Grey Book address formatting (grey, nogrey) • 2–99
2.3.4.84 Message logging (logging) • 2–100
2.3.4.85 Debugging channel master and slave programs

(master_debug, nomaster_debug, slave_debug,
noslave_debug) • 2–101

2.3.4.86 Filter file location (filter, nofilter, channelfilter,
nochannelfilter, destinationfilter,
nodestinationfilter, sourcefilter, nosourcefilter,
fileinto, nofileinto) • 2–101

2.3.4.87 Channel description field (description) • 2–102
2.3.4.88 Sensitivity checking (sensitivitynormal,

sensitivitypersonal, sensitivityprivate,
sensitivitycompanyconfidential) • 2–102

2.3.4.89 Access rights and privileges (network) • 2–103
2.3.4.90 Directory Channel Lookup Mode (inline, noinline) • 2–103
2.3.4.91 Detecting Mail Loops (loopcheck) • 2–103
2.3.4.92 Accepting All Addresses (acceptalladdresses,

acceptvalidaddresses) • 2–104
2.3.4.93 Relaxed Header Termination (relaxheadertermination,

norelaxheadertermination) • 2–104
2.3.4.94 Handle addresses from VMS MAIL (OpenVMS)

(addlineaddrs, noaddlineaddrs) • 2–104
2.3.5 Using defaults and nodefaults channel blocks to simplify

configurations 2–104
2.3.6 Available channels 2–105
2.3.7 Header option files 2–107

2.3.7.1 Header option file location • 2–108
2.3.7.2 Header option file format • 2–108

2.4 SOME EXAMPLE CONFIGURATION FILES 2–110
2.4.1 A simple configuration file 2–110
2.4.2 Routing non-local mail to a central mail hub 2–112
2.4.3 Basic configuration for a system on the Internet 2–113
2.4.4 Handling systems on a local DECnet (OpenVMS) 2–113

viii

Contents

CHAPTER 3 ALIASES, FORWARDING, AND CENTRALIZED NAMING 3–1

3.1 ALIASES AND FORWARDING 3–1
3.1.1 The Alias File 3–2

3.1.1.1 Format • 3–2
3.1.1.2 Including Other Files in the Alias File • 3–4
3.1.1.3 Mailing Lists • 3–4
3.1.1.4 LDAP URLs as Alias Values • 3–4
3.1.1.5 Standard Aliases • 3–6
3.1.1.6 Subaddresses in Aliases • 3–6
3.1.1.7 Alias List Recursion • 3–7

3.1.2 The Alias Database 3–7
3.1.2.1 Using Both the Alias File and the Alias Database • 3–8
3.1.2.2 Format of the Alias Database • 3–9

3.1.3 Personal Alias Databases (OpenVMS and UNIX) 3–10
3.1.4 Logical Name Table Aliases (OpenVMS) 3–11
3.1.5 Restrictions on Aliases 3–12

3.2 DIRECTORY CHANNELS 3–13
3.2.1 Directory Channel Definition and Rewrite Rules 3–14
3.2.2 Directory Channel Inline Mode 3–15
3.2.3 Directory Channel Option File 3–15
3.2.4 Handling Multiple Pseudo Domains 3–16
3.2.5 CRDB or crdb Database Operations 3–17

3.2.5.1 Database Entries • 3–17
3.2.5.2 Default Entries • 3–18
3.2.5.3 Wildcard Entries • 3–18
3.2.5.4 Subaddresses • 3–18
3.2.5.5 Duplicate Entries • 3–19

3.2.6 ALL-IN-1 List Expansion Operations (OpenVMS) 3–19
3.2.7 LDAP or X.500 Directory Operations 3–20

3.2.7.1 Required Options • 3–21
3.2.7.1.1 LDAP_SERVERS Option • 3–21
3.2.7.1.2 LDAP_BASE Option • 3–21
3.2.7.2 TLS Options • 3–21
3.2.7.3 Additional Options • 3–22
3.2.7.4 Example Option Files • 3–25
3.2.7.5 Default Mailbox Syntax Supported • 3–26
3.2.7.6 LDAP Filter Configuration File, ldapfilter.conf • 3–26
3.2.7.6.1 Filter Sets • 3–26
3.2.7.6.2 Filter Lists • 3–26
3.2.7.6.3 Example LDAP Filter Configuration File • 3–27

3.2.8 CCSO/ph/qi Directory Operations 3–27
3.2.8.1 Required Options • 3–28
3.2.8.1.1 QI_SERVERS Option • 3–29
3.2.8.1.2 QI_QUERY_METHOD_ Options • 3–29
3.2.8.2 Additional Options • 3–31
3.2.8.3 Example Option Files • 3–33

3.3 ADDRESS REVERSAL 3–33
3.3.1 LDAP Lookups for Address Reversal 3–33
3.3.2 The Address Reversal Database and REVERSE Mapping 3–34

ix

Contents

3.4 THE FORWARD DATABASE AND FORWARD ADDRESS MAPPING 3–37

3.5 FORWARDING MAIL 3–39
3.5.1 Forwarding Mail for Selected Users 3–40
3.5.2 Forwarding All Mail for a Host 3–41

3.5.2.1 Using Rewrite Rules to Forward Mail • 3–42
3.5.2.2 Using the FORWARD Mapping to Forward Mail • 3–42
3.5.2.3 Using the Forward Database to Forward Mail • 3–43

3.6 CENTRALIZED NAMING 3–44
3.6.1 Address Formats for Centralized Names 3–44
3.6.2 Routing Issues in Centralized Naming 3–45
3.6.3 Implementing Centralized Names 3–45

3.7 AUTOREGISTRATION 3–50

CHAPTER 4 MAILING LISTS AND MAILSERV 4–1

4.1 MAILING LISTS 4–1
4.1.1 Named Parameters 4–3

4.1.1.1 Specifying Multiple Access Control Parameters • 4–11
4.1.2 Positional Parameters 4–12
4.1.3 Basic Mailing List Example 4–13
4.1.4 Restrictions on Mailing List Aliases 4–15

4.2 PERSONAL MAILING LISTS (OpenVMS AND UNIX) 4–17

4.3 MAIL AND LIST SERVER 4–17
4.3.1 Mail Server Implementation 4–18
4.3.2 Mail Server Installation and Configuration 4–18

4.3.2.1 Setting Up the Channel • 4–18
4.3.2.2 Directories, Logical Names, and Basic Files on

OpenVMS • 4–20
4.3.2.3 Directories and Basic Files on UNIX • 4–21
4.3.2.4 Directories and Basic Files on NT • 4–22

4.3.3 Setting Up Mailing Lists 4–22
4.3.4 Welcome Messages for Mailing Lists 4–24
4.3.5 List and File Name Mapping, and From: Address Control 4–24
4.3.6 Default List Name Constructed From To: Address 4–25
4.3.7 Access Control 4–25

4.3.7.1 Access Check Strings • 4–25
4.3.7.2 Access Check Mapping Results • 4–27
4.3.7.3 Access Defaults • 4–29
4.3.7.4 Access Confirmation via a Challenge-Response Cycle • 4–29
4.3.7.5 Access Example • 4–30

4.3.8 Server Commands 4–30
4.3.9 MAILSERV Channel Usage Logging 4–31

4.4 EXAMPLES OF MAILING LISTS WITH MAILSERV SUBSCRIPTION
HANDLING 4–32
4.4.1 An Open, With Exceptions, Mailing List 4–32
4.4.2 A Semi-restricted Mailing List 4–35

x

Contents

CHAPTER 5 THE MAPPING FILE 5–1

5.1 LOCATING AND LOADING THE MAPPING FILE 5–1

5.2 FILE FORMAT 5–2
5.2.1 Including Other Files in the Mapping File 5–3

5.3 MAPPING OPERATIONS 5–3
5.3.1 Mapping Entry Patterns 5–3

5.3.1.1 The $_ modifier: minimal vs. maximal Matching • 5–5
5.3.1.2 IP Matching • 5–5
5.3.1.3 Character Matching • 5–5

5.3.2 Mapping Entry Templates 5–6
5.3.2.1 Wildcard Field Substitutions, $n • 5–7
5.3.2.2 Controlling Text Case, $\ , $^, $_ • 5–7
5.3.2.3 Processing Control, $C, $L, $R, $E • 5–8
5.3.2.4 Check for Special Flags • 5–8
5.3.2.5 Entry Randomly Succeeds or Fails, $?x? • 5–8
5.3.2.6 Sequence Number Substitutions, $#...# • 5–9
5.3.2.7 LDAP Query URL Substitutions, $]...[• 5–10
5.3.2.8 General Database Substitutions, ${...} • 5–11
5.3.2.9 Mapping Table Substitutions, $ | ... | • 5–11
5.3.2.10 Site-supplied Routine Substitutions, $[...] • 5–11

5.3.3 A Complex Mapping Example 5–12

CHAPTER 6 CHARACTER SET CONVERSIONS AND MESSAGE
REFORMATTING 6–1

6.1 CHARSET-CONVERSION MAPPING TABLE 6–1

6.2 CHARACTER SET CONVERSION 6–2
6.2.1 Converting DEC-MCS to ISO-8859-1 and Back 6–3
6.2.2 Converting DEC-KANJI to ISO-2022-JP and Back 6–3

6.3 MESSAGE REFORMATTING 6–4
6.3.1 Non-MIME Binary Attachment Conversion 6–4
6.3.2 Relabelling MIME Headers 6–5
6.3.3 MacMIME Format Conversions 6–7

6.4 SERVICE CONVERSIONS 6–8

6.5 COMPLEX CONVERSIONS 6–10

CHAPTER 7 THE PMDF OPTION FILE 7–1

7.1 LOCATING AND LOADING THE OPTION FILE 7–1

7.2 OPTION FILE FORMAT 7–1

7.3 AVAILABLE OPTIONS 7–2
7.3.1 Addresses, Aliases, Headers, and Rewriting Options 7–6
7.3.2 LDAP and URL Lookup Options 7–10
7.3.3 Mailbox Filter Options 7–11
7.3.4 Notification Messages and Jobs Options 7–11
7.3.5 Message Size Options 7–14
7.3.6 Logging, Monitoring, and Counters Options 7–15

xi

Contents

7.3.7 Message Loop Detection and HELD Messages 7–19
7.3.8 File Format and File Handling Options 7–20
7.3.9 Internal Size Options 7–20
7.3.10 Debugging Options 7–22
7.3.11 Options for OpenVMS User Agents 7–22
7.3.12 Miscellaneous Options 7–25

CHAPTER 8 MAINTAINING THE CONFIGURATION 8–1

8.1 COMPILING THE CONFIGURATION 8–1
8.1.1 Compiling the Configuration on OpenVMS 8–2
8.1.2 Compiling the Configuration on UNIX 8–3
8.1.3 Compiling the Configuration on Windows 8–4
8.1.4 Extending Table Sizes 8–4

8.2 RESTARTING AFTER CONFIGURATION CHANGES 8–5
8.2.1 Restarting Specific Components 8–6

CHAPTER 9 THE PMDF PROCESS SYMBIONT (OpenVMS) 9–1

9.1 SYMBIONT CONFIGURATION 9–1
9.1.1 The PMDF Queue Configuration Utility 9–2
9.1.2 Manually Configuring PMDF Process Symbiont Queues 9–3

9.2 SYMBIONT OPTION FILES 9–3

9.3 RESTRICTIONS AND LIMITATIONS 9–5

9.4 TROUBLESHOOTING 9–6

9.5 PROCESS SYMBIONT ERRORS 9–7

CHAPTER 10 THE PMDF JOB CONTROLLER (UNIX AND WINDOWS) 10–1

10.1 JOB CONTROLLER CONFIGURATION 10–1

10.2 DEFAULT CONFIGURATION 10–3

10.3 CONFIGURATION FILE FORMAT 10–3

10.4 ADDING ADDITIONAL QUEUES 10–8

10.5 CHECKING THAT THE PMDF JOB CONTROLLER IS RUNNING 10–8

CHAPTER 11 THE PMDF MULTITHREADED SERVICE DISPATCHER 11–1

11.1 OPERATION OF THE SERVICE DISPATCHER 11–1
11.1.1 Creation and Expiration of Worker Processes 11–2

11.2 REQUIRED SOFTWARE VERSIONS 11–2

11.3 THE DISPATCHER CONFIGURATION FILE 11–3
11.3.1 Configuration File Format 11–3
11.3.2 Available Options 11–5

11.4 CONTROLLING THE SERVICE DISPATCHER 11–12

11.5 CONNECTION ACCESS CONTROL 11–13

11.6 DEBUGGING AND LOG FILES 11–15

xii

Contents

11.7 WEB-BASED MONITORING OF THE SERVICE DISPATCHER 11–16

11.8 TUNING SYSTEM PARAMETERS 11–18
11.8.1 System Parameters on OpenVMS 11–18

CHAPTER 12 THE PMDF HTTP SERVER 12–1

12.1 THE PMDF HTTP SERVER 12–1
12.1.1 Configuring the HTTP Server 12–1
12.1.2 Access Control 12–5
12.1.3 Available Information 12–7

CHAPTER 13 POP AND IMAP MAILBOX SERVERS 13–1

13.1 POP AND IMAP STANDARDS 13–2

13.2 CONFIGURING A MAILBOX SERVER 13–2
13.2.1 Disabling Old POP or IMAP Servers 13–3

13.2.1.1 Old POP3 or IMAP Servers on OpenVMS • 13–3
13.2.1.2 Old POP3 or IMAP Servers on UNIX • 13–3

13.2.2 Configuring Mailbox Servers 13–4
13.2.3 Mailbox Server Configuration Options 13–4

13.2.3.1 Service Dispatcher Configuration for Mailbox Servers • 13–4
13.2.3.2 Mailbox Server Specific Options • 13–6
13.2.3.2.1 IMAP Server Configuration Options • 13–7
13.2.3.2.2 POP3 Server Configuration Options • 13–12
13.2.3.3 The PMDF_SYSTEM_FLAGS Logical and DECnet Style

Addresses on OpenVMS • 13–15
13.2.4 Registering the Services on UNIX 13–15
13.2.5 Placeholder Message in the BSD Mailbox on UNIX 13–15

13.3 STARTING AND STOPPING A MAILBOX SERVER 13–16
13.3.1 Starting a Mailbox Server 13–16
13.3.2 Stopping a Mailbox Server 13–17
13.3.3 Restarting a Mailbox Server 13–17

13.4 LOCATION OF USER BSD MAILBOXES ON UNIX 13–18

13.5 USER LOGIN CHECKS FOR THE VMS MAIL MAILBOX (OpenVMS) 13–18

13.6 AUTHENTICATION AND THE PASSWORD DATABASE 13–19

13.7 MAILBOX SERVER CONNECTION LOGGING 13–20

Volume II

CHAPTER 14 CONNECTION AUTHENTICATION, SASL, AND
PASSWORD MANAGEMENT 14–1

14.1 BACKGROUND CONCEPTS AND TERMINOLOGY 14–1

14.2 THE PMDF SECURITY CONFIGURATION FILE 14–2
14.2.1 Location of the PMDF Security Configuration File 14–3
14.2.2 Format of the PMDF Security Configuration File 14–3

xiii

Contents

14.2.3 Authentication Sources 14–9
14.2.3.1 Predefined Authentication Sources • 14–9
14.2.3.2 Site Specific Authentication Sources • 14–12

14.2.4 Authentication Mechanisms 14–13
14.2.5 Username Translation Functions 14–14
14.2.6 Auxiliary Properties 14–15
14.2.7 Transitioning Between Authentication Sources 14–16
14.2.8 Sample Security Configuration Files 14–17

14.2.8.1 Sample Security Configuration Files Using Alternate
Authentication Sources • 14–18

14.2.8.2 Sample Security Configuration Files for Transitioning Between
Authentication Sources • 14–19

14.2.9 Updates to the Security Configuration 14–20

14.3 THE PORT_ACCESS MAPPING: SECURITY RULE SETS AND USER
DOMAINS 14–21

14.4 SASL CONFIGURATION FOR TCP/IP CHANNELS 14–23
14.4.1 SMTP Server 14–23
14.4.2 SMTP Client 14–24

14.5 RECORDING OF SASL USE IN RECEIVED: HEADERS AND PMDF
LOG ENTRIES 14–25

14.6 THE POPPASSD SERVER 14–25
14.6.1 Configuring the POPPASSD Server 14–26

14.7 THE PMDF PASSWORD DATABASE 14–27
14.7.1 Location of the PMDF Password Database 14–28
14.7.2 Entries in the PMDF Password Database 14–28

CHAPTER 15 PMDF-TLS: TRANSPORT LAYER SECURITY 15–1

15.1 OVERVIEW OF OPERATION 15–1

15.2 CONFIGURATION 15–2
15.2.1 Certificate Setup 15–2

15.2.1.1 Getting a Certificate Authority to Sign Your Certificate • 15–2
15.2.1.2 Chained Certificates • 15–3

15.2.2 Enabling TLS Functionality in PMDF 15–3
15.2.2.1 Dispatcher-related Configuration for Alternate Port

Numbers • 15–4
15.2.2.2 TCP/IP Channel Configuration for TLS Use • 15–5
15.2.2.3 TLS Use and SASL • 15–6
15.2.2.4 Sample TLS Configuration • 15–6

15.3 RECORDING OF TLS USE IN RECEIVED: HEADERS AND PMDF LOG
ENTRIES 15–10

CHAPTER 16 MAIL FILTERING AND ACCESS CONTROL 16–1

16.1 ADDRESS-BASED ACCESS CONTROL MAPPINGS 16–1
16.1.1 The SEND_ACCESS and ORIG_SEND_ACCESS Mappings 16–2
16.1.2 The MAIL_ACCESS and ORIG_MAIL_ACCESS Mappings 16–4
16.1.3 The FROM_ACCESS Mapping Table 16–6

xiv

Contents

16.1.4 When Access Controls are Applied 16–7
16.1.5 Testing Access Control Mappings 16–8
16.1.6 SMTP Relay Blocking 16–8

16.1.6.1 Differentiating Between Internal and External Mail • 16–9
16.1.6.2 Differentiating Authenticated Users’ Mail • 16–10
16.1.6.3 Preventing Mail Relaying • 16–11
16.1.6.4 Allowing localhost Submissions to the SMTP Port • 16–12

16.1.7 Efficiently Handling Large Numbers of Access Entries 16–13
16.1.8 DNS_VERIFY 16–15

16.1.8.1 dns_verify Routine • 16–16
16.1.8.2 dns_verify_domain and dns_verify_domain_port

Routines • 16–17
16.1.8.3 dns_verify_domain_warn Routine • 16–18

16.1.9 SPF (Sender Policy Framework) and SRS (Sender Rewriting
Scheme) 16–19
16.1.9.1 Configuring SPF • 16–20
16.1.9.1.1 spf_lookup Routine • 16–20
16.1.9.1.2 spf_lookup_reject_fail and spf_lookup_reject_softfail

Routines • 16–21
16.1.9.2 Configuring SRS • 16–21
16.1.9.2.1 Option File Changes • 16–21
16.1.9.2.2 Configuration File Changes • 16–21
16.1.9.2.3 Mapping File Changes • 16–22
16.1.9.2.3.1 pmdf_srs_forward Routine And The REVERSE Mapping

Table • 16–22
16.1.9.2.3.2 pmdf_srs_reverse Routine And The FORWARD Mapping

Table • 16–23
16.1.9.2.4 The Secret Word • 16–24

16.2 MAILBOX FILTERS 16–24
16.2.1 The filter Channel Keyword 16–25

16.2.1.1 Keyword Usage with the Local Channel • 16–26
16.2.1.2 Keyword Usage with the msgstore and popstore

Channels • 16–26
16.2.2 Channel Level Filter Files 16–27
16.2.3 The System Wide Filter File 16–27
16.2.4 Mailbox Filter Authentication 16–28
16.2.5 Routing Discarded Messages Out the FILTER_DISCARD

Channel 16–28
16.2.6 Web Interface 16–29

16.2.6.1 Configuring the HTTP Server to Serve Out the Web
Interface • 16–30

16.2.6.2 The Mailbox Filters Option File • 16–30
16.2.7 SIEVE 16–31

16.2.7.1 Standard SIEVE Commands • 16–31
16.2.7.1.1 Comments • 16–31
16.2.7.1.2 Control structures • 16–32
16.2.7.1.3 Common arguments • 16–32
16.2.7.1.4 Test commands • 16–32
16.2.7.1.5 Action commands • 16–33
16.2.7.2 The SIEVE Vacation Command • 16–34
16.2.7.3 PMDF SIEVE Extensions • 16–34
16.2.7.4 Example Filter File • 16–35

xv

Contents

16.2.8 Vacation Notices 16–35
16.2.8.1 Vacation Exceptions Option File • 16–35

16.2.9 Checking Your Changes 16–36

CHAPTER 17 THE UNIX LOCAL CHANNEL 17–1

17.1 /pmdf/bin/sendmail 17–1

17.2 CASE SENSITIVITY OF USER ACCOUNTS 17–2

17.3 LOCAL DELIVERY ON UNIX SYSTEMS 17–3
17.3.1 The .forward File 17–3
17.3.2 The PMDF User Profile Database 17–4

17.3.2.1 Configuring the PMDF User Profile Database Methods • 17–5
17.3.2.2 Adding User Entries to the PMDF User Profile Database • 17–5

17.3.3 The Option File 17–6
17.3.4 Format of the Option File 17–6
17.3.5 Contents of the Option File 17–6

CHAPTER 18 THE LOCAL, DECnet MAIL, AND GENERAL
MAIL_ CHANNELS (OpenVMS) 18–1

18.1 HANDLING VMS DECnet MAIL AND PSIMail ADDRESSES 18–1
18.1.1 Conversion of VMS To: addresses to PMDF Format 18–2
18.1.2 Conversion of VMS From: Addresses to PMDF Format 18–3
18.1.3 Conversion of PMDF From:, To:, and Cc: Addresses to

VMS Format 18–4
18.1.4 Conversion of PMDF Envelope To: Addresses to VMS

Format 18–6

18.2 ACCESSING REMOTE OpenVMS DECnet MAIL AND PSIMail
SYSTEMS 18–7

18.3 FILE ATTACHMENTS AND PATHWORKS MAIL FOR PCS 18–9
18.3.1 Pathworks Mail to MIME 18–9
18.3.2 MIME to Pathworks Mail 18–10

CHAPTER 19 THE PMDF USER INTERFACE ON OpenVMS 19–1

19.1 SENDING MAIL WITH VMS MAIL 19–1
19.1.1 Using a Prefix Other than IN% 19–1
19.1.2 Displaying a Welcome Message When PMDF is used 19–2
19.1.3 Sending Binary Files with SEND/FOREIGN 19–3
19.1.4 Header Lines in Messages 19–3

19.1.4.1 Cc: Header Lines • 19–4
19.1.4.2 Content-transfer-encoding: Header Lines • 19–5
19.1.4.3 Content-type: Header Lines • 19–5
19.1.4.4 Delivery-receipt-to: Header Lines • 19–5
19.1.4.5 Disposition-notification-to: Header Lines • 19–5
19.1.4.6 From: and Sender: Header Lines • 19–5
19.1.4.7 Read-receipt-to: Header Lines • 19–6
19.1.4.8 Resent-date: Header Lines • 19–6
19.1.4.9 Resent-from: Header Lines • 19–6
19.1.4.10 Resent-reply-to: Header Lines • 19–6
19.1.4.11 Resent-to: Header Lines • 19–7

xvi

Contents

19.1.4.12 Subject: Header Lines • 19–7
19.1.4.13 To: Header Lines • 19–7
19.1.4.14 X-Envelope-to: Header Lines • 19–7
19.1.4.15 X-VMS-Cc: Header Lines • 19–8
19.1.4.16 X-VMS-To: Header Lines • 19–8

19.1.5 Message Headers on Forwarded Messages 19–8
19.1.6 Temporary File Storage 19–9
19.1.7 DECwindows MAIL and Account Quotas 19–9
19.1.8 Handling VMS MAIL Errors 19–10
19.1.9 Accepting MIME Headers from VMS MAIL 7.2 or Later 19–10

19.2 RECEIVING MAIL IN VMS MAIL 19–11

19.3 DELIVERY AND READ RECEIPTS 19–12
19.3.1 Requesting Delivery or Read Receipts 19–13
19.3.2 Delivery Receipt Mechanisms: Header vs. NOTARY 19–14

19.4 EXTENSIONS TO RFC 822 19–15

19.5 OBTAINING HEADERS FROM MESSAGE TEXT 19–17

19.6 THE DELIVER MESSAGE DELIVERY SYSTEM 19–17

CHAPTER 20 DECnet CHANNELS (OpenVMS AND Tru64 UNIX) 20–1

20.1 SMTP OVER DECnet CHANNELS 20–1
20.1.1 Setting Up the Channel 20–2

20.1.1.1 Installing PMDF as a Known Object • 20–2
20.1.1.2 Adding the Channel to the Configuration File • 20–4
20.1.1.3 Channel Option File • 20–5

20.1.2 Network Service Logs 20–5

20.2 PhoneNet OVER DECnet CHANNELS (OpenVMS) 20–5
20.2.1 Setting Up the Channel 20–6

20.2.1.1 Installing PMDF as a Known Object • 20–6
20.2.1.2 Adding the Channel to the Configuration File • 20–7

20.2.2 Example Configuration 20–7
20.2.3 Network Service Logs 20–9

20.3 DECnet MAIL-11 CHANNELS (OpenVMS) 20–10

CHAPTER 21 TCP/IP CHANNELS 21–1

21.1 SETTING UP THE CHANNEL 21–2
21.1.1 Configuring the TCP SMTP Channel 21–2
21.1.2 TCP/IP Channel Option Files 21–3

21.1.2.1 Format of the Option File • 21–4
21.1.2.2 Available TCP/IP Channel Options • 21–4

21.1.3 Replacing the Native SMTP Server with PMDF’s SMTP
Server 21–8

21.1.4 Configuring the PMDF Service Dispatcher to Handle the
SMTP Service 21–10

21.2 CONTROLLING THE SMTP SERVER 21–10
21.2.1 SMTP Connection Control Mapping 21–11

21.3 ACCESSING GATEWAY SYSTEMS 21–11

xvii

Contents

21.4 TRIGGERING (ON-DEMAND) MESSAGE TRANSFER WITH REMOTE
SYSTEMS 21–12

21.5 SASL AUTHENTICATION FOR THE TCP/IP CHANNEL CLIENT 21–12

CHAPTER 22 MESSAGE MANIPULATION CHANNELS 22–1

22.1 CONVERSION CHANNEL 22–1
22.1.1 Selecting Traffic for Conversion Processing 22–2
22.1.2 Configuration 22–3
22.1.3 Conversion Control 22–3

22.1.3.1 Conversion Entry Scanning and Application • 22–4
22.1.3.2 Available Parameters • 22–5
22.1.3.3 Conversion Entry Parameter Value Wildcard Matching • 22–8
22.1.3.4 Predefined Symbols or Environment Variables • 22–9
22.1.3.5 Symbol Substitution in Conversion Entries • 22–10
22.1.3.6 Calling Out to a Mapping Table from a Conversion

Entry • 22–11
22.1.3.7 The Headers in an Enclosing Part or Message • 22–12

22.1.4 Command Completion Statuses 22–12
22.1.4.1 Bouncing Messages • 22–13
22.1.4.2 Deleting Messages • 22–14
22.1.4.3 Deleting Message Parts • 22–14
22.1.4.4 Holding Messages • 22–14
22.1.4.5 No Changes • 22–14

22.1.5 An Example on OpenVMS 22–15

22.2 SCRIPT CHANNEL 22–18
22.2.1 Selecting Traffic for Processing 22–19
22.2.2 Script Channel Definition and Rewrite Rules 22–20
22.2.3 Script Channel Option File 22–20
22.2.4 Input and Output Symbols 22–21
22.2.5 Command Completion Statuses 22–22

22.2.5.1 Bouncing Messages • 22–22
22.2.5.2 Deleting Messages • 22–23
22.2.5.3 Holding Messages • 22–23
22.2.5.4 No Changes • 22–23

22.2.6 Using Multiple Script Channels 22–24

22.3 DISCLAIMER CHANNEL 22–24
22.3.1 Selecting Traffic for Processing 22–25
22.3.2 Disclaimer Channel Definition and Rewrite Rules 22–26
22.3.3 Disclaimer Channel Option File 22–26

22.3.3.1 Format of the Option File • 22–27
22.3.3.2 Available Disclaimer Channel Options • 22–27
22.3.3.3 Example Disclaimer Channel Option File • 22–28

22.3.4 Files Containing Disclaimer Text 22–28
22.3.5 Message Integrity Issues 22–29

22.4 RUNNING MORE THAN ONE OF THESE CHANNELS 22–29

xviii

Contents

CHAPTER 23 BSMTP CHANNELS: MTA TO MTA TUNNELLING 23–1

23.1 CONFIGURING THE BSMTP CHANNELS 23–1

23.2 PERFORMING THE DESIRED MESSAGE TRANSFORMATION VIA
SERVICE CONVERSIONS 23–3
23.2.1 BSOUT Channel Option Files 23–4
23.2.2 Examples on OpenVMS 23–4

23.2.2.1 Configuring the BSMTP Channels to Compress Their Payloads
on OpenVMS • 23–5

23.2.2.2 Configuring the BSMTP Channels to Provide Authentication
Services on OpenVMS • 23–6

23.2.2.2.1 Using PGP with PMDF on OpenVMS • 23–10
23.2.3 Examples on UNIX 23–15

23.2.3.1 Configuring the BSMTP Channels to Compress Their Payloads
on UNIX • 23–15

23.2.3.2 Configuring the BSMTP Channels to Provide Authentication
Services on UNIX • 23–15

23.2.3.2.1 Using PGP with PMDF on UNIX • 23–17

CHAPTER 24 PhoneNet CHANNELS (OpenVMS AND UNIX) 24–1

24.1 ADDING PhoneNet CHANNELS TO THE CONFIGURATION FILE 24–1

24.2 PhoneNet OPTION FILES 24–2
24.2.1 An example option file 24–6

24.3 DEFINING SERIAL DEVICES 24–7
24.3.1 Script files 24–8
24.3.2 The all_master.com file (OpenVMS) 24–9
24.3.3 Handling failures 24–9

24.4 LOG FILES 24–10

24.5 SCRIPT FILES 24–11

24.6 BACKOFF RETRIES FOR UNDELIVERABLE MESSAGES 24–13

CHAPTER 25 UUCP CHANNELS (OpenVMS AND UNIX) 25–1

25.1 ENCOMPASS UUCP (VMSNET) CHANNELS FOR OpenVMS
SYSTEMS 25–1
25.1.1 Setting Up the Channel 25–1

25.1.1.1 Adding the Channel to the Configuration File • 25–1
25.1.1.2 Setting Up the Master Program • 25–2
25.1.1.3 Setting Up the Slave Program • 25–2

25.1.2 Log Files 25–3
25.1.3 Returning Undelivered Messages 25–3
25.1.4 Starting the Message Return Batch Job 25–4
25.1.5 Deinstalling the Encompass UUCP Mailer 25–4

25.2 UUCP CHANNELS FOR UNIX SYSTEMS 25–4
25.2.1 Setting Up the Channel 25–5

25.2.1.1 Adding the Channel to the Configuration File • 25–5
25.2.1.2 Setting Up the Master Program • 25–5
25.2.1.3 Setting Up the Slave Program • 25–6

xix

Contents

25.2.2 UUCP Channel Option File 25–6
25.2.2.1 Format of the Option File • 25–6
25.2.2.2 Available Options • 25–6

25.2.3 Log Files 25–7
25.2.4 Returning Undelivered Messages 25–7
25.2.5 Starting the Message Return cron Job 25–7

CHAPTER 26 OTHER CHANNELS 26–1

26.1 ADDRESSING CHANNELS 26–1
26.1.1 Channel Operation 26–2
26.1.2 Examples 26–3
26.1.3 Setting Up the Channel 26–4

26.1.3.1 Adding the Channel to the Configuration File • 26–5
26.1.3.2 Option Files • 26–5

26.2 BITBUCKET CHANNEL 26–7
26.2.1 Configuration 26–7

26.3 DEFRAGMENTATION CHANNEL 26–9
26.3.1 Defragmentation Channel Definition and Rewrite Rules 26–9
26.3.2 Defragmentation Channel Retention Time 26–10

26.4 PAGER CHANNELS 26–10
26.4.1 Setting Up the Channel 26–11

26.4.1.1 Before You Start • 26–11
26.4.1.2 Adding the Channel to the Configuration File • 26–12
26.4.1.3 PAGER Mapping • 26–13
26.4.1.4 Modem Script • 26–17
26.4.1.5 Option Files • 26–21
26.4.1.6 Use with PET Switches • 26–26
26.4.1.7 A Word on Determining Channel Options by Trial and

Error • 26–26
26.4.1.8 Frequent Delivery Retries with the BACKOFF Option • 26–26
26.4.1.9 Using a Directory Channel to Simplify Pager Addresses • 26–27

26.4.2 Pager Channel Addresses 26–28
26.4.2.1 The Contents of the Attribute-value Pair List (AVPL) • 26–28
26.4.2.2 Examples of Pager Channel Addresses • 26–29

26.4.3 Pager Channel Logging 26–29
26.4.4 Identifying Troublesome Modems 26–30

26.5 PIPE CHANNELS (OPENVMS AND UNIX) 26–30
26.5.1 Setting Up the Channel 26–31

26.5.1.1 Adding the Channel to the Configuration File • 26–31
26.5.1.2 Profile Database Entries for Pipe Channel Addressees (UNIX

only) • 26–32
26.5.1.3 Pipe Database • 26–32
26.5.1.4 Option Files • 26–33

26.5.2 The Order in Which Entries are Checked 26–34
26.5.3 Example Usage 26–35

xx

Contents

26.6 PRINTER CHANNELS 26–35
26.6.1 Setting Up the Channel 26–36

26.6.1.1 Adding the Channel to the Configuration File • 26–36
26.6.1.2 Option Files • 26–37
26.6.1.3 Controlling the Print Command (UNIX) • 26–42
26.6.1.4 Handling Multipart Messages • 26–42

26.6.2 Printer Channel Addresses 26–44
26.6.2.1 The Contents of the Attribute-value Pair List, AVPL • 26–44
26.6.2.2 Quoting the AVPL • 26–45
26.6.2.3 Examples of Printer Channel Addresses • 26–45

26.6.3 Logging 26–45
26.6.4 A PostScript Printer Channel 26–46
26.6.5 Security Considerations 26–46

26.6.5.1 Security Considerations on OpenVMS Systems • 26–47
26.6.5.2 Security Considerations on UNIX Systems • 26–47

26.7 PROCESSING AND REPROCESSING CHANNELS 26–47
26.7.1 Process Channel Definition and Rewrite Rules 26–48
26.7.2 Reprocess Channel Definition and Rewrite Rules 26–49

26.8 GENERIC SMTP CHANNELS 26–49

26.9 DEC NOTES CHANNELS (OpenVMS) 26–50
26.9.1 Setting Up the NOTES Channel 26–50
26.9.2 Using an Option File for the NOTES Channel 26–51
26.9.3 Further Control of the Subject Database 26–53

CHAPTER 27 THE PMDF QUEUE TO E-MAIL SYMBIONT (OpenVMS) 27–1

27.1 SYMBIONT CONFIGURATION 27–1

27.2 OPTION FILES 27–2

27.3 SENDING MAIL WITH THE SYMBIONT 27–4

27.4 PRINTING DOCUMENTS FROM WORD PROCESSORS 27–5
27.4.1 Adding PostScript Support 27–6
27.4.2 Character Set Handling 27–6

CHAPTER 28 E-MAIL FIREWALLS AND OTHER E-MAIL SECURITY
CONSIDERATIONS 28–1

28.1 WHAT IS AN E-MAIL FIREWALL? 28–1
28.1.1 The e-mail Firewall Orientation 28–1

28.2 PRELIMINARY TASKS BEFORE SETTING UP AN E-MAIL FIREWALL 28–2
28.2.1 Have an Internet Firewall in Place 28–2
28.2.2 Security and e-mail Policies 28–2

28.3 THE PMDF FIREWALL CONFIGURATION UTILITY 28–3

28.4 FIREWALL CONFIGURATION FEATURES 28–3
28.4.1 Separating Message Traffic 28–3

28.4.1.1 Separating SMTP Over TCP/IP Message Traffic • 28–3
28.4.1.1.1 Sample Configuration with Separate TCP/IP Channels • 28–4
28.4.1.2 The Case of an Internal Mailhub • 28–5
28.4.1.2.1 Sample Configuration With an Internal Mailhub System • 28–6

xxi

Contents

28.4.2 Postmaster Messages 28–7
28.4.3 Logging and Tracking Messages and Connections 28–7

28.4.3.1 Logging Messages Passing through PMDF • 28–7
28.4.3.1.1 Extra Logging Detail • 28–8
28.4.3.2 Snapshots of Message Traffic through PMDF • 28–8
28.4.3.3 Monitoring TCP/IP Connections to the Dispatcher • 28–8

28.4.4 Controlling Address Rewriting and Controlling Message
Pathways 28–9
28.4.4.1 Sample Configuration Controlling Internal Domain

Rewriting • 28–9
28.4.5 Controlling e-mail Access 28–10

28.4.5.1 Staticly Controlling e-mail Access • 28–10
28.4.5.2 Sidelining Messages for Manual Inspection • 28–11
28.4.5.3 Dynamically Controlling e-mail Access, and Defending Against

Denial of Service Attacks • 28–12
28.4.6 Controlling External Stimulation of Message Delivery 28–13
28.4.7 Controlling e-mail Content and Message Priority 28–14

28.4.7.1 Imposing Message Size Limits • 28–14
28.4.7.2 Message Priority and Size Limits • 28–14
28.4.7.3 Imposing Message Sensitivity Limits • 28–14
28.4.7.4 Filtering Based on Message Headers • 28–15
28.4.7.5 Checking or Filtering Message Content • 28–15
28.4.7.6 Verifying Message Integrity • 28–16

28.4.8 Restricting or Controlling Information Emitted 28–16
28.4.8.1 Restricting Access to PMDF Information via the PMDF HTTP

Server • 28–16
28.4.8.2 SMTP Probe Commands • 28–17
28.4.8.3 Internal Names in Received: Headers • 28–18
28.4.8.4 Centralized Naming and Internal Addresses • 28–20

28.5 OTHER FEATURES AND TECHNIQUES THAT CAN IMPACT AN
E-MAIL FIREWALL 28–21
28.5.1 General Performance Issues on an e-mail Firewall 28–21
28.5.2 Additional Channel Keywords 28–21
28.5.3 Rightslist Identifiers and Group ids 28–22
28.5.4 PMDF Options 28–22

Volume III

CHAPTER 29 UTILITIES ON OpenVMS 29–1

29.1 COMMAND LINE UTILITIES ON OpenVMS 29–6
CACHE/CLOSE 29–7
CACHE/REBUILD 29–8
CACHE/SYNCHRONIZE 29–10
CHBUILD 29–11
CLBUILD 29–13
CNBUILD 29–15
CONFIGURE 29–18
CONVERT 29–19
CONVERT_CACHE.COM 29–22
COUNTERS/CLEAR 29–23
COUNTERS/CRDB 29–25

xxii

Contents

COUNTERS/SHOW 29–26
COUNTERS/SYNCHRONIZE 29–29
COUNTERS/TODAY 29–30
CRDB 29–31
DCF 29–35
DUMPDB 29–37
G3 29–38
INSTALL 29–40
KILL 29–42
LICENSE 29–43
PASSWORD 29–45
PROCESS 29–49
QCLEAN 29–50
QTOP 29–53
RESTART 29–56
RETURN 29–59
SHUTDOWN 29–60
STARTUP 29–63
TEST/MAPPING 29–65
TEST/MATCH 29–67
TEST/REWRITE 29–69
TEST/URL 29–76
VERSION 29–77

29.2 INTERACTIVE UTILITIES ON OpenVMS 29–78
29.2.1 QM: Queue Management Utility 29–78

CLEAN 29–80
COUNTERS CLEAR 29–83
COUNTERS CRDB 29–84
COUNTERS SHOW 29–85
COUNTERS SYNCHRONIZE 29–87
COUNTERS TODAY 29–88
DATE 29–89
DELETE 29–90
DIRECTORY 29–92
EDIT_FAX 29–96
EXIT 29–98
HELD 29–99
HELP 29–101
HISTORY 29–102
HOLD 29–104
QUIT 29–106
READ 29–107
RELEASE 29–109
RETURN 29–111
SPAWN 29–113
SUMMARIZE 29–116
TOP 29–118
VIEW 29–121

CHAPTER 30 UTILITIES ON UNIX 30–1

xxiii

Contents

30.1 COMMAND LINE UTILITIES ON UNIX 30–6
cache -synchronize 30–7
cache -view 30–8
chbuild 30–9
clbuild 30–12
cnbuild 30–15
configure 30–19
convertdb 30–21
counters -clear 30–23
counters -show 30–24
counters -today 30–26
crdb 30–27
dumpdb 30–31
edit 30–32
find 30–34
kill 30–36
license -verify 30–37
password 30–38
process 30–42
purge 30–43
qclean 30–45
qtop 30–48
restart 30–51
return 30–53
run 30–54
shutdown 30–55
startup 30–57
submit 30–59
submit_master 30–60
test -mapping 30–61
test -match 30–64
test -rewrite 30–67
test -url 30–74
version 30–75
view 30–76

30.2 INTERACTIVE UTILITIES 30–77
30.2.1 PMDF Profile: Delivery Method Utility (UNIX) 30–77

delete delivery 30–78
delete method 30–79
set delivery 30–80
set method 30–81
show delivery 30–82
show method 30–83

30.2.2 qm: Queue Management Utility 30–84
clean 30–86
counters clear 30–89
counters show 30–90
counters today 30–92
date 30–93
delete 30–94
directory 30–96
exit 30–99
held 30–100
help 30–102
history 30–103
hold 30–105
quit 30–107

xxiv

Contents

read 30–108
release 30–110
return 30–112
run 30–114
summarize 30–115
top 30–117
view 30–120

CHAPTER 31 MONITORING 31–1

31.1 LOGGING 31–2
31.1.1 Managing the Log Files 31–3
31.1.2 Log Entry Format 31–3
31.1.3 log_condense Utility 31–6
31.1.4 Examples of Message Logging 31–7

31.2 WEB-BASED QM UTILITY 31–20
31.2.1 Accessing the Web-based QM Utility 31–21
31.2.2 Examples of the Web-based QM Utility’s Web Page

Displays 31–21

31.3 MESSAGE CIRCUIT CHECKING 31–29
31.3.1 Configuring the Message Circuit Check Facility 31–29

31.3.1.1 The Circuit Check Configuration File • 31–30
31.3.1.1.1 Available Circuit Check Parameters • 31–31

31.3.2 Controlling the Circuit Check Facility 31–34
31.3.3 Interpreting the Circuit Check Counters 31–35
31.3.4 Loopback Addresses for Circuit Checking 31–37

31.4 CHANNEL STATISTICS COUNTERS 31–38
31.4.1 Purpose and Use of Counters 31–38

31.4.1.1 Example of Counters Interpretation • 31–39
31.4.2 Implementation on OpenVMS 31–40
31.4.3 Implementation on UNIX and NT 31–41

31.5 HP Commander SCANNING MODULE (OpenVMS AND Tru64 UNIX
ONLY) 31–42
31.5.1 Required Software 31–42
31.5.2 Configuration 31–42
31.5.3 Operation 31–42

31.6 SNMP SUPPORT ON OpenVMS 31–44
31.6.1 Operation 31–44
31.6.2 MIB Variables Served 31–44
31.6.3 Configuring the TCPware Subagent 31–46

31.7 WEB-BASED COUNTER MONITORING 31–47
31.7.1 Using the Sample Monitoring Configuration 31–48
31.7.2 The Monitoring Option File 31–49
31.7.3 Monitoring Customization 31–51

31.7.3.1 Processing HTTP Requests • 31–51
31.7.3.2 Generating HTTP Responses • 31–51
31.7.3.3 Monitoring Commands • 31–53
31.7.3.3.1 Channel Counters: command=show_counters • 31–54
31.7.3.3.2 .HELD messages: command=show_held • 31–58
31.7.3.3.3 General Information: command=show_pmdf • 31–59
31.7.3.3.4 Processing Queues: command=show_queue • 31–60

xxv

Contents

31.7.3.3.5 HTML SUBMIT Buttons: noop=label • 31–65
31.7.3.4 An HTTP GET Example • 31–65

CHAPTER 32 PERFORMANCE TUNING 32–1

32.1 BASICS 32–1

32.2 CPU AND RESOURCES 32–2

32.3 DISKS AND FILES 32–4

32.4 PLANNING FOR NETWORK SPEED AND LATENCY 32–6

32.5 DIFFERENTIAL HANDLING OF LARGE OR LOW PRIORITY
MESSAGES 32–6

CHAPTER 33 MAINTENANCE AND TROUBLESHOOTING ON
OpenVMS 33–1

33.1 BACKGROUND ON PMDF OPERATION 33–1

33.2 STANDARD MAINTENANCE PROCEDURES 33–2
33.2.1 Check the PMDF Configuration 33–2
33.2.2 Check Message Queue Directories 33–2
33.2.3 Check the Ownership of Critical Files 33–3
33.2.4 Check that the PMDF Dispatcher and Servers Are Present 33–3
33.2.5 Check that processing Jobs Start 33–5
33.2.6 Check Processing Log and Debug Log Files 33–5
33.2.7 Running a Channel Program Manually 33–6
33.2.8 Checking that Periodic Jobs Are Present 33–7

33.3 GENERAL ERROR MESSAGES 33–9
33.3.1 Errors in mm_init, such as ‘‘No room in ...’’ Errors 33–9
33.3.2 Compiled Configuration Version Mismatch 33–13
33.3.3 File Open or Create Errors 33–13
33.3.4 Illegal Host/domain Errors 33–14
33.3.5 Errors in SMTP Channels: os_smtp_* Errors 33–15
33.3.6 Error Activating Transport IN 33–15
33.3.7 No License Error 33–16
33.3.8 Error in qu_init: Usage Level Requires PMDF-MTA

Service 33–16
33.3.9 Line too Long Error on MAIL-11 Channels 33–17

33.4 COMMON PROBLEMS AND SOLUTIONS 33–17
33.4.1 Changes to Configuration Files or PMDF Databases Do Not

Take Effect 33–18
33.4.2 PMDF Sends Outgoing Mail, but Does Not Receive

Incoming Mail 33–18
33.4.3 POP and IMAP Clients Time Out 33–18
33.4.4 Time Outs on Incoming SMTP Connections 33–19
33.4.5 Outgoing TCP/IP Messages Sit in Queue 33–19
33.4.6 PMDF Messages are not Delivered 33–21

33.4.6.1 Checking Version Limits and Numbers • 33–22
33.4.7 Message Queues Contain .HELD Files 33–23

33.4.7.1 Diagnosing .HELD Files • 33–23
33.4.7.2 Cleaning Up .HELD Files • 33–24

xxvi

Contents

33.4.8 Messages are Looping 33–25
33.4.9 Received Message is Encoded 33–26
33.4.10 From: Address Missing in Notifications from PMDF 33–27
33.4.11 MF, MB, or other $M... Files 33–28
33.4.12 @DIS Mailing List Expands into the Message Header 33–28
33.4.13 Some Addresses Missing from Headers of Messages Sent

from VMS MAIL 33–29
33.4.14 From: Addresses Contain SMTP%, EDU%, or Other

Prefixes 33–29
33.4.15 VMS MAIL Exits or Hangs 33–29

33.5 CONTACTING PROCESS SOFTWARE TECHNICAL SUPPORT 33–30

CHAPTER 34 MAINTENANCE AND TROUBLESHOOTING ON UNIX 34–1

34.1 BACKGROUND ON PMDF OPERATION 34–1

34.2 STANDARD MAINTENANCE PROCEDURES 34–1
34.2.1 Check the PMDF Configuration 34–2
34.2.2 Check Message Queue Directories 34–2
34.2.3 Check the Ownership of Critical Files 34–2
34.2.4 Checking that the Job Controller and Dispatcher are

Present 34–3
34.2.5 Check Processing Log Files 34–5
34.2.6 Running a Channel Program Manually 34–5

34.3 GENERAL ERROR MESSAGES 34–6
34.3.1 Errors in mm_init, such as ‘‘No room in ...’’ Errors 34–6
34.3.2 Compiled Configuration Version Mismatch 34–9
34.3.3 Swap Space Errors 34–10
34.3.4 File Open or Create Errors 34–11
34.3.5 Illegal Host/domain Errors 34–11
34.3.6 Errors in SMTP Channels: os_smtp_* Errors 34–12
34.3.7 Error in qu_init: Usage Level Requires PMDF-MTA

Service 34–12

34.4 COMMON PROBLEMS AND SOLUTIONS 34–13
34.4.1 Changes to Configuration Files or PMDF Databases Do Not

Take Effect 34–13
34.4.2 PMDF Sends Outgoing Mail, but Does Not Receive

Incoming Mail 34–13
34.4.3 POP and IMAP Clients Time Out 34–14
34.4.4 Time Outs on Incoming SMTP Connections 34–14
34.4.5 Outgoing TCP/IP Messages Sit in Queue 34–15
34.4.6 PMDF Messages are Not Delivered 34–16
34.4.7 Message Queues Contain .HELD Files 34–17

34.4.7.1 Diagnosing .HELD Files • 34–17
34.4.7.2 Cleaning Up .HELD Files • 34–18

34.4.8 Messages are Looping 34–19
34.4.9 Received Message is Encoded 34–20
34.4.10 From: Address Missing in Notifications from PMDF 34–21

34.5 CONTACTING PROCESS SOFTWARE TECHNICAL SUPPORT 34–22

xxvii

Contents

Volume IV

GLOSSARY Glossary–1

INDEX

EXAMPLES
2–1 Rewrite Rules for SC.CS.EXAMPLE.COM 2–26

2–2 A Simple Configuration File 2–110

2–3 Routing Messages to a Central Machine 2–112

2–4 Sample Configuration File 2–113

2–5 Configuring a Gateway for a DECnet Network 2–114

3–1 A Minimal Alias File, aliases., on OpenVMS 3–6

3–2 A Minimal Alias File, aliases, on UNIX 3–6

3–3 A Minimal Alias File, aliases, on NT 3–6

3–4 ALL-IN-1 Distribution List File d1:[lists]cats.dis 3–20

3–5 Text File a1$example$com.txt Used to Create ALL-IN-1 List
Expansion Database 3–20

3–6 Sample LDAP Filter File 3–27

3–7 A Complex FORWARD and REVERSE Mapping Example 3–38

3–8 Using a FORWARD Mapping Table to Forward Messages 3–43

3–9 Alias Database Source File 3–48

3–10 Reverse Database Source File 3–49

3–11 REVERSE Mapping Table 3–49

4–1 Sample Mailing List File staff.dis 4–13

4–2 Sample OpenVMS aliases File Defining a Mailing List 4–14

4–3 Sample UNIX aliases File Defining a Mailing List4 4–14

4–4 Sample NT aliases File Defining a Mailing List 4–14

5–1 Mapping File Example 5–13

6–1 Converting DEC-MCS to and from ISO-8859-1 6–3

6–2 Converting DEC-Kanji to and from ISO-2022-JP 6–4

9–1 Example Process Symbiont Queue Configuration Dialogue on a
Node ALPHA1 9–2

12–1 Sample HTTP Service Definition for OpenVMS 12–2

12–2 Sample HTTP Service Definition for UNIX 12–2

12–3 Sample HTTP Service Definition for NT 12–2

12–4 Sample http.cnf File 12–3

13–1 Sample dispatcher_mailbox_servers.cnf File on OpenVMS for
Legacy Mailbox Servers—Dispatcher Definitions for POP and IMAP
Servers 13–5

13–2 Sample dispatcher_mailbox_servers.cnf File on OpenVMS for
PMDF MessageStore Mailbox Servers—Dispatcher Definitions for
POP and IMAP Servers 13–6

xxviii

Contents

13–3 Sample dispatcher_mailbox_servers.cnf File on UNIX for
Legacy Mailbox Servers—Dispatcher Definitions for POP and IMAP
Servers 13–7

13–4 Sample dispatcher_mailbox_servers.cnf File on UNIX for
PMDF MessageStore Mailbox Servers—Dispatcher Definitions for
POP and IMAP Servers 13–8

13–5 Sample dispatcher_mailbox_servers.cnf File on NT for
MessageStore Mailbox Servers—Dispatcher Definitions for POP and
IMAP Servers 13–9

14–1 Implicit Default Security Configuration 14–17

14–2 Security Configuration Allowing Anonymous IMAP Access to the
ftp Account 14–18

14–3 Security Configuration with POPPASSD Controls 14–18

14–4 Security Configuration Using a Kerberos V4 Shared Library on
UNIX 14–19

14–5 Security Configuration for LDAP Authentication 14–19

14–6 Security Configuration for LDAP Authentication without
CRAM-MD5 14–19

14–7 Security Configuration when Migrating POP Users to the PMDF
popstore 14–20

14–8 Security Configuration Disallowing plaintext Passwords, except for
Transitioning to CRAM-MD5 14–20

14–9 Security Configuration Disallowing plaintext and APOP 14–21

14–10 PORT_ACCESS Mapping for Security Rule Set Based on Server
Port Number 14–22

14–11 PORT_ACCESS Mapping for Security Rule Set Based on Source IP
Address 14–22

14–12 PORT_ACCESS Mapping for Distinguishing User Groups 14–22

14–13 Sample POPPASSD Service Definition for the Dispatcher on
OpenVMS 14–26

14–14 Sample POPPASSD Service Definition for the Dispatcher on UNIX 14–27

15–1 Excerpt of a Sample dispatcher.cnf File for TLS Ports on
OpenVMS 15–7

15–2 Excerpt of a Sample dispatcher.cnf File for TLS Ports on UNIX 15–8

15–3 Excerpt of a Sample dispatcher.cnf File for TLS Ports on NT 15–9

15–4 Sample PORT_ACCESS Mapping Categorizing Incoming
Connections 15–9

15–5 Sample security.cnf File for Enforcing TLS Use with PLAIN and
LOGIN Mechanisms for External Connections 15–10

16–1 Restricting Internet Mail Access 16–3

16–2 Enforcing Use of Proper Source Addresses 16–5

17–1 Sample .forward File for User jdoe 17–4

20–1 Sample SMTP Over DECnet Channel Block 20–4

20–2 Rewrite Rules for Example 20–1 20–4

20–3 PhoneNet Over DECnet Channel Configuration for Node ALPHA 20–8

20–4 PhoneNet Over DECnet Channel Configuration for Node BETA 20–8

22–1 Sample CONVERSIONS Mapping 22–15

22–2 Sample Conversion Rule 22–15

xxix

Contents

22–3 Sample Conversion Command Procedure 22–15

24–1 OpenVMS Sample PhoneNet phone_list.dat file 24–7

24–2 UNIX Sample PhoneNet phone_list.dat file 24–7

24–3 A Sample PhoneNet all_master.com file 24–9

24–4 Sample PhoneNet Script 24–12

26–1 Example Addressing Channel Option File 26–8

26–2 Sample PAGER Mapping Table 26–15

26–3 Example OpenVMS phone_list.dat File for Two Pager Channels 26–18

26–4 Example UNIX phone_list.dat File for Two Pager Channels 26–18

26–5 Example Hayes-compatible Modem Script 26–19

26–6 Example Racal-Vadic 212a Modem Script 26–20

26–7 Sample pager$example$com.txt File 26–28

28–1 A Sample tcp_local_option File Disabling SMTP Probes 28–18

28–2 A Sample tcp_local_headers.opt File for Stripping Received:
Headers 28–20

31–1 Sample Circuit Check Configuration File 31–31

31–2 Sample of PMDF CIRCUIT_CHECK/SHOW Output 31–36

31–3 Sample of Counters Data 31–39

31–4 show_channels example: channels.txt formatting file 31–66

31–5 show_channels example: success.txt formatting file 31–66

31–6 show_channels example: error.txt formatting file 31–67

31–7 show_channels example: the resulting HTML output 31–67

33–1 Tracing TCP/IP Mail Delivery 33–20

33–2 pmdf.cnf For milan.example.com 33–24

34–1 Tracing TCP/IP Mail Delivery 34–15

34–2 pmdf.cnf For milan.example.com 34–17

FIGURES
1–1 Sample Mail Message File 1–17

1–2 The Structure of PMDF 1–20

2–1 Channel block schematic layout 2–32

9–1 Sample Process Symbiont Option File 9–4

10–1 Sample Job Controller Configuration File on UNIX 10–3

10–2 Sample Job Controller Configuration File on NT 10–4

11–1 The Service Dispatcher and Its Worker Processes 11–1

11–2 Sample Service Dispatcher Configuration File on OpenVMS,
dispatcher.cnf 11–4

11–3 Sample Service Dispatcher Configuration File on UNIX,
dispatcher.cnf 11–5

11–4 Sample Service Dispatcher Configuration File on NT,
dispatcher.cnf 11–6

11–5 Dispatcher Statistics Page 11–17

12–1 PMDF HTTP Server Main Page: Services and Documents Available 12–6

23–1 compress.com: Compress and decompress BSMTP payloads 23–5

23–2 pgp_sign.com: Digitally sign BSMTP payloads 23–6

xxx

Contents

23–3 pgp_verify.com: Verify the integrity of a digitally signed BSMTP
payload 23–8

23–4 compress.sh: Compress and decompress BSMTP payloads 23–16

23–5 pgp_sign.sh: Digitally sign BSMTP payloads 23–17

23–6 pgp_verify.sh: Verify the integrity of a digitally signed BSMTP
payload 23–18

24–1 The Structure of PhoneNet 24–2

26–1 Addressing Channel Sample 26–3

31–1 Logging: A Local User Sends an Outgoing Message 31–9

31–2 Logging: Including Optional Logging Fields 31–9

31–3 Logging: Sending to a List 31–10

31–4 Logging: Sending to a non-existent Domain 31–11

31–5 Logging: Sending to a non-existent Remote User 31–12

31–6 Logging: Rejecting a Remote Side’s Attempt to Submit a Message 31–13

31–7 Logging: Multiple Delivery Attempts 31–13

31–8 Logging: Z Entries 31–15

31–9 Logging: Incoming SMTP Message Routed Through the Conversion
Channel 31–17

31–10 Logging: Outbound Connection Logging 31–17

31–11 Logging: Inbound Connection Logging 31–19

31–12 Web-based QM Home Page 31–22

31–13 Web-based QM Quick Listing Page 31–23

31–14 Web-based QM Advanced Options Page 31–25

31–15 Web-based QM l Channel Page 31–26

31–16 Web-based QM Qtop Page 31–28

31–17 Sample Web Monitor Display on OpenVMS 31–50

33–1 Output of SHOW SYSTEM/NET 33–4

33–2 Output of SHOW QUEUE/ALL MAIL$BATCH on a Basic PMDF
System 33–8

33–3 Output of SHOW QUEUE/ALL MAIL$BATCH on a System With
Optional Jobs 33–8

34–1 Basic Output of pmdf process 34–3

34–2 Output of pmdf process With Optional Processes 34–3

34–3 Output of pmdf process With Channel Jobs 34–4

TABLES
2–1 Summary of Special Patterns for Rewrite Rules 2–11

2–2 Summary of Template Formats for Rewrite Rules 2–13

2–3 Summary of Template Substitutions and Control Sequences 2–16

2–4 Single Field Substitutions 2–21

2–5 Channel Block Keywords Listed Alphabetically 2–35

2–6 Channel Block Keywords Grouped by Functionality 2–45

2–7 Reserved Channel Names 2–105

2–8 Reserved Channel Name Prefixes 2–106

2–9 Message Routing and Queuing Generated by Example 2–2 2–111

xxxi

Contents

3–1 LDAP URL Substitution Sequences 3–5

3–2 Query Method Formatting String Control Sequences 3–30

3–3 Example Formatting Strings 3–30

3–4 REVERSE Mapping Table Flags 3–35

3–5 FORWARD Mapping Table Flags 3–38

3–6 Name Space and Centralized Naming Scheme for Example.Com 3–46

4–1 Parameter Action Modifiers 4–2

4–2 Access Check Strings 4–26

4–3 MAILSERV_ACCESS Mapping Table Flags 4–28

4–4 Summary of Mail and List Server Commands 4–30

5–1 Mapping Pattern Wildcards 5–3

5–2 Mapping Template Substitutions and Metacharacters 5–6

6–1 CHARSET-CONVERSIONS Mapping Table Keywords 6–1

7–1 PMDF Global Option File Options 7–2

8–1 Restarting Components 8–6

11–1 PORT_ACCESS mapping flags 11–14

11–2 Dispatcher debugging bits 11–15

13–1 IMAP and POP Server Mailbox Support 13–1

13–2 IMAP and POP Server Log Entry Codes 13–20

15–1 PMDF-TLS Channel Block keywords 15–5

16–1 Access Mapping Flags® 16–3

16–2 filter Channel Keyword Substitution Strings 16–25

17–1 /pmdf/bin/sendmail options 17–1

18–1 Foreign Protocol Address Mapping 18–2

22–1 CONVERSIONS Mapping Table Keywords 22–2

22–2 Available Conversion Parameters 22–5

22–3 Symbols for Use by the Conversion Channel 22–9

22–4 Symbols (OpenVMS) or Options (UNIX and NT) for Passing
Information Back to the Conversion Channel 22–9

22–5 Conversion Symbols for Substitution 22–10

22–6 Completion Statuses 22–12

22–7 SCRIPT Mapping Table Keywords 22–19

22–8 Script Channel Input Symbols 22–21

22–9 Script Channel Output Symbols 22–21

22–10 Completion Statuses 22–22

22–11 DISCLAIMER Mapping Table Keywords 22–25

24–1 PhoneNet Command Script Control Sequences 24–12

26–1 Addressing Channel Printer Commands 26–2

26–2 Addressing Channel Options 26–6

26–3 Pager Channel Addressing Attributes 26–29

26–4 Printer Channel Addressing Attributes 26–44

27–1 Queue to e-mail Symbiont Parameters 27–4

29–1 PMDF Utilities 29–1

29–2 Summary of PMDF QM Maintenance Mode Commands 29–79

30–1 PMDF Utilities 30–1

xxxii

Contents

30–2 Summary of pmdf profile commands 30–77

30–3 Summary of pmdf qm maintenance mode commands 30–84

31–1 Logging Entry Codes 31–4

31–2 Available Circuit Check Parameters 31–31

31–3 Channel Counters 31–38

31–4 Supported MIB Variables 31–45

31–5 Variable Descriptions 31–46

31–6 General Substitution Strings 31–55

31–7 Substitution Strings for Use with the show_counters Command 31–55

31–8 Substitutions Strings for Use with the show_held Command 31–59

31–9 Queue Substitution Strings for Use with the show_queue
Command 31–61

31–10 Job Substitution Strings for Use with the show_queue Command 31–63

33–1 PMDF Log Files on OpenVMS 33–6

33–2 master.com and submit_master.com parameters 33–7

34–1 PMDF Log Files on UNIX 34–5

xxxiii

Preface

Purpose of This Manual

This manual describes the structure, configuration, and use of PMDF. The intended
audience is system managers who want to become familiar with how PMDF operates.
In particular, this document describes many customizable parts of PMDF that can be
altered to adapt PMDF to a particular environment. The reader is assumed to be quite
familiar with networking concepts and the operating system on which PMDF is to be
installed.

This manual does not provide a description of PMDF suitable for end users; end
users should refer to the appropriate edition of the PMDF User’s Guide.

Overview of This Manual

This guide is a long and technical document. If you are new to PMDF, you should
skim the entire document, skipping the discussion in Part 4 of those PMDF layered
products which you will not be installing, as well as the channels described in Chapters
17–26 for which you do not have any use. Once you are somewhat familiar with PMDF
you can then perform the installation described in the appropriate edition of the PMDF
Installation Guide, referring back to this manual as needed.

PMDF is a large and complex package capable of being configured to meet almost
any task. If your site is typical of most, the initial configuration generated by the
configuration utilities will suffice to get you up and running in a minimal amount of
time. After you have an initial configuration, study it and use it as an example as you
read the following chapters. As you become comfortable with PMDF, you will find that
you want to make changes here and there, modify the behavior of some channels, or even
add additional channels to your configuration. Or perhaps you will want to set up some
databases, or implement a centralized naming system. By all means do so.1 PMDF, as
you will find, has quite a few knobs and switches which you can manipulate and more
often than not you will discover that there are not one but several means of dealing with
a given issue. If anything, PMDF is too flexible.

This manual consists of four volumes, together comprising forty-two chapters:

Chapter 1, Structure and Overview, describes the overall structure of PMDF and the
components which together form PMDF.

Chapter 2, The Configuration File: Domain Rewrite Rules & the Channel/Host Table,
describes the PMDF configuration file, including domain rewriting rules and the
channel/host table, channel definitions, and the available channel keywords.

1 There are, of course, some problems best left alone or for which what seems the obvious solution is not really a good one.
When in doubt just ask.

xlvii

Preface

Chapter 3, Aliases, Forwarding, and Centralized Naming, describes the alias file and
database, and other means of changing addresses, forwarding mail, and establishing
centralized naming schemes, including the directory channel.

Chapter 4, Mailing Lists and MAILSERV, describes mailing lists. It also describes
automated message processing via the MAILSERV channel.

Chapter 5, The Mapping File, describes the mapping file.

Chapter 6, Character Set Conversions and Message Reformatting , describes internal
message reformatting conversions.

Chapter 7, The PMDF Option File, describes the PMDF option file.

Chapter 8, Maintaining the Configuration, describes how to compile your PMDF
configuration information so as to decrease the time required for processing jobs to
load configuration information. It also discusses restarting PMDF components after
PMDF configuration changes.

Chapter 9, The PMDF Process Symbiont (OpenVMS), describes the PMDF Process
Symbiont which is used to schedule and execute PMDF processing jobs through the
OpenVMS queuing system.

Chapter 10, The PMDF Job Controller (UNIX and Windows), describes the PMDF
Job Controller which is used to control PMDF processing jobs on UNIX and NT.

Chapter 11, The PMDF Multithreaded Service Dispatcher, describes the PMDF
Service Dispatcher which is used to oversee the handling of multithreaded services
such as the POP3, IMAP, and SMTP services.

Chapter 12, The PMDF HTTP Server, describes some miscellaneous Dispatcher
services, including the PMDF HTTP server which is used to serve out PMDF
documentation and monitoring information.

Chapter 13, POP and IMAP Mailbox Servers, documents the mailbox servers (POP
and IMAP servers) supplied with PMDF.

Chapter 14, Connection Authentication, SASL, and Password Management, describes
connection authentication and password management.

Chapter 15, PMDF-TLS: Transport Layer Security, describes the optional layered
product PMDF-TLS. In this chapter configuration and usage instructions are given
for PMDF-TLS. PMDF-TLS provides for using Transport Layer Security to provide
data encryption and integrity checking.

xlviii

Preface

Chapter 16, Mail Filtering and Access Control, describes filtering of unwanted e-mail.

Chapter 17, The UNIX Local Channel, describes the local channel on UNIX systems,
the single most important PMDF channel which is used by all PMDF configurations
on UNIX. The UNIX Edition of the PMDF User’s Guide provides documentation
suitable for end users.

<REFERENCE>(CHAPTER_NTLOCAL\FULL), gives an overview of the local chan-
nel (normally the msgstore channel) on NT systems, a channel which is used by all
PMDF configurations on NT. Complete information on the msgstore channel may be
found in the PMDF popstore & MessageStore Manager’s Guide.

Chapter 18, The Local, DECnet MAIL, and General MAIL_ Channels (OpenVMS),
describes the local channel on OpenVMS systems, the single most important PMDF
channel which is used by all PMDF configurations on OpenVMS. This chapter also
describes MAIL-11 over DECnet (called DECnet MAIL in this document) channels.

Chapter 19, The PMDF User Interface on OpenVMS, decribes the PMDF interface
presented to OpenVMS users. The OpenVMS Edition of the PMDF User’s Guide
provides documentation suitable for OpenVMS end users.

<REFERENCE>(CHAPTER_FORMS\FULL), describes the pop-up addressing forms
which may be used to address FAXes, and query LDAP/X.500 and CCSO/ph/qi
directory databases from within VMS MAIL, PMDF MAIL, and DECwindows MAIL.

Chapters 20–26 describe how to configure various additional PMDF channels.

Chapter 20, DECnet Channels (OpenVMS and Tru64 UNIX), describes two PMDF
channels that run over DECnet transport:

� SMTP over task-to-task DECnet (OpenVMS only), and
� PhoneNet over task-to-task DECnet (OpenVMS only).

Chapter 21, TCP/IP Channels, describes one of the most important sorts of PMDF
channel, SMTP over TCP/IP channels.

Chapter 22, Message Manipulation Channels, describes the Script and Conversion
channels, which may be used to perform arbitrary manipulations on messages, such
as virus and spam filtering.

Chapter 23, BSMTP Channels: MTA to MTA Tunnelling, describes Batch SMTP
channels that can be used for MTA to MTA tunnelling.

Chapter 24, PhoneNet Channels (OpenVMS and UNIX), describes PhoneNet chan-
nels using the PhoneNet protocol over asynchronous terminal lines or modems.

xlix

Preface

Chapter 25, UUCP Channels (OpenVMS and UNIX), describes UUCP channels.

Chapter 26, Other Channels, describes additional channels, including:
� Alphanumeric pagers,
� Paper mail (e-mail directed to a printer),
� SMTP over an arbitrary I/O channels, and
� DEC Notes (OpenVMS only).

Chapter 27, The PMDF Queue to E-mail Symbiont (OpenVMS), describes the PMDF
Queue to e-mail Symbiont which can be used to allow users of word processors to
send FAXes directly from their word processing applications.

Chapter 28, E-mail Firewalls and Other E-mail Security Considerations, describes
configuring PMDF for use as an e-mail firewall.

Chapter 29, Utilities on OpenVMS, documents the various PMDF utility programs
available on OpenVMS platforms.

Chapter 30, Utilities on UNIX, documents the various PMDF utility programs
available on UNIX and NT platforms.

Chapter 31, Monitoring, describes the PMDF counters and monitoring PMDF with
DEC PolyCenter MAILbus Monitor, or with SNMP clients, or with web clients via
the PMDF HTTP CGI.

Chapter 32, Performance Tuning, provides some ideas and hints on how to get the
most performance out of PMDF.

Chapter 33, Maintenance and Troubleshooting on OpenVMS, provides some general
guide lines for diagnosing problems with PMDF on OpenVMS and documents some
of the more common problems that arise from time to time.

Chapter 34, Maintenance and Troubleshooting on UNIX, provides some general guide
lines for diagnosing problems with PMDF on UNIX and documents some of the more
common problems that arise from time to time.

Suggested starting points in this manual

PMDF includes a spectrum of features; the precise features of interest will vary
greatly from site to site. A first reading of this manual might focus on a careful reading
of Chapter 1 and Chapter 32, and then skimming Section 2.2 (omitting Section 2.2.6
on first reading), Section 2.3.1, Section 2.3.2, Section 2.4, Section 3.1, the beginning of
Chapter 5, Chapter 8, the beginning of Chapter 9 (for OpenVMS sites) or Chapter 10
(for UNIX sites), the beginning of Chapter 11, if using POP or IMAP then Chapter 13,
any channels discussed in Chapter 17 through Chapter 26 which you will be using (with
particular attention to Chapter 21 discussing TCP/IP channels which are one of the most
important sorts of channels for most sites), and Section 31.1.

l

Preface

Mail user agents

This manual focuses on PMDF’s function as a Message Transfer Agent (MTA), to
provide a uniform message distribution network that can be interfaced to multiple user
interfaces (Mail User Agents, or MUA’s). For further information on user interfaces, see
documentation for that user agent, or the appropriate edition of the PMDF User’s Guide.
For instance:

VMS
On OpenVMS systems, PMDF uses the standard VMS MAIL facility as its primary

user interface. PMDF also supplies a VMS MAIL-compatible user interface of its own,
PMDF MAIL. PMDF MAIL is an extension of VMS MAIL which better understands
network messaging (e.g., supports RFC 822 and MIME) and uses the same message
store as VMS MAIL. PMDF Pine, a port of the popular UNIX mail user agent Pine
to OpenVMS, is also supplied as part of PMDF for OpenVMS and also uses the same
message store as VMS MAIL. Information on PMDF MAIL and the OpenVMS-specific
implementation details of PMDF Pine may be found in the OpenVMS Edition of the
PMDF User’s Guide. PMDF also supports Gold-Mail.

UNIX

On UNIX systems, PMDF can use as its mail user interface any such interface which
normally submits its messages using sendmail or SMTP. For convenience, the PMDF
distribution includes a copy of one such mail user interface for UNIX, the University of
Washington’s Pine.

Availability

PMDF software products are marketed directly to end users in North America, and
either directly or through distributors in other parts of the world depending upon the
location of the end user. Contact Process Software for ordering information, to include
referral to an authorized distributor where applicable:

Process Software, LLC
959 Concord Street
Framingham, MA 01701 USA
+1 508 879 6994
+1 508 879 0042 (FAX)
sales@process.com

li

Volume I

The PMDF System Manager’s Guide is in four volumes. Volume I comprises
Chapter 1 through Chapter 13. Volume II comprises Chapter 14 through Chapter 28.
Volume III comprises Chapter 29 through Chapter 34.

1 Structure and Overview

PMDF is a general-purpose, store-and-forward system for distributing computer-
based mail. The term store-and-forward means that PMDF automatically handles the
requeuing and retransmission of mail messages necessitated when network links or
services are temporarily unavailable. In contrast to mail user agents (MUAs) such as
VMS MAIL or Pine which are used to create and read electronic mail messages, PMDF
is a mail transport agent (MTA) responsible for directing messages to the appropriate
network transport and ensuring reliable delivery over that transport.

PMDF provides a uniform distribution environment that can be interfaced to
multiple user interfaces (MUAs), networks, protocols, and transport mechanisms. As this
interfacing, from the user’s point of view, is accomplished transparently, PMDF presents
to the user a homogeneous mail network; i.e., PMDF seamlessly blends heterogeneous
mail networks into a single, coherent mail system.

This chapter presents a very brief sketch of the internal structure and operation
of PMDF, including an overview of the PMDF configuration file. The subsequent two
chapters describe in detail this configuration file, the heart of PMDF: the domain
rewriting rules used to rewrite addresses and route mail, and the channel/host table
which establishes a site’s available channels (message paths and gateways) and their
characteristics. Subsequent chapters provide additional details on other facets of PMDF.

1.1 The Structure of PMDF

An analogy

One analogy for PMDF’s function as an MTA (Mail Transport Agent) is that PMDF
performs a similar function for e-mail messages that a central transportation transfer
station performs in a city. In a city, passengers can come in to a station by way of
any one of numerous possible transports— by foot, by road, by subway, by railroad,
by air, etc. Over some of these transports there can be alternate protocol possibilities:
for instance, taxi cabs, busses, and private cars can all travel over roads; or another
example is that commercial airlines and private airplanes provide variant forms of air
travel. Depending on each passenger’s destination, the passenger departs by way of an
appropriate transport and protocol to get him to his next destination.

In the context of electronic mail, protocols are generally a high-level (not necessarily
network specific) language spoken between two mailers, whereas transports are the low-
level, network specific details used to implement a protocol on a given network.

Thus e-mail messages can come in to PMDF by any one of a variety of transports
and protocols—submitted directly by a local user, via TCP/IP as an SMTP message from
an Internet system, via a dial-up modem using the PhoneNet protocol, via DECnet
as a MAIL-11 message, via DECnet as an SMTP message, via UUCP, via an X.400

1–1

Structure and Overview
The Structure of PMDF

transport, via SNA, etc. PMDF then routes the message out using a transport and
protocol appropriate for the message’s destination address.

Note that PMDF not only serves as a mechanism for sending and receiving mail, but
also serves as a centralized switching yard or ‘‘gateway’’ for routing and rerouting mail
traffic between multiple network transports. The use of PMDF as a mail gateway allows
a PMDF host to provide electronic mail access through its network facilities for other,
less capable machines.

The transportation methods—PMDF channels

PMDF uses what are called channels to implement specific combinations of trans-
ports and protocols. Each different transport and protocol combination has a correspond-
ing different PMDF channel. The PMDF postmaster initially configures PMDF telling
PMDF what sorts of transports and protocols are in use at his site, and what sorts of
destination addresses should be routed through which sorts of channels. For instance,
at sites with an Internet connection, Internet addresses are normally routed through
an SMTP over TCP/IP channel; but at sites with only a UUCP connection, Internet ad-
dresses would instead be routed through a UUCP channel. Once PMDF is so configured,
PMDF handles message routing and delivery automatically—ordinary users need never
be aware of this underlying transport and routing: they simply address and send their
messages and PMDF automatically routes and delivers them appropriately.

The layout of transportation routes—the PMDF configuration file

PMDF’s main configuration file, the pmdf.cnf file, contains the fundamental PMDF
configuration information for a site, the information about what sorts of transports
and protocols are in use (PMDF channel definitions), and the information about which
destination addresses should be routed through which channels (PMDF rewrite rules).
This PMDF configuration file will be discussed further later in this chapter in Section 1.2,
as well as in detail in Section 2.2 and Section 2.3.

The PMDF configuration file thus contains a site’s ‘‘layout’’ in terms of transports
and protocols and which destinations are reachable via what transports: akin to the
physical layout of railroad tracks, bus lines, airline routes, etc., for a transportation
transfer station in a city.

Arrivals trigger activity—PMDF channels run on demand

There is also the issue of scheduling: when do messages arrive and when are they
delivered (when do the trains, buses, airplanes, etc., arrive and depart)?

For incoming messages, in most cases the underlying transport is simply configured
to hand the messages over to PMDF immediately whenever they come in: PMDF is
‘‘passive’’ or ‘‘data driven’’, waiting for the messages, which can come in at any time.1

1 An example of PMDF’s data driven nature is the case of local users on the PMDF system submitting messages from their
own Mail User Agents. When a local user on the PMDF system sends a message, their Mail User Agent invokes PMDF
images so that the Mail User Agent can hand the message over to PMDF.

1–2

Structure and Overview
The Structure of PMDF

For some protocol and transport combinations, the component of PMDF that awaits
incoming messages for that protocol and transport combination is implemented as a
server; for instance, to listen for and receive incoming SMTP over TCP/IP messages,
PMDF includes an SMTP server. In other cases, for some transports where the transport
itself is not able to actively hand the messages over to PMDF, PMDF is configured to
periodically ‘‘poll’’ the sending side and ask for incoming messages.

As mentioned, PMDF is data driven. When an external source submits a message
into PMDF, the receiving PMDF channel processes the message to check whither the
message is destined and then typically immediately hands the message over to the
appropriate outgoing channel and triggers the outgoing channel to itself run in turn. (In
the case of a message with multiple recipients, the receiving channel hands the message
over to multiple outgoing channels and triggers each of the outgoing channels to run.)
In particular, note that for outgoing messages, by default PMDF normally always makes
an immediate attempt to deliver each message.

To recapitulate, somewhat unlike the physical transportation transfer station
analogy above, in PMDF the normal scheduling of outgoing message deliveries is ‘‘on-
demand’’ and immediate—it is rather as if each new passenger could get their own railcar
or airplane with immediate departure.

Delivering the passengers—the execution of PMDF channel processing jobs

The execution of the incoming direction of a PMDF channel can occur in a variety of
contexts: in a user’s own process (as for messages submitted by local users on the PMDF
system), as a PMDF server process (as for incoming SMTP messages), or as a PMDF
channel job triggered in some other way. The receiving channel immediately triggers
the execution of a subsequent channel job to perform the next step of delivery of the
message, and these subsequent jobs triggered by PMDF itself run in PMDF processing
queues. On OpenVMS, regular OpenVMS Queue Manager queues are used for PMDF
processing; thus normal OpenVMS queue handling can be used to control many details
of PMDF processing. On UNIX and NT, PMDF processing queues are controlled by the
PMDF Job Controller, which has its own configuration options. Configuration of exactly
how and when channels run in processing queues can be used to control characteristics
of PMDF operation.

Delivery retry attempts

PMDF is a store-and-forward message system. If PMDF’s attempt to deliver a
message encounters a temporary failure condition, then PMDF stores the message and
later reattempts delivery. There are PMDF periodic jobs that run every so often re-
attempting delivery of not yet delivered messages; see Section 1.4.3 later in this chapter.
Eventually, if a message still cannot be delivered after repeated attempts, the PMDF
periodic return job returns (‘‘bounces’’) the message back to the sender. How long PMDF
keeps trying to deliver messages is of course configurable—see Section 1.4.4.

1–3

Structure and Overview
The Structure of PMDF

The waiting room—the PMDF queue area on disk

While messages are awaiting processing and delivery by PMDF, they are stored as
message files on disk in the PMDF queue area for the destination channel.

Summary

Thus there are five major aspects of PMDF operation:

1. Layout: The PMDF configuration describes how PMDF should handle messages,
addresses, and message content.

2. Receiving messages: PMDF servers or incoming channel jobs receive messages. In
general, PMDF is data driven. PMDF waits, listening for external agents to submit
messages whenever they want.

3. Processing outbound messages: PMDF channel jobs running in PMDF processing
queues deliver outbound messages. Note that a job in a PMDF processing queue
can be either an immediate delivery job, or a periodic job re-attempting delivery of
not-yet-delivered messages.

4. Scheduling of delivery retries and polling: For messages that do not get delivered
upon first attempt, a periodic delivery job periodically reattempts delivery. Note that
periodic jobs are: (a) a backup to the normal immediate delivery attempts of (3), or (b)
something of an exception to the normal case of (2) wherein messages are submitted
immediately by autonomous agents external to PMDF.

5. Message storage: The PMDF queue area is where message files are stored while being
processed and awaiting delivery.

Additional facilities

In addition to the major issues of message routing and delivery discussed so
far, sites often want to modify the addresses in e-mail messages, or convert message
contents. Some simple address modifications are configured simply as part of the basic
e-mail routing in the PMDF configuration file. For more complex needs, PMDF has
extensive address handling facilities for address aliasing, directory lookups, mailing lists,
centralized naming, etc.; see for instance Chapter 3. PMDF can also convert message
contents from one character set to another, or convert message contents from various
non-standard formats to MIME format; and in addition, PMDF has a facility for sites
to hook in third party document convertors to perform desired attachment conversions,
e.g., from Wordperfect to Microsoft Word; see in particular Chapter 6.

1.2 The PMDF Configuration File: Channels and Rewrite Rules

The PMDF configuration file is the heart of the PMDF configuration. This main
configuration file establishes the channels in use at a site and establishes which channels
are responsible for which sorts of addresses via rewrite rules. Continuing the analogy
of the previous section, the PMDF configuration file establishes the layout of the e-mail
system by specifying the transport methods available (channels) and the transport routes
(rewrite rules) associating types of addresses with appropriate channels.

1–4

Structure and Overview
The PMDF Configuration File: Channels and Rewrite Rules

Chapter 2 provides a detailed discussion of this file; an overview will be presented
here.

Location

The PMDF configuration file is located via the logical PMDF_CONFIG_FILE (Open-
VMS), the PMDF tailor file option PMDF_CONFIG_FILE (UNIX), or the Registry entry
PMDF_CONFIG_FILE (NT). It is normally a file named pmdf.cnf, located in the PMDF
table directory.2

Creation

The PMDF configuration file is normally initially created using the PMDF configu-
ration utility, discussed in the PMDF Installation Guide. Alternatively, the file can be
created entirely manually. Typically as site needs and configurations change, the PMDF
postmaster will want to modify the PMDF configuration file, adding in new channels if
new transport methods become available, fine tuning the operation of specific channels
via numerous channel keyword optional settings, adding or changing rewrite rules as
new systems are added or system names are changed.

Format overview

The PMDF configuration file is an ASCII text file that can be created or changed with
a text editor. The configuration file should be world readable. Failure to make

the configuration file world readable can cause unexpected PMDF failures.

The format of the configuration file consists of two parts: domain rewriting rules
and the channel definitions. The domain rewriting rules appear first in the file and
are separated from the channel definitions by a blank line. Each channel definition is
separated from the following channel definition by a blank line.

Thus note that blank lines are significant in the PMDF configuration file: they
delimit the end of the rewrite rules section of the file and separate channel definitions
one from another.

Comment lines can appear anywhere in the configuration file. A comment is
introduced with an exclamation point, !, in column one. Liberal use of comments to
explain what is going on is strongly encouraged. Comment lines are ignored by the
configuration file reading routines — they are essentially ‘‘not there’’ as far as the routines
are concerned and do not count as blank lines.

2 The PMDF table directory is the main PMDF directory for storing configuration files. The PMDF table directory is
located via the logical PMDF_TABLE (OpenVMS), the PMDF tailor file option PMDF_TABLE (UNIX), or the Registry
entry PMDF_TABLE (NT). Thus typically the PMDF configuration file is PMDF_TABLE:pmdf.cnf on OpenVMS,
/pmdf/table/pmdf.cnf on UNIX, or on NT, has a full path such as C:\pmdf\table\pmdf.cnf, though
the exact disk drive can vary depending upon installation.

1–5

Structure and Overview
The PMDF Configuration File: Channels and Rewrite Rules

The contents of other files can be included in the PMDF configuration file using the
< PMDF file include operator. Channel and rewrite rule definitions for PMDF layered
products, for instance, are commonly incorporated into the main PMDF configuration file
by reading subsidiary files into the main configuration file.

Use and operation

When a message enters the PMDF system it must be placed into the proper channel
queue or queues for transport or delivery out that channel. PMDF’s message enqueue
routines consult the PMDF configuration file to determine this: the recipient addresses in
the incoming message are each individually processed through the PMDF rewrite rules
to determine the proper channel (route) for each, and message copies are then written
to those corresponding channel queue areas. The rewriting process is also capable of
changing the address, for instance, converting local host nicknames (short-form names
in RFC 822 terminology) into fully qualified Internet style domain names.

1.2.1 Channels

The central unifying construct in PMDF is the channel. A channel is some form
of connection with another system or group of systems. Here, ‘‘system’’ is being used
quite loosely and can mean another computer system, mail system, user agent, gateway,
etc. The actual hardware connection or software transport or both can vary widely from
one channel to the next. Only the PMDF manager need know anything about PMDF’s
channels; users are never aware of the existence of channels and only see a single,
uniform interface regardless of how messages reach their destination.

Each channel consists of one or more channel programs and an outgoing message
queue for storing messages that are destined to be sent to the systems associated with
the channel. Channel programs perform two functions: (1) they transmit messages to
other systems, deleting them from their queue after they are sent, and (2) they accept
messages from other systems, placing them (i.e., enqueuing them) into channel queues.
Note that while a channel program only removes messages from its own queue it can
enqueue messages to any queue whatsoever, including its own.

A channel program which initiates a transfer to another system on its own is called a
master program, while a program which accepts transfers initiated by another system is
called a slave program. A channel can be served by a master program, a slave program,
or both. Either type of program can or can not be bidirectional; the direction in which
a message is travelling can have nothing to do with the type of program that handles
it. For example, in the case of a PhoneNet channel, the master and slave programs are
both capable of transmitting and receiving messages.

Channel definitions appear in the lower section of the PMDF configuration file
(following the first blank line in the configuration file). The channel definitions are
collectively referred to as the channel/host table; an individual channel definition forms
a channel block. There are a great many optional controls for channel behavior. See
Section 2.3 for complete information on channel definitions.

1–6

Structure and Overview
The PMDF Configuration File: Channels and Rewrite Rules

1.2.2 Domain Rewriting Rules

Domain rewriting rules, or, as they are frequently called, rewrite rules, play two
important roles. First, they are used to rewrite addresses into their proper or desired
form. Secondly, they are used to determine to which channels a message should be
enqueued.3 The determination of to which channels a message should be enqueued is
made by rewriting its envelope To: addresses.

Each rewrite rule appears on a single line in the upper half of the PMDF
configuration file. Comments but not blank lines can appear between rules. Every
rule consists of two parts: a pattern followed by an equivalence string or template.
The two parts must be separated by one or more spaces. Spaces are not allowed in the
parts themselves. The template specifies a mailbox name (e.g., username), a host/domain
specification, and the name of a system attached to an existing PMDF channel to which
messages to this address should be enqueued.

See Section 2.2 for complete information on the use of rewrite rules.

1.3 Enabling PMDF to Receive Messages

The details of configuring transports to hand messages over to PMDF vary greatly
from transport to transport, and it is not possible to provide much in the way of a general
overview; specifics will be described in subsequent chapters discussing specific sorts of
PMDF channels.

One item in particular can be pointed out, however, and that is that the PMDF
Dispatcher, described in Chapter 11, controls the operation of PMDF server processes,
such as the PMDF SMTP server (one of the most important PMDF components at a
typical site).

1.4 Processing Jobs

PMDF uses processing jobs to run all master channel programs. On OpenVMS
systems, these jobs take the form of either batch jobs or execution jobs depending upon
whether a batch queue or Process Symbiont queue is used for the queue to which the
processing jobs are submitted; unless you have configured PMDF otherwise, the use of
batch queues is the norm. On UNIX and NT systems, processing jobs are managed by
the PMDF Job Controller, discussed in detail in Chapter 10.

PMDF employs two kinds of processing jobs — periodic and immediate. Immediate
jobs are used to process messages as they are submitted. Periodic jobs are jobs that run
at fixed time intervals and process deferred requests of one sort or another. Periodic jobs
resubmit themselves; immediate jobs do not. Periodic jobs typically handle the messages
which immediate jobs were unable to deliver. On OpenVMS systems, periodic jobs, once
initially submitted to an OpenVMS batch queue, reschedule (resubmit) themselves as
needed. On UNIX systems, periodic jobs are scheduled by the cron daemon. On NT

3 And thus the terminology implied by the often asked question, ‘‘To which channel does the message rewrite?’’

1–7

Structure and Overview
Processing Jobs

systems, periodic jobs are scheduled by the Task Scheduler at the times specified with
the at command.

1.4.1 Immediate Message Submission Jobs

Each time a message is placed in a channel queue for a channel that is marked
as master and immediate,4 PMDF attempts to start a processing job to deliver the
message. The job is placed in the queue specified by the queue keyword in the channel
definition. If no queue is specified, the default queue is used.

VMS On OpenVMS systems, the default queue is MAIL$BATCH. PMDF requires CMKRNL
and SYSPRV privileges in order to submit jobs. Note that PMDF does not use the
$CMKRNL system service directly in submitting jobs: the OpenVMS services PMDF
calls to submit jobs require that the calling process have the CMKRNL privilege.

On UNIX and NT, the PMDF Job Controller implements PMDF’s job queuing system.
The default queue is the queue named DEFAULT in the Job Controller configuration file.

PMDF always checks to see if a processing job is already pending to process messages
on the channel requesting service. If such a job is in fact pending, then PMDF does not
bother to create an additional, superfluous job. This strategy prevents large numbers of
incoming messages from creating inordinate numbers of superfluous delivery processing
jobs.

With this scheme, messages typically get delivered very quickly. Unfortunately, a
price must be paid in terms of overhead — approximately one processing job is generated
per message. If this overhead is unacceptable (either in terms of CPU overhead or in
terms of the expense of making a connection), PMDF can, on a per-channel basis, be
prevented from generating jobs on demand. See the discussions of the periodic and
after channel keywords in Section 2.3 for details.

1.4.2 Manually Starting an Immediate Message Submission Job

It is sometimes useful to be able to start message delivery operations manually. For
example, suppose that your Internet connection was down and while it was down a lot
of messages built up in the outbound TCP/IP queues. The network is now up and you
want to begin delivery now rather than wait for the periodic delivery job. The obvious
thing to do next is to start a delivery job to deliver all the pending messages. One way to
do this is to simply run master.com interactively from a suitably privileged account on
an OpenVMS system, or to run the pmdf run utility from the root account on a UNIX
system or from the Administrator account on an NT system; i.e., on OpenVMS,

$ @PMDF_COM:master channel [polling-flag [since-time]]

or on UNIX,

4 These are the defaults.

1–8

Structure and Overview
Processing Jobs

pmdf run channel [polling-flag]

or on NT,

C:\> pmdf run channel [polling-flag]

Here channel is the channel to process and polling-flag is poll if the connection
is to be established regardless of whether or not messages are queued for delivery. If
polling-flag is nopoll, the default, a connection is made only if messages are queued
for delivery. since-time is an optional date and time specification. Queue entries
created before since-time will not be processed. Omitting since-time causes all
queue entries to be processed.

The problem with this technique is that it ties up your terminal for the duration
of the transaction. The alternative is to use the submit_master.com procedure on
OpenVMS or the pmdf submit_master utility (or the synonymous pmdf submit utility)
on UNIX or NT to submit a processing job that does the same thing. On OpenVMS, use
a command of the form, (where queue-name will default to MAIL$BATCH if it is not
specified):

$ @PMDF_COM:submit_master channel [polling-flag [queue-name [since-time]]]

or on UNIX, a command of the form:

pmdf submit_master channel [polling-flag]

or on NT, a command of the form:

C:\> pmdf submit_master channel [polling-flag]

All the defaults are the same as when master.com (on OpenVMS) or pmdf run (on UNIX
or NT) is invoked directly.

1.4.3 The Periodic Message Delivery Retry Job

A periodic job is one which reschedules itself for execution each time it runs. This
section will discuss the first of PMDF’s two main periodic jobs, the periodic delivery
job. This job’s primary purpose is to reattempt delivery of messages not yet delivered.
(Note that in normal PMDF configurations, normal messages get an immediate delivery
attempt by an immediate job, as described above in Section 1.4.1. Thus the periodic
delivery job is primarily a delivery retry job—it is not the main mechanism for initial
message delivery attempts.) The periodic delivery job is embodied on OpenVMS by the
command procedure PMDF_COM:post.com, which runs every four hours by default (this
value can be changed easily by setting the PMDF_POST_INTERVAL logical), or is embodied
on UNIX by the shell script /pmdf/bin/post.sh, which the cron daemon is normally
scheduled to run every four hours, or is embodied on NT by the program post_job.exe
located in the PMDF binary image directory (normally C:\pmdf\bin\) which the at
command normally schedules to run every four hours under the Task Scheduler.

1–9

Structure and Overview
Processing Jobs

The post job, whether embodied by the post.com command procedure or the
post.sh shell script or the post_job.exe program, runs the post program which scans
through all the channels currently defined in the configuration file. It also checks the
corresponding queues for messages. Processing jobs are unconditionally submitted to run
the master channel programs for any channels marked with the keyword master so as to
poll remote systems that cannot establish their own connections. Jobs are also submitted
for channels that support master channel programs and have messages queued. After
this is done the post job then terminates. It will run again in another four hours.

The jobs post creates run in the queue appropriate to the channel (specified with
the queue channel keyword); this can be a queue other than the one in which post itself
runs.

1.4.3.1 Adjusting Periodic Delivery Retry Job Frequency

PMDF’s suggested default behavior of running the periodic delivery job once every
four hours is appropriate for most sites. Indeed, at busy sites, running the periodic
delivery job too frequently tends to be counterproductive. Even if particular channels
need to run more frequently, perhaps due to needing to poll to check for new incoming
messages (e.g., LAN channels), it is often best to leave the regular PMDF post job running
at its usual frequency and to instead set up a special batch job that runs more frequently
for the special channels; this is, in fact, the role played by the pc_post job for PMDF-
LAN channels.

However, if a site does have a special need to run the periodic job more frequently,
consider the following.

First, note that RFC 1123, Requirements for Internet Hosts, requires that Internet
mail wait at least 30 minutes before being retried. Do not run your channel to the Internet
more frequently than every half hour.

Next, if you must set PMDF_POST_INTERVAL to some small interval (OpenVMS)
or have cron running the periodic jobs at some small interval (UNIX), or have the Task
Scheduler running the periodic job at some small interval (NT), consider using a

defaults period n

channel, with n a suitable integer, to set the default channel periodicity back to something
more like the usual four hour period, and mark only the channels that need to run more
frequently with period 1 so that only they run every time the periodic post job runs.

Finally, PMDF normally performs some periodic clean up tasks when the periodic
delivery job runs. PMDF’s defaults are tuned for the case where the periodic job only runs
every couple of hours. If you will be running the periodic job more frequently, you should
adjust PMDF’s clean up task frequency, so that clean up tasks are not being executed
needlessly often; see Section 1.4.3.2 below.

1–10

Structure and Overview
Processing Jobs

1.4.3.2 Clean Up Tasks Performed by the Periodic Delivery Job

The periodic delivery job normally performs some clean up tasks when it runs, such
as purging back old versions of log files and every so often re-synchronizing the PMDF
queue cache database.

By default, old log file versions are purged every time the periodic delivery job
runs. The frequency at which this purging is performed can be controlled via the
PMDF_VERSION_LIMIT_PERIOD logical (OpenVMS) or PMDF tailor file option (UNIX)
or Registry entry (NT). The number of log file versions retained is controlled by the
PMDF_VERSION_LIMIT logical (OpenVMS) or PMDF tailor file option (UNIX) or Registry
entry (NT) and defaults to 5, if not specified.

By default, the PMDF queue cache database is re-synchronized every couple of
times the periodic delivery job runs. The frequency of this re-synchronization can be
controlled via the PMDF_SYNCH_CACHE_PERIOD logical (OpenVMS) or PMDF tailor file
option (UNIX) or Registry entry (NT).

Note: On OpenVMS, the PMDF_SYNCH_CACHE_PERIOD and PMDF_VERSION_LIMIT_PERIOD
logicals should not be used if MAIL$BATCH runs on more than one node in a cluster, as
this can lead to unpredictable results.

1.4.4 Returning Undeliverable Messages

A periodic job is one which reschedules itself for execution each time it runs. This
section will discuss the second of PMDF’s two main periodic jobs, the periodic return job.
This job is embodied on OpenVMS by the command procedure PMDF_COM:return.com,
which runs once a day at 0:30:00 by default, or is embodied on UNIX by the shell script
/pmdf/bin/return.sh, which the cron daemon is normally scheduled to run once a day
at 30 minutes after midnight, or is embodied on NT by the program return_job.exe
in the PMDF binary image directory (usually C:\pmdf\bin\) which the at command
normally schedules to run once a day at 30 minutes after midnight under the Task
Scheduler. This job is primarily used to return (bounce) old, undeliverable messages
which have sat around in the message queues for too long. The frequency with which
the PMDF return job runs can be altered, if desired; see Section 1.4.4.1 below.

The return job (after first, on OpenVMS, resubmitting itself to run again, at its
next scheduled time, in the queue in which it is presently running) by default scans
the channels listed in the configuration file each time it runs, checking the values
established with the notices keyword. If any of the urgentnotices, normalnotices,
and nonurgentnotices channel keywords have been used to set more specific timeouts
for certain priorities of messages, the return job checks those values. The messages
queued to each channel are then checked. A warning message is sent for every message
whose age in days matches any of the values specified with the notices keyword on
the associated channel—or in the case of the *notices keywords, any message whose
priority matches or exceeds that specified by the keyword and whose age in days matches
any of the keyword’s values. The default ages if no notices keyword is specified are
3, 6, 9, and 12 days. If the message is as old or older than the final notices value, the
entire message is returned and the original message is deleted from the channel queue;
no further attempts to deliver the message will be made. The frequency with which
the periodic return job attempts to perform this task of returning old messages can be

1–11

Structure and Overview
Processing Jobs

controlled via the PMDF_RETURN_PERIOD logical (OpenVMS) or PMDF tailor file option
(UNIX) or NT Registry entry.

Note: On OpenVMS, the PMDF_RETURN_PERIOD logical should not be used if MAIL$BATCH
runs on more than one node in a cluster, as this can lead to unpredictable results.

The text of the warning and failure notices issued by the message return system is
contained in the return_*.txt files located in the PMDF language-specific directory.5

These files can be edited to provide different notification text if desired.6

PMDF maintains a history of delivery attempts for each message, which sometimes
will include information about failed delivery attempts. This information is included in
returned messages if RETURN_DELIVERY_HISTORY is set to 1 in the PMDF option
file (this is the default). A value of 0 disables the inclusion of this information.

Finally, the message return subsystem normally performs some clean up tasks in
addition to returning old messages; these additional functions are described below in
Section 1.4.4.2.

1.4.4.1 Adjusting Return Job Frequency

VMS
On OpenVMS, if RETURN_UNITS=1 is specified in the PMDF option file, then the

return job will run every hour instead of once a day.

UNIX

On UNIX systems, the frequency of the PMDF return job is controlled via the
crontab entry for /pmdf/bin/return.sh. If the return job is scheduled to run more
frequently than once a day, as for instance on an hourly basis, then RETURN_UNITS=1
should be set in the PMDF option file, so that notices values will be interpreted in
hours, rather than in days as is the default.

On NT systems, the frequency of the PMDF return job is controlled via the at
command which sets an entry for running return_job.exe under the Scheduler. If the
return job is scheduled to run more frequently than once a day, as for instance on an
hourly basis, then RETURN_UNITS=1 should be set in the PMDF option file, so that
notices values will be interpreted in hours, rather than in days as is the default.

5 On UNIX systems, this is the directory specified by the PMDF_LANG setting in the /etc/pmdf_tailor file; on NT
systems, this is the directory specified by the PMDF_LANG entry in the PMDF tailor Registry; on OpenVMS systems, this
is the directory specified by the PMDF_LANG logical. Usually the PMDF language-specific directory is simply a synonym
for the PMDF table directory.

6 As the text of such a file is copied into messages, certain substitutions are made. A %C expands into the number of days
the message has been queued; %L expands into the number of days the message has left in the queue before it is returned;
%F expands into the number of days a message is allowed to stay in the queue; %S [%s] expands into an S [s] if the
previously expanded numeric value was not equal to one; %U [%u] expands into the units, Hour [hour] or Day [day], in
use; %R expands into the list of the message’s recipients; %H expands into the message’s headers.

1–12

Structure and Overview
Processing Jobs

If the PMDF return job is running once an hour, then the default will be to issue
warning notices for messages which have remained undeliverable for 3, 6, or 9 hours.
Messages which have remained undeliverable for 12 or more hours are returned in
their entirety to their sender and no further delivery attempts are made. Note: When
RETURN_UNITS=1, these defaults will result in mail being bounced much too soon;
therefore, sites are strongly encouraged to use the notices channel keyword to set ‘‘bounce’’
ages in excess of twelve hours.

As the PMDF return job also performs various PMDF periodic cleanup tasks, tuned
on the assumption that the return job will only be running once a day, when the PMDF re-
turn job is run more frequently various PMDF parameters should be adjusted accordingly.
In particular, the PMDF_RETURN_SYNCH_PERIOD, PMDF_RETURN_SPLIT_PERIOD, and
PMDF_RETURN_CHECK_PERIOD logicals (OpenVMS) or PMDF_RETURN_SYNCH_PERIOD and
PMDF_RETURN_SPLIT_PERIOD PMDF tailor file options (UNIX) or
PMDF_RETURN_SYNCH_PERIOD and PMDF_RETURN_SPLIT_PERIOD Registry entries (NT)
should generally be adjusted so that these tasks are still performed only once a day; see
Section 1.4.4.2.

1.4.4.2 Clean Up Tasks Performed by the Return Job

The periodic return job normally performs various clean up tasks when it runs, such
as rolling over the mail.log* files, and if separate connection logging is being used then
rolling over the connection.log* files also, re-synchronizing the PMDF queue cache
database, and purging old log files and (on OpenVMS) resetting log file version numbers.

By default, the periodic return job checks each time it runs for any mail.log* or
connection.log* files in the PMDF log area. It appends any existing
mail.log_yesterday file to the cumulative log file, mail.log, renames the current
mail.log_current file to mail.log_yesterday, and then begins a new
mail.log_current file. The return job also performs the analogous operations for
connection.log* files. The frequency at which the periodic job performs these log file
roll overs can be controlled via the PMDF_RETURN_SPLIT_PERIOD logical (OpenVMS) or
PMDF tailor file option (UNIX) or Registry entry (NT).

The return job by default also re-synchronizes the PMDF queue cache database each
time it runs, scanning all the messages in the queues and entering any missing messages
into the PMDF queue cache. The frequency with which the return job performs queue
cache database re-synchronization can be controlled via the PMDF_RETURN_SYNCH_PERIOD
logical (OpenVMS) or PMDF tailor file option (UNIX) or Registry entry (NT).

VMS
On OpenVMS, the queue cache is also periodically subjected to either a CONVERT

operation, or to a CONVERT/RECLAIM operation to reclaim any unused space.

VMS
On OpenVMS, the PMDF return job also resets the version numbers of all log files in

the PMDF log directory, PMDF_LOG: on OpenVMS. Unfortunately, the version numbers on
open files cannot always be changed. Therefore, if, after resetting the version numbers,
any log files have a version number exceeding the warning level, 25,000, set in the
command procedure PMDF_COM:pmdf_check_logs.com, then a mail message will be
sent to the Postmaster. When such a message is received the Postmaster must manually
delete or reset the version numbers on the log files. Failure to do so will cause the

1–13

Structure and Overview
Processing Jobs

associated channel to stop working should the version number of one of its log files
attain 32,767. The frequency at which the periodic return job checks log file versions can
be controlled via the PMDF_RETURN_CHECK_PERIOD logical; the default, if the logical is
not defined, is to check each time the return job runs.

The logical names (OpenVMS) or PMDF tailor file options (UNIX) or Registry entries
(NT) described above for controlling the frequency of return job tasks are not defined by
default. To use such a logical name or tailor file option, define the logical or set the tailor
file option or Registry entry to an integer value N; that will cause the associated action
to only be performed every N times the periodic return job runs.

Note: On OpenVMS, the PMDF_RETURN_SYNCH_PERIOD, PMDF_RETURN_SPLIT_PERIOD, and
PMDF_RETURN_CHECK_PERIOD logicals should not be used if MAIL$BATCH runs on more
than one node in a cluster, as this can lead to unpredictable results.

The periodic return job also includes a hook for executing a site-supplied clean
up procedure. OpenVMS sites can provide their own PMDF_COM:daily_cleanup.com
DCL procecure; UNIX sites can provide their own /pmdf/bin/daily_cleanup shell
procedure; NT sites can provide their own daily_cleanup command script in the
PMDF binary image directory (usually C:\pmdf\bin\). The periodic return job will
automatically execute such a procedure, if it exists.

1.4.5 Managing Processing Job Execution on OpenVMS

On OpenVMS, the functions of PMDF’s processing jobs can optionally be performed
by detached processes (managed by the PMDF Process Symbiont), rather than running
in plain OpenVMS batch queues. This improves performance by reducing the amount of
process creation overhead associated with plain batch queues. See Chapter 9 for details
on how to set up a detached processing environment for PMDF.

Regardless of whether plain OpenVMS batch queues or PMDF Process Symbiont
queues are used for PMDF processing, the design of running PMDF jobs in queues allows
control of PMDF activity by stopping and starting the queue. The use of queue oriented
processing jobs also makes it possible to use PMDF in complex cluster environments,
where PMDF can need access to communications hardware or software that resides on
a system other than the one where the message processing activity originated. Generic
queues can be used to spread the load caused by mail delivery activities across multiple
machines in a cluster.

All PMDF processing jobs run by default in the MAIL$BATCH batch queue.
MAIL$BATCH can either be a batch queue in its own right or a logical name that
translates to the name of a batch queue. Alternate queues can be selected for jobs on a
channel by channel basis by using the queue channel keyword. If the Process Symbiont
is used, then the MAIL$BATCH queue will be a server queue, feeding multiple Process
Symbiont execution queues.

In an OpenVMS cluster environment, note that the MAIL$BATCH queue can be
a generic queue feeding specific queues on one or more systems thereby spreading the
processing load around. If you do spread the load around, be sure that each system has
the necessary resources to handle the types of traffic submitted to the MAIL$BATCH

1–14

Structure and Overview
Processing Jobs

queue. Such restrictions are generally dealt with by creating separate queues for
channels requiring software or other resources only available on a few systems and then
selecting those queues with the queue channel keyword.

1.4.6 Running Processing Jobs Under a Username Other than
SYSTEM on OpenVMS

On OpenVMS, all PMDF processing jobs normally execute under the username
SYSTEM. In some environments it can be necessary to change this default. The
default username for periodic processing jobs is established when PMDF is installed;
the installation procedure prompts for the username to be used.

The username must be that of an account with full privileges, i.e., a privilege mask
of -1.

To change to a different username after installation, redefine the system-wide,
executive-mode logical name PMDF_BATCH_USERNAME to translate to the desired user-
name and the system-wide, executive-mode logical name PMDF_BATCH_ACCOUNT to
translate to the corresponding accounting field. The next step is to edit the two
files SYS$STARTUP:pmdf_startup.com and PMDF_COM:pmdf_submit_jobs.com, and
change their definitions of these logical names too. Next kill the periodic PMDF jobs in
MAIL$BATCH, in particular:

• the periodic delivery job, and

• the message bouncer job,

and any other periodic jobs that can be present, depending on just what components of
PMDF you are using, such as:

• the popstore message bouncer job,

• the PC channel polling job, and

• the DECUS UUCP return job.

Such periodic jobs must be killed (since if left alone they would continue to resubmit
themselves using the SYSTEM username) and then resubmitted afresh under the new
username by executing PMDF_COM:pmdf_submit_jobs.com.

1.5 Storage of Message Files on Disk

Messages being processed by PMDF are stored as files on disk, in the PMDF queue
area, as described in Section 1.5.1 and Section 1.5.2 below.

1–15

Structure and Overview
Storage of Message Files on Disk

1.5.1 Channel Queue Formats

Messages queued for delivery are always stored in the same format, described
below in Section 1.5.2, regardless of the type of channel in which they are queued.
All messages are stored in subdirectories under the PMDF queue directory.7 Each
channel has its own subdirectory, with the name of the subdirectory being that of
the channel. For example, messages queued for delivery to Internet destinations are
typically handled by a tcp_local channel, hence stored in PMDF_QUEUE:[tcp_local]
on OpenVMS systems, /pmdf/queue/tcp_local/ on UNIX systems, and usually
C:\pmdf\queue\tcp_local\ on NT. A channel subdirectory can in turn have multiple
subdirectories beneath it, usually purely for file system usage reasons,8 but also some
channels, such as the MAILSERV and PRINTER channels, use a subsidiary spool
subdirectory for storing temporary file. Each file in a channel subdirectory contains
a single message.

Note: On OpenVMS, some temporary files are stored in the top level queue directory. The
names of these temporary files usually begin with a dollar sign, $.

All of these directories are protected against access by nonprivileged users. The first
two characters of each file name are a representation of the number of times delivery
has been attempted on the file. This information is encoded in ‘‘complemented base 36’’.
Files are initially created having names beginning with ‘‘ZZ’’. Upon completion of an
unsuccessful delivery attempt, a file is renamed, counting down in complemented base
36. So a name beginning with ‘‘ZY’’ indicates that at least one attempt has been made,
a name beginning with ‘‘ZA’’ indicatees that at least 25 attempts have been made, a
name beginning with ‘‘Z0’’ indicates that at least 35 attempts have been made, a name
beginning with ‘‘YZ’’ indicates that at least 36 attempts have been made, and so on.

The remainder of the file names are pseudo-random strings of hexadecimal charac-
ters that serve to make the file names unique. The file type (extension) is always a pair
of letters or digits, usually ‘‘00’’. Messages being held have a ‘‘.HELD’’ as the file type;
these messages are not eligible for delivery processing and must be renamed to have a
two-character file type before they will become eligible for delivery.9

The actual internal format of the message files is irrelevant. Those who want to
write their own PMDF channel programs should access the messages via the documented
PMDF API interface. This interface is documented in the PMDF Programmer’s Reference
Manual. PMDF itself uses the MM subroutine library to enqueue messages and the QU
subroutine library to dequeue messages. However, it is sometimes useful for a system
manager to examine messages in the queues, so it is nice to note that messages are stored
as ASCII text and message files can be typed on a terminal without adverse effects. An
overview is provided of message file format below in Section 1.5.2.

7 PMDF_QUEUE: on OpenVMS; /pmdf/queue/ on UNIX; the directory specified by the PMDF_QUEUE Registry
entry on NT, usually C:\pmdf\queue\.

8 See the subdirs channel keyword in Section 2.3.4.17.
9 See Section 33.4.7 or Section 34.4.7 for information on dealing with files marked .HELD, should you ever encounter any.

1–16

Structure and Overview
Storage of Message Files on Disk

1.5.2 Message File Structure

Most PMDF messages are stored as text files. Multimedia mail support for various
sorts of binary information, such as OpenVMS binary files, compound documents, and
image data are supported via printable text encodings. Messages with multiple parts
(possibly containing different types of data) are represented as a series of text sections
separated by special unique delimiter strings.

A sample mail message file is given in Figure 1–1 below.

Figure 1–1 Sample Mail Message File

u;MIRANDA
c;l
s;EXAMPLE.COM
i;01G6YTYFU6748WWH0Y@EXAMPLE.COM
h;<01G6YTYFU6748WWH0Y@EXAMPLE.COM>
m;MIRANDA@EXAMPLE.COM !
j;rfc822
f;prospero@EXAMPLE.COM
prospero@ISLAND.EXAMPLE.COM
Boundary_(ID_bNmDRTvfQNkeUUBbOugFTQ) "

Received: from EXAMPLE.COM by EXAMPLE.COM (PMDF V6.1 #9441) #
id <01G6YTYFU6748WWH0Y@EXAMPLE.COM> for prospero@EXAMPLE.COM;
Fri, 15 Nov 2012 14:55:51 EDT
Date: Fri, 15 Nov 2012 14:55:48 -0500 (EDT)
From: "Miranda" <miranda@example.COM>
Subject: Woe the day
To: prospero@example.COM
Message-id: <01G6YTYFU6748WWH0Y@example.COM>
MIME-version: 1.0
Content-type: TEXT/PLAIN; CHARSET=US-ASCII
Content-transfer-encoding: 7BIT
X-Envelope-to: prospero@example.COM
X-VMS-To: IN%"prospero@example.com"
$
Prospero,

More to know
Did never meddle with my thoughts.

Miranda
Boundary_(ID_bNmDRTvfQNkeUUBbOugFTQ) %

Briefly, the key items in each message file are

! The message envelope. The first records in the file contain message envelope (i.e.,
transport) information.

" The envelope is terminated either by a line containing a boundary marker, or by a
line containing two CTRL/A characters.

1–17

Structure and Overview
Storage of Message Files on Disk

The header lines of the message follow the envelope; their format is mandated by
RFC 822.a

$ There can be any number of message header lines; the message header formed by
this collection of header lines is terminated by a single blank line after which follows
the message body.

% The message is terminated by a boundary marker matching the boundary marker at
the beginning of the message, (or by a sequence of five CTRL/As if the message start
was indicated using CTRL/As).

Process Software reserves the right to change this format in future releases of PMDF.
User-written applications that either read or write queued PMDF message files should
make use of appropriate PMDF library routines; see the PMDF Programmer’s Reference
Manual. Use of the PMDF API will insulate user applications from any future message
format changes.

1.6 Other Important Files

The PMDF configuration file, presented in Section 1.2 above and described in more
detail in Chapter 2, is the single most important PMDF file. Of only slightly lesser import
is the alias file, described in Chapter 3. The existence of these two files is required. Listed
below are some additional PMDF files and databases which are described elsewhere in
this documentation:

File or database Described in Usage

Alias file and database Chapter 3 Implements aliases, mail forwarding, and
mailing lists.

Character set file Chapter 29 and
Chapter 30

Character set tables; used to translate
between character sets.

Channel option files Many channels use channel option files to
set options particular to the channel. See the
relevant channel documentation for details
on what options, if any, are available for the
channel.

Compiled configuration file Section 8.1 Shareable image built with PMDF’s
cnbuild utility; contains information
from the alias, configuration, mapping,
conversions, security, system wide filter file,
and PMDF option files; speed up PMDF’s
performance through the use of a compiled
configuration.

a A copy of RFC 822, Standard for the Format of ARPA Internet Text Messages, written by David Crocker can be found under
the PMDF documentation directory, usually pmdf_root:[doc.rfc] on OpenVMS systems or /pmdf/doc/rfc
on UNIX systems or the rfc subdirectory of the PMDF documention directory (usually C:\pmdf\doc) on NT.

1–18

Structure and Overview
Other Important Files

File or database Described in Usage

Conversion file Section 22.1 Used by the conversion channel to control
message body part conversions; used to
convert message attachments from one
format to another.

Dispatcher configuration file Section 11.3 Defines the PMDF server processes.

Domain database Section 2.2.9 Domain rewriting rules stored in a database
file; used primarily by BITNET configurations.

Forward database Section 3.4 Address forwarding database, used primarily
with autoregistered addresses.

General database Section 2.2.6.5 Used for arbitrary, site-specific purposes.

IMAP server configuration file Section 13.2.3.2.1 Sets options for the operation of the IMAP
server

Job Controller configuration file Section 10.1 On UNIX, defines the queues in which
channels can run.

Log files Section 2.3.4.84 There are two sorts of log files: those
generated to record the run of a channel
program (e.g., a batch processing log file
or channel debug log file), and the PMDF
message and connection log file(s) such as
mail.log, recording message flow through
PMDF.

Mapping file Chapter 5 Used by many different PMDF facilities as a
repository of mapping tables; mapping tables
are pattern based rules for transforming
text-based data.

Message files Section 1.5.1 Enqueued messages are stored in message
files; message files are stored in channel
queue directories.

Personal alias database Section 3.1.3 User-level alias databases created with
PMDF’s db utility.

PMDF option file Chapter 7 File of global PMDF options. Not to be
confused with channel keywords specified in
the configuration file or channel option files
described in the channel documentation.

POP server configuration file Section 13.2.3.2.2 Sets options for the operation of the POP
server

Queue cache database Chapter 29 and
Chapter 30

The messages currently enqueued to PMDF
and awaiting delivery are recorded in the
queue cache database. Channel programs
determine which messages to process by
querying this database. PMDF’s cache utility
is used to manage this database.

Reverse database Section 3.3.2 Database used to change addresses in
outgoing mail messages; e.g., change
alonso@naples.example.com into
King.Alonso@Example.Com.

Security configuration file Section 14.2 File controlling PMDF’s authentication source
and SASL use.

1–19

Structure and Overview
Other Important Files

A schematic of these PMDF files and components and how they interact is shown in
Figure 1–2 below.

Figure 1–2 The Structure of PMDF

channel
programs

h.
i. transports

channel queuesf.

conversion
routines

j.

option filec.

alias file &
database

b.

domain
database

d.

configuration
file

a.

g.
(QU routines)

mapping filek.

message enqueuee.

message dequeue

(MM routines)

The various components shown in Figure 1–2 are as follows.

a. The configuration file defines the specific channels and thus the transports that
a particular PMDF installation can use. The configuration file also contains
additional domain definitions like those in the domain database, except those in the
configuration file are in plain text. This file must be present and be readable by all
users of PMDF; if it is missing or unreadable PMDF will abort with an initialization
failure.

b. The alias file is used to establish aliases and mailing lists, a special case of an
alias. The alias file must be present and readable by all users of PMDF. The alias
database performs functions similar to the alias file, except that it is an indexed file
containing a list of mailbox names on the local system that are actually aliases for
different addresses or collections of addresses. The presence and use of this database
is optional.

c. The option file is used to set various PMDF parameters which are not specific to
any one channel. In particular, the sizes of various tables internal to PMDF can be
controlled using entries in this file.

1–20

Structure and Overview
Other Important Files

d. The optional domain database is an indexed file containing information about the
various domains a particular PMDF installation can reach. This database tells PMDF
how addresses for the various domains should be formatted and what transport
should be used to deliver messages to or obtain messages from a given domain.

e. PMDF uses a common set of routines, the MM routines, to enqueue messages in the
channel queues.

f. The channel queues are used to store messages prior to a channel program’s sending
them out via a transport.

g. PMDF uses a common set of routines, the QU routines, to dequeue messages from
the channel queues.

h. Channel programs are the parts of PMDF that interface to the various transports.

i. PMDF uses various transports to actually send and receive messages. Some of these
are part of PMDF (e.g., PhoneNet) and some are not (e.g., DECnet, TCP/IP).

j. The conversion routines implement the character set converters as well as the
message encode/decode facilities used for handling encoded messages.

k. The mapping file is a repository for general mapping information used throughout
PMDF. This file consists of a series of named tables written in a standard format.
Various components of PMDF check for and use different tables for different purposes.
For example, the SEND_ACCESS mapping table is used to control who can or can
not send or receive mail from various channels.

1.7 Installation Environment: Logicals (OpenVMS), Tailor File
(UNIX), Registry (NT)

When PMDF is installed, the installation procedure creates a file of PMDF logical
name definitions (OpenVMS) SYS$STARTUP:pmdf_startup.com, or a PMDF tailor file
of option settings (UNIX) /etc/pmdf_tailor, or PMDF entries in the NT Registry (see
the Registry under HKEY_LOCAL_MACHINE, SOFTWARE, Process Software, PMDF, Tailor)
establishing PMDF’s operational parameters, such as specifying the normal names of
PMDF’s main configuration files and specifying on which disk(s) PMDF directories are
located. For instance, the PMDF_QUEUE logical name (OpenVMS) or tailor file option
(UNIX) or Registry entry (NT) specifies the location of the PMDF queue area.

On OpenVMS, a command to execute pmdf_startup.com should be added to the
system startup procedure, so that these required PMDF logicals are properly defined
each time the system is rebooted. On UNIX and NT, the tailor values are automatically
consulted by PMDF as necessary.

Normally the Process Software-supplied pmdf_startup.com file, PMDF Tailor file,
or NT Registry entries, once generated during PMDF installation, should not be site
modified.b On OpenVMS, if you want to site customize such settings you can create a
file PMDF_COM:pmdf_site_startup.com containing the settings that you want to alter;
pmdf_startup.com will automatically execute such a site-supplied file, if it exists.

b The one value that is routinely changed is the OpenVMS-only logical name PMDF_TIMEZONE, which should be changed
whenever the local timezone is changed. Values controlling various ‘‘clean up’’ task timing are also sometimes changed,
as discussed above in Section 1.4.3.2 and Section 1.4.4.2.

1–21

Structure and Overview
Installation Environment: Logicals (OpenVMS), Tailor File (UNIX), Registry (NT)

Note: It is sometimes desired to change the values specifying the disk location of directories
such as the PMDF queue, table and log directories. This should only be done when a
system is running standalone (with no other processes on it). Furthermore, note that due
to limitations in the Solaris utilities pkginfo, pkgrm, and pkgadd, manually relocating
the entire PMDF directory tree (/pmdf and everything under it) after installation is not
supported on Solaris.

1.8 Compliance with Standards

PMDF is fully compliant with RFC 822, and with RFCs 2045–2049 (MIME)c, RFC
2183 (Content-disposition: header in MIME messages), RFCs 1892 and 1984 (Notification
message format), and RFC 2298 (Message Disposition Notifications), the standards for
the format of Internet text messages. SMTP support complies with RFC 821 (Simple
Mail Transfer Protocol), and RFCs 1652, 1869, 1870, 1891, and 1985 (SMTP extensions),
and RFC 2034 (Enhanced SMTP error return codes). PMDF’s use of the Domain Name
System for message routing complies with RFC 974. For blocking unsolicited bulk e-mail
(spam), PMDF fully supports RFC 2505 (Anti-Spam Recommendations for SMTP MTAs).
PMDF also complies with various other Internet formats and protocols, including RFC
1123 (Internet host application requirements), and RFC 976 (UUCP mail interchange).

PMDF’s POP server is compliant with RFC 1939 (POP3).d PMDF’s POP server also
supports RFC 2449 (POP3 CAPA command). PMDF’s IMAP server is compliant with RFC
2060 (IMAP4rev1).e PMDF’s IMAP server also supports RFC 2342 (IMAP4 NAMESPACE
command). PMDF’s message store IMAP server also supports RFC 2086 (IMAP4 ACL
extension), RFC 2087 (IMAP4 QUOTA extension), RFC 2088 (IMAP4 non-synchronizing
literals), and RFC 2359 (IMAP4 UIDPLUS extension)

For user authentication during IMAP, POP, or SMTP connections, PMDF supports
RFC 2222 (SASL; Simple Authentication Security Layer) and RFC 2554 (ESMTP AUTH).

The LDAP support in the PMDF directory channel supports RFC 2251 (LDAPv3),
RFC 2252 (LDAPv3: Attribute Syntax Definitions), RFC 2253 (LDAPv3: UTF-8 DNs),
RFC 2254 (LDAP Search Filters), and RFC 2255 (LDAP URL Format).

Regarding monitoring, PMDF supports RFC 1566 (Mail Monitoring MIB).

Copies of several of these and other standards can be found in the PMDF
documentation directory; see pmdf_root:[doc.rfc] on OpenVMS or /pmdf/doc/rfc/
on UNIX or the rfc subdirectory of the PMDF documentation directory (usually
C:\pmdf\doc\) on NT.

Note that PMDF can perform all the functions necessary to administer mail within a
domain, but does not itself provide domain name services. A name server is necessary to
fully administer an Internet domain; such support is provided by a TCP/IP networking
package and not by a mailer, since full domain support involves much more than
handling mail messages. Thus, if PMDF is to be used in the Internet environment,

c RFCs 2045–2049 update RFCs 1521 and 1522, which originally defined MIME format.
d RFC 1939 updates RFC 1725, itself an update of RFC 1460 which updated RFC 1225.
e RFC 2060 is an update of RFC 1730 which originally defined IMAP4; IMAP4 itself updates IMAP2 (RFC 1176).

1–22

Structure and Overview
Compliance with Standards

some facility should be used to perform domain name server functions for PMDF. This
facility can reside on the system running PMDF, as part of the vendor-supplied TCP/IP
implementation, or on another system on the network accessible to PMDF.

1–23

2 The Configuration File: Domain Rewrite Rules & the
Channel/Host Table

The PMDF configuration file is the heart of the PMDF configuration. This file
establishes, via channel definitions and domain rewriting rules, what types of connections
the PMDF system has to other systems and mailers, what addresses are local to the
PMDF system or local to the PMDF site, and how to route corresponding messages,
optionally altering addresses in the process. The types of connections to other systems
and mailers are established by means of the unifying PMDF construct, the channel.
The altering of addresses and the routing of corresponding messages to channels are
controlled by the domain rewriting rules.

Operationally, when a message enters the PMDF system it must be placed into
the proper channel queue or queues. PMDF’s message enqueue routines consult the
PMDF configuration file to determine the proper channel queues. Each recipient address
is processed through the domain rewriting rules to determine to which of the defined
channels to enqueue the message. In addition, domain rewriting rules may also modify
addresses; for instance, the message’s addresses must be rewritten to eliminate any
reference to local system nicknames or aliases (called short-form names in RFC 822)
since these are not allowed in outgoing messages. All information about local short-form
names and how to eliminate them via rewriting is usually contained in the configuration
file or a subsidiary database such as the domain database discussed elsewhere.

On OpenVMS systems, the configuration file is pointed at by the logical PMDF_
CONFIG_FILE;1 on UNIX systems the configuration file name and location are specified
by the PMDF_CONFIG_FILE2 setting in the PMDF tailor file.

The PMDF configuration file is an ASCII text file that can be created or changed with
a text editor. The configuration file should be world readable. Failure to make

the configuration file world readable may cause unexpected PMDF failures.

Note: NT sites may find the pmdf edit configuration editor application especially convenient
for editing PMDF configuration files.

2.1 Structure of the Configuration File

The configuration file consists of two parts: domain rewriting rules and the channel
definitions. The domain rewriting rules appear first in the file and are separated from
the channel definitions by a blank line; see Section 2.2 for details on domain rewriting
rules. The channel definitions are collectively referred to as the channel/host table; an
individual channel definition forms a channel block. See Section 2.3 for details on channel
definitions. Examples of simple configuration files, illustrating the overall structure of
the configuration file, may be found in Section 2.4.

1 Usually PMDF_TABLE:pmdf.cnf.
2 Usually /pmdf/table/pmdf.cnf.

2–1

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Structure of the Configuration File

2.1.1 Blank Lines in the Configuration File

Blank lines are significant in the configuration file. The first blank line in the file
terminates the domain rewriting rules section of the file and marks the beginning of
the channel definition section of the file. At least one blank line must also be present
between each distinct channel definition.

2.1.2 Comments in the Configuration File

Comment lines may appear anywhere in the configuration file. A comment is
introduced with an exclamation point, !, in column one. Liberal use of comments to
explain what is going on is encouraged.

It is important to distinguish between blank lines and comment lines. Blank lines
play an important role in delimiting sections of the configuration file. Comment lines are
ignored by the configuration file reading routines — they are essentially ‘‘not there’’ as
far as the routines are concerned and do not count as blank lines.

2.1.3 Continuation Lines in the Configuration File

Long lines may be continued by ending them with a backslash, \.

Note that even comment lines may be continued with a backslash, for instance:

! This is all \
a single comment line

2.1.4 Including Other Files in the Configuration File

The contents of other files may be included in the configuration file. If a line is
encountered with a less than sign, <, in column one, then the rest of the line is treated
as a file name; the file name should always be a full file path. The file is opened and its
contents are spliced into the configuration file at that point. Include files may be nested
up to three levels deep.

Note: Any files included in the configuration file must be world readable just as the configura-
tion file is world readable.

2–2

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

2.2 Domain Rewriting Rules

Domain rewriting rules are kept in the upper portion of the PMDF configuration file
and, when there are many rules as in the case of a BITNET site, in an auxiliary database
called the domain database. See Section 2.1 for an overview of the PMDF configuration
file format.

Throughout much of this manual, domain rewriting rules are referred to as simply
‘‘rewrite rules’’.

2.2.1 The Purpose of Domain Rewriting Rules

Domain rewriting rules are used to convert addresses into true domain addresses
and to determine their corresponding channels. These rules are used to rewrite addresses
appearing in both the transport layer and the message header. The transport layer is
the message’s ‘‘envelope’’, which contains routing information and is invisible to the user.

The rewrite rules and the table of channels cooperate to determine the disposition
of each address. The result of the rewrite process is a rewritten address and a ‘‘routing
system’’; i.e., the system to which the message is to be sent. Depending upon the topology
of the network, the routing system may only be the first step along the path the message
takes to reach its destination or it may be the final destination system itself.

After the rewrite process has finished a search is made for the routing system among
the channel portion of the configuration file. Each channel will have one or more host
names associated with it. The routing system name is compared against each of these
names to determine to which channel to enqueue the message.

Note that PMDF provides other means of manipulating addresses for the purposes
of changing them. See for instance Chapter 3.

2.2.2 Location and Format of Domain Rewriting Rules

The rewrite rules appear in the upper half of the PMDF configuration file. On
OpenVMS systems, this is the file pointed at by the logical PMDF_CONFIG_FILE;4 on
UNIX systems this is the file specified by the PMDF_CONFIG_FILE5 setting in the
PMDF tailor file, /etc/pmdf_tailor. Each rule in the configuration file appears on a
single line. Comments but not blank lines are allowed between rules. The end of the
rewrite rules is denoted by a blank line after which follow the channel definitions.

Every rule consists of two parts: a pattern followed by an equivalence string or
template. The two parts must be separated by one or more spaces (spaces are not allowed
in the parts themselves). The template specifies a username, a host/domain specification,

4 Usually PMDF_TABLE:pmdf.cnf.
5 Usually /pmdf/table/pmdf.cnf.

2–3

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

and the name of a system attached to an existing PMDF channel (the ‘‘routing system’’)
to which messages to this address should be sent.

As discussed in Section 2.2.9, additional rewrite rules may be located in an auxiliary
database called the domain database. See Section 2.2.9 for information on that database.

The syntax of domain rewriting rules is discussed in further detail below in
Section 2.2.4, Patterns and Tags and Section 2.2.5, Templates. First, however,
Section 2.2.3 presents a discussion of the application of rewrite rules to addresses, giving
an overview of the action of rewrite rules in operation.

2.2.3 Application of Domain Rewriting Rules to Addresses

This section presents a discussion of the operation of domain rewriting rules: how
an address is parsed and then transformed via rewrite rules. This section touches briefly
on the syntax of rewrite rules as such syntax relates to example addresses, but for full
details on rewrite rule syntax, see Section 2.2.4 and Section 2.2.5 below.

There are four steps in the application of the domain rewriting rules to a given
address:

1. The first host or domain specification is extracted from the address. (Note that an
address may specify more than one host or domain name as is the case with the
address jdoe%vax1@example.com.)

2. After extracting the first host or domain name specification, the rewrite rules are
scanned for a matching rewrite rule. That is, a search is conducted for a rewrite rule
whose pattern portion matches the extracted host/domain name.

3. Once a matching rewrite rule is found, the address is rewritten according to the
template portion of that rule. The template also specifies the name of a routing
system to which messages to this address should be routed.7

4. The routing system name is then compared with the host names associated with
each channel. If a match is found, then the message is enqueued to that channel;
otherwise, the rewriting process is considered to have failed. If the matching channel
is the local channel, then some additional rewriting of the address may occur.

These four steps are described in detail in the following subsections. There are also
special template formats which allow for variations in these four steps.

7 The term ‘‘routing system’’ can be misleading. It does not necessarily mean the name of a system through which the
message will be routed but rather is a host name, possibly fictitious, associated with a specific channel.

2–4

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

2.2.3.1 Extraction of the First Host/domain Specification

The process of rewriting an address starts by extracting the first host/domain
specification from the address. (Readers who are not familiar with RFC 822 address
conventions are advised to read that standard, at least in a cursory fashion, at this
point in order to understand the following discussion.) The order in which host/domain
specifications in the address are scanned is as follows:

1. Hosts in source routes (read from left to right).

2. Hosts appearing to the right of the at sign.

3. Hosts appearing to the right of the last singleton percent sign.

4. Hosts appearing to the left of the first exclamation point.

The order of the last two items are switched if the bangoverpercent keyword is in
effect on the channel that is doing the address rewriting. That is, if the channel which is
attempting to enqueue the message is itself marked with the bangoverpercent channel
keyword.8

Some highly hypothetical examples of addresses and the host name that would be
extracted first are shown below:

Address

First
host/domain
specifica-
tion Comments

user@a a a is a ‘‘short-form’’ domain name

user@a.b.c a.b.c a.b.c is a ‘‘fully-qualified’’ domain name (FQDN)

user@[0.1.2.3] [0.1.2.3] [0.1.2.3] is a ‘‘domain literal’’

@a:user@b.c.d a This is a source-routed address with a a short-form
domain name, the ‘‘route’’

@a.b.c:user@d.e.f a.b.c Source routed address, route part is fully-qualified

@[0.1.2.3]:user@d.e.f [0.1.2.3] Source-routed address, route part is a domain literal

@a,@b,@c:user@d.e.f a Source-routed address with an a to b to c routing

@a,@[0.1.2.3]:user@b a Source-routed address with a domain literal in the route
part

user%A@B B This non-standard form of routing is called a ‘‘percent
hack’’

8 For instance, if this is a message being sent from a user agent, then the enqueuing channel — the channel doing the
rewriting — would be the local, l, channel. If it is a message coming in from Message Router via PMDF-MR then usually
it will be the mr_local channel doing the rewriting. And, if it is a message coming in from DECUS UUCP, then the
vn_gateway channel will be doing the rewriting.

2–5

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

Address

First
host/domain
specifica-
tion Comments

user%A%B%C@D D A built up percent hack

user%A A

user%A%B B

user%%A%B B

user%A%%B A%%B Of questionable value

@A:user%B@C A

A!user A ‘‘Bang-style’’ addressing; commonly used for UUCP

A!user@B B

A!user%B@C C

A!user%B B nobangoverpercent keyword active; the default

A!user%B A bangoverpercent keyword active

@A:B!user@C A

@A,@B:C!user%D@E A Too grotesque to consider, really

Note that RFC 822 does not say anything about the interpretation of exclamation points,
!, and percent signs, %, in addresses. It is customary to interpret percent signs in the
same manner as at signs, @, if no at sign is present, so this convention is adopted by
PMDF.

The special interpretation of repeated percent signs is used to allow percent signs as
part of local usernames, which is used in handling PSIMail and other foreign mail system
addresses. The interpretation of exclamation points conforms to RFC 976’s ‘‘bang-style’’
address conventions and makes it possible to use UUCP addresses with PMDF.

The order of these interpretations is not specified by either RFC 822 or RFC 976,
so the bangoverpercent and nobangoverpercent keywords can be used to control
the order in which they are applied by the channel doing the rewriting. Note that the
default is more ‘‘standard’’, although the alternate setting may be useful under some
circumstances.

2.2.3.2 Scanning the Rewrite Rules

Once the first host/domain specification has been extracted from the address, PMDF
consults the rewrite rules to find out what to do with it. The host/domain specification
is compared with the pattern part of each rule (i.e., the left-hand side of each rule).
The comparison is case insensitive. Case insensitivity is mandated by RFC 822, UUCP
addresses notwithstanding. PMDF is insensitive to case but preserves it whenever
possible.

If the host/domain specification does not match any pattern, in which case it is said
to ‘‘not match any rule’’, the first part of the host/domain specification — the part before
the first period, usually the host name — is removed and replaced with an asterisk and
another attempt is made to locate the resulting host/domain specification, but only in

2–6

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

the configuration file rewrite rules (the domain database is not consulted). If this fails
the first part is removed and the process is repeated. If this also fails the next part
is removed (usually a subdomain) and the rewriter tries again, first with asterisks and
then without. All probes that contain asterisks are only done in the configuration file
rewrite rules table; the domain database is not checked. This process proceeds until
either a match is found or the entire host/domain specification is exhausted. The effect
of this procedure is to try to match the most specific domain first, working outward to
less specific and more general domains.

A somewhat more algorithmic view of this matching procedure is given below.

0. The host/domain specification is used as the initial value for the comparison strings
spec_1 and spec_2. E.g., spec_1 = spec_2 = a.b.c).

1. The comparison string spec_1 is compared with the pattern part of each rewrite rule
in the configuration file and then the domain database until a match is found. The
matching procedure is exited if a match is found.

2. If no match is found then the leftmost, non-asterisk part of spec_2 is converted to
an asterisk. E.g., if spec_2 is a.b.c then it is changed to *.b.c; if spec_2 is *.b.c then
it is changed to *.*.c; etc. The resulting comparison string spec_2 is compared with
only the configuration file. The domain database is not consulted. The matching
procedure is exited if a match is found.

3. If no match is found then the first part, including any leading period, of the
comparison string spec_1 is removed. In the case where spec_1 has only one part
(e.g., .c or c), the string is replaced with a single period, ‘‘.’’. If the resulting string
spec_1 is of non-zero length, then we return to Step 1. If the resulting string has
zero length (i.e., was previously ‘‘.’’) then the lookup process has failed and we exit
the matching procedure.

For example, suppose the address iris@sc.cs.example.com is to be rewritten. This
causes the rewriter to look for the following patterns in the given order:

Pattern Files Scanned

sc.cs.example.com configuration file and then domain database
*.cs.example.com configuration file rules only
.cs.example.com configuration file and then domain database
..example.com configuration file rules only
.example.com configuration file and then domain database
..*.com configuration file rules only
.com configuration file and then domain database
..*.* configuration file rules only
. match all rule described in Section 2.2.4.3

Note: Always remember that patterns involving asterisks are only searched for in the
configuration file’s set of rewrite rules; no searching is done for these patterns in the
domain database.

2–7

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

2.2.3.3 Applying the Rewrite Rule Template

Once a host/domain specification matches a rewrite rule, it is rewritten using the
template part of the rule. The template specifies three things:

1. a new username for the address,

2. a new host/domain specification for the address, and

3. the name of a system attached to an existing PMDF channel (the ‘‘routing system’’)
to which messages to this address should actually be sent.

Template format is discussed in detail in Section 2.2.5. As a quick overview, note that
the most common format for templates is A%B@C, where A is the new username, B is
the new host/domain specification, and C is the routing system. And the format A@C
(which is an abbreviation for A%C@C) is also commonly used.

Substitution strings are allowed in the template. For instance, to mention some of
the more commonly used substitution strings, any occurrences of $U in the template are
replaced with the username from the original address, any occurrences of $H are replaced
with the portion of the host/domain specification that was not matched by the rule, and
any occurrences of $D are replaced by the portion of the host/domain specification that
was matched by the rewrite rule. Table 2–3 contains a summary of these and other
substitution strings which are presented in detail in Section 2.2.6.

As an example, suppose that the host/domain specification adrian@example.com has
matched the rewrite rule

example.com $U@EXAMPLE.COM

Then the template will produce the username adrian, the host/domain specification EX-
AMPLE.COM, and the routing system EXAMPLE.COM. In a slightly more complicated
example, assume that the host/domain specification has matched the rewrite rule

.com $U%$H$D@TCP-DAEMON

In this case, $U = ‘‘jdoe’’, $H = ‘‘example’’, and $D = ‘‘.com’’. The template produces the
username adrian, the host/domain specification example.com, and the routing system
TCP-DAEMON.

2.2.3.4 Finishing the Rewriting Process

One of two things can happen once the host/domain specification is rewritten. If
the routing system is not associated with the local channel, or associated a channel
marked with the routelocal channel keyword, or there are no additional host/domain
specifications in the address, then the rewritten specification is substituted into the
address replacing the original specification that was extracted for rewriting, and the
rewriting process terminates.

If the routing system matches the local channel (or a channel marked with the
routelocal channel keyword) and there are additional host/domain specifications that
appear in the address, then the rewritten address is discarded, the original (initial)
host/domain specification is removed from the address, a new host/domain specification
is extracted from the address and the entire process is repeated. Rewriting will continue

2–8

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

until either all the host/domain specifications are gone or a route through a non-local,
non-routelocal channel is found. This iterative mechanism is PMDF’s way of providing
support for source routing. In effect, superfluous routes through the ‘‘local system’’ are
removed from addresses by this process.

2.2.3.5 Rewrite Rule Failure

If a host/domain specification fails to match any rewrite rule and no default rule
is present, PMDF simply uses the specification ‘‘as-is’’; i.e., the original specification
becomes both the new specification and the routing system. If the address has a
nonsensical host/domain specification it will be detected when the routing system does
not match any system name associated with any channel. This relaxed interpretation
of rewrite rule failures allows isolated PMDF sites that only communicate with a small
number of systems to get by without any rewrite rules whatsoever.

2.2.3.6 Syntax Checks After Rewriting

No additional syntax checking is done after the rewrite rules have been applied to
an address. This laxity is deliberate — it makes it possible for rewrite rules to be used
to convert addresses into formats that do not conform to RFC 822. However, this also
means that mistakes in the configuration file may result in messages leaving the PMDF
system with incorrect or illegal addresses.

2.2.3.7 Handling of Domain Literals

Domain literals are handled specially during the rewriting process. If a domain
literal appearing in the domain portion of an address does not match a rewrite rule
pattern as-is, the literal is interpreted as a group of strings separated by periods and
surrounded by square brackets.9 The rightmost string is removed and the search is
repeated. If this does not work the next string is removed, and so on until only empty
brackets are left. If the search for empty brackets fails, the entire domain literal is
removed and rewriting proceeds with the next section of the domain address, if there
is one. No asterisks are used in the internal processing of domain literals; when an
entire domain literal is replaced by an asterisk the number of asterisks corresponds to
the number of elements in the domain literal.

Like normal domain/host specifications, domain literals are also tried in most specific
to least specific order. The first rule whose pattern matches will be the one used to rewrite
the host/domain specification. If there are two identical patterns in the rules list, the
one which appears first will be used.

As an example, suppose the address iris@[198.162.3.40] is to be rewritten. The
rewriter looks for [198.162.3.40], then [198.162.3.], then [198.162.], then [198.], then [],
then [*.*.*.*], and finally the match-all rule ‘‘.’’.

9 Note that the support of numeric domain literals is not required by either PMDF or RFC 822.

2–9

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

When domain literals are combined with domain names the number of lookup
attempts gets to be quite large. This is not normal usage and its use is strongly
discouraged. For example, the address iris@[1.2].a.[3.4].b would generate requests for:

[1.2].a.[3.4].b
[1.].a.[3.4].b
[].a.[3.4].b
[*.*].a.[3.4].b
.a.[3.4].b
[*.*].*.[3.4].b
.[3.4].b
[*.*].*.[3.].b
.[3.].b
[*.*].*.[].b
.[].b
[*.*].*.[*.*].b
.b
[*.*].*.[*.*].*
.

2.2.4 Patterns and Tags

Most rewrite rule patterns consist either of a specific host name that will match only
and exactly that host, e.g.,

host.domain.com

or consist of a subdomain pattern that will match any host/domain in the entire
subdomain, e.g.,

.domain.com

A rewrite rule pattern such as the above would match any host.domain.com or
host.subnet.domain.com sort of host/domain name. Note, however, that it will not match
the exact host name domain.com; to match the exact host name domain.com, a separate
domain.com pattern would be needed.

Since as discussed in Section 2.2.3.2 PMDF attempts to rewrite host/domain names
starting from the specific host name and then incrementally generalizing the name
to make it less specific, this means that a more specific rewrite rule pattern will be
preferentially used over more general rewrite rule patterns. For instance, if the rewrite
rule patterns

hosta.subnet.domain.com
.subnet.domain.com
.domain.com

are present in the configuration file,a then an address of jdoe@hosta.subnet.domain.com
will match the specific hosta.subnet.domain.com rewrite rule pattern, while an address of
jdoe@hostb.subnet.domain.com will match the more general .subnet.domain.com rewrite

a Note that the order of these rewrite rule patterns does not strictly matter, though a more specific to less specific ordering
is commonly used for efficiency and esthetic reasons.

2–10

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

rule pattern, and an address of jdoe@hostc.domain.com will match the .domain.com
rewrite rule pattern.

In particular, the use of rewrite rules incorporating subdomain rewrite rule patterns
is common for sites on the Internet. Such a site will typically have a number of rewrite
rules for their own internal hosts and subnets, and then will include rewrite rules for
the top-level Internet subdomains into their configuration from the file internet.rules
stored in the PMDF table directory. The presence of such

! Ascension Island
.AC $U%$H$D@TCP-DAEMON
. [text

. removed for

. brevity]

! Zimbabwe
.ZW $U%$H$D@TCP-DAEMON

rewrite rules, with rewrite rule patterns that match the top level Internet domains and
rewrite rule templates that rewrite addresses matching such patterns to an outgoing
TCP/IP channel, ensure that messages to Internet destinations (other than to the
‘‘internal’’ host destinations handled via more specific rewrite rules) will be properly
rewritten and routed out an outgoing TCP/IP channel.

IP domain literals follow a similar hierarchical matching pattern, though with right-
to-left (rather than left-to-right) matching. For instance, the pattern

[1.2.3.4]

matches only and exactly the IP literal [1.2.3.4], while

[1.2.3.]

matches anything in the 1.2.3.0 subnet.

In addition to the more common sorts of host or subdomain rewrite rule patterns
discussed above, rewrite rules may also make use of several special patterns, summarized
in Table 2–1, and discussed in the following subsections.

Table 2–1 Summary of Special Patterns for Rewrite Rules

Pattern Name Section Usage

$% Percent hack rule 2.2.4.1 Matches any host/domain specification of the form A%B.
$! Bang-style rule 2.2.4.2 Matches any host/domain specification of the form B!A.
[] IP literal match-all

rule
2.2.3.7 Match any IP domain literal.

. Match-all rule 2.2.4.3 Matches any host/domain specification.

In addition to these special patterns, PMDF also has the concept of ‘‘tags’’ which
may appear in rewrite rule patterns. These tags are used in situations where an address
may be rewritten several times and, based upon previous rewritings, distinctions must
be made in subsequent rewritings by controlling which rewrite rules match the address.

2–11

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

2.2.4.1 A Rule to Match Percent Hacks

If PMDF tries to rewrite an address of the form A%B and fails, it tries one extra
rule before falling through and treating this address form as A%B@localhost. This extra
rule is the percent hack rule. The pattern is $%. The pattern never changes. This rule
is only activated when a local part containing a percent sign has failed to rewrite any
other way (including the match all rule described below).

The percent hack rule is useful for assigning some special, internal meaning to
percent hack addresses.

2.2.4.2 A Rule to Match Bang-style (UUCP) Addresses

If PMDF tries to rewrite an address of the form B!A and fails, it tries one extra rule
before falling through and treating this address form as B!A@localhost. This extra rule
is the bang-style rule. The pattern is $!. The pattern never changes. This rule is only
activated when a local part containing an exclamation point has failed to rewrite any
other way (including the default rule described below).

The bang-style rule can be used to force UUCP style addresses to be routed to a
system with comprehensive knowledge of UUCP systems and routing.

2.2.4.3 A Rule to Match Any Address

The special pattern ‘‘.’’ (a single period) will match any host/domain specification if
no other rule matches and the host/domain specification cannot be found anywhere in
the channel table. In other words, the ‘‘.’’ rule is used as a last resort when address
rewriting would fail otherwise.

Using this very general rule can simplify some PMDF installations at the expense of
propagating possibly bogus addresses. This special default rule should only be used when
PMDF does not have complete routing information available and has to defer judgment
of address validity to another system or systems. Care should be taken to insure that
such unchecked addresses are only sent to systems that are capable of handling them.

Note: When the match-all rule matches and its template is expanded, $H expands to the full
host name and $D expands to a single dot ‘‘.’’. Thus, $D is of limited use in a match-all
rule template!

2.2.4.4 Tagged Rewrite Rule Sets

As the rewrite process proceeds it may be appropriate to bring different sets of rules
into play. This is accomplished by the use of the rewrite rule tag. The current tag
is prepended to each pattern before looking it up in the configuration file or domain
database. The tag can be changed by any rewrite rule that matches by using the $T
substitution string in the rewrite rule template (described below).

2–12

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

Tags are somewhat sticky; once set they will continue to apply to all hosts that are
extracted from a single address. This means that care must be taken to provide alternate
rules that begin with the proper tag values once any tags are used. In practice this is
rarely a problem since tags are usually used in only very specialized applications. Once
the rewriting of the address is finished the tag is reset to the default tag — an empty
string.

By convention all tag values end in a vertical bar | . This character is not used in
normal addresses and thus is free to delineate tags from the rest of the pattern.

See Section 2.2.6.14 for an example of using tagged rewrite rules.

2.2.5 Templates

Once a host/domain specification matches a rewrite rule, it is rewritten using the
template part of the rule. The template specifies three things:

1. a new username for the address,

2. a new host/domain specification for the address, and

3. the name of a system attached to an existing PMDF channel (the ‘‘routing system’’)
to which messages to this address should actually be sent.

A summary of the template formats for rewrite rules is presented in Table 2–2.
The substitution strings and control sequences which may be used with templates are
discussed in Section 2.2.6.

Table 2–2 Summary of Template Formats for Rewrite Rules

Template Section Usage

A%B 2.2.5.2 A becomes the new user/mailbox name, B becomes the new
host/domain specification, rewrite again

A@B 2.2.5.1 Treated as A%B@B
A%B@C 2.2.5.1 A becomes the new user/mailbox name, B becomes the new

host/domain specification, route to C
A@B@C 2.2.5.3 Treated as A@B@C@C.
A@B@C@D 2.2.5.3 A becomes the new user/mailbox name, B becomes the new

host/domain specification, insert C as a source route, route to D

Other formats, such as A%B%C and so forth, are reserved for the implementation of
future capabilities in PMDF and should not be used as their function may change in a
future release.

2–13

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

2.2.5.1 Ordinary Rewriting Templates, A@B or A%B@C

The most commonly used form of rewrite rule template is A%B@C, where A is the new
username, B is the new host/domain specification, and C is the routing system (official
channel name). If B and C are identical, %B may be omitted; i.e., you may simply use
A@C when B and C are identical.

2.2.5.2 Repeated Rewritings Template, A%B

The special rewrite rule template format A%B is used for ‘‘meta-rules’’ that require
additional rewriting after their application. When an A%B pattern is encountered, A
becomes the new username and B becomes the new host/domain specification, and then
the entire rewriting process is repeated on the resulting new address. All other rewrite
rule formats cause the rewriting process to terminate after the rule has been applied.

For example, the rule

.removeable $U%$H

has the effect of removing all occurrences of the .removeable domain from the ends of
addresses.

Extreme care must be taken when using these repeating rules; careless use can
create a ‘‘rules loop’’ that will hang PMDF in an infinite loop. For this reason meta-rules
should only be used when absolutely necessary. Be sure to test them with the OpenVMS
command PMDF TEST/REWRITE or the UNIX or NT command pmdf test -rewrite.

2.2.5.3 Specified Route Rewriting Templates, A@B@C or A@B@C@D

The special rewrite rule template format A@B@C works in the same way as the usual
A%B@C rule, except that the routing system C will also be inserted into the address as
a source route. This inclusion of the routing system in the address may be needed by
some channels that have to establish a connection to the routing system and determine
the name of the routing system from the envelope To: address. For instance, the rewrite
rule

vax1 $U@vax1@example.com

would rewrite the address jdoe@vax1 into the source routed address @example.com:jdoe@vax1.
The routing system will be example.com.

The template format A@B@C@D uses A as the new username, B is the new
host/domain specification, C is inserted as a source route, and D is the routing system.
This is the most general template format available.

Note: Channel table rewriting may change the name of the routing system if the address being
rewritten is an envelope To: address. See Section 2.3.3 for further information on channel
table rewriting.

2–14

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

2.2.5.4 Case Sensitivity in Rewrite Rule Templates

Unlike the patterns in rewrite rules, character case in templates is preserved. This
is necessary when using rewrite rules to provide an interface to a mail system such as
UUCP which is sensitive to character case. Note that substitution sequences like $U and
$D that substitute material extracted from addresses also preserve the original case of
characters.

When it is desirable to force substituted material to use a particular case, for
instance, to force mailboxes to lowercase on UNIX systems, special substitution sequences
can be used in templates to force substituted material to a desired case. Specifically, $\
forces subsequent substituted material into lower case, $^ forces subsequent substituted
material into upper case, and $_ says to use the original case. So you can use a rule such
as

unix.example.com $\$U$_%unix.example.com

to force mailboxes to lowercase for unix.example.com addresses.

2.2.6 Template Substitutions and Rewrite Rule Control Sequences

Substitutions are used to substitute into the rewritten address a character string the
value of which is determined by the particular substitution sequence used. For instance
in the template

$U@example.com

the $U is a substitution sequence. It causes the username portion of the address being
rewritten to be substituted into the output of the template. Thus, if jdoe@vax1.example.com
was being rewritten by this template, the resulting output would be jdoe@example.com,
the $U substituting in the username portion, jdoe, of the original address.

Special control sequences may also appear in rewrite rule templates. These
sequences impose additional conditions to the applicability of a given rewrite rule: not
only must the pattern portion of the rewrite rule match the host/domain specification
being examined, but other aspects of the address being rewritten must meet conditions
set by the control sequence or sequences. For instance, the $E control sequence requires
that the address being rewritten be an envelope address while the $F sequence requires
that it be a forward pointing address. Thus, the rewrite rule

example.com $U@example.com$E$F

will only apply to (i.e., only rewrite) envelope To: addresses of the form user@example.com.
If a domain/host specification matches the pattern portion of a rewrite rule but doesn’t
meet all of the criteria imposed by control sequences in the rule’s template, then the
rewrite rule fails and the rewriter continues to look for other applicable rules. This
makes possible sets of rewrite rules such as

2–15

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

example.com $U%example.com@directory-daemon
example.com $U@example.com$Ndirectory

which will result in messages to user@example.com being passed to the directory
channel. However, should the directory channel rewrite a message with the address
user@example.com, that message will not again pass through the directory channel. This
then allows all mail to user@example.com to pass through the directory channel and for
the directory channel to emit mail to that address without causing a mail loop.

A summary of template substitutions and control sequences is presented in Ta-
ble 2–3.

Table 2–3 Summary of Template Substitutions and Control Sequences

Substitution
sequence Section Substitutes

$D 2.2.6.2 Portion of domain specification that matched
$H 2.2.6.2 Unmatched portion of host/domain specification; left of dot in pattern
$L 2.2.6.2 Unmatched portion of domain literal; right of dot in pattern literal
$U 2.2.6.1 Username from original address
$0U 2.2.6.1 Local part (username) from original address, minus any subaddress
$1U 2.2.6.1 Subaddress, if any, from local part (username) of original address
$$ 2.2.6.3 Inserts a dollar sign (literal)
$% 2.2.6.3 Inserts a percent sign (literal)
$@ 2.2.6.3 Inserts an at sign (literal)
$\ 2.2.5.4 Force substituted material to lowercase
$^ 2.2.5.4 Force substituted material to uppercase
$_ 2.2.5.4 Use original case
$W 2.2.6.9 Substitutes in a random, unique string
$]...[2.2.6.4 LDAP search URL lookup
$(text) 2.2.6.5 General database substitution; rule fails if lookup fails
${...} 2.2.6.6 Apply specified mapping to supplied string
$[...] 2.2.6.7 Invoke customer supplied routine; substitute in result
$&n 2.2.6.8 nth part of unmatched (or wildcarded) host as counting from left to right

starting from 0
$!n 2.2.6.8 nth part of unmatched (wildcarded) host as counted from right to left

starting from 0
$*n 2.2.6.8 nth part of matching pattern as counting from left to right starting from 0
$#n 2.2.6.8 nth part of matching pattern as counted from right to left starting from 0
$nD 2.2.6.2 Portion of domain specification that matched, preserving from the nth

leftmost part starting from 0
$nH 2.2.6.2 Portion of host/domain specification that didn’t match, preserving from the

nth leftmost part starting from 0

Control
sequence Section Effect on rewrite rule

$E 2.2.6.12 Apply only to envelope addresses
$B 2.2.6.12 Apply only to header/body addresses
$F 2.2.6.12 Apply only to forward-directed (e.g., To:) addresses
$R 2.2.6.12 Apply only to backwards-directed (e.g., From:) addresses

2–16

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

Table 2–3 (Cont.) Summary of Template Substitutions and Control Sequences

Control
sequence Section Effect on rewrite rule

$Mchannel 2.2.6.10 Apply only if channel channel is rewriting the address
$Nchannel 2.2.6.10 Fail if channel channel is rewriting the address
$Qchannel 2.2.6.11 Apply if sending to channel channel
$Cchannel 2.2.6.11 Fail if sending to channel channel
$S 2.2.6.13 Apply if host is from a source route
$A 2.2.6.13 Apply if host is to the right of the at sign
$P 2.2.6.13 Apply if host is to the right of a percent sign
$X 2.2.6.13 Apply if host is to the left of an exclamation point
$Tnewtag 2.2.6.14 Set the rewrite rule tag to newtag
$n?errmsg 2.2.6.15 If rewriting fails return errmsg instead of the default error message

2.2.6.1 Username and Subaddress Substitution, $U, $0U, $1U

Any occurrences of $U in the template are replaced with the username (local part)
from the original address. Note that usernames of the form a."b" will be replaced by "a.b"
as current Internet standardization work is deprecating the former syntax from RFC 822
and it is expected that the latter usage will become mandatory in future.

Any occurrences of $0U in the template are replaced with the username from the
original address, minus any subaddress (and subaddress indication character such as
+). Any occurrences of $1U in the template are replaced with the subaddress and
subaddress indication character, if any, from the original address. (See Section 2.3.4.71
and Section 3.1.1.6 for background on subaddresses.) So note that $0U and $1U are
complementary pieces of the username, with $0U$1U being equivalent to a simple $U.

$0U and $1U are most commonly used in PMDF MessageStore rewrite rules, where
it is common to force the account portion of the local part to lowercase while retaining
original case in the subaddress since the subaddress in a PMDF MessageStore address
indicates a folder name. For instance, a rewrite rule:

msgstore.example.com $\$0U$_$1U@msgstore.example.com

will cause an address such as nAmE@msgstore.example.com to be transformed (rewrit-
ten) to name@msgstore.example.com, while an address such as
nAmE+sUbAdDrEsS@msgstore.example.com would be transformed to
name+sUbAdDrEsS@msgstore.example.com.

2.2.6.2 Host/domain and IP Literal Substitutions, $D, $H, $nD, $nH, $L

Any occurrences of $H are replaced with the portion of the host/domain specification
that was not matched by the rule. Any occurrences of $D are replaced by the portion of
the host/domain specification that was matched by the rewrite rule. $nH and $nD are
variants that preserve the normal $H or $D portion from the nth leftmost part starting
counting from 0. Or another way of putting it is that $nH and $nD omit the leftmost
n parts (starting counting from 1) of what would normally be a $H or $D, substitution,
respectively. In particular, $0H is equivalent to $H and $0D is equivalent to $D.

2–17

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

For example, suppose the address jdoe@host.example.com matches the rewrite rule

host.example.com $U%$1D@TCP-DAEMON

Then the result of the rewrite rule will be jdoe@example.com with TCP-DAEMON used
as the outgoing channel. Here where $D would have substituted in the entire domain
that matched, host.example.com, the $1D instead substitutes in the portions of the match
starting from part 1 (part 1 being ‘‘example’’), so substitutes in example.com.

$L substitutes the portion of a domain literal that was not matched by the rewrite
rule.

2.2.6.3 Literal Character Substitutions, $$, $%, $@

The $, %, and @ characters are normally metacharacters in rewrite rule templates.
To insert a literal such character, quote it with a dollar character, $. I.e., $$ expands to
a single dollar sign, $; $% expands to a single percent, % (the percent is not interpreted
as a template field separator in this case); and $@ expands to a single at sign, @ (also
not interpreted as a field separator).

2.2.6.4 LDAP Query URL Substitutions, $]...[

A substitution of the form $]ldap-url[is handled specially. ldap-url is
interpreted as an LDAP query URL and the result of the LDAP query is substituted.
Standard LDAP URLs are used, with the host and port omitted; the host and port
are instead specified with the LDAP_HOST and LDAP_PORT PMDF options (see
Section 7.3.2 for further discussion of this option). That is, the LDAP URL should be
specified as

ldap:///dn[?attributes[?scope?filter]]

where the square bracket characters [and] shown above indicate optional portions of
the URL. The dn is required and is a distinguished name specifying the search base.
The optional attributes, scope, and filter portions of the URL further refine what
information to return. For a rewrite rule, the desired attributes to specify returning
might be a mailRoutingSystem attribute (or some similar attribute). The scope may
be any of base (the default), one, or sub. And the desired filter might be to request
the return of the object whose mailDomain value matches the domain being rewritten.

For instance, at a site example.com with an LDAP server running on port 389 of the
system ldap.example.com, the PMDF option file might have the lines

LDAP_HOST=ldap.example.com
LDAP_PORT=389

set, and if the LDAP directory schema includes attributes mailRoutingSystem and
mailDomain, then a possible rewrite rule to determine to which system to route a given
sort of address might appear as:

2–18

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

.example.com \
$U%$H$D@$]<ldap:///o=example.com?mailRoutingSystem?sub?(mailDomain=$D)[

where here the LDAP URL substitution sequence $D is used to substituted in the current
domain name into the LDAP query constructed; for ease in reading, the backslash
character, \, is used to continue the single logical rewrite rule line onto a second physical
line. See Table 3–1 for a full list of the LDAP URL substitution sequences available.

2.2.6.5 General Database Substitutions, $(...)

A substitution of the form $(text) is handled specially. The text part is used as
a key to access the special database PMDF_GENERAL_DATABASE.b This database is
generated with the pmdf crdb utility. If text is found in the database the corresponding
template from the database is substituted. If text does not match an entry in the
database the rewrite process fails; it is as if the rewrite rule never matched in the first
place. If the substitution is successful the template extracted from the database is re-
scanned for additional substitutions. However, additional $(text) substitutions from
the extracted template are prohibited in order to prevent endless recursive references.

As an example, suppose that the address jdoe@example.decnet matches the rewrite
rule

.DECNET $($H)

Then, the text string ‘‘example’’ will be looked up in the general database and the result
of the look up, if any, instead used for the rewrite rule’s template. Suppose that the result
of looking up ‘‘example’’ is ‘‘$u%examplevax.example.com@decnet’’. Then the output of
the template will be jdoe@examplevax.example.com (i.e., username = jdoe, host/domain
specification = examplevax.example.com), and the routing system will be decnet.

If a general database exists it should be world readable to insure that it operates
properly.

2.2.6.6 Apply Specified Mapping, ${...}

A substitution of the form ${mapping,argument} is handled specially. The
mapping,argument part is used to find and apply a mapping from the PMDF mapping
file. The mapping field specifies the name of the mapping table to use while argument

specifies the string to pass to the mapping. The mapping must exist and must set the
$Y flag in its output if it is successful; if it doesn’t exist or doesn’t set $Y the rewrite will
fail. If successful the result of the mapping is merged into the template at the current
location and reexpanded.

This mechanism allows PMDF’s rewriting process to be extended in various complex
ways. For example, the username part of an address can be selectively analyzed and
modified, which normally isn’t a feature PMDF’s rewriting process is capable of.

b On OpenVMS systems, this database is the file pointed at by the logical name PMDF_GENERAL_DATABASE,
which is typically the file PMDF_TABLE:general.dat; on UNIX systems, this database consists of the file
specified by the PMDF_GENERAL_DATABASE option in the /etc/pmdf_tailor file, which is usually the file
/pmdf/table/generaldb.*.

2–19

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

2.2.6.7 Customer-supplied Routine Substitutions, $[...]

A substitution of the form $[image,routine,argument] is handled specially. The
image,routine,argument part is used to find and call a customer-supplied routine.
At run-time on OpenVMS, PMDF uses LIB$FIND_IMAGE_SYMBOL to dynamically load
and link to the routine routine from the shareable image image; at run-time on UNIX,
PMDF uses dlopen and dlsym to dynamically load and call the routine routine from
the shared library image. The routine routine is then called as a function with the
following argument list:

status = routine (argument, arglength, result, reslength)

argument and result are 252 byte long character string buffers. On OpenVMS
argument and result are passed by descriptor (a class S descriptor is used to insure
maximum compatibility); on UNIX and Windows, argument and result are passed as
a pointer to a character string, (e.g., in C, as char*). arglength and reslength are
signed, long integers passed by reference. On input, argument contains the argument

string from the rewrite rule template, and arglength the length of that string. On
return, the resultant string should be placed in result and its length in reslength. This
resultant string will then replace the ‘‘$[image,routine,argument]’’ in the rewrite
rule template. The routine routine should return 0 if the rewrite rule should fail and
-1 if the rewrite rule should succeed.

This mechanism allows PMDF’s rewriting process to be extended in all sorts of
complex ways. For example, a call to some type of name service could be performed
and the result used to alter the address in some fashion. For instance, directory service
lookups for forward pointing addresses (e.g., To: addresses) to the host example.com
might be performed as follows with the following rewrite rule (the $F, described in
Section 2.2.6.12 causes this rule to only be used for forward pointing addresses):

example.com F[LOOKUP_IMAGE,LOOKUP,$U]

A forward pointing address jdoe@example.com will, when it matches this rewrite rule,
cause LOOKUP_IMAGE (which is a shareable image on OpenVMS and a shared library
on UNIX) to be loaded into memory, and then cause the routine LOOKUP called with
‘‘jdoe’’ as the argument parameter. The routine LOOKUP might then return a different
address, say, John.Doe%vax.example.com in the result parameter and the value �1
to indicate that the rewrite rule succeeded. The percent sign in the result string
causes, as descibed in Section 2.2.5.2 the rewriting process to start over again using
John.Doe@vax.example.com as the address to be rewritten.

VMS
On OpenVMS systems, since LIB$FIND_IMAGE_SYMBOL is used to dynamically load

the site-supplied image image, then image must be a logical name pointing to the actual
shareable image. Moreover, as this mechanism will be invoked by PMDF in a variety of
contexts, the logical must be an executive mode logical, any logicals it references must
also be executive mode logicals, and the image itself must be world readable and installed
as a known image.

UNIX

On UNIX systems, the site-supplied shared library image image should be world
readable.

2–20

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

Note: This facility is not designed for use by casual users; it is intended to be used to extend
PMDF’s capabilities system-wide.

2.2.6.8 Single Field Substitutions, $&, $!, $*, $#

Single field substitutions extract a single subdomain part from the host/domain
specification being rewritten. The available single field substitutions are shown in
Table 2–4.

Table 2–4 Single Field Substitutions

Control
Sequence Usage

$&n Substitute the nth element, n=0,1,2,..,9, in the host specification (the part that did not
match or matched a wildcard of some kind). Elements are separated by dots; the first
element on the left is element zero. The rewrite fails if the requested element does
not exist.

$!n Substitute the nth element, n=0,1,2,..,9, in the host specification (the part that did not
match or matched a wildcard of some kind). Elements are separated by dots; the
first element on the right is element zero. The rewrite fails if the requested element
does not exist.

$*n Substitute the nth element, n=0,1,2,...,9, in the domain specification (the part that did
match explicit text in the pattern). Elements are separated by dots; the first element
on the left is element zero. The rewrite fails if the requested element does not exist.

$#n Substitute the nth element, n=0,1,2,...,9, in the domain specification (the part that did
match explicit text in the pattern). Elements are separated by dots; the first element
on the right is element zero. The rewrite fails if the requested element does not exist.

Suppose the address jdoe@vaxa.example.com matches the rewrite rule

*.EXAMPLE.COM $U%$&0.example.com@mailhub.example.com

Then the result from the template will be jdoe@vaxa.example.com with mailhub.example.com
used as the routing system.

2.2.6.9 Unique String Substitutions

Each use of the $W control sequence inserts a text string composed of upper case
letters and numbers that is designed to be unique and unrepeatable. $W is useful in
situations where nonrepeating address information must be constructed.

2–21

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

2.2.6.10 Source Channel-specific Rewrite Rules, $M, $N

It is possible to have rewrite rules that act only in conjunction with specific source
channels. This is useful when a shortform name has two meanings, one when it appears
in a message arriving on one channel and another when it appears in a message arriving
on a different channel.

Source channel-specific rewriting is associated with the channel program in use and
the channel keywords rules and norules. If norules is specified on the channel
associated with a PMDF component that is doing the rewriting, no channel-specific
rewrite checking is done. If rules is specified on the channel, channel-specific rule
checks are enforced. rules is the default.

Source channel-specific rewriting is not associated with the channel a given address
matches. It depends only on the PMDF component doing the rewriting and that
component’s channel table entry.

Channel-specific rewrite checking is triggered by the presence of a $N or $M control
sequence in the template part of a rule. The characters following the $N or $M, up until
either an at sign, percent sign, or subsequent $N, $M, $Q, $C, $T, or $? are interpreted
as a channel name.

$Mchannel causes the rule to fail if the channel channel is not currently doing the
rewriting. $Nchannel causes the rule to fail if the channel channel is doing the rewriting.

Multiple $M and $N clauses may be specified. If any one of multiple $M clauses
matches, the rule will succeed. If any of multiple $N clauses matches, the rule will fail.

For example, suppose that the shortform host name ACUVAX is both a local DECnet
host and a BITNET host. For local use, it probably makes sense for any use of ACUVAX
to map to the DECnet host. But for messages coming in on the BITNET channel,
interpreting this name as the BITNET host would be more appropriate.

This problem might be solved with rewrite rules of the form given below; the use of
Jnet and not ANJE is assumed in this example.

acuvax $U%acuvax.bitnet@Jnet-DAEMON$Mbit_local
acuvax.bitnet $U%acuvax.bitnet@Jnet-DAEMON
acuvax $U%acuvax.decnet@decnet-mail
acuvax.decnet $U%acuvax.decnet@decnet-mail

These rewrite rules produce the following behavior: traffic for the host ACUVAX on the
bit_local channel and traffic for the host ACUVAX.BITNET are handled by the bit_local
channel; other traffic for the host ACUVAX and the host ACUVAX.DECNET is handled
by the decnet-mail channel.

2–22

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

2.2.6.11 Destination Channel-specific Rewrite Rules, $C, $Q

It is possible to have rewrite rules whose application is dependent upon the channel
to which a message is being enqueued. This is useful when there are two names for
some host, one known to one group of hosts and one known to another. By using different
channels to send mail to each group, addresses can be rewritten to refer to the host under
the name known to each group.

Destination channel-specific rewriting is associated with the channel to which a
message is being enqueued and the channel keywords rules and norules on that
channel. If norules is specified on the destination channel, no channel-specific rewrite
checking is done. If rules is specified on the destination channel, channel-specific rule
checks are enforced. rules is the default.

Destination channel-specific rewriting is not associated with the channel a given
address matches. It depends only on the message’s envelope To: address. When a
message is enqueued, its envelope To: address is first rewritten to determine to which
channel the message will be enqueued. During the rewriting of the envelope To: address
any $C and $Q control sequences are ignored. Once the envelope To: address is rewritten
and the destination channel determined, then the $C and $Q control sequences are
honored as other addresses associated with the message are rewritten.

Destination channel-specific rewrite checking is triggered by the presence of a $C or
$Q control sequence in the template part of a rule. The characters following the $C or
$Q, up until either an at sign, percent sign, or subsequent $N, $M, $C, $Q, $T, or $? are
interpreted as a channel name.

$Qchannel causes the rule to fail if the channel channel is not the destination.
$Cchannel causes the rule to fail if the channel channel is the destination.

Multiple $Q and $C clauses may be specified. If any one of multiple $Q clauses
matches, the rule will succeed. If any of multiple $C clauses matches, the rule will fail.

For example, suppose the local host’s TCP/IP channel used to communicate with
the Internet is the ptcp_local channel. Then, to prevent ‘‘raw’’ user@host.bitnet style
addresses from appearing on messages queued to that channel, a rewrite rule of the
form

.BITNET U%HD@interbit.cren.net$Qptcp_local

might be used. This will, in messages destined to the ptcp_local channel, transform
addresses of the form user@host.bitnet to user%host.bitnet@interbit.cren.net.

2.2.6.12 Direction and Location-specific Rewrites, $B, $E, $F, $R

It is sometimes useful to specify rewrite rules that only apply to envelope addresses
or, alternately, only apply to header addresses. The control sequence $E forces a rewrite
to fail if the address being rewritten is not an envelope address. The control sequence
$B forces a rewrite to fail if the address being rewritten is not from the message header
or body. These sequences have no other effects on the rewrite and may appear anywhere
in the rewrite rule template.

2–23

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

Addresses may also be categorized by direction. A forward-pointing address is one
that originates on a To:, Cc:, Resent-to:, or other header or envelope line that refers
to a destination. A backwards-pointing address is something like a From:, Sender:, or
Resent-From:, which refers to a source. The control sequence $F causes the rewrite to
fail if the address is backwards-pointing. The control sequence $R causes the rewrite to
fail if the address is forward-pointing.

The following rewrite rule causes forward pointing envelope addresses (i.e., envelope
To: addresses) of the form user@host.decnet to be rewritten to user@host and the message
routed to the channel associated with the host decnet-mail:

.decnet $U%$H@decnet-mailEF

.decnet $U@$H.example.com

All other addresses of the form user@host.decnet are rewritten to user@host.example.com
by the second rewrite rule.

2.2.6.13 Host Location-specific Rewrites, $A, $P, $S, $X

Circumstances occasionally require rewriting that’s sensitive to the location where
a host name appears in an address. Host names can appear in several different contexts
in an address: in a source route, to the right of the at sign, to the right of a percent sign
in the local-part, or to the left of an exclamation point in the local-part. Under normal
circumstances a host name should be handled in the same way regardless of where it
appears. Situations can arise, however, which may necessitate specialized handling.

Four control sequences are used to control matching on the basis of the host’s location
in the address. $S specifies that the rule may match a host extracted from a source route,
$A specifies that the rule may match a host found to the right of the at sign, $P specifies
that the rule may match a host found to the right of a percent sign, and $X specifies that
the rule may match a host found to the left of an exclamation point. The rule will fail if
the host is from a location other than one specified.

These sequences can be combined in a single rewrite rule. For example, if $S and $A
are specified the rule will match hosts specified in either a source route or to the right
of the at sign. Specifying none of these sequences is equivalent to specifying all of them;
the rule can match regardless of location.

2.2.6.14 Changing the Current Tag Value, $T

The $T control sequence is used to change the current rewrite rule tag. The rewrite
rule tag is prepended to all rewrite rule patterns before they are looked up in the
configuration file and domain database. Text following the $T, up until either an at
sign, percent sign, $N, $M, $Q, $C, $T, or $? is taken to be the new tag.

Tags are useful in handling special addressing forms where the entire nature of an
address is changed when a certain component is encountered. For example, suppose
that the special host name internet, when found in a source route, should be removed
from the address and the resulting address forcibly matched against the TCP-DAEMON
channel. This could be implemented with rules like the following (localhost is assumed
to be the official name of the local host):

2–24

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

internet SU@localhost$Tmtcp-force|
mtcp-force|. $U%$H@TCP-DAEMON

The first rule will match the special host name internet if it appears in the source
route. It forcibly matches internet against the local channel, which insures that it
will be removed from the address. A rewrite tag is then set. Rewriting proceeds, but
no regular rule will match because of the tag. Finally, the default rule is tried with
the tag, and the second rule of this set fires, forcibly matching the address against the
TCP-DAEMON channel regardless of any other criteria.

2.2.6.15 Controlling Error Messages Associated with Rewriting, $?

PMDF provides default error messages when rewriting and channel matching fail.
The ability to change these messages can be useful under certain circumstances. For
example, if someone tries to send mail to an ethernet router box, it may be considered
more informative to say something like ‘‘our routers cannot accept mail’’ rather than the
usual ‘‘illegal host/domain specified’’. A special control sequence can be used to change
the error message that will be printed if the rule fails. The sequence $? is used to specify
an error message. Text following the $?, up until either an at sign, percent sign, $N, $M,
$Q, $C, $T, or $? is taken to be the text of the error message to print if the result of this
rewrite fails to match any channel. The setting of an error message is ‘‘sticky’’ and will
last through the rewriting process.

A rule that contains a $? operates just like any other rule. The special case of a
rule containing only a $? and nothing else receives special attention — the rewriting
process is terminated without changing the mailbox or host portions of the address and
the host is looked up as-is in the channel table. This lookup is expected to fail and the
error message will be returned as a result.

For instance, if the final rewrite rule in the PMDF configuration file is

. $?Unrecognized address; contact postmaster@xyzzy.com

then any unrecognized host/domain specifications which will fail will, in the process of
failing, generate the error message ‘‘Unrecognized address; contact postmaster@xyzzy.com’’.

There is an optional value that may be specified between the $ and the ?. This value
tells PMDF what error number to use with the specified error message. The default if no
value is specified is 5.1.2, a permanent error. You can use the optional value to specify a
temporary error (4.y.z) or a different permanent error.

The value is formatted as follows: to get the error number x.y.z, the value between
the $ and ? should be x00y00z. For example:

. $4001002?Unrecognized address; contact postmaster@xyzzy.com

Generates a 400-level error response with the error message ‘‘4.1.2 Unrecognized address;
contact postmaster@xyzzy.com’’.

2–25

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

2.2.7 Rewrite Rules Example

The following example provides some sample rewrite rules and shows how some
sample addresses would be rewritten by them. For more complete examples which take
into account the interaction with the channel definitions, see Section 2.3.

Suppose the configuration file for the system SC.CS.EXAMPLE.COM contained the
following rewrite rules shown in Example 2–1.

Example 2–1 Rewrite Rules for SC.CS.EXAMPLE.COM

sc $U@sc.cs.example.com
sc1 $U@sc1.cs.example.com
sc2 $U@sc2.cs.example.com
* $U%$&0.cs.example.com
*.cs $U%$&0.cs.example.com
*.cs.example $U%$&0.cs.example.com
*.cs.example.com $U%$&0.cs.example.com@ds.adm.example.com
sc.cs.example.com $U@$D
sc1.cs.example.com $U@$D
sc2.cs.example.com $U@$D
sd.cs.example.com $U@sd.cs.example.com
.example.com $U%$H.example.com@cds.adm.example.com
.com $U@$H$D@gate.adm.example.com
[] $U@[$L]@gate.adm.example.com

Then the following initial addresses will be rewritten and routed as shown.

Initial address Rewritten as Routed to

user@sc user@sc.cs.example.com sc.cs.example.com
user@sc1 user@sc1.cs.example.com sc1.cs.example.com
user@sc2 user@sc2.cs.example.com sc2.cs.example.com
user@sc.cs user@sc.cs.example.com sc.cs.example.com
user@sc1.cs user@sc1.cs.example.com sc1.cs.example.com
user@sc2.cs user@sc2.cs.example.com sc2.cs.example.com
user@sc.cs.example user@sc.cs.example.com sc.cs.example.com
user@sc1.cs.example user@sc1.cs.example.com sc1.cs.example.com
user@sc2.cs.example user@sc2.cs.example.com sc2.cs.example.com
user@sc.cs.example.com user@sc.cs.example.com sc.cs.example.com
user@sc1.cs.example.com user@sc1.cs.example.com sc1.cs.example.com
user@sc2.cs.example.com user@sc2.cs.example.com sc2.cs.example.com
user@sd.cs.example.com user@sd.cs.example.com sd.cs.example.com
user@aa.cs.example.com user@aa.cs.example.com ds.adm.example.com
user@a.eng.example.com user@a.eng.example.com cds.adm.example.com
user@a.cs.example1.edu user@a.cs.example1.edu gate.adm.example.com — route

inserted
user@b.cs.example1.edu user@b.cs.example1.edu gate.adm.example.com — route

inserted
user@[1.2.3.4] user@[1.2.3.4] gate.adm.example.com — route

inserted

Basically, what these rewrite rules say is: If the host name is one of our short-form
names (sc, sc1 or sc2) or if it is one of our full names (sc.cs.example.com, etc.), expand it
to our full name and route it to us. Append cs.example.com to one part shortform names

2–26

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

and try again. Convert one part followed by .cs to one part followed by .cs.example.com
and try again. Also convert .cs.example to .cs.example.com and try again.

If the name is sd.cs.example.com (some system we connect to directly, perhaps)
rewrite and route it there. If the host name is anything else in the .cs.example.com
subdomain, route it to ds.cs.example.com (the gateway for the .cs.example.com subdo-
main). If the host name is anything else in the .example.com subdomain route it to
cds.adm.example.com (the gateway for the .example.com subdomain). If the host name
is anything else in the .com top-level domain route it to gate.adm.example.com (which is
presumably capable of routing the message to its proper destination). If a domain literal
is used send it to gate.adm.example.com as well.

Most applications of rewrite rules (like the previous example) will not change the
username (or mailbox) part of the address in any way. The ability to change the username
part of the address is used when PMDF is used to interface to mailers that do not
conform to RFC 822 — mailers where it is necessary to stuff portions of the host/domain
specification into the username part of the address. This capability should be used with
great care if it is used at all.

2.2.8 Testing Domain Rewriting Rules

You can test rewrite rules with the OpenVMS command PMDF TEST/REWRITE or
the UNIX or NT command pmdf test -rewrite. If you use a compiled configuration,
then use of the /NOIMAGE qualifier (on OpenVMS) or -noimage qualifier (on UNIX and
NT) will allow you to test changes made to the configuration file prior to recompiling and
reinstalling the new configuration.

You may find it very instructive to rewrite a few addresses using this utility with the
/DEBUG qualifier (on OpenVMS) or -debug qualifier (on UNIX and NT). This will show
you step by step how the address is rewritten. For instance, try issuing the OpenVMS
command

$ PMDF TEST/REWRITE/DEBUG SYSTEM@EXAMPLE.COM

or the UNIX command

pmdf test -rewrite -debug system@example.com

or the NT command

C:\> pmdf test -rewrite -debug system@example.com

and see what happens.

For a description of the PMDF TEST/REWRITE (OpenVMS) or pmdf test -rewrite
(UNIX and NT) utility, refer to Chapter 29 or Chapter 30, respectively.

2–27

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

2.2.9 Handling Large Numbers of Rewrite Rules

PMDF always reads in all the rewrite rules from the configuration file and stores
them in memory in a hash table. Use of a compiled configuration merely bypasses
the overhead associated with reading the configuration file each and every time the
information is needed; a hash table is still used to store all of the rewrite rules in memory.
This scheme is adequate for small to medium numbers of rewrite rules. However,
some applications may require as many as 10,000 rewrite rules or more, which may
consume prohibitive amounts of memory. (Applications which need many rewrite rules
are channels like the ones for BITNET and UUCP: BITNET interconnects about 1,500
different systems and there are over 8,000 systems on the current UUCP map. Each of
these systems needs at least one rewrite rule.)

PMDF solves this problem by providing an optional facility for storing large numbers
of rewrite rules in an ancillary indexed data file. Whenever the regular configuration
file is read, PMDF checks for the existence of the domain database, PMDF_DOMAIN_
DATABASE.c If this database exists, it is opened and consulted whenever an attempted
match fails on the rules found in the configuration file. The domain database is only
checked if a given rule is not found in the configuration file, so rules can always be added
to the configuration file to override those in the database.

Duplicate entries are allowed in the database only if specifically requested via
CRDB/DUPLICATES (OpenVMS) or crdb -duplicates (UNIX and NT), at the time the
database is created. (Duplicate rewrites are allowed unconditionally in the configuration
file.) Entries in the database treat upper and lower case just the same way as the
configuration file does; i.e., patterns (left hand sides) are case insensitive, but templates
(right hand sides) preserve case. Patterns in the database are limited to 32 characters
and templates are limited to 80 characters unless a ‘‘long’’ database is built. The limits
on a long database are, respectively, 80 and 256 characters.

The mere presence of the database file is enough to activate this database facility in
PMDF: it is not necessary to recompile your compiled configuration. However, if you have
any resident PMDF processes that need to know about this configuration change, e.g., the
multithreaded SMTP server, then you must restart such proceses so that they recheck
PMDF configuration information and notice the new domain database. For instance, to
restart the multithreaded SMTP server on OpenVMS, use the command

$ PMDF RESTART SMTP

or on UNIX, use the command

pmdf restart smtp

The use of the domain database can be disabled with the PMDF option USE_
DOMAIN_DATABASE described in Chapter 7.

The domain database should be world readable. Failure to protect the database in
this fashion will make address rewriting very erratic.

c On OpenVMS systems this database is the file pointed at by the PMDF_DOMAIN_DATABASE logical, usually the file
PMDF_TABLE:domain.dat; on UNIX systems this database consists of the file specified with the PMDF_DOMAIN_
DATABASE option in the /etc/pmdf_tailor file, usually the file /pmdf/table/domaindb.*.

2–28

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

A utility is provided that can create and manipulate the domain database: CRDB
(OpenVMS) or crdb (UNIX and NT) takes a list of rewrite rules in the same format as
they appear in the configuration file and either creates a new database containing these
rules or adds them to an existing database. (See Chapter 29 and Chapter 30, respectively,
for full descriptions of these commands.) OpenVMS commands of the form

$ PMDF CRDB input-file-spec PMDF_TABLE:domain.tmp
$ RENAME PMDF_TABLE:domain.tmp PMDF_DOMAIN_DATABASE

or UNIX commands

pmdf crdb input-file-spec PMDF_DOMAIN_DATABASE

or NT commands

C:\> pmdf crdb input-file-spec PMDF_DOMAIN_DATABASE

are used to read the input file, input-file-spec, and create a new output database.
Normally, if there are rules with identical left hand sides in the input file, the first
instance of such a rule will be used. CRDB or crdb counts such duplicates as exceptions
and reports how many exceptions occurred as it exits. This behavior may be changed
by specifying CRDB/DUPLICATES (OpenVMS) or crdb -duplicates (UNIX and NT),
which causes it to create a database that allows duplicate entries.

Use the /APPEND qualifier (OpenVMS) or -append qualifier (UNIX and NT) to add
rules to an existing domain database. When additional rules are added to an existing
database in this way any duplicates will override the original rules in the existing
database. CRDB or crdb prints a warning message when this happens.

A ‘‘long’’ database, as needed if the left hand sides are over 32 characters long or
if the right hand sides are over 80 characters long, can be created with the OpenVMS
commands

$ PMDF CRDB/LONG_RECORDS input-file-spec PMDF_TABLE:domain.tmp
$ RENAME PMDF_TABLE:domain.tmp PMDF_DOMAIN_DATABASE

or UNIX commands

pmdf crdb -long_records input-file-spec PMDF_DOMAIN_DATABASE

or NT commands

C:\> pmdf crdb -long_records input-file-spec PMDF_DOMAIN_DATABASE

As an example, consider an input file named bitnet.rules whose first few lines
might appear as

AACC $U%$H.BITNET
AACC.BITNET EF$U%$D@JNET-DAEMON
AACC.BITNET SU@$D@example.com$Qtcp_local
AACC.BITNET U%$D@example.com$Qtcp_local
AACC.BITNET $U%$D@JNET-DAEMON

This file may be converted to a domain database with the OpenVMS commands

2–29

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

$ PMDF CRDB/DUPLICATES bitnet.rules PMDF_TABLE:domain.tmp
$ RENAME PMDF_TABLE:domain.tmp PMDF_DOMAIN_DATABASE

A temporary file is used so as to eliminate any window of time during which the domain
database is in a mixed state or not fully generated.

2.2.10 Using Rewrites to Illegal Addresses

The ability of rewrite rules to map an address to a system that does not appear in
the channel table can be used to advantage in some cases. Suppose PMDF has to contend
with a strict subset of a large local DECnet network. The simplest way to handle a large
local DECnet network is to place all the systems in a domain (e.g., .firm.com) and use a
general rewrite rule of the form:

.firm.com $U%$H@decnet-mail

However, this does not limit access to a subset of the local DECnet; any address that
ends in .firm.com will work. The alternative is to list all the accessible systems explicitly,
giving each system its own entry in the rewrite rule table, and omit the more general
rule. But suppose that another rewrite exists to map all non-local systems in the .com
domain to a gateway system:

.com $U%$H.com@gateway-system

Then an illegal address of the form user@bad-system.firm.com will be routed to the
gateway, which is incorrect and may even result in a mail loop if the gateway returns
the message improperly.

One solution is to list all the local systems in the channel table instead of using
rewrite rules. This solves the problem at the expense of making the channel table very
large. Channel table entries, unlike rewrite rules, cannot be placed in an auxiliary
database. Ultimately, large numbers of channel table entries may have an adverse impact
on the performance of PMDF.

A better solution is to keep the individual rewrite rules for all the local systems and
insert a rule that deliberately rewrites an unknown address in the local domain to an
illegal system (which might as well be the unknown system itself):

.firm.com $U@$H$D

When an illegal local system name is used this rule will be activated before the more
general .com rule is used and the address will immediately be found to be illegal.

2–30

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Domain Rewriting Rules

2.2.11 Other Address Manipulations

PMDF’s address rewriting facility is PMDF’s primary facility for manipulating and
changing the host/domain portion of addresses.d PMDF does, however, provide other
facilities such as aliases, the address reversal database, the directory channel, and
specialized mapping tables. For discussions of these facilities, refer to Chapter 3. In
general, for the best performance, rewrite rules should be used whenever possible to
perform address manipulations.

2.3 The Channel/host Table

PMDF consists of a large number of components, but the central unifying construct
in PMDF is the channel. A channel represents a connection with another computer
system or group of systems. The actual hardware connection or software transport or
both may vary widely from one channel to the next. Only the system manager need know
anything about PMDF’s channels; users are never aware of the existence of channels and
only see a single, uniform interface regardless of how messages reach their destination.

The channel/host table is stored in the PMDF configuration file; see Section 2.1 for
an overview of the PMDF configuration file format.

2.3.1 Overview

Each channel consists of one or more channel programs and an outgoing message
queue for storing messages that are destined to be sent to one or more of the systems
associated with the channel. Channel programs perform two functions: (1) they transmit
messages to remote systems, deleting them from their queue after they are sent, and (2)
they accept messages from remote systems, placing them in the channel queues. Note
that while a channel program only removes messages from its own queue it can enqueue
messages on any queue whatsoever, including its own.

A channel program which initiates a transfer to a remote system on its own is called
a ‘‘master’’ program, while a program which accepts transfers initiated by a remote
system is called a ‘‘slave’’ program. A channel may be served by a master program,
a slave program, or both. Either type of program may or may not be bidirectional;
the direction in which a message is travelling may have nothing to do with the type of
program that handles it. For example, in the case of a PhoneNet channel, the master
and slave programs are both capable of transmitting and receiving messages. An SMTP
channel, on the other hand, has a master program that only transmits messages and a
slave program that only receives messages. These are, respectively, the SMTP client and
server.

d Note that by using the general database and customer-supplied substitutions, it is also possible to perform complex
manipulations of the username portion of an address.

2–31

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.2 Channel Definitions: the Channel/host Table

The second part of the PMDF configuration file gives the definitions of the channels.
These definitions are collectively referred to as the ‘‘channel/host table’’. Each individual
channel definition forms a ‘‘channel block’’. That is, the channel/host table defines the
channels PMDF can use and the names of the systems associated with each channel.
The table consists of individual blocks describing single channels. Blocks are separated
by single blank lines. Comments but no blank lines may appear inside a channel block.

The first channel block in the file always describes the local channel, used to deliver
messages to the local system.e On OpenVMS or UNIX platforms, this must be channel
‘‘l’’ (lowercase letter ‘‘L’’).

A schematic layout of a generic channel block is shown in Figure 2–1.

Figure 2–1 Channel block schematic layout

! channel-name keyword1 keyword2 ...

" official-host-name local-host-alias

host-name proper-name

Briefly, the two or more lines of a channel block are:

! The channel name followed by one or more optional keywords which alter or modify
the operation of the channel. See Section 2.3.2.1 below.

" The official host name associated with the channel followed by an optional alias for
the local host. See Section 2.3.2.2 below.

Additional hosts and optional aliases for hosts reachable by the channel. This third
line and subsequent lines are optional. See Section 2.3.2.3 below.

2.3.2.1 First Line: Channel Name and Keywords

The first line in a channel block gives the channel name (up to 32 characters) followed
by a space and then various optional modifier keywords separated by spaces. Some
keywords take arguments; see the descriptions of specific keywords for details. Channel
naming conventions are discussed in Section 2.3.6; modifier keywords are described below
in Section 2.3.4.

2.3.2.2 Second Line: System Name and Local Host Alias

The second line of the channel block specifies the official host name associated with
the channel along with an optional alias for the local host. The line has the form:

official-host-name local-host-alias

The official host name, official-host-name, should be the full name (including any
subdomains or domains) of the host with which the channel communicates. In the case of
the local channel, the name should be the preferred name used locally for the host PMDF

e The exception to this rule is the defaults channel.

2–32

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

is running on. In a homogeneous OpenVMS cluster environment this name will apply to
the entire cluster; it does not have to be a name associated with any particular cluster
node. All official host names for all channels are stored in a single common lookup table.
They must be unique; duplicates are not allowed.

The local host machine is normally known by the name that appears as the official
host name in the first channel block (on OpenVMS and UNIX, the l channel — note that
this is a lowercase letter ‘‘L’’) in the configuration file. It is sometimes useful for the
local host to have different names depending on the channel being used. This situation
usually arises when a machine is connected to more than one network. For example, a
system may need to be known as milan.uucp on the UUCP network, milan.example.com
on the Internet, and milan.bitnet on BITNET.

The local host alias, local-host-alias, on the second line of the channel block
provides this functionality. If this alias is specified, it is communicated as the local host’s
name to any remote hosts with which this channel communicates. This alias will replace
the local host’s name wherever it appears in the envelope and header of messages queued
to the associated channel. If this alias is omitted the local host’s official name (that is,
the official host name associated with the l channel) is used.

The local host alias only affects the name of the local host. No other system names
are affected. The effects of the local host alias are strictly limited to the channel to which
the alias applies.

Note: The use of local host aliases is discouraged. If at all possible, each system should be
known by one and only one name on all networks. Networks should strive to make this
a reality. The current Internet versus UUCP versus BITNET networking fracas leads
to situations where this feature is needed. In particular, it is presently impossible for a
host on both BITNET and the Internet to have exactly the same name on both networks.
Since different networks are associated with different channels, a per-channel local host
alias is an ideal way to give the local host a per-network name.

Another Note: When a single network is involved, it may appear that local host aliases can solve
lots of problems, but often the end result is a worse mess than if the proper course of
action is selected — pick a single name and stick to it, living with the consequences of
the conversion now instead of putting them off until it becomes even more difficult.

2.3.2.3 Additional Lines: Systems Reachable via the Channel

Any additional lines in the channel block specify additional hosts or aliases for hosts
the channel can reach. These lines have the form:

host-name proper-name

Messages to host-name will be queued on this channel, but To: addresses will be
rewritten in the transport layer (envelope) to use proper-name instead of host-name.
Addresses in the message header are not rewritten in this fashion. If proper-name is
omitted the official host name for the channel will be used instead — host-name is then
just a synonym for official-host-name.

2–33

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

All of these additional host-name strings are stored in the same table in which
official channel host names are stored. No duplicates are allowed amongst all these
names.

The functionality of these additional channel table lines may appear to duplicate
some of the capabilities of rewrite rules, and this is in fact true. The ability to specify
multiple hosts per channel is an older feature of PMDF that is not heavily used in more
recent times. One particular usage remains, however — the mapping and unmapping
of domain names to DECnet node names for hosts associated with the d channel. It
is customary to use rewrite rules to canonicalize DECnet node names into full domain
names and match them to the d channel. Then the channel table is used to inverse-map
the domain names back into the DECnet node names. This approach results in the use
of domain names in all places but envelope To: addresses, which is exactly what such
systems need.

2.3.3 Envelope vs. Header Addresses: Channel-level Name
Translations

Messages contain both envelope (transport layer) addresses, used by the e-mail
system but generally invisible to the user, and header (display) addresses, which are
the addresses visible in the message as received by the user.

PMDF’s addresses always come from either the message envelope (transport layer)
or the message header. Addresses can be further categorized as being either From:
addresses (more generally, addresses that point back at the message source) or To:
addresses (generally addresses pointing towards the message destination). PMDF does
alter its address processing somewhat depending on where the address appeared.

Transport layer To: addresses are rewritten in various formats depending both
on what the channel table says the channel requires. That is, channel level address
rewriting may involve special forms of channel definition that request special address
handling. Transport layer To: addresses (envelope To: addresses) are the only addresses
where channel level rewriting is applied. Header and envelope From: addresses are
not affected by channel-level translation rules. Such channel block effects on addresses,
discussed above in Section 2.3.2, occur after the regular address rewriting performed by
domain rewriting rules.

Thus system name transformations that should not be performed in the message
header may be placed in the channel table, while transformations to be applied to the
header should appear as rewrite rules. Note that in many instances, the same effect
may be had using rewrite rules and the $E and $B control sequences as described in
Section 2.2.6.12.

2–34

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4 Channel Table Keywords

This section discusses channel keywords, which appear after the channel name on
the first line of the channel definition. These keywords following the channel name are
used to assign various attributes to the channel. Keywords are case insensitive, and
may be up to 32 characters long; any additional characters are ignored. The supported
keywords are listed alphabetically in Table 2–5 and by functional group in Table 2–6.
Following the summary tables listing the keywords are sections describing each of the
channel keywords in detail.

Specifying a keyword not on the list of keywords shown in Table 2–5 or Table 2–6
is not an error (although it may be incorrect). On OpenVMS systems, such undefined
keywords are interpreted as rightslist identifiers, while on UNIX systems, such undefined
keywords are interpreted as group ids; see Section 2.3.4.89 for more details. The PMDF
TEST/REWRITE (OpenVMS) or pmdf test -rewrite (UNIX and NT) utility will tell
you if you have any keywords in your configuration file that don’t match a known
rightslist identifier. See Chapter 29 or Chapter 30 for instructions on how to use PMDF
TEST/REWRITE or pmdf test -rewrite, respectively.

Keywords shown in bold face type are defaults; keywords marked with † are only
supported under OpenVMS; keywords marked with § are only supported for PMDF-TLS
sites.

Table 2–5 Channel Block Keywords Listed Alphabetically

Keyword Section Usage

733 2.3.4.1 Use % routing in the envelope; synonymous with
percents

822 2.3.4.1 Use source routes in the envelope; synonymous
with sourceroute

acceptalladdresses 2.3.4.92 Accept all recipient addresses during SMTP
dialogue.

acceptvalidaddresses 2.3.4.92 Accept only valid recipient addresses during SMTP
dialogue.

† addlineaddrs 2.3.4.94 Add all addresses from VMS MAIL TO and CC lines
to PMDF headers. (Usage discouraged; use with
caution.)

addrsperfile 2.3.4.15 Number of addresses per message file
addrsperjob 2.3.4.14 Number of addresses to be processed by a single

job
after 2.3.4.18 Specify time delay before master channel programs

run
aliaslocal 2.3.4.69 Query alias file and alias database
aliaspostmaster 2.3.4.63 Redirect postmaster messages to the local channel

postmaster
allowetrn 2.3.4.34 Honor SMTP client ETRN commands
allowswitchchannel 2.3.4.42 Allow switching to this channel from a

switchchannel channel
authrewrite 2.3.4.44 Use SMTP AUTH information in header
bangoverpercent 2.3.4.2 Group A!B%C as A!(B%C)
bangstyle 2.3.4.1 Use UUCP ! routing in the envelope; synonymous

with uucp

†Supported only on OpenVMS.

2–35

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–5 (Cont.) Channel Block Keywords Listed Alphabetically

Keyword Section Usage

bidirectional 2.3.4.7 Channel is served by both a master and slave
program

blocketrn 2.3.4.34 Do not honor SMTP client ETRN commands
blocklimit 2.3.4.78 Maximum number of PMDF blocks allowed per

message
cacheeverything 2.3.4.13 Cache all connection information
cachefailures 2.3.4.13 Cache only connection failure information
cachesuccesses 2.3.4.13 Cache only connection success information
channelfilter 2.3.4.86 Specify the location of channel filter file; synonym for

destinationfilter
charset7 2.3.4.51 Default character set to associate with 7-bit text

messages
charset8 2.3.4.51 Default character set to associate with 8-bit text

messages
charsetesc 2.3.4.51 Default character set to associate with text

containing the escape character
checkehlo 2.3.4.32 Check the SMTP response banner for whether to

use EHLO
client_auth 2.3.4.43 Specify which CLIENT_AUTH section to use for

client SASL
commentinc 2.3.4.67 Leave comments in message header lines intact
commentomit 2.3.4.67 Remove comments from message header lines
commentstrip 2.3.4.67 Remove problematic characters from comment field

in message header lines
commenttotal 2.3.4.67 Strip comments (material in parentheses)

everywhere
connectalias 2.3.4.5 Do not rewrite addresses upon message dequeue
connectcanonical 2.3.4.5 Rewrite addresses upon message dequeue
convert_octet_stream 2.3.4.54 Convert application/octet-stream material as

appropriate
copysendpost 2.3.4.21 Send copies of failures to the postmaster unless the

originator address is blank
copywarnpost 2.3.4.22 Send copies of warnings to the postmaster unless

the originator address is blank
daemon 2.3.4.81 Specify name of a gateway daemon (host) to route

to
datefour 2.3.4.72 Convert date/time specifications to four digit years
datetwo 2.3.4.72 Convert date/time specifications to two digit years
dayofweek 2.3.4.73 Include day of week in date/time specifications
defaulthost 2.3.4.47 Specify a domain name to use to complete

addresses
defaultmx 2.3.4.38 Channel determines whether or not to do MX

lookups from network
defaultnameservers 2.3.4.38 Consult TCP/IP stack’s choice of nameservers
deferred 2.3.4.19 Honor deferred delivery dates
defragment 2.3.4.76 Reassemble any MIME-compliant message/partial

parts queued to this channel
description 2.3.4.87 Channel description
destinationfilter 2.3.4.86 Specify the location of channel filter file to apply to

outgoing messages
disableetrn 2.3.4.34 Disable support for the ETRN SMTP command

2–36

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–5 (Cont.) Channel Block Keywords Listed Alphabetically

Keyword Section Usage

domainetrn 2.3.4.34 Honor only those SMTP client ETRN commands that
specify a domain

domainvrfy 2.3.4.35 Issue SMTP VRFY commands using full address
dropblank 2.3.4.49 Strip blank To:, Resent-To:, Cc:, or Resent-Cc:

headers
ehlo 2.3.4.32 Use EHLO on all initial SMTP connections
eightbit 2.3.4.50 Channel supports eight bit characters
eightnegotiate 2.3.4.50 Channel should negotiate use of eight bit

transmission if possible
eightstrict 2.3.4.50 Channel should reject messages that contain

unnegotiated eight bit data
errsendpost 2.3.4.21 Send copies of failures to the postmaster if the

originator address is illegal
errwarnpost 2.3.4.22 Send copies of warnings to the postmaster if the

originator address is illegal
expandchannel 2.3.4.16 Channel in which to perform deferred expansion due

to application of expandlimit
expandlimit 2.3.4.16 Process an incoming message ‘‘off-line’’ when the

number of addressees exceeds this limit
exproute 2.3.4.3 Explicit routing for this channel’s addresses
exquota 2.3.4.80 On OpenVMS, use EXQUOTA privileges if

necessary to deliver VMS MAIL messages; on
UNIX treat as holdexquota for Berkeley
mailboxes; on all platforms deliver to overquota
PMDF MessageStore or PMDF popstore accounts

fileinto 2.3.4.86 Specify effect on address when a mailbox filter
fileinto operation is applied

filesperjob 2.3.4.14 Number of queue entries to be processed by a
single job

filter 2.3.4.86 Specify the location of user filter files
† foreign 2.3.4.53 Use VMS MAIL’s foreign message format as needed

with VMS MAIL
forwardcheckdelete 2.3.4.40 If a reverse DNS lookup has been performed, next

perform a forward lookup on the returned name
to check that the returned IP number matches the
original; if not, delete the name and use the IP
address

forwardchecknone 2.3.4.40 Do not perform a forward lookup after a DNS
reverse lookup

forwardchecktag 2.3.4.40 If a reverse DNS lookup has been performed, next
perform a forward lookup on the returned name
to check that the returned IP number matches the
original; if not, tag the name with *

† goldmail 2.3.4.26 Generate Gold-Mail compatible read receipts
grey 2.3.4.83 Use Grey Book address formats (inverted order

domains)
header_733 2.3.4.1 Use % routing in the message header
header_822 2.3.4.1 Use source routes in the message header
header_uucp 2.3.4.1 Use ! routing in the header

†Supported only on OpenVMS.

2–37

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–5 (Cont.) Channel Block Keywords Listed Alphabetically

Keyword Section Usage

† headerbottom 2.3.4.58 Place the message header at the bottom of the
message (usage discouraged; use with caution; see
2.3.4.58)

headerinc 2.3.4.58 Place the message header at the top of the
message

headerlabelalign 2.3.4.75 Align headers
headerlinelength 2.3.4.75 Fold long headers

† headeromit 2.3.4.58 Omit the message header from the message (usage
discouraged; use with caution; see 2.3.4.58)

headerread 2.3.4.59 Apply source channel header trimming rules from an
options file to the message headers before headers
are processed (use with caution)

headertrim 2.3.4.59 Apply destination channel header trimming rules
from an options file to the message headers after
headers are processed (use with caution)

holdexquota 2.3.4.80 Hold messages for users that are over quota
holdlimit 2.3.4.16 .HELD an incoming message when the number of

addressees exceeds this limit
identnone 2.3.4.40 Perform IP to hostname translation; include both

hostname and IP address in Received: header
identnonelimited 2.3.4.40 Perform IP to hostname translation, but do not use

the hostname during channel switching; include both
hostname and IP address in Received: header

identnonenumeric 2.3.4.40 Do not perform IP to hostname translation
identnonesymbolic 2.3.4.40 Perform IP to hostname translation; include only the

hostname in Received: header
ignoreencoding 2.3.4.60 Ignore Encoding: header on incoming messages
ignoremessageencoding 2.3.4.60 Ignore Encoding: header in embedded messages
ignoremultipartencoding 2.3.4.60 Ignore Encoding: header in multipart messages
immediate 2.3.4.9 Delivery started immediately after submission for

messages of second-class or higher priority
immnonurgent 2.3.4.9 Delivery started immediately after submission even

for messages with lower than normal priority
immnormal 2.3.4.9 Delivery started immediately after submission for

messages of normal or higher priority
immurgent 2.3.4.9 Delivery started immediately after submission for

urgent messages only
improute 2.3.4.3 Implicit routing for this channel’s addresses
includefinal 2.3.4.27 Include final form of address in delivery notifications
inline 2.3.4.90 Perform directory lookups immediately
inner 2.3.4.56 Rewrite inner message headers
innertrim 2.3.4.59 Apply header trimming rules from an options file to

inner message headers (use with caution)
interfaceaddress 2.3.4.37 Bind to the specified TCP/IP interface address
interpretencoding 2.3.4.60 Interpret Encoding: header on incoming messages
interpretmessageencoding 2.3.4.60 Interpret Encoding: header in embedded messages
interpretmultipartencoding 2.3.4.60 Interpret Encoding: header in multipart messages
lastresort 2.3.4.39 Specify a last resort host
linelength 2.3.4.52 Message lines exceeding this length limit will be

wrapped
linelimit 2.3.4.78 Maximum number of lines allowed per message

†Supported only on OpenVMS.

2–38

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–5 (Cont.) Channel Block Keywords Listed Alphabetically

Keyword Section Usage

localvrfy 2.3.4.35 Issue SMTP VRFY command using local address
logging 2.3.4.84 Log message enqueues and dequeues into the log

file
† logicaldisk 2.3.4.30 Spread PMDF channel queues across multiple disks

loopcheck 2.3.4.91 Automatically detect mail loops when sending.
mailfromdnsverify 2.3.4.41 Verify that the domain specified on MAIL FROM: line

is in the DNS
master 2.3.4.7 Channel is served only by a master program
master_debug 2.3.4.85 Generate debugging output in the channel’s master

program output
maxblocks 2.3.4.77 Maximum number of PMDF blocks per message;

longer messages are broken into multiple messages
maxheaderaddrs 2.3.4.74 Maximum number of addresses per message

header line; longer header lines are broken into
multiple header lines

maxheaderchars 2.3.4.74 Maximum number of characters per message
header line; longer header lines are broken into
multiple header lines

maxjobs 2.3.4.14 Maximum number of jobs which can be created at
once

maxlines 2.3.4.77 Maximum number of message lines per message;
longer messages are broken into multiple messages

maxperiodicnonurgent 2.3.4.11 Specify that periodic jobs should only process
messages of nonurgent or lower priority

maxperiodicnormal 2.3.4.11 Specify that periodic jobs should only process
messages of normal or lower priority

maxperiodicurgent 2.3.4.11 Specify that periodic jobs should process messages
of urgent or lower priority

maxprocchars 2.3.4.79 Specify maximum length of headers to process
maysasl 2.3.4.43 Allow SMTP server and client SASL authentication
maysaslclient 2.3.4.43 SMTP client attempts to use SASL authentication
maysaslserver 2.3.4.43 SMTP server offers SASL authentication

§ maytls 2.3.4.45 SMTP client and server allow TLS use
§ maytlsclient 2.3.4.45 SMTP client will attempt TLS use
§ maytlsserver 2.3.4.45 SMTP server allows TLS use

minperiodicnonurgent 2.3.4.11 Specify that periodic jobs should only process
messages of nonurgent or higher priority

minperiodicnormal 2.3.4.11 Specify that periodic jobs should only process
messages of normal or higher priority

minperiodicurgent 2.3.4.11 Specify that periodic jobs should only process
messages of urgent priority

missingrecipientpolicy 2.3.4.48 Set policy for how to legalize (which header to add)
messages that are lacking any recipient headers

msexchange 2.3.4.46 Channel serves MS Exchange gateways
multigate 2.3.4.82 Channel serves multiple BITNET gateways
multiple 2.3.4.15 Accepts multiple destination hosts in a single

message copy
mustsasl 2.3.4.43 Must use SASL authentication
mustsaslclient 2.3.4.43 SMTP client insists upon SASL authentication
mustsaslserver 2.3.4.43 SMTP server insists upon SASL authentication

§Supported only for PMDF-TLS sites.

†Supported only on OpenVMS.

2–39

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–5 (Cont.) Channel Block Keywords Listed Alphabetically

Keyword Section Usage

§ musttls 2.3.4.45 SMTP client and server insist upon TLS use and will
not transfer messages with remote sides that do not
support TLS

§ musttlsclient 2.3.4.45 SMTP client insists upon TLS use and will not send
messages to any remote SMTP server that does not
support TLS use

§ musttlsserver 2.3.4.45 SMTP server insists upon TLS use and will not
accept messages from any remote SMTP client that
does not support TLS use

mx 2.3.4.38 TCP/IP network and software supports MX record
lookups

nameservers 2.3.4.38 Consult specified nameservers rather than TCP/IP
stack’s choice

† network 2.3.4.89 NETMBX privilege required for use
† noaddlineaddrs 2.3.4.94 Only addresses processed by PMDF are included in

headers for mail sent from VMS MAIL. (default)
nobangoverpercent 2.3.4.2 Group A!B%C as (A!B)%C (default)
noblocklimit 2.3.4.78 No limit specified for the number of PMDF blocks

allowed per message
nocache 2.3.4.13 Do not cache any connection information
nochannelfilter 2.3.4.86 Do not perform channel filtering for outgoing

messages; synonym for nodestinationfilter
noconvert_octet_stream 2.3.4.54 Do not convert application/octet-stream material
nodayofweek 2.3.4.73 Remove day of week from date/time specifications
nodefaulthost 2.3.4.47 Do not specify a domain name to use to complete

addresses
nodeferred 2.3.4.19 Do not honor deferred delivery dates
nodefragment 2.3.4.76 Do not perform special processing for

message/partial messages
nodestinationfilter 2.3.4.86 Do not perform channel filtering for outgoing

messages
† nodns 2.3.4.38 TCP/IP network does not support DNS (nameserver)

lookups
nodropblank 2.3.4.49 Do not strip blank To:, Resent-To:, Cc:, or Resent-

Cc: headers
noehlo 2.3.4.32 Never use the SMTP EHLO command
noexproute 2.3.4.3 No explicit routing for this channel’s addresses
noexquota 2.3.4.80 Return to originator any messages to users who are

over quota
nofileinto 2.3.4.86 Mailbox filter fileinto operator has no effect
nofilter 2.3.4.86 Do not perform user mailbox filtering

† noforeign 2.3.4.53 Do not use VMS MAIL’s foreign message format
† nogoldmail 2.3.4.26 Do not generate Gold-Mail compatible read receipts

nogrey 2.3.4.83 Do not use Grey Book address formats
noheaderread 2.3.4.59 Do not apply header trimming rules from option file

upon message enqueue
noheadertrim 2.3.4.59 Do not apply header trimming rules from options file
noimproute 2.3.4.3 No implicit routing for this channel’s addresses
noinline 2.3.4.90 Do not do directory channel lookups immediately
noinner 2.3.4.56 Do not rewrite inner message headers

§Supported only for PMDF-TLS sites.

†Supported only on OpenVMS.

2–40

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–5 (Cont.) Channel Block Keywords Listed Alphabetically

Keyword Section Usage

noinnertrim 2.3.4.59 Do not apply header trimming to inner message
headers

nolinelimit 2.3.4.78 No limit specified for the number of lines allowed per
message

nologging 2.3.4.84 Do not log message enqueues and dequeues into
the log file

† nologicaldisk 2.3.4.30 Store PMDF channel queues on a single disk
nomailfromdnsverify 2.3.4.41 Do not perform DNS domain verification on the MAIL

FROM: address
nomaster_debug 2.3.4.85 Do not generate debugging output in the channel’s

master program output
nomsexchange 2.3.4.46 Channel does not serve MS Exchange gateways
nomultigate 2.3.4.82 Channel does not serve multiple BITNET gateways
nomx 2.3.4.38 TCP/IP network does not support MX lookups
nonrandommx 2.3.4.38 Do MX lookups; do not randomize returned entries

with equal precedence
nonurgentblocklimit 2.3.4.10 Force messages above this size to wait

unconditionally for a periodic job
nonurgentnotices 2.3.4.20 Specify the amount of time which may elapse

before notices are sent and messages returned for
messages of non-urgent priority

† nonurgentqueue 2.3.4.18 Specify the queue for master channel program
processing of nonurgent messages

noreceivedfor 2.3.4.62 Do not include envelope to address in Received:
header

noreceivedfrom 2.3.4.62 Do not include the envelope From: address when
constructing Received: header

norelaxheadertermination 2.3.4.93 Don’t consider a line with just spaces and tabs to be
a header terminator.

noremotehost 2.3.4.47 Use local host’s domain name as the default domain
name to complete addresses

norestricted 2.3.4.57 Do not apply RFC 1137 restricted encoding to
addresses

noreturnaddress 2.3.4.63 Use the RETURN_ADDRESS option value
noreturnpersonal 2.3.4.63 Use the RETURN_PERSONAL option value
noreverse 2.3.4.55 Do not apply reverse database to addresses
normalblocklimit 2.3.4.10 Force messages above this size to nonurgent priority
normalnotices 2.3.4.20 Specify the amount of time which may elapse

before notices are sent and messages returned for
messages of normal priority

† normalqueue 2.3.4.18 Specify the queue for master channel program
processing of normal messages

norules 2.3.4.6 Do not do channel-specific rewrite rule checks
nosasl 2.3.4.43 SASL authentication not attempted or permitted
nosaslclient 2.3.4.43 SMTP client does not attempt SASL authentication
nosaslserver 2.3.4.43 SMTP server does not permit SASL authentication
nosaslswitchchannel 2.3.4.43 Do not allow switching to this channel upon

successful SASL authentication
nosendetrn 2.3.4.33 Do not send SMTP ETRN command
nosendpost 2.3.4.21 Do not send copies of failures to the postmaster

†Supported only on OpenVMS.

2–41

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–5 (Cont.) Channel Block Keywords Listed Alphabetically

Keyword Section Usage

noserviceall 2.3.4.12 Immediate delivery jobs process only the messages
they were queued to process

noslave_debug 2.3.4.85 Do not generate debugging output in the channel’s
slave program output

nosmtp 2.3.4.31 Channel does not use SMTP
nosourcefilter 2.3.4.86 Do not perform channel filtering for incoming

messages
noswitchchannel 2.3.4.42 Stay with the server channel; do not switch to the

channel associated with the originating host; do not
permit being switched to

notices 2.3.4.20 Specify the amount of time which may elapse before
notices are sent and messages returned

§ notls 2.3.4.45 SMTP client and server neither attempt nor allow
TLS use

§ notlsclient 2.3.4.45 SMTP client does not attempt TLS use when
sending messages

§ notlsserver 2.3.4.45 SMTP server does not offer or allow TLS use when
receiving messages

novrfy 2.3.4.35 Do not issue SMTP VRFY commands
nowarnpost 2.3.4.22 Do not send copies of warnings to the postmaster
nox_env_to 2.3.4.61 Do not add X-Envelope-to: header lines while

enqueuing
percents 2.3.4.1 Use % routing in the envelope; synonymous with

733
period 2.3.4.9 Specify periodicity of periodic channel service
periodic 2.3.4.9 Channel is serviced only periodically; immediate

delivery processing is never done
personalinc 2.3.4.68 Leave personal names in message header lines

intact
personalomit 2.3.4.68 Remove personal name fields from message header

lines
personalstrip 2.3.4.68 Strip problematic characters from personal name

fields in message header lines
port 2.3.4.37 Send to the specified TCP/IP port
postheadbody 2.3.4.23 Both the message’s header and body are sent to the

postmaster when a delivery failure occurs
postheadonly 2.3.4.23 Only the message’s header is sent to the postmaster

when a delivery failure occurs
queue 2.3.4.18 Specify queue master channel programs run in
randommx 2.3.4.38 Do MX lookups; randomize returned entries with

equal precedence
readreceiptmail 2.3.4.25 Ignore read receipt requests when delivering to VMS

MAIL, rather than ‘‘downgrading’’ them to delivery
receipt requests; leave it up to user agents to act
upon the read receipt request

receivedfor 2.3.4.62 Include envelope to address in Received: header
receivedfrom 2.3.4.62 Include the envelope From: address when

constructing Received: header
relaxheadertermination 2.3.4.93 Consider a line with just spaces and tabs to be a

header terminator.

§Supported only for PMDF-TLS sites.

2–42

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–5 (Cont.) Channel Block Keywords Listed Alphabetically

Keyword Section Usage

remotehost 2.3.4.47 Use remote host’s name as the default domain
name to complete addresses

reportboth 2.3.4.24 Generate both header and NOTARY delivery receipt
requests from ‘‘foreign’’ delivery receipt requests

reportheader 2.3.4.24 Generate only header delivery receipt requests from
‘‘foreign’’ delivery receipt requests

reportnotary 2.3.4.24 Generate only NOTARY delivery receipt requests
from ‘‘foreign’’ delivery receipt requests

reportsuppress 2.3.4.24 Suppress delivery receipt requests from ‘‘foreign’’
delivery receipt requests

restricted 2.3.4.57 Apply RFC 1137 restricted encoding to addresses
returnaddress 2.3.4.63 Set the return address for the local Postmaster
returnenvelope 2.3.4.64 Control use of blank envelope return addresses
returnpersonal 2.3.4.63 Set the personal name for the local Postmaster
reverse 2.3.4.55 Apply reverse database or REVERSE mapping to

addresses
routelocal 2.3.4.4 Rewriting should shortcircuit routing addresses
rules 2.3.4.6 Do channel-specific rewrite rule checks
saslswitchchannel 2.3.4.43 Switch to another channel when SASL authentication

is successful
sendetrn 2.3.4.33 Send SMTP ETRN command
sendpost 2.3.4.21 Send copies of failures to the postmaster
sensitivitycompanyconfidential 2.3.4.88 Allow messages of any sensitivity
sensitivitynormal 2.3.4.88 Reject messages whose sensitivity is higher than

normal
sensitivitypersonal 2.3.4.88 Reject messages whose sensitivity is higher than

personal
sensitivityprivate 2.3.4.88 Reject messages whose sensitivity is higher than

private
serviceall 2.3.4.12 Immediate delivery jobs process all messages

(queued for the channel)
sevenbit 2.3.4.50 Channel does not support eight bit characters; eight

bit characters must be encoded
silentetrn 2.3.4.34 Honor SMTP client ETRN commands, without

echoing channel information
single 2.3.4.15 Only one envelope To: address per message copy
single_sys 2.3.4.15 Each message copy must be for a single destination

system
slave 2.3.4.7 Channel is serviced only by a slave program
slave_debug 2.3.4.85 Generate debugging output in the channel’s slave

program output
smtp 2.3.4.31 Channel uses SMTP
smtp_cr 2.3.4.31 Accept CR as an SMTP line terminator
smtp_crlf 2.3.4.31 Require CRLF as the SMTP line terminator
smtp_crorlf 2.3.4.31 Allow any of CR, LF, or CRLF as the SMTP line

terminator
smtp_lf 2.3.4.31 Accept LF as an SMTP line terminator
sourceblocklimit 2.3.4.78 Maximum number of PMDF blocks allowed per

incoming message
sourcecommentinc 2.3.4.67 Leave comments in incoming message header lines

intact

2–43

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–5 (Cont.) Channel Block Keywords Listed Alphabetically

Keyword Section Usage

sourcecommentomit 2.3.4.67 Remove comments from incoming message header
lines

sourcecommentstrip 2.3.4.67 Remove problematic characters from comment field
in incoming message header lines

sourcecommenttotal 2.3.4.67 Strip comments (material in parentheses)
everywhere in incoming messages

sourcefilter 2.3.4.86 Specify the location of channel filter file for incoming
messages

sourcepersonalinc 2.3.4.68 Leave personal names in incoming message header
lines intact

sourcepersonalomit 2.3.4.68 Remove personal name fields from incoming
message header lines

sourcepersonalstrip 2.3.4.68 Strip problematic characters from personal name
fields in incoming message header lines

sourceroute 2.3.4.1 Use source routes in the message envelope;
synonymous with 822

streaming 2.3.4.28 Specify degree of protocol streaming for channel to
use

subaddressexact 2.3.4.71 Alias must match exactly, including exact
subaddress match

subaddressrelaxed 2.3.4.71 Alias without subaddress may match
subaddresswild 2.3.4.71 Alias with subaddress wildcard may match
subdirs 2.3.4.17 Use multiple subdirectories
submit 2.3.4.8 Mark the channel as a submit-only channel
suppressfinal 2.3.4.27 Include only original form of address in notification

messages
switchchannel 2.3.4.42 Switch from the server channel to the channel

associated with the originating host
threaddepth 2.3.4.29 Number of messages triggering new thread with

multithreaded SMTP client
§ tlsswitchchannel 2.3.4.45 Switch to specified channel upon successful TLS

negotiation
unrestricted 2.3.4.57 Do not apply RFC 1137 restricted encoding to

addresses
urgentblocklimit 2.3.4.10 Force messages above this size to normal priority
urgentnotices 2.3.4.20 Specify the amount of time which may elapse

before notices are sent and messages returned for
messages of urgent priority

† urgentqueue 2.3.4.18 Specify the queue for master channel program
processing of urgent messages

user <REFERENCE>(HEAD2_
CHANNELORIGINATORTAG\VALUE)

Specify account under which to run the pipe channel
or specify Message Router mailbox name

usereplyto 2.3.4.65 Specify mapping of Reply-to: header
useresent 2.3.4.66 Specify mapping of Resent- headers for non RFC

822 environments
uucp 2.3.4.1 Use UUCP ! routing in the envelope; synonymous

with bangstyle
validatelocalmsgstore 2.3.4.70 Enqueuing channels check that the local part of

addresses they enqueue to this channel matches a
PMDF Message Store account

§Supported only for PMDF-TLS sites.

†Supported only on OpenVMS.

2–44

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–5 (Cont.) Channel Block Keywords Listed Alphabetically

Keyword Section Usage

validatelocalnone 2.3.4.70 Enqueuing channels perform no validatation check
on the local part of addresses they enqueue to this
channel

validatelocalsystem 2.3.4.70 Enqueuing channels check that the local part of
addresses they enqueue to this channel matches an
account on the system

vrfyallow 2.3.4.36 Provide informative responses to SMTP VRFY
command

vrfydefault 2.3.4.36 Default responses to SMTP VRFY command,
according to channel’s HIDE_VERIFY option setting

vrfyhide 2.3.4.36 Provide obfuscatory responses to SMTP VRFY
command

warnpost 2.3.4.22 Send copies of warnings to the postmaster
x_env_to 2.3.4.61 Add X-Envelope-to: header lines while enqueuing

Table 2–5 above lists channel keywords alphabetically; Table 2–6 below lists channel
keywords by functional group. Keywords shown in bold face type are defaults;
keywords marked with † are only supported under OpenVMS; keywords marked with
§ are only supported for PMDF-TLS sites.

Table 2–6 Channel Block Keywords Grouped by Functionality

Keyword Section Usage

Addresses

733 2.3.4.1 Use % routing in the envelope; synonymous with
percents

822 2.3.4.1 Use source routes in the envelope; synonymous
with sourceroute

acceptalladdresses 2.3.4.92 Accept all recipient addresses during SMTP
dialogue.

acceptvalidaddresses 2.3.4.92 Accept only valid recipient addresses during SMTP
dialogue.

aliaslocal 2.3.4.69 Query alias file and alias database
authrewrite 2.3.4.44 Use SMTP AUTH information in header
bangoverpercent 2.3.4.2 Group A!B%C as A!(B%C)
bangstyle 2.3.4.1 Use UUCP ! routing in the envelope; synonymous

with uucp
defaulthost 2.3.4.47 Specify a domain name to use to complete

addresses
exproute 2.3.4.3 Explicit routing for this channel’s addresses
grey 2.3.4.83 Use Grey Book address formats (inverted order

domains)
holdlimit 2.3.4.16 .HELD an incoming message when the number of

addressees exceeds this limit
improute 2.3.4.3 Implicit routing for this channel’s addresses
inline 2.3.4.90 Perform directory channel lookups immediately
missingrecipientpolicy 2.3.4.48 Set policy for how to legalize (which header to add)

messages that are lacking any recipient headers
nobangoverpercent 2.3.4.2 Group A!B%C as (A!B)%C (default)

2–45

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–6 (Cont.) Channel Block Keywords Grouped by Functionality

Keyword Section Usage

Addresses

nodefaulthost 2.3.4.47 Do not specify a domain name to use to complete
addresses

noexproute 2.3.4.3 No explicit routing for this channel’s addresses
nogrey 2.3.4.83 Do not use Grey Book address formats
noimproute 2.3.4.3 No implicit routing for this channel’s addresses
noinline 2.3.4.90 Do not do directory channel lookups immediately
noremotehost 2.3.4.47 Use local host’s domain name as the default domain

name to complete addresses
norestricted 2.3.4.57 Do not apply RFC 1137 restricted encoding to

addresses
noreverse 2.3.4.55 Do not apply reverse database to addresses
norules 2.3.4.6 Do not do channel-specific rewrite rule checks
percents 2.3.4.1 Use % routing in the envelope; synonymous with

733
remotehost 2.3.4.47 Use remote host’s name as the default domain

name to complete addresses
restricted 2.3.4.57 Apply RFC 1137 restricted encoding to addresses
reverse 2.3.4.55 Apply reverse database or REVERSE mapping to

addresses
routelocal 2.3.4.4 Rewriting should shortcircuit routing addresses
rules 2.3.4.6 Do channel-specific rewrite rule checks
sourceroute 2.3.4.1 Use source routes in the message envelope;

synonymous with 822
subaddressexact 2.3.4.71 Alias must match exactly, including exact

subaddress match
subaddressrelaxed 2.3.4.71 Alias without subaddress may match
subaddresswild 2.3.4.71 Alias with subaddress wildcard may match
unrestricted 2.3.4.57 Do not apply RFC 1137 restricted encoding to

addresses
uucp 2.3.4.1 Use UUCP ! routing in the envelope; synonymous

with bangstyle
validatelocalmsgstore 2.3.4.70 Enqueuing channels check that the local part of

addresses they enqueue to this channel matches a
PMDF Message Store account

validatelocalnone 2.3.4.70 Enqueuing channels perform no validatation check
on the local part of addresses they enqueue to this
channel

validatelocalsystem 2.3.4.70 Enqueuing channels check that the local part of
addresses they enqueue to this channel matches an
account on the system

Attachments and MIME processing

convert_octet_stream 2.3.4.54 Convert application/octet-stream material as
appropriate

defragment 2.3.4.76 Reassemble any MIME-compliant message/partial
parts queued to this channel

† foreign 2.3.4.53 Use VMS MAIL’s foreign message format as needed
with VMS MAIL

ignoreencoding 2.3.4.60 Ignore Encoding: header on incoming messages

2–46

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–6 (Cont.) Channel Block Keywords Grouped by Functionality

Keyword Section Usage

Attachments and MIME processing

ignoremessageencoding 2.3.4.60 Ignore Encoding: header on embedded messages
ignoremultipartencoding 2.3.4.60 Ignore Encoding: header on multipart messages
interpretencoding 2.3.4.60 Interpret Encoding: header on incoming messages
interpretmessageencoding 2.3.4.60 Interpret Encoding: header on embedded messages
interpretmultipartencoding 2.3.4.60 Interpret Encoding: header on multipart messages
linelength 2.3.4.52 Message lines exceeding this length limit will be

wrapped
maxblocks 2.3.4.77 Maximum number of PMDF blocks per message;

longer messages are broken into multiple messages
maxlines 2.3.4.77 Maximum number of message lines per message;

longer messages are broken into multiple messages
noconvert_octet_stream 2.3.4.54 Do not convert application/octet-stream material
nodefragment 2.3.4.76 Do not perform special processing for

message/partial messages
† noforeign 2.3.4.53 Do not use VMS MAIL’s foreign message format

nolinelimit 2.3.4.78 No limit specified for the number of lines allowed per
message

Character sets and eight bit data

charset7 2.3.4.51 Default character set to associate with 7-bit text
messages

charset8 2.3.4.51 Default character set to associate with 8-bit text
messages

charsetesc 2.3.4.51 Default character set to associate with text
containing the escape character

eightbit 2.3.4.50 Channel supports eight bit characters
eightnegotiate 2.3.4.50 Channel should negotiate use of eight bit

transmission if possible
eightstrict 2.3.4.50 Channel should reject messages that contain

unnegotiated eight bit data
sevenbit 2.3.4.50 Channel does not support eight bit characters; eight

bit characters must be encoded

File creation in the PMDF queue area

addrsperfile 2.3.4.15 Number of addresses per message file
expandchannel 2.3.4.16 Channel in which to perform deferred expansion due

to application of expandlimit
expandlimit 2.3.4.16 Process an incoming message ‘‘off-line’’ when the

number of addressees exceeds this limit
† logicaldisk 2.3.4.30 Spread PMDF channel queues across multiple disks

multiple 2.3.4.15 Accepts multiple destination hosts in a single
message copy

† nologicaldisk 2.3.4.30 Store PMDF channel queues on a single disk
single 2.3.4.15 Only one envelope To: address per message copy
single_sys 2.3.4.15 Each message copy must be for a single destination

system
subdirs 2.3.4.17 Use multiple subdirectories

2–47

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–6 (Cont.) Channel Block Keywords Grouped by Functionality

Keyword Section Usage

Gateway/firewall/mailhub/Message Router channel connection

daemon 2.3.4.81 Specify name of a gateway daemon (host) to route
to

lastresort 2.3.4.39 Specify a last resort host
multigate 2.3.4.82 Channel serves multiple BITNET gateways
nomultigate 2.3.4.82 Channel does not serve multiple BITNET gateways
user <REFERENCE>(HEAD2_

CHANNELORIGINATORTAG\VALUE)
Specify account under which to run the pipe channel
or specify Message Router mailbox name

Headers

† addlineaddrs 2.3.4.94 Add all addresses from VMS MAIL TO and CC lines
to PMDF headers. (Usage discouraged; use with
caution.)

authrewrite 2.3.4.44 Use SMTP AUTH information in header
commentinc 2.3.4.67 Leave comments in message header lines intact
commentomit 2.3.4.67 Remove comments from message header lines
commentstrip 2.3.4.67 Remove problematic characters from comment field

in message header lines
commenttotal 2.3.4.67 Strip comments (material in parentheses)

everywhere
datefour 2.3.4.72 Convert date/time specifications to four digit years
datetwo 2.3.4.72 Convert date/time specifications to two digit years
dayofweek 2.3.4.73 Include day of week in date/time specifications
defaulthost 2.3.4.47 Specify a domain name to use to complete

addresses
dropblank 2.3.4.49 Strip blank To:, Resent-To:, Cc:, or Resent-Cc:

headers
header_733 2.3.4.1 Use % routing in the message header
header_822 2.3.4.1 Use source routes in the message header
header_uucp 2.3.4.1 Use ! routing in the header

† headerbottom 2.3.4.58 Place the message header at the bottom of the
message (usage discouraged; use with caution; see
2.3.4.58)

headerinc 2.3.4.58 Place the message header at the top of the
message

headerlabelalign 2.3.4.75 Align headers
headerlinelength 2.3.4.75 Fold long headers

† headeromit 2.3.4.58 Omit the message header from the message (usage
discouraged; use with caution; see 2.3.4.58)

headerread 2.3.4.59 Apply source channel header trimming rules from an
options file to the message headers before headers
are processed (use with caution)

headertrim 2.3.4.59 Apply destination channel header trimming rules
from an options file to the message headers after
headers are processed (use with caution)

inner 2.3.4.56 Rewrite inner message headers
innertrim 2.3.4.59 Apply header trimming rules from an options file to

inner message headers (use with caution)

2–48

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–6 (Cont.) Channel Block Keywords Grouped by Functionality

Keyword Section Usage

Headers

maxheaderaddrs 2.3.4.74 Maximum number of addresses per message
header line; longer header lines are broken into
multiple header lines

maxheaderchars 2.3.4.74 Maximum number of characters per message
header line; longer header lines are broken into
multiple header lines

missingrecipientpolicy 2.3.4.48 Set policy for how to legalize (which header to add)
messages that are lacking any recipient headers

† noaddlineaddrs 2.3.4.94 Only addresses processed by PMDF are included in
headers for mail sent from VMS MAIL. (default)

nodayofweek 2.3.4.73 Remove day of week from date/time specifications
nodefaulthost 2.3.4.47 Do not specify a domain name to use to complete

addresses
nodropblank 2.3.4.49 Do not strip blank To:, Resent-To:, Cc:, or Resent-

Cc: headers
noheaderread 2.3.4.59 Do not apply header trimming rules from option file

upon message enqueue
noheadertrim 2.3.4.59 Do not apply header trimming rules from options file
noinner 2.3.4.56 Do not rewrite inner message headers
noinnertrim 2.3.4.59 Do not apply header trimming to inner message

headers
noreceivedfor 2.3.4.62 Do not include envelope to address in Received:

header
noreceivedfrom 2.3.4.62 Do not include the envelope From: address when

constructing Received: header
norelaxheadertermination 2.3.4.93 Don’t consider a line with just spaces and tabs to be

a header terminator.
noremotehost 2.3.4.47 Use local host’s domain name as the default domain

name to complete addresses
norestricted 2.3.4.57 Do not apply RFC 1137 restricted encoding to

addresses
noreverse 2.3.4.55 Do not apply reverse database to addresses
norules 2.3.4.6 Do not do channel-specific rewrite rule checks
nox_env_to 2.3.4.61 Do not add X-Envelope-to: header lines while

enqueuing
personalinc 2.3.4.68 Leave personal names in message header lines

intact
personalomit 2.3.4.68 Remove personal name fields from message header

lines
personalstrip 2.3.4.68 Strip problematic characters from personal name

fields in message header lines
receivedfor 2.3.4.62 Include envelope to address in Received: header
receivedfrom 2.3.4.62 Include the envelope From: address when

constructing Received: header
relaxheadertermination 2.3.4.93 Consider a line with just spaces and tabs to be a

header terminator.
remotehost 2.3.4.47 Use remote host’s name as the default domain

name to complete addresses
restricted 2.3.4.57 Apply RFC 1137 restricted encoding to addresses

2–49

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–6 (Cont.) Channel Block Keywords Grouped by Functionality

Keyword Section Usage

Headers

reverse 2.3.4.55 Apply reverse database or REVERSE mapping to
addresses

rules 2.3.4.6 Do channel-specific rewrite rule checks
sensitivitycompanyconfidential 2.3.4.88 Allow messages of any sensitivity
sensitivitynormal 2.3.4.88 Reject messages whose sensitivity is higher than

normal
sensitivitypersonal 2.3.4.88 Reject messages whose sensitivity is higher than

personal
sensitivityprivate 2.3.4.88 Reject messages whose sensitivity is higher than

private
sourcecommentinc 2.3.4.67 Leave comments in incoming message header lines

intact
sourcecommentomit 2.3.4.67 Remove comments from incoming message header

lines
sourcecommentstrip 2.3.4.67 Remove problematic characters from comment field

in incoming message header lines
sourcecommenttotal 2.3.4.67 Strip comments (material in parentheses)

everywhere in incoming messages
sourcepersonalinc 2.3.4.68 Leave personal names in incoming message header

lines intact
sourcepersonalomit 2.3.4.68 Remove personal name fields from incoming

message header lines
sourcepersonalstrip 2.3.4.68 Strip problematic characters from personal name

fields in incoming message header lines
unrestricted 2.3.4.57 Do not apply RFC 1137 restricted encoding to

addresses
usereplyto 2.3.4.65 Specify mapping of Reply-to: header
useresent 2.3.4.66 Specify mapping of Resent- headers for non RFC

822 environments
x_env_to 2.3.4.61 Add X-Envelope-to: header lines while enqueuing

Incoming channel matching and switching

allowswitchchannel 2.3.4.42 Allow switching to this channel from a
switchchannel channel

nosaslswitchchannel 2.3.4.43 Do not allow switching to this channel upon
successful SASL authentication

noswitchchannel 2.3.4.42 Stay with the server channel; do not switch to the
channel associated with the originating host; do not
permit being switched to

saslswitchchannel 2.3.4.43 Switch to another channel when SASL authentication
is successful

switchchannel 2.3.4.42 Switch from the server channel to the channel
associated with the originating host

§ tlsswitchchannel 2.3.4.45 Switch to specified channel upon successful TLS
negotiation

Logging and debugging

2–50

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–6 (Cont.) Channel Block Keywords Grouped by Functionality

Keyword Section Usage

Logging and debugging

logging 2.3.4.84 Log message enqueues and dequeues into the log
file

master_debug 2.3.4.85 Generate debugging output in the channel’s master
program output

nologging 2.3.4.84 Do not log message enqueues and dequeues into
the log file

nomaster_debug 2.3.4.85 Do not generate debugging output in the channel’s
master program output

noslave_debug 2.3.4.85 Do not generate debugging output in the channel’s
slave program output

slave_debug 2.3.4.85 Generate debugging output in the channel’s slave
program output

Long address lists or headers

expandchannel 2.3.4.16 Channel in which to perform deferred expansion due
to application of expandlimit

expandlimit 2.3.4.16 Process an incoming message ‘‘off-line’’ when the
number of addressees exceeds this limit

holdlimit 2.3.4.16 .HELD an incoming message when the number of
addressees exceeds this limit

maxprocchars 2.3.4.79 Specify maximum length of headers to process

Mailbox filters

channelfilter 2.3.4.86 Specify the location of channel filter file for outgoing
messages; synonym for destinationfilter

destinationfilter 2.3.4.86 Specify the location of channel filter file for outgoing
messages

fileinto 2.3.4.86 Specify effect on address when a mailbox filter
fileinto operation is applied

filter 2.3.4.86 Specify the location of user filter files
nochannelfilter 2.3.4.86 Do not perform channel filtering on outgoing

messages; synonym for nodestinationfilter
nodestinationfilter 2.3.4.86 Do not perform channel filtering for outgoing

messages
nofileinto 2.3.4.86 Mailbox filter fileinto operator has no effect
nofilter 2.3.4.86 Do not perform user mailbox filtering
nosourcefilter 2.3.4.86 Do not perform channel filtering for incoming

messages
sourcefilter 2.3.4.86 Specify the location of channel filter file for incoming

messages

Notification messages and postmaster messages

aliaspostmaster 2.3.4.63 Redirect postmaster messages to the local channel
postmaster

copysendpost 2.3.4.21 Send copies of failures to the postmaster unless the
originator address is blank

2–51

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–6 (Cont.) Channel Block Keywords Grouped by Functionality

Keyword Section Usage

Notification messages and postmaster messages

copywarnpost 2.3.4.22 Send copies of warnings to the postmaster unless
the originator address is blank

errsendpost 2.3.4.21 Send copies of failures to the postmaster if the
originator address is illegal

errwarnpost 2.3.4.22 Send copies of warnings to the postmaster if the
originator address is illegal

† goldmail 2.3.4.26 Generate Gold-Mail compatible read receipts
includefinal 2.3.4.27 Include final form of address in delivery notifications

† nogoldmail 2.3.4.26 Do not generate Gold-Mail compatible read receipts
nonurgentnotices 2.3.4.20 Specify the amount of time which may elapse

before notices are sent and messages returned for
messages of non-urgent priority

noreturnaddress 2.3.4.63 Use the RETURN_ADDRESS option value
noreturnpersonal 2.3.4.63 Use the RETURN_PERSONAL option value
normalnotices 2.3.4.20 Specify the amount of time which may elapse

before notices are sent and messages returned for
messages of normal priority

nosendpost 2.3.4.21 Do not send copies of failures to the postmaster
notices 2.3.4.20 Specify the amount of time which may elapse before

notices are sent and messages returned
nowarnpost 2.3.4.22 Do not send copies of warnings to the postmaster
postheadbody 2.3.4.23 Both the message’s header and body are sent to the

postmaster when a delivery failure occurs
postheadonly 2.3.4.23 Only the message’s header is sent to the postmaster

when a delivery failure occurs
readreceiptmail 2.3.4.25 Ignore read receipt requests when delivering to VMS

MAIL, rather than ‘‘downgrading’’ them to delivery
receipt requests; leave it up to user agents to act
upon the read receipt request

reportboth 2.3.4.24 Generate both header and NOTARY delivery receipt
requests from ‘‘foreign’’ delivery receipt requests

reportheader 2.3.4.24 Generate only header delivery receipt requests from
‘‘foreign’’ delivery receipt requests

reportnotary 2.3.4.24 Generate only NOTARY delivery receipt requests
from ‘‘foreign’’ delivery receipt requests

reportsuppress 2.3.4.24 Suppress delivery receipt requests from ‘‘foreign’’
delivery receipt requests

returnaddress 2.3.4.63 Set the return address for the local Postmaster
returnenvelope 2.3.4.64 Control use of blank envelope return addresses
returnpersonal 2.3.4.63 Set the personal name for the local Postmaster
sendpost 2.3.4.21 Send copies of failures to the postmaster
suppressfinal 2.3.4.27 Include only original form of address in notification

messages
urgentnotices 2.3.4.20 Specify the amount of time which may elapse

before notices are sent and messages returned for
messages of urgent priority

warnpost 2.3.4.22 Send copies of warnings to the postmaster

2–52

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–6 (Cont.) Channel Block Keywords Grouped by Functionality

Keyword Section Usage

Processing control and job submission

addrsperjob 2.3.4.14 Number of addresses to be processed by a single
job

after 2.3.4.18 Specify time delay before master channel programs
run

bidirectional 2.3.4.7 Channel is served by both a master and slave
program

deferred 2.3.4.19 Honor deferred delivery dates
expandchannel 2.3.4.16 Channel in which to perform deferred expansion due

to application of expandlimit
expandlimit 2.3.4.16 Process an incoming message ‘‘off-line’’ when the

number of addressees exceeds this limit
filesperjob 2.3.4.14 Number of queue entries to be processed by a

single job
immediate 2.3.4.9 Delivery started immediately after submission for

messages of second-class or higher priority
immnonurgent 2.3.4.9 Delivery started immediately after submission even

for messages with lower than normal priority
immnormal 2.3.4.9 Delivery started immediately after submission for

messages of normal or higher priority
immurgent 2.3.4.9 Delivery started immediately after submission for

urgent messages only
master 2.3.4.7 Channel is served only by a master program
maxjobs 2.3.4.14 Maximum number of jobs which can be created at

once
maxperiodicnonurgent 2.3.4.11 Specify that periodic jobs should only process

messages of nonurgent or lower priority
maxperiodicnormal 2.3.4.11 Specify that periodic jobs should only process

messages of normal or lower priority
maxperiodicurgent 2.3.4.11 Specify that periodic jobs should process messages

of urgent or lower priority
minperiodicnonurgent 2.3.4.11 Specify that periodic jobs should only process

messages of nonurgent or higher priority
minperiodicnormal 2.3.4.11 Specify that periodic jobs should only process

messages of normal or higher priority
minperiodicurgent 2.3.4.11 Specify that periodic jobs should only process

messages of urgent priority
nodeferred 2.3.4.19 Do not honor deferred delivery dates
nonurgentblocklimit 2.3.4.10 Force messages above this size to wait

unconditionally for a periodic job
† nonurgentqueue 2.3.4.18 Specify the queue for master channel program

processing of nonurgent messages
normalblocklimit 2.3.4.10 Force messages above this size to nonurgent priority

† normalqueue 2.3.4.18 Specify the queue for master channel program
processing of normal messages

noserviceall 2.3.4.12 Immediate delivery jobs process only the messages
they were queued to process

period 2.3.4.9 Specify periodicity of periodic channel service
periodic 2.3.4.9 Channel is serviced only periodically; immediate

delivery processing is never done
queue 2.3.4.18 Specify queue master channel programs run in

2–53

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–6 (Cont.) Channel Block Keywords Grouped by Functionality

Keyword Section Usage

Processing control and job submission

serviceall 2.3.4.12 Immediate delivery jobs process all messages
(queued for the channel)

slave 2.3.4.7 Channel is serviced only by a slave program
threaddepth 2.3.4.29 Number of messages triggering new thread with

multithreaded SMTP client
urgentblocklimit 2.3.4.10 Force messages above this size to normal priority

† urgentqueue 2.3.4.18 Specify the queue for master channel program
processing of urgent messages

user <REFERENCE>(HEAD2_
CHANNELORIGINATORTAG\VALUE)

Specify account under which to run the pipe channel
or specify Message Router mailbox name

SASL and TLS

authrewrite 2.3.4.44 Use SMTP AUTH information in header
client_auth 2.3.4.43 Specify which CLIENT_AUTH section to use for

client SASL
maysasl 2.3.4.43 Allow SMTP server and client SASL authentication
maysaslclient 2.3.4.43 SMTP client attempts to use SASL authentication
maysaslserver 2.3.4.43 SMTP server offers SASL authentication

§ maytls 2.3.4.45 SMTP client and server allow TLS use
§ maytlsclient 2.3.4.45 SMTP client will attempt TLS use
§ maytlsserver 2.3.4.45 SMTP server allows TLS use

msexchange 2.3.4.46 Channel serves MS Exchange gateways
mustsasl 2.3.4.43 Must use SASL authentication
mustsaslclient 2.3.4.43 SMTP client insists upon SASL authentication
mustsaslserver 2.3.4.43 SMTP server insists upon SASL authentication

§ musttls 2.3.4.45 SMTP client and server insist upon TLS use and will
not transfer messages with remote sides that do not
support TLS

§ musttlsclient 2.3.4.45 SMTP client insists upon TLS use and will not send
messages to any remote SMTP server that does not
support TLS use

§ musttlsserver 2.3.4.45 SMTP server insists upon TLS use and will not
accept messages from any remote SMTP client that
does not support TLS use

nomsexchange 2.3.4.46 Channel does not serve MS Exchange gateways
nosasl 2.3.4.43 SASL authentication not attempted or permitted
nosaslclient 2.3.4.43 SMTP client does not attempt SASL authentication
nosaslserver 2.3.4.43 SMTP server does not permit SASL authentication
nosaslswitchchannel 2.3.4.43 Do not allow switching to this channel upon

successful SASL authentication
§ notls 2.3.4.45 SMTP client and server neither attempt nor allow

TLS use
§ notlsclient 2.3.4.45 SMTP client does not attempt TLS use when

sending messages
§ notlsserver 2.3.4.45 SMTP server does not offer or allow TLS use when

receiving messages
saslswitchchannel 2.3.4.43 Switch to another channel when SASL authentication

is successful

2–54

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–6 (Cont.) Channel Block Keywords Grouped by Functionality

Keyword Section Usage

SASL and TLS

§ tlsswitchchannel 2.3.4.45 Switch to specified channel upon successful TLS
negotiation

Sensitivity limits

sensitivitycompanyconfidential 2.3.4.88 Allow messages of any sensitivity
sensitivitynormal 2.3.4.88 Reject messages whose sensitivity is higher than

normal
sensitivitypersonal 2.3.4.88 Reject messages whose sensitivity is higher than

personal
sensitivityprivate 2.3.4.88 Reject messages whose sensitivity is higher than

private

Size limits on messages, and user quotas and privileges

blocklimit 2.3.4.78 Maximum number of PMDF blocks allowed per
message

exquota 2.3.4.80 On OpenVMS, use EXQUOTA privileges if
necessary to deliver VMS MAIL messages; on
UNIX treat as holdexquota for Berkeley
mailboxes; on all platforms deliver to overquota
PMDF MessageStore or PMDF popstore accounts

holdexquota 2.3.4.80 Hold messages for users that are over quota
holdlimit 2.3.4.16 .HELD an incoming message when the number of

addressees exceeds this limit
linelimit 2.3.4.78 Maximum number of lines allowed per message

† network 2.3.4.89 NETMBX privilege required for use
noblocklimit 2.3.4.78 No limit specified for the number of PMDF blocks

allowed per message
noexquota 2.3.4.80 Return to originator any messages to users who are

over quota
nonurgentblocklimit 2.3.4.10 Force messages above this size to wait

unconditionally for a periodic job
normalblocklimit 2.3.4.10 Force messages above this size to nonurgent priority
sourceblocklimit 2.3.4.78 Maximum number of PMDF blocks allowed per

incoming message
urgentblocklimit 2.3.4.78 Force messages above this size to normal priority

2–55

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–6 (Cont.) Channel Block Keywords Grouped by Functionality

Keyword Section Usage

SMTP commands and protocol

allowetrn 2.3.4.34 Honor SMTP client ETRN commands
blocketrn 2.3.4.34 Do not honor SMTP client ETRN commands
checkehlo 2.3.4.32 Check the SMTP response banner for whether to

use EHLO
disableetrn 2.3.4.34 Disable support for the ETRN SMTP command
domainetrn 2.3.4.34 Honor only those SMTP client ETRN commands that

specify a domain
domainvrfy 2.3.4.35 Issue SMTP VRFY commands using full address
ehlo 2.3.4.32 Use EHLO on all initial SMTP connections
eightbit 2.3.4.50 Channel supports eight bit characters

2–56

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–6 (Cont.) Channel Block Keywords Grouped by Functionality

Keyword Section Usage

SMTP commands and protocol

eightnegotiate 2.3.4.50 Channel should negotiate use of eight bit
transmission if possible

eightstrict 2.3.4.50 Channel should reject messages that contain
unnegotiated eight bit data

localvrfy 2.3.4.35 Issue SMTP VRFY command using local address
loopcheck 2.3.4.91 Automatically detect mail loops when sending.
mailfromdnsverify 2.3.4.41 Verify that the domain specified on MAIL FROM: line

is in the DNS
noehlo 2.3.4.32 Never use the SMTP EHLO command
nomailfromdnsverify 2.3.4.41 Do not perform DNS domain verification on the MAIL

FROM: address
nosendetrn 2.3.4.33 Do not send SMTP ETRN command
nosmtp 2.3.4.31 Channel does not use SMTP
novrfy 2.3.4.35 Do not issue SMTP VRFY commands
sendetrn 2.3.4.33 Send SMTP ETRN command
sevenbit 2.3.4.50 Channel does not support eight bit characters; eight

bit characters must be encoded
silentetrn 2.3.4.34 Honor SMTP client ETRN commands, without

echoing channel information
smtp 2.3.4.31 Channel uses SMTP
smtp_cr 2.3.4.31 Accept CR as an SMTP line terminator
smtp_crlf 2.3.4.31 Require CRLF as the SMTP line terminator
smtp_crorlf 2.3.4.31 Allow any of CR, LF, or CRLF as the SMTP line

terminator
smtp_lf 2.3.4.31 Accept LF as an SMTP line terminator
streaming 2.3.4.28 Specify degree of protocol streaming for channel to

use
vrfyallow 2.3.4.36 Provide informative responses to SMTP VRFY

command
vrfydefault 2.3.4.36 Default responses to SMTP VRFY command,

according to channel’s HIDE_VERIFY option setting
vrfyhide 2.3.4.36 Provide obfuscatory responses to SMTP VRFY

command

TCP/IP connections and DNS lookups

cacheeverything 2.3.4.13 Cache all connection information
cachefailures 2.3.4.13 Cache only connection failure information
cachesuccesses 2.3.4.13 Cache only connection success information
connectalias 2.3.4.5 Do not rewrite addresses upon message dequeue
connectcanonical 2.3.4.5 Rewrite addresses upon message dequeue
daemon 2.3.4.81 Specify name of a gateway daemon to route to
defaultmx 2.3.4.38 Channel determines whether or not to do MX

lookups from network
defaultnameservers 2.3.4.38 Consult TCP/IP stack’s choice of nameservers
forwardcheckdelete 2.3.4.40 If a reverse DNS lookup has been performed, next

perform a forward lookup on the returned name
to check that the returned IP number matches the
original; if not, delete the name and use the IP
address

2–57

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–6 (Cont.) Channel Block Keywords Grouped by Functionality

Keyword Section Usage

TCP/IP connections and DNS lookups

forwardchecknone 2.3.4.40 Do not perform a forward lookup after a DNS
reverse lookup

forwardchecktag 2.3.4.40 If a reverse DNS lookup has been performed, next
perform a forward lookup on the returned name
to check that the returned IP number matches the
original; if not, tag the name with *

identnone 2.3.4.40 Do not perform IDENT lookups; do perform IP to
hostname translation; include both hostname and IP
address in Received: header

identnonelimited 2.3.4.40 Do not perform IDENT lookups; do perform IP to
hostname translation, but do not use the hostname
during channel switching; include both hostname
and IP address in Received: header

identnonenumeric 2.3.4.40 Do not perform IDENT lookups or IP to hostname
translation

identnonesymbolic 2.3.4.40 Do not perform IDENT lookups; do perform IP to
hostname translation; include only the hostname in
Received: header

interfaceaddress 2.3.4.37 Bind to the specified TCP/IP interface address
lastresort 2.3.4.39 Specify a last resort host
mailfromdnsverify 2.3.4.41 Verify that the domain specified on MAIL FROM: line

is in the DNS
mx 2.3.4.38 TCP/IP network and software supports MX record

lookups
nameservers 2.3.4.38 Consult specified nameservers rather than TCP/IP

stack’s choice
nocache 2.3.4.13 Do not cache any connection information

† nodns 2.3.4.38 TCP/IP network does not support DNS (nameserver)
lookups

nomailfromdnsverify 2.3.4.41 Do not perform DNS domain verification on the MAIL
FROM: address

nomx 2.3.4.38 TCP/IP network does not support MX lookups
nonrandommx 2.3.4.38 Do MX lookups; do not randomize returned entries

with equal precedence
port 2.3.4.37 Send to the specified TCP/IP port
randommx 2.3.4.38 Do MX lookups; randomize returned entries with

equal precedence
threaddepth 2.3.4.29 Number of messages triggering new thread with

multithreaded SMTP client

Miscellaneous

description 2.3.4.87 Channel description
submit 2.3.4.8 Mark the channel as a submit-only channel

2–58

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.1 Address Types and Conventions (822, 733, uucp, header_822, header_733,
header_uucp)

This group of keywords controls what types of addresses the channel supports. A
distinction is made between the addresses used in the transport layer (the message
envelope) and those used in message headers.

822 (sourceroute)

Source route envelope addresses. This channel supports full RFC 822 format envelope
addressing conventions including source routes. The keyword sourceroute is also
available as a synonym for 822. This is the default if no other envelope address type
keyword is specified.

733 (percents)

Percent sign envelope addresses. This channel supports full RFC 822 format envelope
addressing with the exception of source routes; source routes should be rewritten using
percent sign conventions instead. This keyword is also used in conjunction with DECnet
MAIL-11 channels to force truncation of domain-style names after the first period. The
keyword percents is also available as a synonym for 733.

Note: Use of 733 address conventions on an SMTP channel will result in these conventions
being carried over to the transport layer addresses in the SMTP envelope. This may
violate RFC 821. Only use 733 address conventions when you are sure they are necessary.

uucp (bangstyle)

Bang-style envelope addresses. This channel uses addresses that conform to RFC 976
bang-style address conventions in the envelope (i.e., this is a UUCP channel). The
keyword bangstyle is also available as a synonym for uucp.

header_822
Source route header addresses. This channel supports full RFC 822 format header
addressing conventions including source routes. This is the default if no other header
address type keyword is specified.

header_733
Percent sign header addresses. This channel supports RFC 822 format header addressing
with the exception of source routes; source routes should be rewritten using percent sign
conventions instead.

Percent sign routing is used for PhoneNet channels which connect to systems running
older versions of PMDF.

Note: Use of 733 address conventions in message headers may violate RFC 822 and RFC 976.
Only use this keyword if you are sure that the channel connects to a system that simply
cannot deal with source route addresses.

header_uucp
UUCP or bang-style header addresses. The use of this keyword is not recommended.
Such usage grossly violates RFC 976.

2–59

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.2 Address Interpretation (bangoverpercent, nobangoverpercent)

Addresses are always interpreted in accordance with RFC 822 and RFC 976.
However, there are ambiguities in the treatment of certain composite addresses that
are not addressed by these standards. In particular, an address of the form A!B%C can
be interpreted as either A as the routing host and C as the final destination host, or C
as the routing host and A as the final destination host.

While RFC 976 implies that it is all right for mailers to interpret addresses using
the latter set of conventions, it does not say that such an interpretation is required. In
fact, some situations may be better served by the former interpretation.

The bangoverpercent keyword forces the former A!(B%C) interpretation. The
nobangoverpercent keyword forces the latter (A!B)%C interpretation. nobangover-
percent is the default. See Section 2.2.3.1 for further details.

Note: This keyword does not affect the treatment of addresses of the form A!B@C. These
addresses are always treated as (A!B)@C. Such treatment is mandated by both RFC
822 and RFC 976.

2.3.4.3 Routing Information in Addresses (exproute, noexproute, improute,
noimproute)

The ideal addressing model that PMDF deals with assumes that all systems are
aware of the addresses of all other systems and how to get to them. Unfortunately, this
ideal is not attainable in many cases. The usual exception occurs when a channel connects
to one or more systems that are not known to the rest of the world (e.g., internal machines
on a private DECnet or TCP/IP network). Addresses for systems on this channel may not
be legal on remote systems outside of the site. If such addresses are to be made repliable,
they must contain a source route that tells remote systems to route messages through
the local machine. The local machine can then (automatically) route the messages to
these machines.

The exproute keyword (short for ‘‘explicit routing’’) tells PMDF that the associated
channel requires explicit routing when its addresses are passed on to remote systems.
If this keyword is specified on a channel, PMDF will add routing information containing
the name of the local system (or the current alias for the local system) to all header
addresses and all envelope From: addresses that match the channel. noexproute, the
default, specifies that no routing information should be added.

The PMDF option EXPROUTE_FORWARD can be used to restrict the action of
exproute to backward-pointing addresses if desired.

Another scenario occurs when PMDF connects to a system via a channel that cannot
perform proper routing for itself. In this case all addresses associated with other channels
need to have routing inserted into them when they are used in mail sent to the channel
that connects to the incapable system.

Implicit routing and the improute keyword is used to handle this situation. PMDF
knows that all addresses matching other channels need routing when they are used in
mail sent to a channel marked improute. noimproute, the default, specifies that no

2–60

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

routing information should be added to addresses in messages going out on the specified
channel.

The PMDF option IMPROUTE_FORWARD can be used to restrict the action of
improute to backward-pointing addresses if desired.

The exproute and improute keywords should be used sparingly. It makes
addresses longer, more complex, and may defeat intelligent routing schemes used by
other systems.

Explicit and implicit routing should not be confused with specified routes. Specified
routes are used to insert routing information from rewrite rules into addresses. This is
activated by the special A@B@C rewrite rule template. Specified routes, when activated,
apply to all addresses, both in the header and the envelope. Specified routes are activated
by particular rewrite rules and as such are usually independent of the channel currently
in use. Explicit and implicit routing, on the other hand, are controlled on a per-channel
basis and the route address inserted is always the local system.

2.3.4.4 Short Circuiting Rewriting of Routing Addresses (routelocal)

The routelocal channel keyword causes PMDF, when rewriting an address to the
channel, to attempt to ‘‘short circuit’’ any explicit routing in the address. Explicitly routed
addresses (using !, %, or @ characters) will be simplified.

Use of this keyword on ‘‘internal’’ channels, such as internal TCP/IP channels, can
allow simpler configuration of SMTP relay blocking.

Note that this keyword should not be used on channels that may require explicit %
or other routing, such as PMDF-LAN or PMDF-MR channels.

2.3.4.5 Address Rewriting Upon Message Dequeue (connectalias,
connectcanonical)

PMDF normally rewrites addresses as it enqueues messages to its channel queues.
No additional rewriting is done during message dequeue. This presents a potential
problem when host names change while there are messages in the channel queues still
addressed to the old name.

The connectalias keyword tells PMDF to simply deliver to whatever host is listed
in the recipient address. This is the default. connectcanonical forces PMDF to run
the address through the rewrite rules one additional time and use the host that results.

connectcanonical should only be used specifically to deal with problems with
queued messages—it may have unintended effects on other message traffic. In particular,
connectcanonical must not be used on bit_ channels.

2–61

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.6 Channel-specific Rewrite Rules (rules, norules)

The rules keyword tells PMDF to enforce channel-specific rewrite rule checks for
this channel. This is the default. norules tells PMDF not to check. These two keywords
are usually used for debugging and are rarely used in actual applications.

2.3.4.7 Channel Directionality (master, slave, bidirectional)

Three keywords are used to specify whether a channel is served by a master program
(master), a slave program (slave), or both (bidirectional). The default, if none of
these keywords is specified, is bidirectional. These keywords determine whether
PMDF bothers to initiate delivery activity when a message is queued to the channel —
there is no point in doing this on a slave-only channel.

The use of these keywords reflects certain fundamental characteristics of the
corresponding channel program or programs. The descriptions of the various channels
PMDF supports indicate when and where these keywords should be used.

2.3.4.8 Channel Operation Type (submit)

PMDF supports RFC 2476’s Message Submission protocol. The submit keyword may
be used to mark a channel as a submit-only channel. This is normally useful mostly on
TCP/IP channels, such as an SMTP server run on a special port used solely for submitting
messages; RFC 2476 establishes port 587 for such message submission use.

2.3.4.9 Channel Service Periodicity (immediate, immnonurgent, immnormal,
immurgent, periodic, period)

If a channel is capable of master-mode operations (as specified with the master
keyword), such operations may be initiated either by a periodic service job or on demand
as delivery is needed. The keyword periodic inhibits initiation of delivery jobs on
demand for the channel it is associated with regardless of priority. The immediate
keyword, which is the default, specifies that jobs should run on demand for messages
of appropriate urgency; what appropriate urgency means is controlled via the keywords
described below.

• immurgent enables immediate delivery processing on messages with a priority
setting of urgent. Messages with a lower priority will wait for periodic processing.

• immnormal enables immediate delivery for messages with normal or urgent priority.
immnormal is the default.

• immnonurgent enables immediate delivery for urgent, normal, and non-urgent
messages.

Thus the default behavior (immediate immnormal) enables immediate processing
for all but nonurgent or lower priority messages.

2–62

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Delivery via periodic service jobs is always possible unless the channel is marked
with the slave keyword. Channels capable of master-mode operation are periodically
checked for pending messages by periodic service jobs. These jobs runs at fixed intervals
— usually every four hours, though you may change this interval, if desired. On
OpenVMS systems, the interval is changed by setting the system logical PMDF_POST_
INTERVAL; if used, PMDF_POST_INTERVAL should be set to a string of the form DD

HH:MM:SS (e.g., ‘‘0 00:30:00’’). On UNIX systems, the interval is determined in the
crontab entry for the post job; see the appropriate edition of the PMDF Installation
Guide.

Not all channels may need service at the same intervals. For example, a channel
may see little traffic and be expensive to service (i.e., it costs money to place a connecting
phone call on a master-only periodic PhoneNet channel). Servicing such a channel at
longer intervals than that of a single period between periodic jobs may lower the cost
of operation without significantly affecting the quality of service. In another case, one
particular channel may see very heavy traffic and may require frequent service, while
other channels need servicing much less often. In this situation it may be appropriate
to service the heavily used channel more often than any other.

The period keyword can be used to control how often a channel is serviced. This
keyword must be followed by an integer value N. The channel is then serviced by every
Nth service job. The default value of the period keyword is 1, which means that every
periodic service job will check the channel for pending messages.

2.3.4.10 Message Size Affecting Priority (urgentblocklimit, normalblocklimit,
nonurgentblocklimit)

The urgentblocklimit, normalblocklimit, and nonurgentblocklimit key-
words may be used to instruct PMDF to downgrade the priority of messages based on
size. The keywords must be followed by a single integer value, specifying the message
size, in PMDF blocks, at which to perform the priority downgrading. A PMDF block is
normally 1024 bytes; this can be changed with the BLOCK_SIZE option in the PMDF
option file; see Section 7.3.5. This priority, in turn, may affect whether the message is
processed immediately, or whether it is left to wait for processing until the next periodic
job runs; see Section 2.3.4.9.

The urgentblocklimit keyword instructs PMDF to downgrade messages larger
than the specified size to normal priority. The normalblocklimit keyword instructs
PMDF to downgrade messages larger than the specified size to nonurgent priority. The
nonurgentblocklimit keyword instructs PMDF to downgrade messages larger than
the specified size to lower than nonurgent priority (second class priority), meaning that
the messages will always wait for the next periodic job for further processing.

2–63

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.11 Priority of Messages to be Handled by Periodic Jobs
(minperiodicnonurgent, minperiodicnormal, minperiodicurgent,
maxperiodicnonurgent, maxperiodicnormal, maxperiodicurgent)

When periodic delivery jobs are used they normally process all messages queued for
the channel. However, on some channels it may be desirable to limit normal periodic job
processing to only messages of specified priorities. Other special site-supplied periodic
jobs may then process the remaining messages. For instance, a site might choose to
have normal PMDF periodic jobs pass over nonurgent messages, leaving those nonurgent
messages to be delivered by some site-supplied job (perhaps scheduled to run at off-peak
hours).

The minperiodicnonurgent, minperiodicnormal, or minperiodicurgent, key-
words specify the minimum priority of message that a periodic job should try to deliver;
the job will ignore messages of lower priority. The maxperiodicnonurgent, maxperi-
odicnormal, or maxperiodicurgent keywords specify the maximum priority of mes-
sage that a periodic job should try to deliver; the job will ignore messages of higher
priority.

2.3.4.12 Immediate Delivery Job Service Actions (serviceall, noserviceall)

When immediate delivery jobs are used they normally process only a subset of the
messages queued for the channel. There may be other messages that were queued to
the channel at some prior time that will not be processed. However, on some channels,
particularly those that only provide a link to a single remote system, this sort of operation
may be inappropriate: if the immediate delivery job is successful in connecting to the
remote system it may be able to easily process all the messages that are queued.

The serviceall and noserviceall keywords control this behavior. noser-
viceall, the default, indicates that immediate delivery jobs should only process the
messages they were queued to process. serviceall specifies that immediate jobs should
attempt to process all messages queued to the channel.

It may be tempting to indulge in use of serviceall on most or all channels. Be
warned, however, that use of serviceall is probably not suitable for most channels that
connect to multiple remote systems, or channels that entail lots of per-message overhead.
If serviceall is used on such channels it may cause a dramatic increase in network
and message processing overhead and the net result may be slower message processing
overall.

Note that these keywords do not change the order in which message processing
occurs. Immediate jobs always attempt to process the messages they were created to
process prior to turning to other messages that are also in the channel queue.

2–64

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.13 Channel Connection Information Caching (cacheeverything,
cachesuccesses, cachefailures, nocache)

Channels using the SMTP protocol maintain a cache containing a history of prior
connection attempts. This cache is used to avoid reconnecting multiple times to
inaccessible hosts, which can waste lots of time and delay other messages.

The cache normally records both connection successes and failures. (Successful
connection attempts are recorded in order to offset subsequent failures — a host that
succeeded before but fails now doesn’t warrant as long of a delay before making another
connection attempt as does one that has never been tried or one that has failed
previously.)

However, the caching strategy used by PMDF is not necessarily appropriate for all
situations. For example, a channel that is used to connect to a single flakey host does not
benefit from caching. Therefore channel keywords are provided to adjust PMDF’s cache.

The cacheeverything keyword enables all forms of caching and is the default.
nocache disables all caching. cachefailures enables caching of connection failures but
not successes — this forces a somewhat more draconian retry than cacheeverything
does. Finally, cachesuccesses caches only successes. This last keyword is effectively
equivalent to nocache for SMTP channels.

2.3.4.14 Number of Addresses or Message Files to Handle per Service Job or File
(addrsperjob, filesperjob, maxjobs)

PMDF normally creates one delivery service job per channel that needs service. This
applies to both immediate service and periodic service jobs: when a message is initially
sent and immediate service is needed one job is created for each channel to which the
message is queued, and when PMDF creates periodic jobs it normally creates one periodic
job for each channel that needs service.

A single service job may not be sufficient to insure prompt delivery of all messages,
however. In particular, PMDF-FAX messages may take a long time to deliver; if multiple
FAX modems are available it is not sensible to use a single job and a single modem.

The addrsperjob and filesperjob keywords can be used to cause PMDF to
create additional service jobs. Each one of these keywords takes a single positive integer
parameter which specifies how many addresses or queue entries (i.e., files) must be sent
to the associated channel before more than one service job is created to handle them. If
a value less than or equal to zero is given it is interpreted as a request to queue only
one service job. Not specifying a keyword is equivalent to specifying a value of zero. The
effect of these keywords is maximized; the larger number computed will be the number
of service jobs that are actually created.

The addrsperjob keyword computes the number of services jobs to start by dividing
the total number of To: addressees in all entries by the given value. The filesperjob
keyword divides the number of actual queue entries or files by the given value. Note
that the number of queue entries resulting from a given message is controlled by a large
number of factors, including but not limited to the use of the single and single_sys
keywords and the specification of header-modifying actions in mailing lists.

2–65

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

The maxjobs keyword places an upper bound on the total number of service jobs
that can be created. This keyword must be followed by an integer value; if the computed
number of service jobs is greater than this value only maxjobs jobs will actually be
created. The default for this value if maxjobs is not specified is 100. Normally maxjobs
is set to a value that is less than or equal to the total number of jobs that can run
simultaneously in whatever service queue or queues the channel uses.

For example, if a message with 4 recipient addresses is queued to a channel marked
addrsperjob 2 and maxjobs 5 a total of 2 service jobs will be created. But if a message
with 23 recipient addresses is queued to the same channel only 5 jobs will be created
because of the maxjobs restriction.

Note that these keywords affect the creation of both periodic and immediate service
jobs. In the case of periodic jobs the number of jobs created is calculated from the total
number of messages in the channel queue. In the case of immediate service jobs the
calculation is based only on the message being entered into the queue at the time.

2.3.4.15 Multiple Addresses (multiple, addrsperfile, single, single_sys)

PMDF allows multiple destination addresses to appear in each queued message.
Some channel programs, however, may only be able to process messages with one
recipient, or with a limited number of recipients, or with a single destination system
per message copy. For example, the SMTP client programs for the TCP/IP channels only
establish a connection to a single remote host in a given transaction, so only addresses
to that host can be processed (this despite the fact that a single channel is typically used
for all TCP/IP traffic). Another example is that some SMTP servers may impose a limit
on the number of recipients they can handle at one time, and they may not handle errors
in this area at all gracefully; similar concerns may also arise on the local channel when
MAIL-11 connections are being used.

The keywords multiple, addrsperfile, single, and single_sys can be used to
control how PMDF handles multiple addresses. single means that a separate copy of
the message should be created for each destination address on the channel. single_sys
creates a single copy of the message for each destination system used. multiple, the
default, creates a single copy of the message for the entire channel. Note that at least
one copy of each message is created for each channel the message is queued to, regardless
of the keywords used.

The addrsperfile keyword is used to put a limit on the maximum number of
recipients that can be associated with a single message file in a PMDF channel queue,
thus limiting the number of recipients that will be processed in a single operation. This
keyword requires a single integer argument specifying the maximum number of recipient
addresses allowed in a message file; if this number is reached PMDF will automatically
create additional message files to accomodate them. (The default multiple keyword
corresponds to imposing no limit on the number of recipients in a message file.)

2–66

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.16 Expansion of Multiple Addresses (expandlimit, expandchannel,
holdlimit)

Most PMDF channels support the specification of multiple recipient addresses in the
transfer of each inbound message. The specification of many recipient addresses in a
single message may result in delays in message transfer processing (‘‘on-line’’ delays).
If the delays are long enough, network timeouts can occur, which in turn can lead to
repeated message submission attempts and other problems.

PMDF provides a special facility to force deferred (‘‘off-line’’) processing if more than
a given number of addresses are specified for a single message. Deferral of message
processing can decrease on-line delays enormously. Note, however, that the processing
overhead is deferred, not avoided completely.

This special facility is activated by using a combination of, for instance, the generic
reprocessing channel and the expandlimit keyword. The expandlimit keyword takes
an integer argument that specifies how many addresses should be accepted in messages
coming from the channel before deferring processing. The default value is infinite if the
expandlimit keyword is not specified. A value of 0 will force deferred processing on all
incoming addresses from the channel.

The expandlimit keyword must not be specified on the local channel or the
reprocessing channel itself; the results of such a specification are unpredictable.

The channel actually used to perform the deferred processing may be specified
using the expandchannel keyword; the reprocessing channel is used by default, if
expandchannel is not specified, but use of some other reprocessing or processing channel
may be useful for special purposes. If a channel for deferred processing is specified
via expandchannel, that channel should be a reprocessing or processing channel;
specification of other sorts of channels may lead to unpredictable results.

The reprocessing channel, or whatever channel is used to perform the deferred
processing, must be added to the PMDF configuration file in order for the expandlimit
keyword to have any effect. If your configuration was built by the PMDF configuration
utility, then you should already have a reprocessing channel. If not consult Section 26.7.

Extraordinarily large lists of recipient addresses are often a characteristic of so-
called SPAM—junk e-mail. The holdlimit keyword tells PMDF that messages coming
in the channel that result in more than the specified number of recipients should be
marked as .HELD messages and enqueued to the reprocess channel (or to whatever
channel is specified via the expandchannel keyword). As .HELD messages, the files
will sit unprocessed in that PMDF queue area awaiting manual intervention by the
PMDF postmaster.

2–67

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.17 Multiple Subdirectories (subdirs)

PMDF by default stores all messages queued to a channel as files in the di-
rectory PMDF_QUEUE:[channel-name] (OpenVMS), or /pmdf/queue/channel-name/
(UNIX). However, a channel which handles a large number of messages and tends to
build up a large store of message files waiting for processing, e.g., a TCP/IP channel,
may get better performance out of the file system if those message files are spread across
a number of subdirectories. The subdirs channel keyword provides this capability: it
should be followed by an integer which specifies the number of subdirectories across
which to spread messages for the channel, e.g.,

tcp_local single_sys smtp subdirs 10

The maximum value is 999.

2.3.4.18 Service Job Queue Usage and Job Deferral (queue, nonurgentqueue,
normalqueue, urgentqueue, after)

PMDF creates service jobs to deliver messages. The queues where the jobs are
created can be selected on a channel by channel basis by using the queue keyword.
On OpenVMS, the queues used can also be selected by using the nonurgentqueue,
normalqueue, and urgentqueue keywords. These *queue keywords must be followed
by the name of the queue to which delivery jobs for the current channel should be queued.
The name of the queue should not contain more than twelve characters.

On OpenVMS, different queue usage for messages of different priorities may be
explicitly set using the nonurgentqueue, normalqueue, or urgentqueue keywords.
Otherwise, the queue value (if any) will be used for all messages. If no *queue keyword
is specified, then the queue used is the default queue, MAIL$BATCH on OpenVMS.

On Unix and Windows, different queue usage for different channels is normally set
up using the Job Controller configuration file. The queue channel keyword may be used
on the channel to specify a queue that is defined in the Job Controller. However, if a
queue is specified in the Job Controller configuration file, that one takes precedence.

VMS
Using multiple queues is especially useful when PMDF is run in a cluster. Certain

channels may require hardware or software that is only available on a specific system
within the cluster. Accordingly, queues may be associated with specific systems, making
it possible to ensure that the jobs servicing a particular channel only run on the proper
machine.

Execution of service jobs can be deferred using the after keyword. The after
keyword must be followed by a specification of the amount of time to delay. If the value
following the keyword is an unsigned integer value, it is interpreted as a number of
seconds by which to defer the execution of the job—a delta time value.

VMS
On OpenVMS, there is an alternative time format specification. Anything other

than an unsigned integer will be interpreted as being in standard OpenVMS combination
date/time format. The specification must not be quoted and may not contain any spaces.
For example, TOMORROW+1 delays execution of any submitted job to 1:00AM the following
day; +00:01:00 delays execution of any submitted job for one minute. The specification

2–68

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

-:: is equivalent to the current date/time and is the default, resulting in immediate
eligibility for execution.

VMS
On OpenVMS, deferred execution with an absolute time value is most often used to

schedule delivery at a time when some resource is known to be available. It can also
be used to defer delivery to a time when the system isn’t so heavily loaded, but other
techniques, such as placing dynamic limits on the allowed number of simultaneous jobs,
may be a better solution.

Deferred execution with a (typically small) delta time value is most often used to
increase throughput (e.g., as a result of cutting down on image activation overhead) for
heavily used channels. Note that, regardless of the after channel keyword, PMDF
will not submit a new channel job when there is already a pending or holding job for
that channel. (PMDF will, however, submit a new channel job when there are already
running jobs for that channel.) So by using the after channel keyword to introduce a
slight latency in the execution of immediate PMDF channel jobs, each such job has a
window of time during which to ‘‘collect’’ all the messages sent to the channel in that
time. Whereas normally an immediate PMDF channel job might typically handle only
one (or at especially busy times perhaps two or three) messages, such use of the after
channel keyword allows immediate PMDF channel jobs to typically collect and handle
larger numbers of messages. For channels with high connection or image activation
overhead, this can result in significantly higher overall throughput.

2.3.4.19 Deferred Delivery Dates (deferred, nodeferred)

The deferred channel keyword implements recognition and honoring of the
Deferred-delivery: header. Messages with a deferred delivery date in the future will
be held in the channel queue until they either expire and are returned or the deferred
delivery date is reached. See RFC 2156 for details on the format and operation of the
Deferred-delivery: header.

nodeferred is the default. It is important to realize that while support for deferred
message processing is mandated by RFC 2156, actual implemention of it effectively lets
people use the mail system as an extension of their disk quota.

2.3.4.20 Undeliverable Message Notification Times (notices, nonurgentnotices,
normalnotices, urgentnotices)

The notices, nonurgentnotices, normalnotices, and urgentnotices key-
words control the amount of time an undeliverable message is silently retained in a
given channel queue. PMDF is capable of returing a series of warning messages to the
originator and, if the message remains undeliverable, PMDF will eventually return the
entire message.

Different return handling for messages of different priorities may be explicitly
set using the nonurgentnotices, normalnotices, or urgentnotices keywords.
Otherwise, the notices keyword values will be used for all messages.

2–69

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

The keyword is followed by a list of up to five monotonically increasing integer values.
These values refer to the message ages at which warning messages are sent. The ages
have units of days if the PMDF option RETURN_UNITS is 0 or not specified in the PMDF
option file, or hours if the PMDF option RETURN_UNITS is 1. When an undeliverable
message attains or exceeds the last listed age, it is returned (i.e., bounced). When it
attains any of the other ages, a warning notice is sent. The default if no notices
keyword is given is to use the notices setting for the local, l, channel. If no setting
has been made for the local channel, then the defaults 3, 6, 9, 12 are used meaning that
warning messages are sent when the message attains the ages 3, 6, and 9 days (or hours)
and the message is returned after remaining in the channel queue for more than 12 days
(or hours).

The syntax for the notices keyword uses no punctuation. For example, the default
return policy would be expressed as follows:

notices 3 6 9 12

If you want to change the notification ages for all of your channels, then the simplest
thing to do is to add a defaults channel block to the start of the channel block section of
your PMDF configuration file or to add the notices setting to your local channel. For
instance,

defaults notices 1 3 6 9 12

l defragment charset7 us-ascii charset8 dec-mcs
example.com

The defaults channel would appear immediately after the first blank line in the PMDF
configuration file, usually PMDF_TABLE:pmdf.cnf (OpenVMS) or /pmdf/table/pmdf.cnf
(UNIX) or C:\pmdf\table\pmdf.cnf (NT). It is important that a blank line appear be-
fore and after the line ‘‘defaults notices...’’. See Section 2.3.5 for a full description of
the defaults channel.

See Section 1.4.4 for more information on the *notices keywords and how they
interact with return message processing.

2.3.4.21 Returned Messages (sendpost, nosendpost, copysendpost, errsendpost)

A channel program may be unable to deliver a message due to long-term service
failures or invalid addresses. When this happens the PMDF channel program returns
the message to the sender with an accompanying explanation of why the message was
not delivered. PMDF will also optionally send a copy of all failed messages to the local
postmaster. This is useful for monitoring message failures, but it can result in lots of
traffic for the postmaster to deal with.

The keywords sendpost, copysendpost, errsendpost, and nosendpost are used
to control the sending of failed messages to the postmaster. sendpost tells PMDF to
send a copy of all failed messages to the postmaster unconditionally. copysendpost
instructs PMDF to send a copy of the failure notice to the postmaster unless the originator
address on the failing message is blank; i.e., the postmaster gets copies of all failed
messages except those messages that are actually themselves bounces or notifications.
errsendpost instructs PMDF to only send a copy of the failure notice to the postmaster

2–70

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

when the notice cannot be returned to the originator. No failed messages are ever sent
to the postmaster if nosendpost is specified. The default if none of these keywords is
specified is to send a copy of failed mail messages to the postmaster unless error returns
are completely suppressed with a blank Errors-to: header or a blank envelope From:
address. Note that this default behavior does not correspond to any of the keyword
settings.

2.3.4.22 Warning Messages (warnpost, nowarnpost, copywarnpost, errwarnpost)

In addition to returning messages, PMDF sometimes sends warnings detailing
messages that it has been unable to deliver. This is generally due to timeouts based on
the setting of the notices channel keyword, although in some cases channel programs
may produce warning messages after failed delivery attempts. The warning messages
contain a description of what’s wrong and how long delivery attempts will continue. In
most cases they also contain the headers and the first few lines of the message in question.

PMDF will also optionally send a copy of all warning messages to the local
postmaster. This can be somewhat useful for monitoring the state of the various PMDF
queues, although it does result in lots of traffic for the postmaster to deal with.

The keywords warnpost, copywarnpost, errwarnpost, and nowarnpost are used
to control the sending of warning messages to the postmaster. warnpost tells PMDF to
send a copy of all warning messages to the postmaster unconditionally. copywarnpost
instructs PMDF to send a copy of the warning to the postmaster unless the originator
address on the as yet undelivered message is blank; i.e., the postmaster gets copies of
all warnings of undelivered messages except for those as yet undelivered messages that
are actually themselves bounces or notifications. errwarnpost instructs PMDF to only
send a copy of the warning to the postmaster when the notice cannot be returned to
the originator. No warning messages are ever sent to the postmaster if nowarnpost is
specified. The default if none of these keywords is specified is to send a copy of warnings
to the postmaster unless warnings are completely suppressed with a blank Warnings-to:
header or a blank envelope From: address. Note that this default behavior does not
correspond to any of the keyword settings.

2.3.4.23 Postmaster Returned Message Content (postheadonly, postheadbody)

When a PMDF channel program or the periodic message return job returns messages
to both the postmaster and the original sender, the postmaster copy can either be the
entire message or just the headers. Restricting the postmaster copy to just the headers
adds an additional level of privacy to user mail. Note, however, this by itself does not
guarantee message security; postmasters and system managers are typically in a position
where the contents of messages can be read using system privileges if they so choose.

The keywords postheadonly and postheadbody are used to control what gets
sent to the postmaster. postheadbody returns both the headers and the contents of the
message. It is the default. postheadonly causes only the headers to be sent to the
postmaster.

2–71

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.24 Delivery Receipt Request Style (reportboth, reportheader,
reportnotary, reportsuppress)

The reportboth, reportheader, reportnotary, and reportsuppress channel
keywords control which sort, if any, of delivery receipt request PMDF constructs from
‘‘foreign’’ delivery receipt requests, such as for messages coming in to PMDF via PMDF-
LAN, PMDF-MR, PMDF-X400, or PMDF-MB400 channels, or via the addressing channel.
On OpenVMS, these keywords also control the interpretation of delivery receipt requests
from VMS MAIL or PMDF MAIL via L or D channels. For PMDF-LAN, PMDF-MR,
PMDF-X400, and PMDF-MB400 channels, these keywords also control which sort of
delivery receipt request PMDF will convert into the respective ‘‘foreign’’ delivery receipt
request. (In the case of PMDF-X400, note that the keyword on the MIME_TO_X400
channel controls the behavior in both directions, to and from the X.400 world.) The
current default is reportheader meaning to turn ‘‘foreign’’ delivery receipt requests
into the old ad-hoc header style delivery receipt requests. reportnotary requests that
only NOTARYf style delivery receipt requests be generated; this may become the default
in a future version of PMDF. reportboth causes PMDF to generate both a header style
and a NOTARY style delivery receipt request when seeing a ‘‘foreign’’ delivery receipt
request; setting this may result in two delivery receipts from MTAs that support both
forms of delivery receipt request. reportsuppress causes PMDF to ignore (suppress)
incoming ‘‘foreign’’ delivery receipt requests.

2.3.4.25 Passing Read Receipt Requests to the VMS MAIL Mailbox (OpenVMS)
(readreceiptmail)

Since the VMS MAIL mailbox does not support read receipts, by default PMDF
‘‘downgrades’’ read receipt requests into delivery receipt requests when delivering to
the VMS MAIL mailbox. However, some clients—such as IMAP clients when the VMS
MAIL mailbox is served out by an IMAP server—may have some read receipt support
themselves, handled outside of the VMS MAIL message store itself; when a site has such
clients in use it may be desired to ‘‘pass through’’ any read receipt requests rather than
‘‘downgrading’’ them to delivery receipt requests.

The readreceiptmail channel keyword when placed on the l (lowercase ‘‘L’’)
channel causes PMDF to pass through read receipt requests.

2.3.4.26 Gold-Mail Compatible Read Receipts (OpenVMS) (goldmail, nogoldmail)

On OpenVMS systems, the Gold-Mail mail user agent, a product of Data Processing
Design, Inc., is a commonly used replacement for VMS MAIL.

Gold-Mail provides some added functionality that is not available in regular VMS
MAIL. In particular, Gold-Mail supports read receipts. PMDF is capable of converting
its own read receipt requests into a format that is compatible with Gold-Mail. In order
to activate this feature, the goldmail channel keyword should be used on the channel
that delivers mail to Gold-Mail. This is usually the local channel, although it is possible
for Gold-Mail delivery to be done on d or mail_ channels in some configurations.

f See RFC 1891.

2–72

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

The nogoldmail keyword disables this feature. nogoldmail is the default.

2.3.4.27 Including Altered Addresses in Notification Messages (includefinal,
suppressfinal)

When PMDF generates a notification message (bounce message, delivery receipt
message, etc.), there may be both an ‘‘original’’ form of a recipient address and an altered
‘‘final’’ form of that recipient address available to PMDF. PMDF always includes the
original form (assuming it is present) in the notification message, since that is the form
that the recipient of the notification message (the sender of the original message which
the notification message concerns) is most likely to recognize. The includefinal and
suppressfinal channel keywords control whether PMDF also includes the final form
of the address. Suppressing the inclusion of the final form of address may be of interest
to sites that are ‘‘hiding’’ their internal mailbox names from external view; such sites
may prefer that only the original, ‘‘external’’ form of address be included in notification
messages. includefinal is the default and means to include the final form of the
recipient address; suppressfinal causes PMDF to suppress the final address form, if
an original address form is present, from notification messages.

2.3.4.28 Protocol Streaming (streaming)

Some mail protocols support streaming operations. This means that PMDF can
issue more than one operation at a time and wait for replies to each operation to arrive
in batches. The streaming keyword controls the degree of protocol streaming used in
the protocol associated with a channel. This keyword requires an integer parameter;
how the parameter is interpreted is specific to the protocol in use.

Currently PMDF only supports the experimental use of streaming on SMTP channels.
Implementation of this feature is experimental; it may change in future PMDF releases.

The streaming values available range from 0 to 3. A value of 0 specifies no streaming,
a value of 1 causes groups of RCPT TO commands to stream, a value of 2 causes MAIL
FROM/RCPT TO to stream, and a value of 3 causes HELO/MAIL FROM/RCPT TO or
RSET/MAIL FROM/RCPT TO streaming to be used. The default value is 0.

Some SMTP implementations are known to react badly to streaming. In particular,
sendmail is known to be incapable of handling streaming levels greater than 1. PMDF’s
server implementation of SMTP should work properly at any streaming level.

2.3.4.29 Triggering New Threads in Multi-threaded SMTP Channel (threaddepth)

The multithreaded SMTP client sorts outgoing messages to different destinations
to different threads. The threaddepth keyword may be used to instruct PMDF’s
multithreaded SMTP client to handle only the specified number of messages in any one
thread, using additional threads even for messages all to the same destination (hence
normally all handled in one thread).

2–73

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Use of threaddepth may be of particular interest for achieving multithreading on
a daemon router TCP/IP channel—a TCP/IP channel that connects to a single specific
SMTP server – when the SMTP server to which the channel connects can handle multiple
simultaneous connections.

2.3.4.30 PMDF Channel Queue Directories’ Locations (logicaldisk,
nologicaldisk)

Note: The logicaldisk keyword is only supported on OpenVMS. However, symbolic links can
be used on UNIX to provide similar functionality.

The logicaldisk channel keyword is used to spread PMDF channel queues across
multiple disks. Specifically, when logicaldisk is specified on a channel, the name of
the corresponding channel queue changes from PMDF_QUEUE:[channel-name...] to
PMDF_QUEUE_channel-name:[*...]. nologicaldisk is the default.

Use of logicaldisk therefore requires that a corresponding PMDF_QUEUE_
channel-name logical be defined. Note that the logical name must be defined before
pmdf cnbuild is run, because pmdf cnbuild checks for both the logicaldisk channel
keyword and the existence of the logical name before it will enable this functionality.

2.3.4.31 Channel Protocol Selection (smtp, nosmtp)

These options specify whether or not a channel supports the SMTP protocol and
what type of SMTP line terminator PMDF expects to see as part of that protocol. nosmtp
means that the channel doesn’t support SMTP; all the rest of these keywords imply SMTP
support.

The selection of whether or not to use the SMTP protocol is implicit for most channels;
the correct protocol is chosen by the use of the appropriate channel program or programs.

The keyword smtp is mandatory for all SMTP channels.

The keywords smtp_cr, smtp_crlf, smtp_crorlf, and smtp_lf may be used
on SMTP channels to specify what character sequences to accept as line terminators.
smtp_crlf means that lines must be terminated with a carriage return (CR) line feed
(LF) sequence. smtp_crorlf or smtp means that lines may be terminated with any of a
carriage return (CR), or a line feed (LF) sequence, or a full CRLF. smtp_lf means that
a LF without a preceeding CR will be accepted. Finally, smtp_cr means that a CR will
be accepted without a following LF. It is normal to use CRLF sequences as the SMTP
line terminator, and this is what PMDF itself always generates; this option only affects
PMDF’s handling of incoming material.

2–74

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.32 SMTP EHLO Command (ehlo, checkehlo, noehlo)

The SMTP protocol has been extended (RFC 1869) to allow for negotiation of
additional commands. This is done via the new EHLO command, which replaces RFC
821’s HELO command. Extended SMTP servers respond to EHLO by providing a list
of the extensions they support. Unextended servers return an unknown command error
and the client then sends the old HELO command instead.

This fallback strategy normally works well with both extended and unextended
servers. Problems can arise, however, with servers that do not implement SMTP
according to RFC 821. In particular, some incompliant servers are known to drop the
connection on receipt of an unknown command.

The PMDF client implements a strategy whereby it will attempt to reconnect and
use HELO when any server drops the connection on receipt of an EHLO. However, this
strategy still may not work if the remote server not only drops the connection but also
goes into a problematic state upon receipt of EHLO.

The channel keywords ehlo, noehlo, and checkehlo are provided to deal with
such situations. ehlo tells PMDF to use the EHLO command on all initial connection
attempts. noehlo disables all use of the EHLO command. checkehlo tests the response
banner returned by the remote SMTP server for the string ‘‘ESMTP’’. If this string is
found EHLO is used; if not HELO is used. The default behavior is to use EHLO on all
initial connection attempts, unless the banner line contains the string ‘‘fire away’’, in
which case HELO is used; note that there is no keyword corresponding to this default
behavior, which lies between the behaviors resulting from the ehlo and checkehlo
keywords.

2.3.4.33 Sending an SMTP ETRN Command (sendetrn, nosendetrn)

The extended SMTP command ETRN (RFC 1985) allows an SMTP client to request
that a remote SMTP server start up processing of the remote side’s message queues
destined for sending to the original SMTP client; that is, it allows an SMTP client and
SMTP server to negotiate ‘‘switching roles’’, where the side originally the sender becomes
the receiver, and the side originally the receiver becomes the sender. Or in other words,
ETRN provides a way to implement ‘‘polling’’ of remote SMTP systems for messages
incoming to one’s own system. This can be useful for systems that only have transient
connections between each other, for instance, over dial up lines. When the connection
is brought up and one side sends to the other, via the ETRN command the SMTP client
can also tell the remote side that it should now try to deliver any messages that need to
travel in the reverse direction.

The SMTP client specifies on the SMTP ETRN command line the name of the system
to which to send messages (generally the SMTP client system’s own name). If the remote
SMTP server supports the ETRN command, it will trigger execution of a separate process
to connect back to the named system and send any messages awaiting delivery for that
named system.

The sendetrn and nosendetrn channel keywords control whether the PMDF SMTP
client sends an ETRN command at the beginning of an SMTP connection. The default
is nosendetrn, meaning that PMDF will not send an ETRN command. The sendetrn
keyword tells PMDF to send an ETRN command, if the remote SMTP server says it

2–75

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

supports ETRN. The sendetrn keyword should be followed by the name of the system
requesting that its messages receive a delivery attempt.

2.3.4.34 Receiving an SMTP ETRN Command (allowetrn, blocketrn, disableetrn,
domainetrn, silentetrn)

The allowetrn, blocketrn, disableetrn, domainetrn, and silentetrn key-
words control PMDF’s response when a sending SMTP client issues the SMTP ETRN
command, requesting that PMDF attempt to deliver messages in the PMDF queues. al-
lowetrn means that PMDF will attempt to honor all ETRN commands and will echo
back the name of the channel that will be run in response to the ETRN command. silen-
tetrn tells PMDF to honor all ETRN commands, but without echoing back the name
of the channel which the domain matched and which PMDF will hence be attempting
to run. domainetrn tells PMDF to honor only those ETRN commands that specify a
domain with an @; it also causes PMDF not to echo back the name of the channel which
the domain matched and which PMDF will hence be attempting to run. disableetrn
disables support for the ETRN command entirely; ETRN will not be advertised by the
SMTP server as a supported command. The default behavior, if none of these keywords
is explicitly specified, corresponds most closely to silentetrn.

blocketrn tells PMDF not to honor an ETRN command if the ETRN command
attempts to run that channel. Note that this keyword is therefore relevant on a
destination channel, not on the incoming TCP/IP channel (unless that incoming channel
would also be the destination channel for an attempted ETRN command).

See also Section 21.1.2.2 for a discussion of the ALLOW_ETRNS_PER_SESSION
channel option, which may be used to limit the number of ETRN commands which PMDF
will honor during a single session.

2.3.4.35 Sending an SMTP VRFY Command (domainvrfy, localvrfy, novrfy)

These keywords control PMDF’s use of the VRFY command in its SMTP client. Under
normal circumstances there is no reason for PMDF to issue a VRFY command as part of
an SMTP dialogue — the SMTP MAIL TO command should perform the same function
that VRFY does and return an appropriate error. However, SMTP servers exist that
will accept any address in a MAIL TO (and bounce it later), whereas they perform more
extensive checking as part of a VRFY command.

Therefore PMDF can be configured to issue SMTP VRFY commands. The keyword
domainvrfy causes PMDF to issue a VRFY command with a full address (e.g.,
user@host) as its argument. The localvrfy keyword causes PMDF to issue a VRFY
command with just the local part of the address (e.g., user). novrfy is the default.

2–76

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.36 Responding to SMTP VRFY Commands (vrfyallow, vrfydefault,
vrfyhide)

These keywords control the PMDF SMTP server’s response when a sending SMTP
client issues an SMTP VRFY command. The vrfyallow keyword tells PMDF to issue
a detailed, informative response. The vrfydefault tells PMDF to provide a detailed,
informative response, unless the channel option HIDE_VERIFY=1 has been specified, as
discussed in Section 21.1.2.2. The vrfyhide keyword tells PMDF to issue only a vague,
ambiguous response. Thus these keywords allow per-channel control of VRFY responses,
as opposed to the HIDE_VERIFY option which normally applies to all incoming TCP/IP
channels handled via the same SMTP server.

2.3.4.37 TCP/IP Port Number and Interface Address (interfaceaddress, port)

SMTP over TCP/IP channels normally connect to the remote system’s port 25 when
sending messages. The port keyword may be used to instruct an SMTP over TCP/IP
channel to connect to a non-standard port.

The interfaceaddress keyword controls the address to which a TCP/IP channel
binds as the source address for outbound connections; that is, on a system with multiple
interface addresses this keyword controls which address will be used as the source
IP address when PMDF sends outgoing SMTP messages. Note that it complements
the Dispatcher option INTERFACE_ADDRESS, Section 11.3.2, which controls which
interface address a TCP/IP channel listens on for accepting incoming connections and
messages.

2.3.4.38 TCP/IP Nameserver and MX Record Support (mx, nomx, nodns, defaultmx,
randommx, nonrandommx, nameservers, defaultnameservers)

Some TCP/IP networks support the use of MX (mail forwarding) records and some
do not. PMDF TCP/IP channel programs can be configured to not use MX records if
they are not provided by the network to which the PMDF system is connected. Some
PMDF TCP/IP channel programs can be configured to not do DNS (nameserver) lookups
at all. randommx specifies that MX lookups should be done and MX record values of
equal precedence should be processed in random order. nonrandommx specifies that MX
lookups should be done and MX values of equal precedence should be processed in the
same order in which they were received. The mx keyword is currently equivalent to
nonrandommx; it may change to be equivalent to randommx in a future PMDF release.
The nomx keyword disables MX lookups. The defaultmx keyword specifies that mx
should be used if the network says that that MX records are supported.

defaultmx is the default on channels that support MX lookups in any form.

On UNIX, whether the underlying TCP/IP package’s local host tables are used in
addition to the DNS for lookups is up to the underlying TCP/IP package configuration.
Generally, TCP/IP packages are configured so that local host tables will indeed be
consulted. Consult your TCP/IP package documentation for details.

2–77

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

VMS
On OpenVMS, for PMDF’s multithreaded TCP/IP channels, the underlying TCP/IP

package’s local host tables are not normally consulted during name lookups. In particular,
note that specifying nomx on such a channel does not cause name lookups to refer to the
underlying TCP/IP package’s local host tables; specifying nomx merely causes such a
channel to limit its DNS queries by not using MX records. But there is another keyword
nodns, which goes further and disables DNS (nameserver) lookups entirely, causing all
lookups to be done using the underlying TCP/IP package’s local host tables; this keyword
is only applicable on OpenVMS and only to multithreaded TCP/IP channels.

When nameserver lookups are being performed, that is, unless the nodns channel
keyword is used on OpenVMS, or the nsswitch.conf file on UNIX or the NT TCP/IP
configuration selects no use of nameservers, then the nameserver channel keyword may
be used to specify a list of nameservers to consult rather than consulting the TCP/IP
stack’s own choice of nameservers. nameservers requires a space separated list of IP
addresses for the nameservers, e.g.,

nameservers 1.2.3.1 1.2.3.2

defaultnameservers is the default, and means to use the TCP/IP stack’s own choice
of nameservers.

2.3.4.39 Specify a Last Resort Host (lastresort)

The lastresort keyword is used to specify a host to which to connect when all
other connection attempts fail. In effect this acts as an MX record of last resort. This is
only useful on SMTP channels.

The keyword requires a single parameter specifying the name of the ‘‘system of last
resort’’, e.g.,

tcp_local single_sys smtp mx lastresort mailhub.example.com
TCP-DAEMON

2.3.4.40 Reverse DNS lookups on incoming SMTP connections (identnone,
identnonelimited, identnonenumeric, identnonesymbolic,
forwardchecknone, forwardchecktag, forwardcheckdelete)

The identnone keyword enables IP to hostname translation, and both IP number
and hostname will be included in the Received: header for the message. The
identnonesymbolic keyword enables IP to hostname translation; only the hostname
will be included in the Received: header for the message. The identnonenumeric
keyword inhibits the usual DNS reverse lookup translation of IP number to hostname,
and may therefore result in a performance improvement at the cost of less user-friendly
information in the Received: headers. identnone is the default.

The identnonelimited keyword has the same effect as identnone, as far as
reverse DNS lookups, and information displayed in Received: header lines. Where they
differ is that with identnonelimited the IP literal address is always used as the sole
basis for any channel switching due to use of the switchchannel keyword, regardless of

2–78

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

whether the DNS reverse lookup succeeds in determining a host name. Note that since
channel switching is always performed preferentially based on IP address rather than
host name, the effect of identnonelimited is merely to disable ever trying host name
switching in case all IP address rewriting failed.

Keyword DNS IP address Reverse hostname Fall back to

reverse in Received: in Received: hostname

lookup header line header line channel switch

identnone Yes Yes Yes Yes

identnonelimited Yes Yes Yes No

identnonenumeric No Yes No No

identnonesymbolic Yes No Yes Yes

The forwardchecknone, forwardchecktag, and forwardcheckdelete channel
keywords can modify the effects of doing reverse lookups, controlling whether PMDF does
a forward lookup of an IP name found via a DNS reverse lookup, and if such forward
lookups are requested what PMDF does in case the forward lookup of the IP name does
not match the original IP number of the connection. The forwardchecknone keyword is
the default, and means that no forward lookup is done. The forwardchecktag keyword
tells PMDF to do a forward lookup after each reverse lookup and to tag the IP name
with an asterisk, *, if the number found via the forward lookup does not match that of
the original connection. The forwardcheckdelete keyword tells PMDF to do a forward
lookup after each reverse lookup and to ignore (delete) the reverse lookup returned name
if the forward lookup of that name does not match the original connection IP address,
and stick with the original IP address instead. (Note that having the forward lookup not
match the original IP address is normal at many sites, where a more ‘‘generic’’ IP name
is used for several different IP addresses.)

These keywords are only useful on SMTP channels that run over TCP/IP.

2.3.4.41 Verify that the domain on the MAIL FROM: line is in the DNS
(mailfromdnsverify, nomailfromdnsverify)

Setting mailfromdnsverify on an incoming TCP/IP channel causes PMDF to verify
that an entry in the DNS exists for the domain used on the SMTP MAIL FROM:
command, and to reject the message if no such entry exists. nomailfromdnsverify
is the default, and means that no such check is performed.

Note that performing DNS checks on the return address domain may result in
rejecting some desired valid messages (for instance, from legitimate sites that simply
have not yet registered their domain name, or at times of bad information in the DNS);
it is contrary to the spirit of being generous in what you accept and getting the e-mail
through, expressed in RFC 1123, Requirements for Internet Hosts. However, some sites
may desire to perform such checks in cases where junk e-mail (SPAM) is being sent with
forged e-mail addresses from non-existant domains.

2–79

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.42 Select an alternate channel for incoming mail (switchchannel,
allowswitchchannel, noswitchchannel)

When a PMDF server accepts an incoming connection from a remote system it must
choose a channel with which to associate the connection. Normally this decision is based
on the transport used; for example, an incoming TCP/IP connection is automatically
associated with the tcp_local channel.

This convention breaks down, however, when multiple outgoing channels with
different characteristics are used to handle different systems over the same transport.
When this is done incoming connections are not associated with the same channel as
outgoing connections, and the result is that the corresponding channel characteristics
are not associated with the remote system.

The switchchannel keyword provides a way to eliminate this difficulty. If
switchchannel is specified on the initial channel the server uses, the IP address
of the connecting (originating) host will be matched against the channel table and
if it matches the source channel will change accordingly. If no IP address match
is found or if a match is found that matches the original default incoming channel,
PMDF may optionally try matching using the host name found by doing a DNS reverse
lookup; see Section 2.3.4.40. The source channel may change to any channel marked
switchchannel or allowswitchchannel (the default). noswitchchannel specifies
that no channel switching should be done to or from the channel.

Specification of switchchannel on anything other than a channel that a server
associates with by default will have no effect. At present switchchannel only affects
SMTP channels, but there are actually no other channels where switchchannel would
be reasonable. In particular, PhoneNet channels never need to switch since they are
inherently point-to-point.

2.3.4.43 SMTP authentication and SASL (client_auth, maysasl, maysaslclient,
maysaslserver, mustsasl, mustsaslclient, mustsaslserver,
nosasl, nosaslclient, nosaslserver, saslswitchchannel,
nosaslswitchchannel)

The client_auth, maysasl, maysaslclient, maysaslserver, mustsasl, must-
saslclient, mustsaslserver, nosasl, nosaslclient, nosaslserver, saslswitchchan-
nel, and nosaslswitchchannel channel keywords are used to configure SASL use,
specifically the use of the AUTH command, during the SMTP protocol by SMTP based
channels such as TCP/IP channels. nosasl is the default, and means that SASL au-
thentication will not be permitted (by the server) or attempted (by the client). It sub-
sumes both nosaslserver and nosaslclient. Specifying maysaslserver causes
the SMTP server to permit clients to attempt to use SASL authentication. Speci-
fying maysaslclient causes the SMTP server to attempt to use SASL authentica-
tion. maysasl subsumes both maysaslserver and maysaslclient. Specifying must-
saslserver causes the SMTP server to insist that clients use SASL authentication; the
SMTP server will not accept messages unless the remote client successfully authenti-
cates. Specifying mustsaslclient causes the SMTP client to use SASL authentication,
and it will refuse to continue with the SMTP connection if it cannot successfully au-
thenticate. mustsasl subsumes both mustsaslserver and mustsaslclient. The
saslswitchchannel keyword is used to cause incoming connections to be switched
to a specified channel upon a client’s successful SASL use. It takes a required value,

2–80

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

specifying the channel to which to switch. nosaslswitchchannel is the default, and
means that channel switching is not performed upon a client’s successful SASL use. The
client_auth keyword is used for client-side SASL authentication to tell the TCP/IP
channel which CLIENT_AUTH section of the security.cnf file to read to get the user-
name and password to use to authenticate to the remote system. If this option is not
specified, the DEFAULT CLIENT_AUTH section is used.

See Section 14.4 for further discussion and examples of use of these channel
keywords.

2.3.4.44 Use authenticated address from SMTP AUTH in header (authrewrite)

The authrewrite channel keyword may be used on a source channel to have PMDF
propagate authenticated originator information, if available, into the headers. Normally
the SMTP AUTH information is used, though this may be overriden via the FROM_
ACCESS mapping; see Section 16.1.3. authrewrite takes a required integer value,
according to the following table:

Value Usage

1 Add a Sender: header, or a Resent-sender: header if a Resent-from: or Resent-sender: was
already present, containing the AUTH originator

2 Add a Sender: header containing the AUTH originator

2.3.4.45 Transport Layer Security (maytls, maytlsclient, maystlsserver,
musttls, musttlsclient, musttlsserver, notls, notlsclient,
notlsserver, tlsswitchchannel)

Note: These channel keywords are only supported for PMDF-TLS sites.

The maytls, maytlsclient, maytlsserver, musttls, musttlsclient, must-
tlsserver, notls, notlsclient, notlsserver, and tlsswitchchannel channel
keywords are used to configure TLS use during the SMTP protocol by SMTP based
channels such as TCP/IP channels. notls is the default, and means that TLS will
not be permitted or attempted. It subsumes the notlsclient keyword, which means
that TLS use will not be attempted by the PMDF SMTP client on outgoing connec-
tions (the STARTTLS command will not be issued during outgoing connections) and the
notlsserver keyword, which means that TLS use will not be permitted by the PMDF
SMTP server on incoming connections (the STARTTLS extension will not be advertised
by the SMTP server nor the command itself accepted). Specifying maytls causes PMDF
to offer TLS to incoming connections and to attempt TLS upon outgoing connections. It
subsumes maytlsclient, which means that the PMDF SMTP client will attempt TLS
use when sending outgoing messages, if sending to an SMTP server that supports TLS,
and maytlsserver, which means that the PMDF SMTP server will advertise support for
the STARTTLS extension and will allow TLS use when receiving messages. Specifying
musttls will cause PMDF to insist upon TLS in both outgoing and incoming connections;
e-mail will not be exchanged with remote systems that fail to successfully negotiate TLS
use. It subsumes musttlsclient, which means that the PMDF SMTP client will insist
on TLS use when sending outgoing messages and will not send to SMTP servers that

2–81

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

do not successfully negotiate TLS use (PMDF will issue the STARTTLS command and
that command must succeed), and musttlsserver, which means that the PMDF SMTP
server will advertise support for the STARTTLS extension and will insist upon TLS use
when receiving incoming messages and will not accept messages from clients that do
not successfully negotiate TLS use. The tlsswitchchannel keyword is used to cause
incoming connections to be switched to a specified channel upon a client’s successful TLS
negotiation. It takes a required value, specifying the channel to which to switch.

See Chapter 15 for additional discussion of TLS.

2.3.4.46 MS Exchange gateway channels (msexchange, nomsexchange)

The msexchange channel keyword may be used on TCP/IP channels to tell PMDF
that this is a channel that communicates with MS Exchange gateways and clients. When
placed on an incoming TCP/IP channel which has SASL enabled (via a maysaslserver
or mustsaslserver keyword), it causes PMDF’s SMTP server to advertise AUTH using
an ‘‘incorrect’’ format (based upon the original ESMTP AUTH specification, which was
actually incompatible with correct ESMTP usage, rather than the newer, corrected AUTH
specification). Some MS Exchange clients, for instance, will not recognize the correct
AUTH format and will only recognize the incorrect AUTH format.

The msexchange channel keyword also causes advertisement (and recognition) of
broken TLS commands.

nomsexchange is the default.

2.3.4.47 Host name to use when correcting incomplete addresses (remotehost,
noremotehost, defaulthost, nodefaulthost)

PMDF often receives from misconfigured or incompliant mailers and SMTP clients
addresses which do not contain a domain name. PMDF, showing at least some respect
for standards, must attempt to make such addresses legal before allowing them to pass
further. PMDF does this by appending a domain name to the address (e.g., appends
‘‘@example.com’’ to ‘‘mrochek’’). For envelope To: addresses missing a domain name,
PMDF always assumes that the local host name should be appended. However for other
addresses, such as From: addresses, in the case of the PMDF SMTP server there are
at least two reasonable choices for the domain name: the local PMDF host name and
the remote host name reported by the client SMTP. Or in some cases, there may be
yet a third reasonable choice—a particular domain name to add to messages coming in
that channel. Now, either of these two first choices are likely to be correct as both may
occur operationally with some frequency. The use of the remote host’s domain name is
appropriate when dealing with improperly configured SMTP clients. The use of the local
host’s domain name may be appropriate when dealing with a lightweight remote mail
client such as a POP or IMAP client that uses SMTP to post messages. Or if lightweight
remote mail clients such as POP or IMAP clients ‘‘ought’’ to have their own specific
domain name which is not that of the local host, then adding that specific other domain
name may be appropriate. The best that PMDF can do is to allow the choice to be made
on a channel by channel basis.

2–82

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

The remotehost channel keyword specifies that the remote host’s name should be
used. The noremotehost channel keyword specifies that the local host’s name should
be used. noremotehost is the default.

The defaulthost channel keyword is used to specify a particular host name to
append to incoming bare usernames; it must to be followed by the domain name to use
in completing addresses coming in that channel. nodefaulthost is the default.

Note that the switchchannel keyword described above can be used to associated
incoming SMTP connections with a particular channel. This facility can be used to group
remote mail clients on a channel where they will receive proper treatment. Alternatively,
it is an unconditionally simpler proposition to deploy standards-compliant remote mail
clients (even if a multitude of incompliant clients are in use) rather than attempting to
fix the network-wide problem on your PMDF hosts.

2.3.4.48 Normalizing messages that lack any recipient headers
(missingrecipientpolicy)

According to RFC 822, messages are required to contain at least one recipient header:
a To:, Cc:, or Bcc: header. This RFC states that a message without any such headers
is illegal. This requirement has been relaxed in the updated RFC 2822 standard: such
messages are no longer illegal. However, some remote systems that conform to RFC 822
will not accept these messages. In many cases, it can be useful to have PMDF modify
the message to include at least one recipient header.

The missingrecipientpolicy channel keyword takes an integer value specifying
what approach to use for such messages; the default value, if the keyword is not explicitly
present, is 1, meaning that no action is taken.

Value Action

1 Pass the message through unchanged

2 Place envelope To: recipients in a To: header

3 Place all envelope To: recipients in a single Bcc: header

4 Generate an empty group construct To: header (i.e. ‘‘To: Recipients not specified: ;’’)

5 Generate a blank Bcc: header

6 Reject the message

Note that the MISSING_RECIPIENT_POLICY PMDF option, discussed in Sec-
tion 7.3.1, can be used to set a PMDF system default for this sort of behavior.

2–83

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.49 Strip illegal blank recipient headers (dropblank)

In RFC 822 (Internet) messages, any To:, Resent-To:, Cc:, or Resent-Cc: header is
required to contain at least one address—such a header may not have a blank value.
Nevertheless, some mailers may emit such illegal headers. The dropblank channel
keyword, if specified on a source channel, causes PMDF to strip any such illegal blank
headers from incoming messages.

2.3.4.50 Eight bit capability (eightbit, eightnegotiate, eightstrict, sevenbit)

Some transports restrict the use of characters with ordinal values greater than 127
(decimal). Most notably, some SMTP servers will strip the high bit and thus garble
messages that use characters in this ‘‘eight bit’’ range.g

PMDF provides facilities to automatically encode such messages so that troublesome
eight bit characters do not appear directly in the message. This encoding can be applied
to all messages on a given channel by specifying the sevenbit keyword. A channel
should be marked eightbit if no such restriction exists.

Some transports such as extended SMTP may actually support a form of negotiation
to determine if eight bit characters can be transmitted. The eightnegotiate keyword
can be used to instruct the channel to encode messages when negotiation fails. This is
the default for all channels; channels that do not support negotiation will simply assume
that the transport is capable of handling eight bit data.

The eightstrict keyword tells PMDF to reject any messages that contain
unnegotiated eight bit data.

2.3.4.51 Automatic character set labelling (charset7, charset8, charsetesc)

The MIME specification provides a mechanism to label the character set used in a
plain text message. Specifically, a ‘‘charset=’’ parameter can be specified as part of the
Content-type: header line. Various character set names are defined in MIME, including
US-ASCII (the default), ISO-8859-1, ISO-8859-2, and so on. Additional character set
names will undoubtedly be added to the list in the future.

Most existing systems and user agents, however, do not provide any mechanism
for generating these character set labels. In particular, plain text messages sent from
VMS MAIL are not properly labelled. The charset7, charset8, and charsetesc
channel keywords provide a per-channel mechanism to specify character set names to
be inserted into message headers. Each keyword requires a single argument giving
the character set name. The names are not checked for validity. Note, however, that
character set conversion can only be done on character sets specified in the PMDF
character set definition file charsets.txt found in the PMDF table directory, (i.e.,
PMDF_TABLE:charsets.txt on OpenVMS or /pmdf/table/charsets.txt on UNIX.
The names defined in this file should be used if possible.

g Indeed, there have even been reports of SMTP servers which will crash when presented with eight bit data.

2–84

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

The charset7 character set name is used if the message contains only seven
bit characters; the charset8 will be used if eight bit data is found in the message;
charsetesc will be used if a message containing only seven bit data happens to contain
the escape character. If the appropriate keyword is not specified no character set name
will be inserted into the Content-type: header lines.

These character set specifications never override existing labels; that is, they have
no effect if a message already has a character set label or is of a type other than text.

It is usually appropriate to label the PMDF local channel as follows:

l ... charset7 US-ASCII charset8 ISO-8859-1 ...
official-host-name

OpenVMS systems actually use the DEC Multinational Character Set (DEC-MCS).
The character set is very close to ISO-8859-1, however, so this labelling will work well
enough in most cases. If absolute accuracy is an issue, the local channel can be marked
as using DEC-MCS

l ... charset7 US-ASCII charset8 DEC-MCS ...
official-host-name

and an appropriate character set conversion can be set up to convert DEC-MCS to ISO-
8859-1 as needed. See Chapter 6 for details on how to set up such conversions.

The charsetesc keyword tends to be particularly useful on channels that receive
unlabelled messages using Japanese or Korean character sets that contain the escape
character.

2.3.4.52 Restrictions on message line lengths (linelength)

The SMTP specification allows for lines of text containing up to 1000 bytes. However,
some transports may impose more severe restrictions on line length. For example,
while the MAIL-11 transport over DECnet supports lines of any length, the access to
this transport provided by the VMS MAIL foreign protocol interface limits lines to 255
characters or less.

The linelength keyword provides a mechanism for limiting the maximum permis-
sible message line length on a channel by channel basis. Messages queued to a given
channel with lines longer than the limit specified for that channel will be encoded auto-
matically. The various encodings available in PMDF always result in a reduction of line
length to fewer than 80 characters. The original message may be recovered after such
encoding is done by applying an appropriate decoding filter. (In many cases PMDF MAIL
and other MIME-aware user agents are able to detect that such decoding is necessary
and perform it automatically.)

Note that encoding can only reduce line lengths to fewer than 80 characters. For
this reason specification of line length values less than 80 may not actually produce lines
with lengths that comply with the stated restriction.

2–85

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Note also that linelength causes encoding of data so as to do ‘‘soft’’ line wrapping
for transport purposes. The encoding is normally decoded at the receiving side so
that the original ‘‘long’’ lines are recovered. For ‘‘hard’’ line wrapping, see instead the
‘‘Record,Text’’ CHARSET-CONVERSION; Chapter 6.

2.3.4.53 Delivering foreign format messages to VMS MAIL (OpenVMS) (foreign,
noforeign)

PMDF detects encoded messages automatically and is capable of decoding and
delivering them as foreign format messages to VMS MAIL. Automatic decoding saves
time since the user no longer needs to extract the message, edit it, and run it through a
utility such as PMDF DECODE to obtain the contents.

The foreign channel keyword enables this processing; this keyword is only effective
for OpenVMS systems and only on the local (l) channel, the DECnet MAIL-11 channel
(d), and mail_ channels. The noforeign channel keyword disables the use of foreign
format messages, and is the default for all channels. Note that this default represents a
change from the default behavior of versions of PMDF prior to V5.1.

2.3.4.54 Conversion of application/octet-stream material (convert_octet_stream,
noconvert_octet_stream)

MIME provides a general-purpose type for exchange of pure untyped binary data.
Such data may or may not be usable in any given circumstance; no other information
about the data is available. Various PMDF channels provide mechanisms for dealing
with such data that may or may not be appropriate. The convert_octet_stream
and noconvert_octet_stream keywords control these mechanisms; if the former is
specified conversions are performed and if the latter is specified no conversions are
performed. The latter keyword is the default for all channels.

Optional channel-specific conversions available include:

1. The OpenVMS L, DECnet MAIL-11, and mail_ channels all can optionally convert
application/octet-stream data into VMS MAIL foreign messages. See also the
foreign keyword, Section 2.3.4.53.

2.3.4.55 Channel-specific use of the reverse database (reverse, noreverse)

The reverse keyword tells PMDF that addresses in messages queued to the channel
should be checked against and possibly modified by the address reversal database or
REVERSE mapping if either exists. noreverse exempts addresses in messages queued
to the channel from address reversal processing. The reverse keyword is the default.
See Section 3.3.2 information about address reversal.

2–86

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.56 Inner header rewriting (noinner, inner)

PMDF only interprets the contents of header lines when necessary. However, MIME
messages can contain multiple sets of message headers as a result of the ability to
imbed messages within messages (message/rfc822). PMDF normally only interprets and
rewrites the outermost set of message headers. PMDF can optionally be told to apply
header rewriting to inner headers within the message as well.

This behavior is controlled by the use of the noinner and inner keywords. noinner
tells PMDF not to rewrite inner message header lines. It is the default. inner tells
PMDF to parse messages and rewrite inner headers.

These keywords can be applied to any channel.

2.3.4.57 Restricted mailbox encoding (restricted, unrestricted)

Some mail systems have great difficulty dealing with the full spectrum of addresses
allowed by RFC 822. A particularly common example of this is sendmail-based mailers
with incorrect configuration files. Quoted local-parts (or mailbox specifications) are a
frequent source of trouble:

"alonso, king"@naples.example.com

This is such a major source of difficulty that a methodology was laid out in RFC 1137
to work around the problem. The basic approach is to remove quoting from the address
and then apply a translation that maps the characters requiring quoting into characters
allowed in an atom (see RFC 822 for a definition of an atom as it is used here). For
example, the preceeding address would become:

alonso#m#_king@naples.example.com

The restricted channel keyword tells PMDF that the channel connects to mail
systems that require this encoding. PMDF then encodes quoted local-parts in both header
and envelope addresses as messages are written to the channel. Incoming addresses on
the channel are decoded automatically.

The unrestricted keyword tells PMDF not to perform RFC 1137 encoding and
decoding. unrestricted is the default.

Note: The restricted keyword should be applied to the channel that connects to systems
unable to accept quoted local-parts. It should not be applied to the channels that actually
generate the quoted local-parts! (It is assumed that a channel capable of generating such
an address is also capable of handling such an address.)

2–87

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.58 Additional message header lines in VMS MAIL (headerbottom, headerinc,
headeromit)

VMS MAIL only provides support for four message header lines: From:, To:, Cc:
and Subject:. However, RFC 822 headers can contain many additional types of header
lines. On OpenVMS systems, PMDF supports these additional header lines by optionally
prepending or appending them to the message body whenever a message is delivered to
a local user.

This behavior is controlled by the use of the headerinc, headeromit, and
headerbottom keywords in the local channel block. The default is headerinc, which
tells PMDF to prepend the header lines to the message — this is the only one of
these keywords supported on UNIX systems. On OpenVMS systems, the keywords
headerbottom, which tells PMDF to append the header lines to the end of the message,
and headeromit, which tells PMDF to strip all header lines, are also available.

Extreme care should be taken not to use these keywords on channels connecting to
other message handling systems — relocating or eliminating message headers violates
RFC 821 and RFC 822 and can lead to serious problems. Note also that many seemingly
‘‘bothersome’’ header lines may contain valuable information required to decode messages,
track down problems, or even authenticate who really sent the message and thus thwart
attempts at forging mail messages.

The headerinc, headeromit, and headerbottom keywords will have no effect
if they are specified in any channel block that does not use VMS MAIL or SMTP as its
delivery mechanism, and indeed the headeromit and headerbottom keywords are only
available on the OpenVMS version of PMDF. Their usage with SMTP channels should be
limited to special SMTP channels; they should never be used with a TCP/IP channel such
as tcp_local, etc.. Their usage with SMTP channels is intended for delivery of messages
to local users on, for instance, microcomputers.

2.3.4.59 Trimming message header lines (headertrim, noheadertrim, headerread,
noheaderread, innertrim, noinnertrim)

PMDF provides per-channel facilities for trimming or removing selected message
header lines from messages. This is done through a combination of a channel keyword
and an associated header option file or two. The headertrim keyword instructs
PMDF to consult a header option file associated with the channel and to trim the
headers on messages queued to that destination channel accordingly, after the original
message headers are processed. The noheadertrim keyword bypasses header trimming.
noheadertrim is the default.

The innertrim keyword instructs PMDF to perform header trimming on inner
message parts, i.e., embedded MESSAGE/RFC822 parts, as well. The noinnertrim
keyword, which is the default, tells PMDF not to perform any headertrimming on inner
message parts.

The headerread keyword instructs PMDF to consult a header option file associated
with the channel and to trim the headers on messages enqueued by that source channel
accordingly, before the original message headers are processed. Note that headertrim
header trimming, on the other hand, is applied after the messages have been processed,

2–88

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

and is destination channel, rather than source channel, related. The noheaderread
keyword bypasses message enqueue header trimming. noheaderread is the default.

Unlike the headeromit and headerbottom keywords, the headertrim and
headerread keywords may be applied to any channel whatsoever. Note, however, that
stripping away vital header information from messages may cause improper operation of
PMDF. Be extremely careful when selecting headers to remove or limit. This facility
exists because there are occassional situations where selected header lines must be
removed or otherwise limited. Do not merely trim header lines away because you or your
users find them annoying — those header lines are there for a reason. More often than
not, the header lines that users feel are superfluous are among the most important. Before
trimming or removing any header line, be sure that you understand the usage of that
header line and have considered the possible implications of its removal. Consult RFC
822, a copy of which may be found in the RFC subdirectory of the PMDF documentation
directory.h

Header options files for the headertrim and innertrim keywords have names of
the form channel_headers.opt with channel the name of the channel with which
the header option file is associated. Similarly, header options files for the headerread
keyword have names of the form channel_read_headers.opt. These files are stored
in the PMDF table directory, PMDF_TABLE: on OpenVMS or /pmdf/table/ on UNIX.
See Section 2.3.7 for information on the format of these files.

2.3.4.60 Encoding header (ignoreencoding, ignoremessageencoding,
ignoremultipartencoding, interpretencoding,
interpretmessageencoding, interpretmultipartencoding)

PMDF has the ability to convert various non-standard message formats to MIME
via the Yes CHARSET-CONVERSION; see Chapter 6. In particular, the RFC 1154
format uses a non-standard Encoding: header. However, some gateways emit incorrect
information on this header line, with the result that sometimes it is desirable to ignore
this header.

The ignoreencoding keyword instructs PMDF to ignore any Encoding: header.
(Note that unless PMDF has a CHARSET-CONVERSION enabled, such headers will be
ignored in any case.) Similarly, the ignoremessageencoding keyword instructs PMDF
to ignore any Encoding: header in embedded messages. And the ignoremultiparten-
coding keyword instructs PMDF to ignore any Encoding: header in multipart messages.

The interpretencoding keyword instructs PMDF to pay attention to any Encod-
ing: header, if otherwise configured to do so, and is the default. Similarly, the in-
terpretmessageencoding keyword instructs PMDF to pay attention to any Encoding:
header in embedded messages. And the interpretmultipartencoding keyword in-
structs PMDF to pay attention to any Encoding: header in multipart messages.

h PMDF_DOC:[rfc] on OpenVMS; /pmdf/doc/rfc/ on UNIX.

2–89

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.61 Generation of X-Envelope-to: header lines (x_env_to, nox_env_to)

The x_env_to and nox_env_to keywords control the generation or suppression of
X-Envelope-to: header lines on copies of messages queued to a specific channel. On
channels that are marked with the single keyword, the x_env_to keyword enables
generation of these headers while the nox_env_to will remove such headers from
enqueued messages. The default is nox_env_to; (note that this default behavior is a
change in PMDF V5.0 from previous versions of PMDF). Note that the fact that x_env_to
also requires the single keyword in order to take effect represents a change of behavior
from PMDF V5.1 and earlier. See Section 19.1.4.14 for a discussion of the meaning of
X-Envelope-to: headers.

2.3.4.62 Envelope to address in Received: header (receivedfor, noreceivedfor,
receivedfrom, noreceivedfrom)

The receivedfor keyword instructs PMDF that if a message is addressed to just
one envelope recipient, to include that envelope To: address in the Received: header it
constructs. receivedfor is the default. The noreceivedfor keyword instructs PMDF
to construct Received: headers without including any envelope addressee information.

The receivedfrom keyword instructs PMDF to include the original envelope From:
address when constructing a Received: header for an incoming message if PMDF has
changed the envelope From: address due to, for instance, certain sorts of mailing list
expansions. receivedfrom is the default. The noreceivedfrom keyword instructs
PMDF to construct Received: headers without including the original envelope From:
address.

2.3.4.63 Postmaster address (aliaspostmaster, returnaddress,
noreturnaddress, returnpersonal, noreturnpersonal)

By default, the Postmaster return address used when PMDF constructs bounce or
notification messages is postmaster@local-host, where local-host is the official
local host name (the name on the local channel), and the Postmaster personal name is
‘‘PMDF e-Mail Interconnect’’. Care should be taken in the selection of the Postmaster
address—an illegal selection may cause rapid message looping and pile-ups of huge
numbers of spurious error messages.

The RETURN_ADDRESS and RETURN_PERSONAL PMDF options can be used
to set a PMDF system default for the Postmaster address and personal name. Or if
per channel controls are desired, the returnaddress and returnpersonal channel
keywords may be used. returnaddress and returnpersonal each take a required
argument specifying the Postmaster address and Postmaster personal name, respectively.
noreturnaddress and noreturnpersonal are the defaults and mean to use the
default values, either defaults established via the RETURN_ADDRESS and RETURN_
PERSONAL options, or the normal default values if such options are not set.

If the aliaspostmaster keyword is placed on a channel, then any messages
addressed to the username ‘‘postmaster’’ (lowercase, uppercase, or mixed case) at the
official channel name will be redirected to postmaster@local-host, where local-

host is the official local host name (the name on the local channel). Note that Internet

2–90

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

standards require that any domain in the DNS that accepts mail have a valid postmaster
account that will receive mail. So this keyword can be useful when it is wanted to
centralize postmaster responsibilities, rather than having separate postmaster accounts
for separate domains. That is, whereas returnaddress controls what return postmaster
address is used when PMDF generates a notification message from the postmaster,
aliaspostmaster affects what PMDF does with messages addressed to the postmaster.

2.3.4.64 Blank envelope return addresses (returnenvelope)

The returnenvelope keyword takes a single integer value, which is interpreted as
a set of bit flags. Bit 0 (value = 1) controls whether or not return notifications generated
by PMDF are written with a blank envelope address or with the address of the local
postmaster. Setting the bit forces the use of the local postmaster address, clearing the bit
forces the use of a blank addresses. Note that the use of a blank address is mandated by
RFC 1123. However, some systems do not handle blank envelope from address properly
and may require the use of this option.

Bit 1 (value = 2) controls whether or not PMDF replaces all blank envelope addresses
with the address of the local postmaster. Again, this is used to accomodate incompliant
systems that don’t conform to RFC 821, RFC 822, or RFC 1123.

Note that the RETURN_ENVELOPE PMDF option can be used to set a PMDF
system default for this sort of behavior.

2.3.4.65 Mapping Reply-to: header (usereplyto)

The usereplyto keyword controls the mapping of the Reply-to: header. The default
is usereplyto 0, which means to use the channel default behavior (which varies from
channel to channel).

Value Action

-1 Never map Reply-to: addresses to anything.

0 Use the channel default mapping of Reply-to: addresses; (varies from channel to
channel). This is the default.

1 Map Reply-to: to From: if no usable From: address exists.

2 If there is a usable Reply-to: address, then map it to From:; otherwise fall back to the
From: address.

2.3.4.66 Mapping Resent- headers when gatewaying to non RFC 822 environments
(useresent)

The useresent keyword controls the use of Resent- headers when gatewaying to
environments that do not support RFC 822 headers. This keyword takes a single integer-
valued argument. Legal values include:

2–91

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Value Action

+2 Use any Resent- headers that are present to generate address information.

+1 Only use Resent-From: headers to generate address information; all other Resent-
headers are ignored.

0 Do not use Resent- headers to generate address information. This is the default.

Currently the useresent keyword applies for the l (lowercase ‘‘L’’) channel on
OpenVMS, and for PMDF-MR, PMDF-X400, and some PMDF-LAN channels.

Note that the default of 0 constitutes a change in the behavior of the OpenVMS l
channel compared with PMDF version 4.3 and earlier.

2.3.4.67 Comments in address message headers (commentinc, commentomit,
commentstrip, commenttotal, sourcecommentinc, sourcecommentomit,
sourcecommentstrip, sourcecommenttotal)

PMDF only interprets the contents of header lines when necessary. However, all
registered headers containing addresses must be parsed in order to rewrite and eliminate
shortform addresses and otherwise convert them to legal addresses. During this process
comments (strings enclosed in parentheses) are extracted and may optionally be modified
or excluded when the header line is rebuilt.

On destination channels, this behavior is controlled by the use of the commentinc,
commentomit, commentstrip, and commenttotal keywords. commentinc tells PMDF
to retain comments in header lines. It is the default. commentomit tells PMDF to remove
any comments from addressing headers, e.g., To:, From:, Cc: headers, etc. commenttotal
tells PMDF to remove any comments from all headers, except Received: headers; as such,
this keyword is not normally useful or recommended. And finally, commentstrip tells
PMDF to strip any nonatomic characters from all comment fields.

On source channels, this behavior is controlled by the use of the sourcecommentinc,
sourcecommentomit, sourcecommentstrip, and sourcecommenttotal keywords.
sourcecommentinc tells PMDF to retain comments in header lines. It is the default.
sourcecommentomit tells PMDF to remove any comments from addressing headers, e.g.,
To:, From:, Cc: headers, etc. sourcecommenttotal tells PMDF to remove any comments
from all headers, except Received: headers; as such, this keyword is not normally useful
or recommended. And finally, sourcecommentstrip tells PMDF to strip any nonatomic
characters from all comment fields.

These keywords can be applied to any channel.

2–92

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.68 Personal names in address message headers (personalinc, personalomit,
personalstrip, sourcepersonalinc, sourcepersonalomit,
sourcepersonalstrip)

PMDF only interprets the contents of header lines when necessary. However, all
registered headers containing addresses must be parsed in order to rewrite and eliminate
shortform addresses and otherwise convert them to legal addresses. During this process
personal names (strings preceeding angle-bracket-delimited addresses) are extracted and
may optionally be modified or excluded when the header line is rebuilt.

On destination channels, this behavior is controlled by the use of the personalinc,
personalomit, and personalstrip keywords. personalinc tells PMDF to retain
personal names in the headers. It is the default. personalomit tells PMDF to remove
all personal names. And finally, personalstrip tells PMDF to strip any nonatomic
characters from all personal name fields.

On source channels, this behavior is controlled by the use of a sourcepersonalinc,
sourcepersonalomit, or sourcepersonalstrip keyword. sourcepersonalinc tells
PMDF to retain personal names in the headers. It is the default. sourcepersonalomit
tells PMDF to remove all personal names. And finally, sourcepersonalstrip tells
PMDF to strip any nonatomic characters from all personal name fields.

These keywords can be applied to any channel.

2.3.4.69 Alias file and alias database probes (aliaslocal)

Normally only addresses rewritten to the local channel (that is, the l channel on
OpenVMS and UNIX) are looked up in the alias file and alias database. The aliaslocal
keyword may be placed on a channel to cause addresses rewritten to that channel to
be looked up in the alias file and alias database also. The exact form of the lookup
probes that will be made is then controlled by the ALIAS_DOMAINS PMDF option; see
Section 7.3.1.

2.3.4.70 Validating local part of address (validatelocalnone,
validatelocalsystem, validatelocalmsgstore)

The validatelocalnone, validatelocalsystem, and validatelocalmsgstore
channel keywords control whether any validity check on the local part (username) of an
address is performed when messages are enqueued to the channel. Different sorts of
channels have different defaults; most channels default to validatelocalnone, mean-
ing that no validation of the local part of the address is performed by the channel doing
the enqueuing to the channel in question.

The local channel defaults to validatelocalsystem, meaning that the local part
(username) of an address must be a valid, e-mail receiving account on the system.
More specifically, validatelocalsystem means that on UNIX platforms, the local part
(username) must have an account on the system, or on OpenVMS platforms that the
local part (username) must have an account or VMS MAIL profile entry.

2–93

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

The msgstore channel defaults to validatelocalmsgstore, meaning that the local
part (username) of an address must be a valid MessageStore or popstore account, or have
an entry in the MessageStore forward database, and has not been marked DISMAIL or
be over quota (if REJECT_OVER_QUOTA is set).

When validatelocalnone is on a channel, messages matching that channel are
enqueued to the channel with no validation by the enqueuing channel; it will be up to the
destination channel itself to validate the address. So for instance if validatelocalnone
were placed on the local channel, then incoming SMTP messages apparently matching the
local channel would be accepted by the SMTP server and enqueued to the local channel;
if the local part turned out not to be a valid account, that would not be discovered until
the local channel itself actually ran and checked the local part.

Conversely, if the name space for some other destination channel, say a MRIF_A1
channel, happened to exactly match the name space for the accounts on the local channel,
then placing validatelocalsystem on the MRIF_A1 channel would cause enqueuing
PMDF agents such as the SMTP server to reject messages destined for the MRIF_A1
channel for which the local part (username) could not be validated as if it were a VMS
MAIL account.

2.3.4.71 Subaddresses (subaddressexact, subaddressrelaxed, subaddresswild)

As background regarding the concept of subaddresses, the PMDF local and msgstore
channels interpret a + character in the local portion of an address (the mailbox portion)
specially: in an address of the form name+subaddress@domain PMDF considers the
portion of the mailbox after the plus character a subaddress. The msgstore channel when
delivering to a popstore account and the local channel treat a subaddress as additional
cosmetic information and actually deliver to the account name, without regard to the
subaddress; the msgstore channel when delivering to a PMDF MessageStore account
interprets the subaddress as the folder name to which to deliver.

Subaddresses also affect the lookup of aliases by the local channel (that is, the local
channel on OpenVMS or UNIX) and the lookup of aliases by any channel marked with
the aliaslocal keyword, and the lookup of mailboxes by the directory channel. The
exact handling of subaddresses for such matching is configurable: when comparing an
address against an entry, PMDF always first checks the entire mailbox including the
subaddress for an exact match; whether or not PMDF performs additional checks after
that is configurable.

Note that the msgstore channel behaviors of ignoring subaddresses as far as actually
delivering to a popstore account and interpreting subaddresses as folder names when
delivering to a MessageStore account are true on all platforms. On all platforms, you
must use the aliaslocal keyword on the msgstore channel if you want to compare
addresses against the alias file and alias database. Hence the subaddress* keywords
are relevant only if the msgstore channel is marked with the aliaslocal keyword.

The subaddressexact keyword instructs PMDF to perform no special subaddress
handling during entry matching; the entire mailbox, including the subaddress, must
match an entry in order for the alias to be considered to match. No additional com-
parisons (in particular, no wildcarded comparisons or comparisons with the subaddress
removed) will be performed. The subaddresswild keyword instructs PMDF that after

2–94

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

looking for an exact match including the entire subaddress, PMDF should next look for
an entry of the form name+*. The subaddressrelaxed keyword instructs PMDF that
after looking for an exact match and then a match of the form name+*, that PMDF should
make one additional check for a match on just the name portion. With subaddressre-
laxed, an alias entry of the form

name: newname+*

will match either name or name+subaddress, transforming a plain name to newname,
and transforming name+subaddress to newname+subaddress. subaddressrelaxed is
the default.

Thus the subaddresswild keyword or the subaddressrelaxed keyword may be
useful when aliases or a directory channel are in use yet users want to receive mail
addressed using arbitrary subaddresses. These keywords obviate the need for a separate
entry for every single subaddress variant on an address.

Note that these keywords only make sense for the local channel (that is, the l channel
on OpenVMS or UNIX) and the directory channel, or any channel marked with the
aliaslocal keyword.

2.3.4.72 Two or four digit date conversion (datefour, datetwo)

The original RFC 822 specification called for two digit years in the date fields in
message headers. This was later changed to four digits by RFC 1123. However, some
older mail systems cannot accommodate four digit dates. In addition, some newer mail
systems can no longer tolerate two digit dates! (Please note that systems which cannot
handle both formats are in violation of the standards.)

The datefour and datetwo keywords control PMDF’s processing of the year field
in message header dates. datefour, the default, instructs PMDF to expand all year
fields to four digits. Two digit dates with a value less than 50 will have 2000 added
while values greater than 50 will have 1900 added.

datetwo instructs PMDF to remove the leading two digits from four digit dates.
This is intended to provide compatibility with incompliant mail systems that require two
digit dates; it should never be used for any other purpose.

2.3.4.73 Day of week in date specifications (dayofweek, nodayofweek)

The RFC 822 specification allows for a leading day of the week specification in the
date fields in message headers. However, some systems cannot accomodate day of the
week information. This makes some systems reluctant to include this information, even
though it is quite useful information to have in the headers.

The dayofweek and nodayofweek keywords control PMDF’s processing of day of
the week information. dayofweek, the default, instructs PMDF to retain any day of the
week information and to add this information to date/time headers if it is missing.

2–95

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

nodayofweek instructs PMDF to remove any leading day of the week information
from date/time headers. This is intended to provide compatibility with incompliant mail
systems that cannot process this information properly; it should never be used for any
other purpose.

2.3.4.74 Automatic splitting of long header lines (maxheaderaddrs, maxheaderchars)

Some message transports, notably some sendmail implementations, cannot process
long header lines properly. This often leads not just to damaged headers but to erroneous
message rejection. Although this is a gross violation of standards it is nevertheless a
common problem.

PMDF provides per-channel facilities to split (break) long header lines into multiple,
independent header lines. The maxheaderaddrs keyword controls how many addresses
can appear on a single line. The maxheaderchars keyword controls how many
characters can appear on a single line. Both keywords require a single integer parameter
that specifies the associated limit. By default, no limit is imposed on the length of a
header line nor on the number of addresses which may appear.

2.3.4.75 Header alignment and folding (headerlabelalign, headerlinelength)

The headerlabelalign keyword controls the alignment point for message headers
enqueued on this channel; it takes an integer-valued argument. The alignment point
is the margin where the contents of headers are aligned. For example, sample headers
with an alignment point of 10 would appear as follows:

To: ariel@example.com
From: caliban@example.com
Subject: Alignment test

The default headerlabelalign is 0, which causes headers not to be aligned.

The headerlinelength keyword controls the length of message header lines
enqueued on this channel. The default, if this keyword is not explicitly set, is 80. Lines
longer than this are folded in accordance with RFC 822 folding rules.

Note that these keywords only control the format of the headers of the message
in the message queue; the actual display of headers is normally controlled by the user
agent. In addition, headers are routinely reformatted as they are transported across the
Internet, so these keywords may have no visible effect even when used in conjunction
with simple user agents that do not reformat message headers.

2–96

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.76 Automatic defragmentation of message/partial messages (defragment,
nodefragment)

The MIME standard provides the message/partial content type for breaking up
messages into smaller parts. This is useful when messages have to traverse networks
with size limits. Information is included in each part so that the message can be
automatically reassembled once it arrives at its destination.

The defragment channel keyword and the defragmentation channel provide the
means to reassemble messages in PMDF. When a channel is marked defragment any
message/partial messages queued to the channel will be placed in the defragmentation
channel queue instead. Once all the parts have arrived the message is rebuilt and sent
on its way.

The nodefragment disables this special processing. nodefragment is the default.

A defragment channel must be added to the PMDF configuration file in order for
the defragment keyword to have any effect. If your configuration was built by the
PMDF configuration utility, then you should already have such a channel. If not consult
Section 26.3.

2.3.4.77 Automatic fragmentation of large messages (maxblocks, maxlines)

Some mail systems or network transports cannot handle messages that exceed
certain size limits. PMDF provides facilities to impose such limits on a channel-
by-channel basis. Messages larger than the set limits will automatically be split
(fragmented) into multiple, smaller messages. The Content-type: used for such
fragments is message/partial, and a unique id parameter is added so that parts of
the same message can be associated with one another and, possibly, be automatically
reassembled by the receiving mailer.

Message fragmentation and defragmentation may also be used to effectively provide
‘‘checkpointing’’ of message transmission.

The maxblocks and maxlines keywords are used to impose size limits beyond which
automatic fragmentation will be activated. Both of these keywords must be followed by
a single integer value. maxblocks specifies the maximum number of blocks allowed in a
message. A PMDF block is normally 1024 bytes; this can be changed with the BLOCK_
SIZE option in the PMDF option file; see Section 7.3.5. maxlines specifies the maximum
number of lines allowed in a message. These two limits can be imposed simultaneously
if necessary.

Message headers are to a certain extent included in the size of a message. Since
message headers cannot be split into multiple messages, and yet they themselves may
exceed the specified size limits, a rather complex mechanism is used to account for
message header sizes. This logic is controlled by the MAX_HEADER_BLOCK_USE and
MAX_HEADER_LINE_USE options in the PMDF option file.

MAX_HEADER_BLOCK_USE is used to specify a real number between 0 and 1.
The default value is 0.5. A message’s header is allowed to occupy this much of the total
number of blocks a message can consume (specified by the maxblocks keyword). If the
message header is larger, PMDF takes the product of MAX_HEADER_BLOCK_USE and

2–97

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

maxblocks as the size of the header; i.e., the header size is taken to be the smaller of
the actual header size and maxblocks * MAX_HEADER_BLOCK_USE.

For example, if maxblocks is 10 and MAX_HEADER_BLOCK_USE is the default,
0.5, any message header that is larger than 5 blocks is treated as a 5 block header, and
if the message is 5 or fewer blocks in size it will not be fragmented. A value of 0 will
cause headers to be effectively ignored insofar as message size limits are concerned. A
value of 1 allows headers to use up all of the size that’s available. Note, however, that
each fragment will always contain at least one message line, regardless of whether or
not the limits are exceeded by this.

MAX_HEADER_LINE_USE operates in a similar fashion in conjunction with the
maxlines keyword.

2.3.4.78 Absolute message size limits (blocklimit, noblocklimit, linelimit,
nolinelimit, sourceblocklimit)

Although fragmentation may be used to break messages into smaller pieces automat-
ically, it may also be appropriate in some cases to simply reject outright messages larger
than some administratively defined limit, (e.g., so as to avoid service denial attacks).

The blocklimit, linelimit and sourceblocklimit keywords are used to impose
absolute size limits. Each of these keywords must be followed by a single integer
value. blocklimit specifies the maximum number of blocks allowed in a message.
PMDF will reject attempts to queue messages containing more blocks than this to the
channel. The sourceblocklimit specifies the maximum number of blocks allowed in
an incoming message. PMDF will reject attempts to submit a message containing more
blocks than this to the channel. In other words, blocklimit applies to destination
channels; sourceblocklimit applies to source channels. A PMDF block is normally
1024 bytes; this can be changed with the BLOCK_SIZE option in the PMDF option file.
linelimit specifies the maximum number of lines allowed in a message. Note that
linelimit counts both header lines and body lines of a message. PMDF will reject
attempts to queue messages containing more than this number of lines to the channel.
These limits can be imposed simultaneously if necessary.

Note that the PMDF options LINE_LIMIT and BLOCK_LIMIT can be used to impose
similar limits on all channels. These limits have the advantage that since they apply
across all channels PMDF’s servers can make them known to mail clients prior to
obtaining message recipient information. This simplifies the process of message rejection
in some protocols.

The nolinelimit and noblocklimit channel keywords are the default and mean
that no limits are imposed, other than any global limits imposed via the LINE_LIMIT
or BLOCK_LIMIT PMDF options.

2–98

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.79 Specify maximum length header that PMDF will rewrite (maxprocchars)

Processing of long header lines containing lots of addresses can consume significant
system resources. (Note, however, that resource consumption is much reduced in PMDF
V5.0 as compared with previous versions of PMDF.) The maxprocchars keyword is used
to specify the maximum length header that PMDF will process and rewrite. Messages
with headers longer than this are still accepted and delivered; the only difference is that
the long header lines are not rewritten in any way. A single integer argument is required.
The default is to process headers of any length.

2.3.4.80 Mail delivery to over quota users (exquota, noexquota, holdexquota)

The exquota, noexquota, and holdexquota keywords control the handling of
messages addressed to VMS MAIL mailbox users (OpenVMS), Berkeley mailbox users
(UNIX), and PMDF popstore or PMDF MessageStore users (all platforms) who have
exceeded their disk quotas.

exquota tells PMDF to ignore user quota limits and deliver messages even when
users are over quota (except on the UNIX l channel, where exquota is equivalent to
holdexquota; either keyword results in holding messages for over quota users). In
particular, on OpenVMS for the l channel, PMDF uses the EXQUOTA privilege when
exquota is used to perform the delivery to over quota users. noexquota tells PMDF to
return messages addressed to over quota users to the message’s sender. holdexquota
tells PMDF to hold messages to over quota users; such messages will remain in the
PMDF queue until they can either be delivered or they time out and are returned to
their sender by the message return job. The default is exquota (which on UNIX for the
l channel is equivalent to holdexquota). Use of the default is strongly recommended;
bouncing mail on the basis of quota is usually not a good idea.

VMS
On OpenVMS, besides the l, msgstore, and popstore channels, these keywords

technically also affect the other channels that deliver via VMS MAIL: the d channel
and any mail_ channels. However, the keywords are typically not useful on d or mail_
channels since such channels typically connect to a remote transport agent of some kind
and enabled privileges are not transferred.

2.3.4.81 Gateway daemons (daemon)

The interpretation and usage of the daemon keyword depends upon the type of
channel to which it is applied.

DECUS UUCP channels

The daemon keyword is used on DECUS UUCP channels (vn_) to specify the name
of the remote host to which the channel connects. This in turn makes it possible to
have multiple channels that connect to the same remote system. If no daemon is
specified, the remote host is derived from the channel name.

2–99

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Local, DECnet MAIL-11, and MAIL channels

The daemon keyword is used on VMS MAIL channels (l, d, or mail_) to control certain
aspects of address rewriting. See, for instance, Section 18.1 where special handling
of DECnet mail and PSIMail addresses is discussed.

TCP/IP channels

Finally, the daemon keyword is also used on SMTP channels to control the choice
of target host. Normally such channels connect to whatever host is listed in the
envelope address of the message being processed. The daemon keyword is used to
tell the channel to instead connect to a specific remote system, generally a firewall
or mailhub system, regardless of the envelope address. The actual remote system
name should appear directly after the daemon keyword, e.g.,

tcp_firewall smtp mx daemon firewall.example.com
TCP-DAEMON

If the argument after the daemon keyword is not a fully qualified domain name, the
argument will be ignored and the channel will connect to the channel’s official host.
When specifying the firewall or gateway system name as the official host name, the
argument given to the daemon keyword is typically specified as router, e.g.,

tcp_firewall smtp mx daemon router
firewall.example.com
TCP-DAEMON

2.3.4.82 Multiple gateways on a single channel (multigate, nomultigate)

The multigate keyword tells PMDF to route the message to the daemon mailbox
specified by the daemon keyword (described in Section 2.3.4.81) on the system specified
in the message’s To: address. This differs from PMDF’s behavior when the multigate
keyword is not used, in which case PMDF routes the message to the official host
associated with the channel, not the system specified in the message’s To: address.

There are a variety of caveats associated with using the multigate keyword; some
of its former uses are now obsolete. nomultigate is the default.

2.3.4.83 Grey Book address formatting (grey, nogrey)

The Grey Book protocol suite uses address formats that are similar to RFC 822,
except that domains are specified in the opposite order; e.g., user@relay.cs.net becomes
user@net.cs.relay.

PMDF provides support for this format on a per-channel basis. If the keyword grey
is specified in the channel block, then all addresses in both the header and the envelope
of any message queued to the channel will be written in Grey Book format. This facility
is disabled by default. (The nogrey keyword is the default, meaning that normal address
format is used.)

2–100

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Grey Book mail systems typically do not use RFC 822 source routes but use the RFC
733 percent-style routing addresses instead, so the 733 and header_733 keywords are
usually specified in addition to the grey keyword.

Note that the transformation is performed as messages enter and leave the channel;
the rest of PMDF (in particular the PMDF configuration and alias files) always use the
conventions of RFC 822.

Note: None of the channel programs provided in the standard PMDF distribution are designed
to work with Grey Book addresses.

2.3.4.84 Message logging (logging)

PMDF provides facilities for logging each message as it is enqueued and dequeued.
All log entries are made to the file mail.log_current in the PMDF log directory, (i.e.,
PMDF_LOG:mail.log_current on OpenVMS or /pmdf/log/mail.log_current on
UNIX. Logging is controlled on a per-channel basis. The logging keyword activates
logging for a particular channel while the nologging keyword disables it. Logging is
disabled on all channels by default.

The message return job, which runs every night around midnight, appends any
existing mail.log_yesterday to the cumulative log file, mail.log, renames the
current mail.log_current file to mail.log_yesterday, and then begins a new
mail.log_current file.

The log file is written as normal ASCII text and the format is quite simple; see
Section 31.1.2 for details.

If you want to have all of your channels log message activity to the logging file, then
simply add a defaults channel block to the start of the channel block section of your
PMDF configuration file. For instance,

defaults logging

l defragment charset7 us-ascii charset8 dec-mcs
example.com

The defaults channel would appear immediately after the first blank line in the PMDF
configuration file. It is important that a blank line appear before and after the line
‘‘defaults logging’’. See Section 2.3.5 for a full description of the defaults channel.

Additional discussion of logging and examples of interpreting log file entries may be
found in Section 31.1. That section also discusses managing the log files; in particular,
note that PMDF itself never does anything to the cumulative mail.log file and it is
up to each site to manage (e.g., delete, truncate, backup, etc.) that log file however they
choose.

2–101

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.85 Debugging channel master and slave programs (master_debug,
nomaster_debug, slave_debug, noslave_debug)

Some channel programs include optional code to assist in debugging by producing
additional diagnostic output. Two channel keywords are provided to enable generation
of this debugging output on a per-channel basis. The keywords are master_debug,
which enables debugging output in master programs, and slave_debug, which enables
debugging output in slave programs. Both types of debugging output are disabled by
default, corresponding to nomaster_debug and noslave_debug.

When activated, debugging output ends up in the log file associated with the channel
program. The location of the log file may vary from program to program. Log files are
usually kept in the PMDF log directory.i Master programs usually have log file names of
the form x_master.log, where ‘‘x’’ is the name of the channel;j slave programs usually
have log file names of the form x_slave.log. Also, some channel programs, notably
PhoneNet channel programs, may produce additional log files with names of the forms:

err_x_master.log, err_x_slave.log,

di_x_master.log, di_x_slave.log, or

ph_x_master.log, ph_x_slave.log.

Note that in the case of the l (lowercase ‘‘L’’) channel, master_debug enables
debugging output when sending from the local channel (e.g., from VMS MAIL), and
slave_debug enables debugging output as messages are delivered to the local channel
(e.g., to VMS MAIL) (with output usually appearing in PMDF_LOG:l_master.log on
OpenVMS or in pmdf/log/l_master.log on UNIX). On OpenVMS, these conventions
also apply to the other channels that interact with VMS MAIL (d, d_, and mail_ channels).
The thing to note is that this usage of the debug keywords is essentially backwards; other
channels assign opposite meanings to the debug keywords. This usage is retained for
historical and compatibility reasons.

On UNIX, when master_debug and slave_debug are enabled for the l channel,
then users will get pmdf_sendmail.log-uniqueid files in their current directory (if
they have write access to the directory; otherwise the debug output will go to stdout)
containing PMDF debug information.

Not all PMDF channel programs have debugging support code.

i PMDF_LOG: on OpenVMS; /pmdf/log/ on UNIX.
j Note that the multithreaded TCP SMTP channel program will produce multiple tcp_y_master.log files per

master channel program execution when master_debug is enabled. The first such file produced shows the channel’s
determination of how many outgoing threads to start up; an additional log file will be created for each individual outgoing
thread.

2–102

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.86 Filter file location (filter, nofilter, channelfilter, nochannelfilter,
destinationfilter, nodestinationfilter, sourcefilter,
nosourcefilter, fileinto, nofileinto)

The filter keyword may be used on the l (lowercase ‘‘L’’), msgstore, and popstore
channels to specify the location of user filter files for that channel. It takes a required
URL argument describing the filter file location. For details on the URL format and the
general use of this keyword, see Section 16.2.1. nofilter is the default and means that
user mailbox filters are not enabled for the channel.

The sourcefilter and destinationfilter keywords may be used on general
PMDF channels to specify a channel-level filter to apply to incoming and outgoing
messages, respectively. These keywords take a required URL argument describing the
channel filter file location. For details on the URL format and the general use of these
keywords, see Section 16.2.2. nosourcefilter and nodestinationfilter are the
defaults and mean that no channel mailbox filter is enabled for either direction of the
channel.

The obsolete channelfilter and nochannelfilter keywords are synonyms for
destinationfilter and nodestinationfilter, respectively.

The fileinto keyword, currently supported only for msgstore channels when
delivering to the PMDF MessageStore, specifies how to alter an address when a mailbox
filter fileinto operator is applied. For msgstore channels, the usual usage is

fileinto $U+$S@$D

meaning that the folder name should be inserted as a subaddress into the original
address, replacing any originally present subaddress.

2.3.4.87 Channel description field (description)

The description channel keyword provides a way to associate a descriptive term
with a channel. This feature is intended for future management utility use.

2.3.4.88 Sensitivity checking (sensitivitynormal, sensitivitypersonal,
sensitivityprivate, sensitivitycompanyconfidential)

The sensitivitynormal, sensitivitypersonal, sensitivityprivate, and
sensitivitycompanyconfidential keywords set an upper limit on the sensitivity
of messages that may be accepted by a channel. The default is sensitivitycompany-
confidential; i.e., messages of any sensitivity are allowed through. A message with
no Sensitivity: header is considered to be of normal, i.e., lowest, sensitivity. Messages
with a higher sensitivity than that specified by such a keyword will be rejected when
enqueued to the channel with an error:

message too sensitive for one or more paths used

2–103

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Note that PMDF does this sort of sensitivity checking at a per-message, not per-
recipient, level: if a destination channel for one recipient fails the sensitivity check, then
the message bounces for all recipients, not just for those recipients associated with the
sensitive channel.

2.3.4.89 Access rights and privileges (network)

Unrecognized keywords are interpreted as rightslist identifiers (on OpenVMS) or as
groups ids (on UNIX). On OpenVMS, a rightslist identifier as a channel keyword means
that the user must be granted that rightslist identifier before they can queue messages
to the channel; on UNIX, a group id as a channel keyword means that the user must be a
member of that group before they can queue messages to the channel. See also the more
flexible and general SEND_ACCESS mapping described in Section 16.1, or on OpenVMS
systems only, the network channel keyword described below.

The PMDF TEST/REWRITE (OpenVMS) or pmdf test -rewrite (UNIX and NT)
utility will tell you if you have any unrecognized keywords in your configuration file that
don’t match a known rightslist identifier (OpenVMS) or group id (UNIX).

VMS
The basic idea for using OpenVMS rightslist identifiers is as follows. Each channel

specified in the configuration file can have one or more OpenVMS rightslist identifiers
associated with it. These identifiers are specified as keywords on the same line as the
channel name. If such an identifier is specified, PMDF checks to make sure that the
identifier is held by the user. If it is not, the user cannot queue messages to that channel.
The user must hold all the identifiers associated with a channel in order to be able to
use that channel.

OpenVMS rightslist identifiers are created and managed with the AUTHORIZE
utility and are the basis of OpenVMS system security. PMDF’s use of identifiers follows
OpenVMS guidelines. Rightslist identifiers used by PMDF should contain one or more
dollar signs to prevent conflicts with future PMDF keyword definitions (PMDF keywords
do not contain dollar signs). Consult HP’s Guide to OpenVMS System Management and
Daily Operation for additional information on rightslist identifiers.

On OpenVMS systems, if the network rightslist identifier is specified on a channel, it
is specially interpreted by PMDF: PMDF will not allow users without network privileges
(NETMBX) to queue messages to the channel.

2.3.4.90 Directory Channel Lookup Mode (inline, noinline)

Normally, look ups using the directory channel are queued to the directory channel
itself and processed by the directory channel master program. When the channel keyword
inline is specified on the directory channel, then look ups are done immediately, similar
to the way look ups are done to the alias database. noinline is the default. These
keywords only apply to directory channels. See Section 3.2.2 for more information.

2–104

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.4.91 Detecting Mail Loops (loopcheck)

When PMDF is sending mail, it can get into a loop sending mail back to itself if the
destination domain has an MX record of 0.0.0.0 or 127.0.0.1. The loopcheck keyword
causes PMDF to use the SMTP XLOOP line on the EHLO response so that PMDF can
detect that it is sending mail back to itself, thus preventing a loop.

2.3.4.92 Accepting All Addresses (acceptalladdresses, acceptvalidaddresses)

Keyword acceptvalidaddresses is the default and corresponds to PMDF’s stan-
dard behavior. If keyword acceptalladdresses is specified on a channel, then all
recipient addresses are accepted during the SMTP dialogue. Any invalid addresses will
have a Non-Delivery Notice sent later.

2.3.4.93 Relaxed Header Termination (relaxheadertermination,
norelaxheadertermination)

Keyword relaxheadertermination is the default and corresponds to PMDF’s
standard behavior, which is to treat a line containing only spaces and tabs as meaning
the same as a blank line, i.e. it terminates the header and the rest of the message is
considered the body. If keyword norelaxheadertermination is specified on a channel,
then a line within the header containing only spaces and tabs is treated as a continuation
of the previous header line, and PMDF continues to process the next lines as part of the
header.

2.3.4.94 Handle addresses from VMS MAIL (OpenVMS) (addlineaddrs,
noaddlineaddrs)

By default, for messages sent from VMS MAIL, PMDF only adds addresses to its To:
and Cc: headers that are processed by PMDF itself. Other addresses processed by other
protocols (such as DECnet) are included only in the X-VMS-To: and X-VMS-Cc: headers.
(This corresponds to noaddlineaddrs). Specify the addlineaddrs keyword on the l
channel to tell PMDF to include all addresses on its To: and Cc: lines.

Make use of this functionality with caution. The address formats for other protocols
may not map easily into the SMTP address format, rendering them invalid.

2.3.5 Using defaults and nodefaults channel blocks to simplify
configurations

Many configurations involve repetition of various channel keywords on all or nearly
all channels. Maintaining such a configuration is both tedious and error-prone. PMDF
offers a simple way to change what defaults apply to various channel keywords. This
mechanism can be used to greatly simplify some configurations.

2–105

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

If a line of the form:

defaults keyword1 keyword2 keyword3 ...

is inserted into the configuration, all channel blocks following this line will ‘‘inherit’’ the
keywords specified on the line. The defaults line can be thought of as a special channel
block that changes the keyword defaults without actually specifying a channel. The
defaults line also does not require any additional lines of channel block information (if
any are specified they will be ignored).

There is no limit on the number of defaults lines that can be specified — the effects
of multiple defaults lines are cumulative with the most recently encountered (reading
from top to bottom) line having precedence.

It may be useful to unconditionally eliminate the effects of any defaults lines starting
at some point in the configuration file (at the start of a standalone section of channel
blocks in an external file, for example). The nodefaults line is provided for this purpose.
It takes the form:

nodefaults

and has the obvious effect — it nullifies all settings established by any previous defaults
channel and returns the configuration to the state that would apply if no defaults had
been specified.

Like regular channel blocks, a blank line must separate each defaults or nodefaults
channel block from other channel blocks. The defaults and nodefaults channel blocks are
the only channel blocks which may appear before the local channel in the configuration
file. However, like any other channel block, they must appear after the last rewrite rule.

2.3.6 Available channels

Every PMDF channel has a unique name containing up to 32 characters. Only
lowercase letters, numbers, underscores, and dollar signs should be used in channel
names.

Certain channel names are reserved for particular uses. These reserved names are
shown in Table 2–7.

Table 2–7 Reserved Channel Names

Name Reserved For

address Extract addressing information from the body of a message
bitbucket Bit bucket channel (deletes all messages queued to it)
circuitcheck Message circuit checking channel
conversion Message body part conversion channel
d The DECnet MAIL channel; used to deliver messages across DECnet via

VMS MAIL
data_to_bitmap Raw FAX data to bitmap channel

2–106

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–7 (Cont.) Reserved Channel Names

Name Reserved For

defragment Message defragmentation channel
directory Directory alias expansion channel
fax_to_data Inbound FAX to raw data channel
filter_discard Channel for discarding filter-discarded messages
g3_to_fax Group 3 to FAX modem spooler
l The local channel on OpenVMS and UNIX; used to deliver mail to users of

the local system (and on OpenVMS, systems accessible via DECnet MAIL or
PSIMail)

mailserv Mail and list server channel
mime_to_x400 MIME to X.400 conversion channel
mint MINT user agent from Wesleyan University
msgstore PMDF Message Store delivery channel
p Generic PhoneNet channel; used to communicate with a central PhoneNet

host
pager E-mail to pager channel
pipe Pipe channel
popstore PMDF popstore delivery channel; a msgstore channel can be—and typically

is – used instead
ps_to_g3 PostScript to Group 3 FAX interpreter
printer e-mail to spooled printer
process Processing channel
text_to_ps Text to PostScript converter
reprocess Reprocessing channel
subject Channel to extract addresses from Subject: lines
x400_to_mime X.400 to MIME conversion channel
x400_local X.400 transport channel

Moreover, certain families of channel names are assumed to be of particular types.
Special channel programs will be invoked to service channels whose names begin with
the prefixes listed in Table 2–8. (Note that some of these reserved names correspond to
third party channels or obsolete channels, rather than to channels currently or by default
available with PMDF.)

Table 2–8 Reserved Channel Name Prefixes

Prefix Type of Channel

aoce_ Apple AOCE channels
address_ Addressing channels
anje_ ANJE (BITNET)
bit_ Jnet (BITNET)
bsin_ BSMTP inbound channels
bsout_ BSMTP outbound channels
bull_ BULLETIN channels
cn_ Internal usage by the national Australian network
ctcp_ Carnegie Mellon University TCP/IP channels; obsolete
data_to_bitmap_ Data to bitmap channels
d_ MAIL-11 over DECnet
directory_ Directory alias expansion channels
dn_ PhoneNet over DECnet
dsmtp_ SMTP over DECnet

2–107

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Table 2–8 (Cont.) Reserved Channel Name Prefixes

Prefix Type of Channel

era_ ERA channels
etcp_ Excelan TCP/IP channels; obsolete
ftcp_ Network Research Corporation FUSION TCP/IP channels; obsolete
ker_ Kermit protocol
mail_ General VMS MAIL delivery
msgstore_ PMDF MessageStore channel
mtcp_ Process Software MultiNet (formerly Cisco MultiNet, formerly TGV MultiNet)

TCP/IP channels; obsolete
notes_ DEC NOTES channels
osfl_ UNIX local channels
p_ PhoneNet channels
pager_ Pager channels
pipe_ Pipe channels
printer_ e-mail to spooled printer channels
process_ Processing channels
ptcp_ Process Software TCPware
px25_ PhoneNet over X.25; obsolete
qm_ QuickMail channels
reprocess_ Reprocessing channels
snads_ SNADS channels
sync_db_ Database synchronization channels
sync_dirbot_ Directory synchronization robot (DIRBOT) channels
sync_ldap_ LDAP directory synchronization channels
sync_ldif_ LDIF directory agent channels
sync_ln_ Lotus Notes directory agent channels
tcp_ Multithreaded TCP/IP SMTP channels
test_ Test channels
text_to_ps_ Text to PostScript channels
tcp_ Multithreaded TCP/IP channels
utcp_ ULTRIX (UCX) Connection TCP/IP channels; obsolete
uucp_ UUCP channel (UNIX, or DEC/Shell UUCP)
vn_ UUCP channel (DECUS UUCP)
wtcp_ Wollongong TCP/IP (WIN/TCP) channels; obsolete

Note that no channel programs for cn or ker channels are included in the standard PMDF
distribution; these two channels are, respectively, provided by the administrators of the
Australian national network and Fel Computing.

These reserved channel names and prefixes are used internally by PMDF, especially
by the central master program dispatcher, (as for instance PMDF_COM:master.com on
OpenVMS or the PMDF Job Controller on UNIX and NT). Using names in a conflicting
manner can lead to serious problems. System managers are encouraged to use these
channels for the stated purposes and in general to pick channel names of their own that
do not conflict with these usage conventions.

2–108

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

2.3.7 Header option files

Some special option files may be associated with a channel that describe how to trim
the headers on messages queued to that channel. This facility is completely general
and may be applied to any channel; it is controlled by the headertrim, noheadertrim,
headerread, and noheaderread channel keywords.

Various PMDF channels have their own channel-level option files as well. Header
option files have a different format than other PMDF option files and thus a header
option file is always a separate file.

2.3.7.1 Header option file location

For destination channel based header trimming to be applied upon message enqueue
after normal header processing, PMDF looks in the table directory, PMDF_TABLE: on
OpenVMS or /pmdf/table/ on UNIX, for header options files with names of the form
channel_headers.opt, where channel is the name of the channel with which the
header option file is associated. The headertrim keyword must be specified on the
channel to enable the use of such a header option file.

For source channel based header trimming to be applied upon message enqueue
before normal header processing, PMDF looks in the table directory, PMDF_TABLE: on
OpenVMS or /pmdf/table/ on UNIX, for header options files with names of the form
channel_read_headers.opt, where channel is the name of the channel with which
the header option file is associated. The headerread keyword must be specified on the
channel to enable the use of such a header option file.

Header option files should be world readable.

2.3.7.2 Header option file format

Simply put, the contents of a header option file are formatted as a set of message
header lines. Note, however, that the bodies of the header lines do not conform to RFC
822.

The general structure of a line from a header options file is then:

Header-name: OPTION=VALUE, OPTION=VALUE, OPTION=VALUE, ...

where Header-name is the name of a header line that PMDF recognizes (any of the
header lines described in this manual may be specified, plus any of the header lines
standardized in RFC 822, RFC 987, RFC 1049, RFC 1421, RFC 1422, RFC 1423, RFC
1424, RFC 2156, and RFC 2045).

Header lines not recognized by PMDF are controlled by the special header line name
Other:. A set of options to be applied to all header lines not named in the header option
file can also be given on a special Defaults: line. Use of Defaults: guards against the
inevitable expansion of PMDF’s known header line table in future releases.

2–109

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

Various options may then be specified to control the retention of the corresponding
header lines. The available options are:

ADD (quoted string)

The ADD option creates a completely new header line of the given type. The new header
line contains the specified string. The header line created by ADD will appear after any
existing header lines of the same type. The ADD option cannot be used in conjunction
with the Defaults: header line type; it will be ignored if it is specified as part of an Other:
option list.

CUTLINES (integer)

This option controls the maximum number of lines all header lines of a given type may
occupy. It complements the MAXIMUM option in that it pays no attention to how many
header lines are involved, only to how many lines of text they collectively occupy. As
with the MAXIMUM option, headers are trimmed from the bottom to meet the specified
requirement.

CUTLINES is similar to the MAXLINES option, but it will cut off a header instance in
the middle. For that reason, MAXLINES is recommended over CUTLINES. CUTLINES
is really only useful for the PMDF MAIL header trimming option file because it controls
the display to the screen instead of actual headers contained in mail messages.

Note: CUTLINES is not recommended for use in channel header option files. It is recom-
mended for use only in the PMDF MAIL header option file.

EMPHASIS (integer)

This option adds emphasis to the display of the header label. It is only useful for use
by PMDF MAIL, when displaying headers on the screen. It is a bit mask with the bits
defined as follows: 1=bold, 2=underline, 4=reverse.

Note: EMPHASIS is not recommended for use in channel header option files. It is recom-
mended for use only in the PMDF MAIL header option file.

FILL (quoted string)

The FILL option creates a completely new header line of the given type if and only if
there are no existing header lines of the same type. The new header line contains the
specified string. The FILL option cannot be used in conjunction with the header line
type; it will be ignored if it is specified as part of an Other: option list.

GROUP (integer 0 or 1)

This option controls grouping of header lines of the same type at a particular precedence
level. A GROUP value of 0 is the default, and indicates that all header lines of a
particular type should appear together. A value of 1 indicates that only one header
line of the respective type should be output and the scan over all header lines at the
associated level should resume, leaving any header lines of the same type unprocessed.
Once the scan is complete it is then repeated in order to pick up any remaining header
lines. This header option is primarily intended to accomodate Privacy Enhanced Mail
(PEM) header processing.

LINELENGTH (integer)

This option controls the length at which to fold headers. See also the discussion of the
headerlinelength channel keyword in Section 2.3.4.75.

2–110

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
The Channel/host Table

MAXCHARS (integer)

This option controls the maximum number of characters which may appear in a single
header line of the specified type. Any header line exceeding that length is truncated
to a length of MAXCHARS. This option pays no attention to the syntax of the header
line and should never be applied to header lines containing addresses and other sorts of
structured information. The length of structured header lines should be controlled with
the maxheaderchars and maxheaderaddrs channel keywords.

MAXIMUM (integer)

This option controls the maximum number of header lines of this type that may appear.
This has no effect on the number of lines, after wrapping, each individual header line
might consume. A value of -1 is interpreted as a request to suppress this header line
type completely.

MAXLINES (integer)

This option controls the maximum number of lines all header lines of a given type may
occupy. It complements the MAXIMUM option in that it pays no attention to how many
header lines are involved, only to how many lines of text they collectively occupy. As
with the MAXIMUM option, headers are trimmed from the bottom to meet the specified
requirement.

MAXLINES is similar to the CUTLINES option, but MAXLINES will not stop in the
middle of an instance of a header. It will output all lines of that instance of the header,
even if it goes a few lines beyond MAXLINES lines. This option is recommended for use
over CUTLINES for that reason.

PRECEDENCE (integer)

This option controls the order in which header lines are output. All header lines have
a default precedence of zero. The smaller the value, the higher the precedence. Thus,
positive PRECEDENCE values will push header lines towards the bottom of the header
while negative values will push them towards the top. Equal precedence ties are broken
using PMDF’s internal rules for header line output ordering.

RELABEL (header name)

This option changes a header line to another header line; that is, the name of the header
is changed, but the value remains the same. For instance,

X-MSMail-Priority: RELABEL="Priority"
X-Priority: RELABEL="Importance"

2.4 Some example configuration files

This section contains four sample configurations. The first example, Example 2–2
illustrates the use of rewrite rules. The second example, Example 2–3, illustrates a
configuration which may be used on a satellite cluster or node which routes all non-local
mail to a hub. The third example, Example 2–4, shows a sample configuration for a
site connected to the Internet. And the final example, Example 2–5, demonstrates the
handling of a local network in which only one of the machines is running PMDF and the
other machines are networked via DECnet.

2–111

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Some example configuration files

2.4.1 A simple configuration file

The following example configuration file for OpenVMS or UNIX (since an l channel
is used) shows how rewrite rules are used to route messages to the proper channel. No
domain names are used in order to keep things as simple as possible.

Example 2–2 A Simple Configuration File

! test.cnf - An example configuration file for PMDF. !
!
! This is only an example of a configuration file. It serves
! no useful purpose and should not be used in a real system.
!
a $U@a "
b $U@b
c $U%c@b
d $U%d@a

#
l $
local-host

a_channel 822 %
a
e

b_channel 733 network
b
f

The key items in the configuration file shown in Example 2–2 are

! Exclamation points, !, are used to introduce comment lines. The exclamation point
must appear in the first column. An exclamation point appearing anywhere else is
interpreted as a literal exclamation point.

" The rewrite rules appear in the first half of the configuration file. Absolutely no
blank lines should appear amongst the lines of rewrite rules. Lines with comments
(beginning with an exclamation point in the first column) are, however, permitted.

The first blank line to appear in the file signifies the end of the rewrite rules section
and the start of the channel blocks.

$ The first channel block to appear is always the local channel. On OpenVMS and UNIX
platforms, this is the ‘‘l’’ channel (lowercase letter L). Blank lines then separate each
channel block from one another. Exception: a defaults channel may appear before
the local channel.

% A channel named a_channel. Note the use of a channel keyword (822) with this
channel.

The routing and queuing of messages by the configuration seen in Example 2–2 is
shown in Table 2–9 below.

2–112

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Some example configuration files

Table 2–9 Message Routing and Queuing Generated by Example 2–2

Address Routed to Queued to channel

u@a a a_channel
u@b b b_channel
u@c b b_channel
u@d a a_channel
u@e e a_channel
u@f f b_channel

2.4.2 Routing non-local mail to a central mail hub

Sometimes it is convenient to configure PMDF to route mail not for the local host,
or a group of local machines, to a central machine and leave it up to that machine to
deal with the mail, perhaps relaying it to the outside world or other local machines, or
perhaps even gatewaying it into other mail systems. The following example configuration,
Example 2–3, illustrates doing just this. The local host is HOSTA.EXAMPLE.COM
and two other local machines, HOSTB.EXAMPLE.COM and HOSTC.EXAMPLE.COM,
are recognized. Mail for either of those two machines is sent via a tcp_local channel
(SMTP over TCP/IP) to those hosts. All other mail not for HOSTA, HOSTB, or
HOSTC is sent via another SMTP over TCP/IP channel, named tcp_gateway, to the host
MAILHUB.EXAMPLE.COM. A ‘‘match-all’’ rule is used to direct all mail not for HOSTA,
HOSTB, or HOSTC to that channel. (The match-all rule is described in Section 2.2.4.3.)
The daemon keyword is used with the tcp_gateway channel; the usage of this keyword
with SMTP over TCP/IP channels is discussed in Section 2.3.4.81. It tells the channel to
route messages queued to it through the host MAILHUB.EXAMPLE.COM.

Example 2–3 Routing Messages to a Central Machine

!
! Rewrite rules for the local host/cluster
!
HOSTA $U@HOSTA.EXAMPLE.COM
HOSTA.EXAMPLE.COM $U@HOSTA.EXAMPLE.COM
!
! Rewrite rules for some internal systems
!
HOSTB.EXAMPLE.COM $U%HOSTB.EXAMPLE.COM@TCP-DAEMON
HOSTC.EXAMPLE.COM $U%HOSTC.EXAMPLE.COM@TCP-DAEMON
!
! Use a match all rule to route everything
! else to the MAILHUB.EXAMPLE.COM
!
. $U%$H@MAILHUB.EXAMPLE.COM$A

Example 2–3 Cont’d on next page

2–113

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Some example configuration files

Example 2–3 (Cont.) Routing Messages to a Central Machine

l
HOSTA.EXAMPLE.COM

tcp_local smtp single_sys mx
TCP-DAEMON

tcp_gateway smtp mx daemon router
MAILHUB.EXAMPLE.COM

2.4.3 Basic configuration for a system on the Internet

The configuration file shown in Example 2–4 is a minimal version of the sort of
configuration typical for a system that communicates directly with the Internet via
TCP/IP. The system’s name in this example is assumed to be sample.com.

Example 2–4 Sample Configuration File

! pmdf.cnf - PMDF configuration file for sample.com.
!
! Rewrite rules for the local host/cluster
!
sample $U@sample.com
sample.com $U@sample.com
!
! Rewrite rules for the Internet
!
! Ascension Island
.AC $U%$H$D@TCP-DAEMON
. [text

. removed for

. brevity]

! Zimbabwe
.ZW $U%$H$D@TCP-DAEMON
!
! BITNET (not properly an Internet domain)
!
.BITNET $U@$H$D@interbit.cren.net@TCP-DAEMON
!
! Rewrite rules for TCP/IP domain literals
!
[1.2.3.4] $U@sample.com
[] $U%[$L]@TCP-DAEMON

2–114

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Some example configuration files

l nox_env_to
sample.com

tcp_local single_sys smtp mx
TCP-DAEMON

This configuration file is quite simple. Messages to the local system (whose name is
‘‘sample.com’’) are sent to the local channel. Any other message whose address contains
a recognizable top-level domain specification is routed through the SMTP over TCP/IP
channel, tcp_local, to the Internet. Any other address is treated as being illegal.

2.4.4 Handling systems on a local DECnet (OpenVMS)

The following example configuration file shows how to set up a configuration that
provides access to a number of OpenVMS systems accessible via DECnet but not
themselves running PMDF. Although these remote machines are not running PMDF
they can, nevertheless, participate fully in the network. The only disadvantage to not
running PMDF on all the remote systems is that the remote systems cannot send mail
to the gateway unless the gateway system is up. The converse is not true; messages will
be queued on the gateway until they can be delivered to the remote systems.

The domain name of the gateway system is MILAN.EXAMPLE.COM. Its DECnet
name is MILAN. The names of the remote systems are TUSCANY.EXAMPLE.COM
(DECnet name TUSCAN), CMCVAX.EXAMPLE.COM (CMCVAX), ECHMC.EXAMPLE.COM
(ECHMC), MEDCHEM.EXAMPLE.COM (MEDCHM). MEDCHEM.EXAMPLE.COM is
also known under the alias MEDCHM.EXAMPLE.COM. Shortform aliases equivalent to
the DECnet node names are also provided. Note that the DECnet node names are not
necessarily the same as the first part of the domain names.

Simple rewrite rules are used to map the names of the systems and any aliases or
shortform names into the proper canonical domain names. This insures that the proper
domain-style addresses appear in all message headers.

Channel table rewriting is then used to map the domain names back onto the proper
DECnet node names. Channel rewriting is only applied to envelope To: addresses and
hence only affects the addresses that need to be converted to DECnet node name format;
all other addresses are left unchanged.

Without further ado, then, the requisite configuration is exhibited in Example 2–5
below.

Example 2–5 Configuring a Gateway for a DECnet Network

MILAN.EXAMPLE.COM $U@MILAN.EXAMPLE.COM
MILAN $U@MILAN.EXAMPLE.COM

Example 2–5 Cont’d on next page

2–115

The Configuration File: Domain Rewrite Rules & the Channel/Host Table
Some example configuration files

Example 2–5 (Cont.) Configuring a Gateway for a DECnet Network

!
TUSCANY.EXAMPLE.COM $U@TUSCANY.EXAMPLE.COM
TUSCANY $U@TUSCANY.EXAMPLE.COM
TUSCAN $U@TUSCANY.EXAMPLE.COM
CMCVAX.EXAMPLE.COM $U%CMCVAX.EXAMPLE.COM@DECNET-MAIL
CMCVAX $U%CMCVAX.EXAMPLE.COM@DECNET-MAIL
ECHMC.EXAMPLE.COM $U%ECHMC.EXAMPLE.COM@DECNET-MAIL
ECHMC $U%ECHMC.EXAMPLE.COM@DECNET-MAIL
MEDCHM.EXAMPLE.COM $U@MEDCHEM.EXAMPLE.COM
MEDCHM $U@MEDCHEM.EXAMPLE.COM
MEDCHEM.EXAMPLE.COM $U@MEDCHEM.EXAMPLE.COM
MEDCHEM $U@MEDCHEM.EXAMPLE.COM

l
MILAN.EXAMPLE.COM

d 733
DECNET-MAIL
TUSCANY.EXAMPLE.COM TUSCAN
MEDCHEM.EXAMPLE.COM MEDCHM

2–116

3 Aliases, Forwarding, and Centralized Naming

PMDF provides a facility to support mailbox names associated with the local
system that do not necessarily correspond to actual users. Such ‘‘aliases’’ are useful for
constructing mailing lists, forwarding mail, and synonyms for usernames. A second set
of related facilities provide support for ‘‘centralized naming’’ whereby you establish, for
instance, mail addresses of the form first.last@example.com for all of your users.
There are several advantages to such centralized naming systems: the addresses are
simple, they provide added security in that they make no reference to internal account
or system names, and, because they lack reference to account and system names, are
more stable.

The concept of aliases, mailing lists, and mail forwarding are very closely
related in PMDF as they are all effected through the use of PMDF’s alias facilities,
described below. Perhaps less obvious, is the relationship between mail forwarding
and centralized naming schemes. To support centralized naming, a mailer must not
only be able to convert internal addresses such as jd001@vax1.example.com into
John.Doe@example.com in all outbound mail, but also be able to recognize incoming
mail for John.Doe@example.com and forward it to jd001@vax1.example.com. Hence
the relationship between centralized naming and mail forwarding and, in turn, aliases.

Finally, as will be pointed out in Sections 3.5 and 3.6, there are several different
ways to effect forwarding and centralized naming. The different approaches vary in
efficiency and which approach you can use will be largely dictated by the regularity
of the mapping between internal and centralized addresses: the more susceptible to
pattern matching a mapping is, the more efficiently it may be implemented.

3.1 Aliases and Forwarding

Each time an address that matches the local channel1 or any channel marked
with the aliaslocal keyword is encountered by PMDF’s message submission logic,
the mailbox (e.g., username) specified in the address is compared against each entry
in the alias database or alias file. If a match occurs the alias address is replaced by
the translation value or values specified by the alias. An alias can translate into any
combination and number of additional aliases or real addresses. The real addresses
need not themselves be associated with the local channel and thus aliases can be used
to forward mail to remote systems. If the translation value of an alias is a file name
preceded by a <, then the contents of that file are used as a mailing list (e.g., distribution
list) and the message is sent to each recipient listed in the file; if the translation value
of an alias is an LDAP URL preceded by a < that returns one or multiple addresses,
then the message is sent to each address returned. This process is occasionally referred
to as ‘‘mail exploding’’. See Section 4.1 for directions on how to set up a mailing list.

1 The local channel is the l (lowercase L) channel on OpenVMS or UNIX, or the msgstore channel on NT.

3–1

Aliases, Forwarding, and Centralized Naming
Aliases and Forwarding

Aliases only apply to addresses mapped to the local channel1 or to channels marked
with the aliaslocal keyword; furthermore, note that since the only addresses truly
considered to match a channel are Envelope To: addresses, aliases can only apply to
Envelope To: addresses. PMDF performs alias translation and expansion only after
address parsing is completed. The translation values produced by an alias are treated
as completely new addresses and are reprocessed from scratch.2

Aliases as well as mailing lists, a special case of an alias, may be tested with
the command PMDF TEST/REWRITE/CHECK_EXPANSIONS (OpenVMS) or pmdf test -
rewrite -check_expansions (UNIX or NT). See Chapter 29 and Chapter 30 for details.
In regards to mailing lists, see the final part of Section 4.1.3.

3.1.1 The Alias File

Aliases are kept in a central file, usually aliases in the PMDF table directory.3

Each time a PMDF program begins running, this file is read and loaded into an internal
hash table. This overhead may be avoided by compiling your PMDF configuration
in which case the contents of the alias file will be incorporated into the compiled
configuration. The disadvantage to this, however, is that it means that the configuration
must be recompiled and reinstalled whenever a change is made to the alias file or
an include file used by the alias file. See Section 8.1 for details on compiling your
configuration.

The alias file and any files it references should be world readable. Failure to allow
world read access will lead to erratic behavior.

3.1.1.1 Format

The alias file format is as follows:

alias1: a1,a2,...,am

alias2: b1,b2,...,bm

. .

. .

. .

aliasn: n1,n2,...,nm

. .

. .

. .

where aliasn is translated into the addresses n1, n2, n3, ..., nm. The aliases alias1,
alias2, ..., aliasn are limited to 60 characters each. Each address a1, a2, etc., may
contain up to 252 characters. There is no limit to the number of addresses that can be

2 Sometimes it is desirable to have more than one set of aliases associated with the local channel or host. This situation
is addressed by the directory channel discussed in Section 3.2.

3 On OpenVMS systems, the PMDF alias file is pointed at by the PMDF_ALIAS_FILE logical; by default, it is the
file PMDF_TABLE:aliases.. On UNIX systems, it is the file specified with the PMDF_ALIAS_FILE option in
the PMDF tailor file; by default, the file /pmdf/table/aliases. On NT systems, it is the file specified with the
PMDF_ALIAS_FILE NT Registry entry, usually pointing to a file such as C:\pmdf\table\aliases.

3–2

Aliases, Forwarding, and Centralized Naming
Aliases and Forwarding

specified for an alias (that is, appear in a single list on the right hand side of an alias
definition), although excessive numbers of addresses may eat up excessive amounts of
memory. A physical line of the alias file may contain at most 1024 characters. To specify
a list of addresses containing more than that number of characters, the line must be
continued onto multiple physical lines. Long lines may be continued by ending them
with a backslash, \. A backslash must follow a comma. There can be no white space
preceding the colon separating the alias name from its translation value.

Alternatively, rather than having an address or comma separated list of addresses as
the translation of an alias, an alias may translate to a mailing list reference as discussed
in Section 3.1.1.3 below, or to an LDAP URL reference as discussed in Section 3.1.1.4
below.

Example 3–1, Example 3–2, and Example 3–3 show typical, minimal alias files on
OpenVMS, UNIX, and NT, respectively.

An alias should normally be a valid RFC 8224 local-part; however, the ALIAS_DOMAINS
PMDF option (see Section 7.3.1) controls the format of aliases and use of a non-default
value for ALIAS_DOMAINS can specify that aliases consist of the entire address, including
the domain name, rather than just the local-part. In particular, aliases must follow RFC
822 syntax rules for local-parts (or addresses, when ALIAS_DOMAINS has selected use of
addresses); this means that for proper functioning, with the exception of periods which
are specifically allowed in local-parts without quoting, the presence of any other RFC
822 ‘‘specials’’ character or a space in an alias will require that the alias be enclosed in
double quotes, e.g.,

"John Doe": doe@example.com
john.doe: doe@example.com

OpenVMS postmasters in particular should note also that RFC 822 addresses do not
contain VMS MAIL’s IN% wrapper; nor are DECnet style addresses (e.g., NODE::USER)
valid RFC 822 addresses.

Comment lines are allowed in the alias file. A comment line is any line that begins
with an exclamation point, !, in column one.

Duplicate aliases (identical left hand sides) are not allowed in the alias file.

Note that certain sorts of errors in the format of aliases will not result in an
immediate error message, but rather mail to the bad addresses will just be silently
dropped; use PMDF TEST/REWRITE (OpenVMS) or pmdf test -rewrite (UNIX or NT)
to check aliases, and see Section 3.1.5 for further general information on alias files.

4 A copy of RFC 822, a basic reference for any e-mail administrator, is shipped with the PMDF distribution; it should be
present as PMDF_DOC:[rfc]rfc822.txt on OpenVMS, or as /pmdf/doc/rfc/rfc822.txt on UNIX, or
as C:\pmdf\doc\rfc\rfc822.txt on NT, unless your site chose not to install it.

3–3

Aliases, Forwarding, and Centralized Naming
Aliases and Forwarding

3.1.1.2 Including Other Files in the Alias File

Other files can be included in the primary alias file. A line of the form

<file-spec

directs PMDF to read the file file-spec. The file specification must be a complete file
path specification and the file must have the same protections as the primary alias file;
i.e., it must be world readable.

The contents of the included file are inserted into the alias file at its point of reference.
The same effect can be achieved by replacing the reference to the included file with the
file’s actual contents. The format of include files is identical to that of the primary alias
file itself. Indeed, include files may themselves include other files. Up to three levels of
include file nesting are allowed.

If a compiled configuration is being used, then the configuration must be recompiled
and reinstalled before changes to any included file (or the primary alias file itself) will
take effect. Note that this is not the case for mailing list files described in the next
section.

3.1.1.3 Mailing Lists

A mailing list address is a special address created through the alias file or alias
database. A mailing list address alias with associated mailing list file file-spec or
LDAP URL ldap-url is specified in the alias file with an entry of, respectively, the
general form

alias: <file-spec, optional-parameters

or

alias: <ldap-url, optional-parameters

Similar definitions may also be made in the alias database, (though of course omitting
the colon, as just white space separates the alias from its definition in the alias database).

Mailing lists have many options associated with them; for a full discussion of mailing
list aliases, see Chapter 4.

3.1.1.4 LDAP URLs as Alias Values

An alias value (that is, the right hand side of an alias definition) may be specified
either as an address directly, e.g., user@domain, or indirectly referencing an LDAP
URL—specifically, an LDAP search URL—that returns one or more addresses. The
format is

alias: <"ldap-url"

Note: The LDAP URL must be specified in double-quotes if it contains any commas.

Note that this is just a special case of use of an LDAP URL for a mailing list definition,
as mentioned in Section 3.1.1.3: the LDAP query URL may be such as to return only one

3–4

Aliases, Forwarding, and Centralized Naming
Aliases and Forwarding

address rather than multiple addresses, and all of the optional mailing list parameters
are omitted.

Standard LDAP URLs are used, with the host and port omitted; the host and port
are instead specified with LDAP_HOST and LDAP_PORT PMDF options (see Section 7.3.2
for further discussion of these options). That is, the LDAP URL should be specified as

ldap:///dn[?attributes[?scope?filter]]

where the square bracket characters [and] shown above indicate optional portions of
the URL. The dn is required and is a distinguished name specifying the search base.
The optional attributes, scope, and filter portions of the URL further refine what
information to return. For an alias, the desired attributes to specify returning would
typically be the mail attribute (or some similar attribute). The scope may be any of
base (the default), one, or sub. And the desired filter might be to request the return of
any object that has the ‘‘objectclass=person’’ and ‘‘cn=John Smith’’ attribute-value pairs.

For instance, at a site example.com with an LDAP server running on port 389 of
the system ldap.example.com, the PMDF option file might have the lines

LDAP_HOST=ldap.example.com
LDAP_PORT=389

set, and an alias file line might appear as:

John.Smith: <"ldap:///o=example.com?mail?sub?(objectClass=person,cn=John Smith)"

Note that port number 389 is the default. Also note that LDAP URL is specified in
double-quotes since it contains commas.

Substitution sequences, as shown in Table 3–1, are available for use in constructing
the LDAP URL.

Table 3–1 LDAP URL Substitution Sequences

Substitution

sequence Description

$$ Literal $ character

$~account Home directory of user account

$A Address

$D Domain name

$H Host name (first portion of fully qualified domain name)

$L Username minus any special leading characters such as ~ or _

$S Subaddress

$U Username

3–5

Aliases, Forwarding, and Centralized Naming
Aliases and Forwarding

3.1.1.5 Standard Aliases

Certain aliases should be provided in every alias file. If no account with the
name postmaster exists on the system, an alias for postmaster should be provided that
translates into the username of the person responsible for maintaining PMDF (often,
but not always, the SYSTEM account on OpenVMS systems or the root account on UNIX
systems). It is also a good idea to provide an alias for postmast, since some mail systems
cannot handle mailbox names with more than eight characters. In addition, on OpenVMS
systems, an alias for root should also be provided since many UNIX systems send mail
to root when attempting to contact the local system manager. A minimal alias file for an
OpenVMS system would then be as shown in Example 3–1.

Example 3–1 A Minimal Alias File, aliases., on OpenVMS

postmast: postmaster
postmaster: system
root: system

A minimal alias file for a UNIX system would be as shown in Example 3–2.

Example 3–2 A Minimal Alias File, aliases, on UNIX

postmast: postmaster
postmaster: root

A minimal alias file for an NT system would be as shown in Example 3–3.

Example 3–3 A Minimal Alias File, aliases, on NT

postmast: postmaster
postmaster: Administrator

3.1.1.6 Subaddresses in Aliases

As background on the purpose of subaddresses, the L, popstore, and msgstore
channels interpret a + character in an address specially: in an address of the
form name+subaddress@localhost or name+subaddress@popstoredomain PMDF
considers the portion of the mailbox after the plus character a subaddress. The L and
popstore channels treat a subaddress as additional cosmetic information and, assuming
no aliases or other address transformations apply, actually delivers to the account
name without regard to the subaddress. The msgstore channels treat a subaddress as
specifying a folder to which to deliver; that is, msgstore channels deliver to the name

account’s subaddress folder.

When looking up an alias, the use of subaddresses introduces an extra factor. The
PMDF local channel, that is, the L channel on OpenVMS or UNIX or the first msgstore
channel on NT, or any channel marked with the aliaslocal keyword, will try looking
up aliases.

3–6

Aliases, Forwarding, and Centralized Naming
Aliases and Forwarding

Subaddresses in aliases are handled as follows. By default, (that is, with the
subaddressrelaxed keyword explicitly or implicitly on the channel doing the alias
lookup), PMDF first checks for an alias entry including the subaddress; if no such entry
is found, PMDF next checks for an entry with an asterisk, *, in place of the subaddress.
Finally, if there is no prior match, PMDF checks for an entry without any subaddress.
For instance, alias entries

adam+privileged: system
adam: bob+*
carl+special: system
carl+*: david+*
carl: eric

cause PMDF to translate adam+privileged to system and adam to bob, while
adam+talklist, adam+general, etc., will be translated to bob+talklist, bob+general,
etc. carl+special will be translated to system and carl to eric, while carl+talklist,
carl+general, etc., will be translated to david+talklist, david+general, etc.

This handling of subaddresses during alias lookups is configurable; see Section 2.3.4.71.

3.1.1.7 Alias List Recursion

Aliases may reference other aliases, both in the alias database as well as in the alias
file. PMDF limits such references to a maximum of ten levels to avoid possible infinite
recursion loops.

If an alias references itself, either directly or indirectly, an alias loop results. The
loop eventually terminates due to the level restriction, but the termination conditions
may not produce consistent results in all cases.

The special case of an alias directly referencing itself is allowed and specially
handled. For example, the alias file definition

alias-name: alias-name, other-address-1, other-address-2, ...

will expand alias-name into itself plus other-address-1, other-address-2,
and so on. alias-name may in turn get expanded in some other way (the system or
personal alias database) but it will not be expanded further by the alias file.

3.1.2 The Alias Database

PMDF always reads in all the aliases from the alias file and stores them internally
in a hash table. This scheme is adequate for most applications where fewer than 500 or
so aliases are needed.

However, some systems may want to establish aliases for a majority of their users.
For example, a user smith whose real name is Cathy Smith, might want to have
Cathy_Smith, Cathy.Smith, and Smith as aliases for her account. Setting up such
aliases for each member of a large user population may lead to an excessively large
alias file that consumes far too much memory.

3–7

Aliases, Forwarding, and Centralized Naming
Aliases and Forwarding

PMDF solves this problem by providing an optional facility for storing large numbers
of aliases in an ancillary indexed data file. Whenever the alias file is used PMDF also
checks for the existence of the PMDF alias database.5 If the alias database exists, it
is opened and consulted once for each address on the local channel. The alias database
must be world readable.

By default, the mere presence of the alias database is enough to activate this
database facility in PMDF; it is not necessary to rebuild or reconfigure PMDF to include it.
Use of the alias database can be disabled with the PMDF option USE_ALIAS_DATABASE.
This option can also be used to tell PMDF that the alias database is required, and if it
isn’t there, to return a temporary error (by specifying USE_ALIAS_DATABASE=2).

3.1.2.1 Using Both the Alias File and the Alias Database

The alias database is a supplement to the alias file; it is not a replacement for the
alias file. If the alias database exists, PMDF uses both the alias file and the alias
database.

The alias database is consulted once each time the regular alias file is consulted.
However, the alias database is checked before the regular alias file is used. In effect,
the database acts as a sort of address rewriter that is invoked prior to using the regular
alias file. Although duplicate entries are allowed in the database, it is undefined as to
which of the duplicate entries will be returned when the database is accessed. Database
entries are case insensitive.

The fact that limited recursion is allowed in the alias file makes the complete
translation mechanism rather complex. For example, suppose that the alias file contains
the entries,

A: C,J
B: D,K
D: G,H
E: I

and the alias database contains the entries,

D: E
C: B
F: D

Now suppose the address A@local-host was presented to PMDF. First A would be
looked up in the database — not found. Then A would be translated into C and J by the
alias file. C would in turn be translated into B by the database while J would remain
unchanged. B would then be translated into D and K by the alias file. D would then be
translated into E by the database while K would remain unchanged. Finally, E would be
translated into I by the alias file, and since I does not appear in the database the process
would terminate. The final result is that A translates into the list I, J, K.

5 On OpenVMS systems, the logical PMDF_ALIAS_DATABASE points to the alias database, which by default
is the file PMDF_TABLE:aliases.dat. On UNIX systems, the PMDF_ALIAS_DATABASE option in the
PMDF tailor file points to the the alias database; by default, the file /pmdf/table/aliasesdb.*. On
NT systems, the PMDF_ALIAS_DATABASE NT Registry entry points to the alias database, usually the file
C:\pmdf\table\aliasesdb.*.

3–8

Aliases, Forwarding, and Centralized Naming
Aliases and Forwarding

The easiest way to look at the translation process is to simply follow it step-by-step
as illustrated below.

Initial Data Data Data Data
look up base File base File base File base Result
------- ---- ---- ---- ---- ---- ---- ---- ------

A A C B D E I I I
K K . . K

J J J
B B D E I I . . I

K K K
C B D E I I . . I

K K K
D E I I I
E E I I I
F D G G G

H H H

Such complex use of the aliases facility is not encouraged and is presented for
illustrative purposes only.

Note: In particular, for most normal goals any particular entry should appear in either the
alias file or the alias database, not in both!

3.1.2.2 Format of the Alias Database

The alias database has the same format as the optional domain database file
described in Section 2.2.9. This means that aliases in the database are limited to 32
characters in length and can translate to a string containing at most 80 characters unless
a ‘‘long’’ database is used. See Section 2.2.9 for information on long databases.

Length restrictions aside, alias database entries are handled in the same way as
alias file entries and can be used in exactly the same way. Both multiple addresses
and mailing list references are allowed. Both the alias file and alias database must
be world readable.

The PMDF alias database is created from an input text file (not from the alias
file—from a different input text file) using the PMDF CRDB (OpenVMS) or pmdf crdb
(UNIX or NT) utility, described in Chapter 29 and Chapter 30. The format of entries in
the input file for CRDB or crdb should be:

alias1 alias-value1

alias2 alias-value2

. .

. .

. .

Note that unlike the aliases file, the entries in the alias database source text file
normally do not use a colon to separate the alias from its value.

On OpenVMS systems, the alias database should be generated with the commands:

3–9

Aliases, Forwarding, and Centralized Naming
Aliases and Forwarding

$ PMDF CRDB input-file-spec PMDF_TABLE:aliases.tmp
$ RENAME PMDF_TABLE:aliases.tmp PMDF_ALIAS_DATABASE

An intermediate, temporary database is used so as to minimize any window of time during
which the database file is in an undefined state as it is being generated or regenerated.

On UNIX systems, use the commands

pmdf crdb input-file-spec PMDF_ALIAS_DATABASE

On NT systems, use the commands

C:\ pmdf crdb input-file-spec PMDF_ALIAS_DATABASE

Alternatively, a source file using colons, (that is, of the same format as the alias file),
e.g.,

alias1: alias-value1

alias2: alias-value2

. .

. .

. .

may be used providing that the /STRIP_COLONS (OpenVMS) or -strip_colons (UNIX
or NT) qualifier is used when building the database; e.g., on OpenVMS:

$ PMDF CRDB/STRIP_COLONS input-file-spec PMDF_TABLE:aliases.tmp
$ RENAME PMDF_TABLE:aliases.tmp PMDF_ALIAS_DATABASE

or on UNIX:

pmdf crdb -strip_colons input-file-spec PMDF_ALIAS_DATABASE

or on NT:

C:\ pmdf crdb -strip_colons input-file-spec PMDF_ALIAS_DATABASE

3.1.3 Personal Alias Databases (OpenVMS and UNIX)

Both the alias file and alias database are system-wide entities. They do not
provide a mechanism that lets individual users set up personal aliases for single
addresses or distribution lists.

On OpenVMS and UNIX platforms, PMDF provides an additional database facility
which is user-accessible; each user can create and use his or her own database of
addresses and lists. On OpenVMS, personal alias databases are consulted during both
initial message submission by the owner of the personal alias database and delivery of
messages to that user by the L channel; on UNIX, personal alias databases are consulted
only during initial message submission by the owner of the personal alias database.

3–10

Aliases, Forwarding, and Centralized Naming
Aliases and Forwarding

On OpenVMS, this database is located via the PMDF_PERSONAL_ALIAS_DATABASE
logical name; this logical usually translates to SYS$LOGIN:aliases.dat. The use
of SYS$LOGIN makes this database a per-user entity. Note that redefining the
PMDF_PERSONAL_ALIAS_DATABASE logical on a per-user or per-group basis is not
supported. In particular, PMDF can and does make use of personal aliases during local
delivery. In doing this PMDF cannot have knowledge of any user-level changes to this
logical name. As such PMDF simply expects to find personal alias databases in user
login directories.

On UNIX, this database is located via the PMDF_PERSONAL_ALIAS_DATABASE tailor
file option; this option is usually set to ~/aliasesdb. The use of the ~ initial path makes
this database a per-user entity.

The format of the personal alias database is upwards compatible with the format
of the system alias database. Some additional flag bits are defined which have specific
meaning for user aliases. These flags are described fully in the documentation for the
PMDF DB (OpenVMS) or pmdf db (UNIX) utility; see the appropriate edition of the PMDF
User’s Guide.

Use of personal alias databases can be disabled with the USE_PERSONAL_
ALIASES PMDF option.

Personal alias databases are consulted before the system alias database is consulted.

Personal alias databases are created and managed on OpenVMS using the ALIAS
commands in PMDF MAIL or the PMDF DB utility, or on UNIX using the pmdf db utility.
For details on creating and using personal alias databases, see the appropriate edition
of the PMDF User’s Guide.

3.1.4 Logical Name Table Aliases (OpenVMS)

The OpenVMS version of PMDF also has the ability to use aliases stored in logical
name tables. This facility differs from similar facilities in VMS MAIL in that a separate
set of logical name tables can be used and multi-valued logical names can be used to
make an alias translate to multiple addresses. The name tables must be protected such
that they are world readable.

This facility is enabled by setting the NAME_TABLE_NAME PMDF option to the name
of the logical name table which contains the aliases. This name can be a logical name in
the process or system directory that in turn specifies the table; this can be a search list
if multiple tables are to be searched. If the NAME_TABLE_NAME option is not explicitly
set, logical names are not used as a source of alias information.

Logical name table aliases are consulted after the personal alias database but before
the system alias file or database.

As an example, suppose that a table named ALIAS_TABLE is to be used. The fol-
lowing DCL commands create the table and store two aliases in it. The aliases are
gripes and help which translate, respectively, to system@example.com and consul-
tants@example.com.

3–11

Aliases, Forwarding, and Centralized Naming
Aliases and Forwarding

$ CREATE/NAME_TABLE/PROTECTION=(S:RWED,O:RWED,G:RE,W:RE) ALIAS_TABLE
$ DEFINE/TABLE=ALIAS_TABLE GRIPES "system@example.com"
$ DEFINE/TABLE=ALIAS_TABLE HELP "consultants@example.com"

The NAME_TABLE_NAME option in the PMDF option file, PMDF_OPTION_FILE, should
then be set to

NAME_TABLE_NAME=ALIAS_TABLE

Mail then sent to in%gripes (in%"gripes@example.com") or in%help
(in%"help@example.com") from within VMS MAIL will then be sent, respectively, to
system@example.com or consultants@example.com. Similarly, mail received from
the network which is addressed to gripes@example.com or help@example.com will
be properly handled.

3.1.5 Restrictions on Aliases

There are some important restrictions that should be observed when using aliases:

1. The addresses in the alias file or database should be formatted as pure RFC 822
addresses, e.g., user@host. Do not try to use DECnet or other routing conventions
that you can get away with in the rewrite rules table. Not only may such things fail,
they may not produce a visible error (see the next item). Source routes are the only
exotica that are permitted.

2. Certain types of bogus addresses in a list alias will not generate a ‘‘bad address’’
return message. Specifically, if, for a given address in the list, the system name is
illegal or there is a syntax error in the address specification, then the copy of the
message to that address may be silently dropped and no one will be the wiser. If the
mailing list file associated with an alias does not exist, then mail to the list itself
may be dropped. However, errors in the mailbox part of the address (e.g., ‘‘no such
user’’) will be handled correctly.

System managers should take care to test each list they set up to insure that all the
recipient addresses are correct. The PMDF TEST/REWRITE/CHECK_EXPANSIONS
(OpenVMS) or pmdf test -rewrite -check_expansions (UNIX or NT) utility
provide a way to do this. Lists should be checked periodically and also whenever
extensive changes are made.

3. PMDF reads the alias file only as each program using PMDF initializes itself. This
means that if you are using a permanently resident server (such as the multi-
threaded SMTP server or PMDF-LAN Lotus Notes channels) you should be sure
to stop and restart the server each time the alias file or any of the files it includes is
changed. (The PMDF RESTART (OpenVMS) or pmdf restart (UNIX and NT) utility
provide a simple way to restart any such PMDF detached processes.) On the other
hand, mailing list files referenced by the alias file are read and reread as needed, so
servers need not be restarted when one of these files is changed.

4. The alias file is always read into memory in its entirety each time PMDF is used.
All files included by the primary alias file are also loaded into memory. (Mailing
list files are not loaded into memory.) The use of a huge alias file can eat up lots of
memory. Liberal use of the mailing list reference operator, <, to reference long lists
is recommended. Long lists of addresses coded directly into the alias file or any files

3–12

Aliases, Forwarding, and Centralized Naming
Aliases and Forwarding

it includes should be avoided. Use of an alias database for large numbers of aliases
is also recommended.

5. Be sure to observe the length restrictions associated with aliases. Aliases in the alias
file can contain up to 60 characters. Aliases in the database can contain up to 32
characters in a short database, up to 80 characters in a long database, and up to
252 charactes in a huge database. In the alias file, the addresses to which aliases
translate can contain up to 252 characters. In the case of a short database, the
translation value can contain up to 80 characters; in the case of a long database the
translation value can contain up to 256 characters; in the case of a huge database the
translation value can contain up to 1024 characters. In some cases failing to observe
length restrictions may lead to addresses being silently dropped from lists.

3.2 Directory Channels

The directory channel is similar in function to the alias file. The alias file is only
used when the addressee is on the local system, or matches a channel marked with the
aliaslocal channel keyword, while the directory channel provides aliasing for other
systems or pseudo domains which your system manages. The directory channel also
provides facilities for looking up aliases using mechanisms other than a PMDF database.

The directory channel is used to set up pseudo domains — systems which exist
only in a logical sense. A directory channel is used to transform the mailbox names
associated with such a pseudo domain into mailboxes on real systems. Such a scheme
can be used to standardize naming conventions for groups of disparate systems.

The directory channel includes special handling for subaddresses, akin to that for
the local channel; see Section 2.3.4.71 and Section 3.1.1.6.

The transformations applied by the directory channel can be derived from a number
of different information sources:

• Databases can be used, with a separate one for each pseudo domain. These databases
are in the same format as PMDF’s domain and alias databases and are created with
the PMDF CRDB (OpenVMS) or pmdf crdb (UNIX or NT) utility.

• LDAP and X.500 look ups can be used, with a separate set of defaults for each pseudo
domain.

• A database providing the names of ALL-IN-1 distribution list files can be used.
Addresses are then tranformed into the contents of the corresponding ALL-IN-1
distribution list (OpenVMS only).

• CCSO/qi/ph look ups can be used, with a separate set of defaults for each pseudo
domain.

Note that with appropriate use of the aliaslocal channel keyword, the alias
database can be used to implement functionality similar to the directory channel’s
crdb database type of lookup on arbitrary pseudo domains. Similarly $(text) rewrite

3–13

Aliases, Forwarding, and Centralized Naming
Directory Channels

rule substitutions and the PMDF general database6 can be used to implement similar
functionality. Such alias database or general database use avoids the overhead of
additional channel processing incurred by the directory channel. But although such
schemes may be more efficient than using a directory channel, the directory
channel’s crdb lookups do have some additional features such as support of duplicate
usernames, support of alternate postmaster return addresses, and better diagnostic
messages when illegal addresses are used.

3.2.1 Directory Channel Definition and Rewrite Rules

The first step in installing the directory channel is to add the channel entry
towards the bottom of your PMDF configuration file. The entry should be of the form:

directory
DIRECTORY-DAEMON

Rewrite rules of the form

domain $U%domain@DIRECTORY-DAEMON

should also be added towards the top of your PMDF configuration file to map each pseudo
domain domain supported onto the directory channel. For example, if example.com and
a1.example.com are pseudo domains to be handled by the directory channel, rewrite
rules of the form:

example.com $U%example.com@DIRECTORY-DAEMON
a1.example.com $U%a1.example.com@DIRECTORY-DAEMON

should be used.

More than one pseudo domain can be accommodated by the same directory channel;
in general, there is no need to have separate channels for each domain. Simply add
additional rewrite rules for any new pseudo domains and configure them as the following
sections describe.

Alternatively, separate directory_* channels can be used for separate pseudo
domains if desired, a typical reason being to allow specifying distinct postmaster return
addresses for the different pseudo domains. In this case, define separate channels, each
with their own rewrite rules, and use the returnaddress keyword on each channel to
specity the desired postmaster address. For instance, channel definitions could be:

directory returnaddress postmaster@example.com
DIRECTORY-DAEMON

directory_a1 returnaddress postmaster@a1.example.com
DIRECTORY-A1

with rewrite rules

6 On OpenVMS, the logical PMDF_GENERAL_DATABASE points to the general database, which is generally named
PMDF_TABLE:general.dat; on UNIX, the option PMDF_GENERAL_DATABASE in the PMDF tailor file points
to the general database, usually /pmdf/table/generaldb.*; on NT, the PMDF_GENERAL_DATABASE
Registry entry points to the general database, usually C:\pmdf\table\generaldb.*.

3–14

Aliases, Forwarding, and Centralized Naming
Directory Channels

example.com $U%example.com@DIRECTORY-DAEMON
a1.example.com $U%a1.example.com@DIRECTORY-A1

3.2.2 Directory Channel Inline Mode

Normally, look ups using the directory channel are queued to the directory channel
itself and processed by the directory channel master program. When the channel keyword
inline is specified on the directory channel, then look ups are done immediately,
similar to the way look ups are done to the alias database. For example:

directory inline
DIRECTORY-DAEMON

Using inline directory lookups can help performance. Only local databases and LDAP
look ups are supported in inline mode. Other directory sources are always queued to the
directory channel.

A related option in the directory channel option file (see below) is INLINE_AMBIGUOUS,
as described below:

INLINE_AMBIGUOUS (0 or 1)

If INLINE_AMBIGUOUS is set to 0, then the request is requeued to the directory channel
so that the list of possible valid usernames can be sent back in a non-delivery notification.
By default, ambiguous usernames are rejected immediately (INLINE_AMBIGUOUS=1).

The setting of INLINE_AMBIGUOUS does not affect the processing of invalid user-
names or single valid usernames while in inline mode. Invalid names are rejected im-
mediately, and valid single names are accepted immediately regardless.

3.2.3 Directory Channel Option File

The next step is to create a directory channel option file. The name of the option file
is x_option where x is the name of the channel, hence usually directory_option,
and the file should be placed in the PMDF table directory.

At a minimum, this file is used to tell the directory channel how to handle each
pseudo domain it services. There should be at least one entry for each pseudo domain.
These entries have the form:

domain=service-type

Here domain is the name of the pseudo domain in question and service-type is an
integer indicating what sort of database is used to translate addresses in the pseudo
domain:

3–15

Aliases, Forwarding, and Centralized Naming
Directory Channels

Service type Description

0 Use a PMDF CRDB or pmdf crdb database

2 Use an LDAP or X.500 directory database

3 Perform ALL-IN-1 list expansion operations

4 Use a CCSO/qi/ph directory database

The default for a pseudo domain if no option is specified is normally 0, a look up in a
database created with PMDF CRDB (OpenVMS) or pmdf crdb (UNIX or NT). However, the
option DEFAULT_METHOD may be used to change this default, as described below:

DEFAULT_METHOD (integer)

DEFAULT_METHOD may be set to any of the supported service types to select that service
type as the default for pseudo domains which do not have an explicit setting. The default
is DEFAULT_METHOD=0, meaning to use PMDF CRDB or pmdf crdb databases.

Continuing the previous example from Section 3.2.1, a sample directory channel
option file might read:

example.com=0
a1.example.com=3

Note that additional transformation-specific options may be required in the directory
channel option file. These options are described in the sections below.

3.2.4 Handling Multiple Pseudo Domains

A directory channel can service multiple pseudo domains. To apply a channel op-
tion to only a specific pseudo domain, prefix the option name with the name of the pseudo
domain name followed by an underscore, _. See, for instance, the second example op-
tion file presented in Section 3.2.7.4. In that example, the LDAP_SERVERS option applies
globally while the options prefixed with example.com_ apply only to the example.com
pseudo domain. Likewise, the options prefixed with sales.example.com_ apply only
to the sales.example.com pseudo domain.

An option setting prefixed with the pseudo domain name always takes precedence
over a global option setting for the associated pseudo domain. For instance, in the option
file

SIZELIMIT=20
a1.example.com_SIZELIMIT=10

the pseudo domain a1.example.com will use the value 10 for the SIZELIMIT option.
All other domains will use the value 20 for that same option.

3–16

Aliases, Forwarding, and Centralized Naming
Directory Channels

3.2.5 CRDB or crdb Database Operations

When using a PMDF database, (i.e., a database created with PMDF’s CRDB or
crdb utility), on OpenVMS and UNIX you must create a directory to hold the database
files. (On NT, the appropriate directory is created during the PMDF installation.) On
OpenVMS systems, use the command:

$ CREATE/DIR pmdf_root:[directories]/OWNER=[SYSTEM]

On UNIX systems, use the commands

mkdir -mu=rwx,go= /pmdf/directories
chown pmdf /pmdf/directories

A separate database is needed for each pseudo domain. On OpenVMS, the database
consists of a single database file whose name is derived from the pseudo domain
name by replacing every period in the domain name with a dollar sign and append-
ing ‘‘.dat’’; on UNIX and NT, the database consists of several files whose name is
the actual pseudo domain name with the appropriate file type appended. For ex-
ample, if the pseudo domain name is x.y, the corresponding database file would
be pmdf_root:[directories]x$y.dat on an OpenVMS system. On a UNIX sys-
tem, the database would be represented by the files /pmdf/directories/x.y.idx,
/pmdf/directories/x.y.lck, and /pmdf/directories/x.y.pbl. On an NT sys-
tem, the database would be represented by the files C:\pmdf\directories\x.y.idx,
C:\pmdf\directories\x.y.lck, and C:\pmdf\directories\x.y.pbl.

3.2.5.1 Database Entries

When using a PMDF database for a pseudo domain, each entry in the database
consists of a mailbox name in the pseudo domain and the corresponding ‘‘real’’ address.

For example, suppose the pseudo domain is example.com, the one mailbox within
this pseudo domain is john.doe, and the real address corresponding to this mailbox is
ariel@example.com. To set up this domain, start with a text file containing the line:

john.doe ariel@example.com

Then, on OpenVMS systems, assuming that the input text file is named example$com.txt,
process this file with the PMDF CRDB utility as follows:

$ PMDF CRDB/DUPLICATES example$com.txt -
$_ pmdf_root:[directories]example$com.dat_tmp
$ RENAME pmdf_root:[directories]example$com.dat_tmp -
$_ pmdf_root:[directories]example$com.dat

An intermediate, temporary database is used so as to minimize any window of time during
which the database file is in an undefined state as it is being generated or regenerated.

On UNIX systems, assuming that the input text file is named example.com.txt, use
the commands

3–17

Aliases, Forwarding, and Centralized Naming
Directory Channels

pmdf crdb -duplicates example.com.txt /pmdf/directories/example.com

On NT systems, assuming that the input text file is named example.com.txt, use the
commands

C:\> pmdf crdb -duplicates example.com.text \pmdf\directories\example.com

3.2.5.2 Default Entries

Special entries can be used to implement default redirections. Such entries are only
used when no other entry matches the mailbox. The primary default rule has a single
asterisk, *, as the mailbox:

* *@host.domain

In this case the message is redirected to host.domain using the original mailbox
specification. An entry of the form

* newmailbox@host.domain

does the same thing except that newmailbox is used as the mailbox.

Two other special entries are available. The first is the special mailbox *%*, which
matches any mailbox specification containing a percent sign. This is useful for matching
and handling percent-routed addresses. The second special entry is *!*, which matches
any mailbox containing an exclamation point. Both of these rules will be tried before the
* rule is attempted.

3.2.5.3 Wildcard Entries

Other than the default entries listed above, the only other type of wildcard entries
supported are ones where the subaddress is wildcarded. For example:

mailbox+* newmailbox@host.domain

No other wildcarding of entries is supported.

3.2.5.4 Subaddresses

The way that directory channel lookups handles subaddresses is as follows. First,
the entire address including the subaddress is looked up. Second, the subaddress is
replaced with the wildcard (asterisk) and that is looked up. And finally the subaddress
is stripped altogether and just the mailbox is looked up.

For example, if you have an address such as "jones+spam", the complete list of
variants looked up in a directory channel database is as follows:

jones+spam
jones+*
jones

3–18

Aliases, Forwarding, and Centralized Naming
Directory Channels

*

3.2.5.5 Duplicate Entries

Databases created with CRDB or crdb can contain duplicate mailboxes (if the
/DUPLICATES or -duplicates qualifier is used). The directory channel uses this
capability to provide an informative way of handling ambiguous addresses. An error
message is returned when the mailbox extracted from an address matches a set of
duplicate entries. The addresses associated with the duplicates should be unambiguous
entries associated with the pseudo domain. This list of possible addresses is returned as
part of the error message so the recipient of the error can select an appropriate address
to use in future messages.

For example, suppose that the example.com pseudo domain is set up to contain
entries for first names, last names, and dotted combinations of first names and last
names. There are bound to be ambiguities in such a scheme for some common names.
Specifically, suppose that entries for John Smith, Jane Smith, and John Jones are
implemented. The entries for the names John and Smith would then be ambiguous.
Therefore, instead of listing an actual address for these entries it would be more
appropriate to list the unambiguous equivalents in the directory. This leads to a set
of entries that might look like this:

john.smith smithjo@vaxa.example.com
john john.smith@example.com
smith john.smith@example.com
jane.smith smithja@vaxa.example.com
jane smithja@vaxa.example.com
smith jane.smith@example.com
john.jones jj0u887@vaxb.example.com
john john.jones@example.com
jones jj0u887@vaxb.example.com

A message sent to smith@example.com would then produce an error message, but
the message would recommend that either john.smith@example.com or
jane.smith@example.com be used to disambiguate the address.

Note that PMDF contains no automatic facility to produce such databases; detection
and resolution of ambiguities must be done by user-supplied programs.

3.2.6 ALL-IN-1 List Expansion Operations (OpenVMS)

When performing ALL-IN-1 list expansions, you must create a directory to hold the
database files. Use the command:

$ CREATE/DIR pmdf_root:[directories]/OWNER=[SYSTEM]

A separate database is needed for each pseudo domain. The database names are derived
by replacing every period in the domain name with a dollar sign and appending ‘‘.dat’’.
For example, if the pseudo domain name is x.y, the corresponding database file would be
pmdf_root:[directories]x$y.dat on an OpenVMS system.

3–19

Aliases, Forwarding, and Centralized Naming
Directory Channels

The entries in the directory databases consist of a mailbox name in the pseudo
domain and the name of the file containing the ALL-IN-1 list to be equated with that
mailbox name. The directory channel looks up the mailbox name in the database,
opens the associated list file, reads it and sends copies of the message to all of the
addresses on the list. The database file itself should be created with the PMDF CRDB
utility.

An example list file is shown in Example 3–4. Assume that the file specification for
that file is d1:[lists]cats.dis and that this list is to be associated with the address
cats-list@a1.example.com. Then the input test file to PMDF CRDB would appear as shown
in Example 3–5. To process that input, use the commands:

$ PMDF CRDB a1$example$com.txt -
$_ pmdf_root:[directories]a1$example$com.dat_tmp
$ RENAME pmdf_root:[directories]a1$example$com.dat_tmp -
$_ pmdf_root:[directories]a1$example$com.dat

An intermediate, temporary database is used so as to minimize any window of time during
which the database file is in an undefined state as it is being generated or regenerated.

Example 3–4 ALL-IN-1 Distribution List File d1:[lists]cats.dis

Carl Donner (DONNER-CD-O7814)
Bob Smith (SU=Smith@GI=Bob@C=US@A=ATTMAIL@PRI=USDOE@O=HQ@X400@VENUS)
JUDY PUBLIC (SU=PUBLIC@GI=JUDY@C=US@A=ATTMAIL@PRI=USDOE@O=HQA@X400@VRY)
Remote Address (smj%sips.state.nc.us@PMDF@VENUS)
Remote Addressee (Joe%EXAMPLE.COM@PMDF@VENUS)

Example 3–5 Text File a1$example$com.txt Used to Create ALL-IN-1 List Expansion Database

cats-list d1:[lists]cats.dis

3.2.7 LDAP or X.500 Directory Operations

When a service type of 2 is specified, the directory channel performs LDAP queries,
querying an LDAP directory or X.500 DSA via an LDAP server, to look up mailbox names.
The types of queries can be controlled with an LDAP filter file (e.g., exact matches, fuzzy
matches, searches down the entire directory, etc.). In the event of an ambiguous match,
the possible choices can be returned along with the original message to the message
originator.

The directory channel queries an LDAP directory or X.500 DSA via either a local
or remote LDAP server. TCP/IP is used to communicate with the LDAP server; on
OpenVMS systems UCX emulation is required of your TCP/IP package.

3–20

Aliases, Forwarding, and Centralized Naming
Directory Channels

3.2.7.1 Required Options

When performing LDAP or X.500 directory look ups, the directory channel needs to
know the LDAP server to which to connect and the point in the LDAP/X.500 hierarchy
to which to bind and from which to base searches. Additional options, described in
Section 3.2.7.3, may be used to control other aspects of the LDAP querying process.

3.2.7.1.1 LDAP_SERVERS Option

The LDAP_SERVERS option must be used to specify the LDAP server and port to
which to connect. The format of this option is

LDAP_SERVERS=host1+port1|host2+port2|host3+port3...

At least one host must be specified. Hosts may be specified either by name, or by IP
address. The port number may optionally be specified. Additional hosts and ports may
optionally be specified; when multiple hosts are specified, they will be tried in left to
right order.

The default port, if none is specified, is port 389—the standard port for LDAP servers.
For example,

LDAP_SERVERS=ldap.example.com

or

LDAP_SERVERS=192.135.12.1

or

LDAP_SERVERS=ldap.example.com+389

3.2.7.1.2 LDAP_BASE Option

The LDAP_BASE option must also be specified in the option file. This option specifies
the distinguished name of the location in the LDAP or X.500 directory information tree
from which to base searches. The LDAP_BASE is specified in LDAP DN syntax according
to RFC 1485; e.g.,

LDAP_BASE=o=Example Computing,st=California,c=US

3.2.7.2 TLS Options

PMDF has the ability to access LDAP servers using TLS authentication. Note that
in order to use this feature, your LDAP server must be set up to do TLS. To configure
the directory channel to use TLS, you must specify the following options.

3–21

Aliases, Forwarding, and Centralized Naming
Directory Channels

TLS_MODE (1 or 2)

The TLS_MODE option is used to specify whether to use TLS. A value of 1 tells the directory
channel to try to use TLS, but continue without it if TLS is not available. A value of 2
tells the directory channel to require TLS. The default is to not use TLS.

CACERTFILE (file name)

You may need to have the Certificate Authority (CA) certificate to be used by LDAP
on your PMDF system. If so, by default the CA certificate should be placed in the file
pmdf_table:ldap-cacert.pem. Use the CACERTFILE option if you wish to specify a
different file name, for example if you need to use different CA certificates for different
domains.

An example directory channel option file which includes TLS options is as follows:

example.org=2
example.org_ldap_servers=ldap.example.org
example.org_ldap_base=dc=ldap.example,dc=com
example.org_tls_mode=2
example.org_cacertfile=/pmdf/table/example-cacert.pem

3.2.7.3 Additional Options

Additional channel options are shown below:

BIND (0 or 1)

The BIND option is used to specify whether an LDAP bind operation is sent to the LDAP
directory before a search operation is attempted. Unlike LDAPv2, LDAPv3 does not
require a bind operation to take place. The default value is 1, meaning that a bind
operation will be performed. If authentication is not required on the LDAPv3 server,
performance can be improved by disabling bind operations by setting BIND=0. The BIND
option is ignored when using the connectionless protocol over a UDP transport.

DISPLAY_MAIL_TYPE (attribute type)

When multiple matches to a search are found, the directory channel returns choices
to the sender. The directory channel returns the distinguished name and e-mail
address. By default, the e-mail address which the channel would use to deliver
the mail (as specified by the MAIL_TYPE option) is displayed in such returns. The
DISPLAY_MAIL_TYPE option can be used to specify an alternate mail address attribute
to be returned. In particular, when redefining MAIL_TYPE to something other than the
mail attribute, you may still want the directory channel to display the mail attribute
when returning address choices to users. For example:

DISPLAY_MAIL_TYPE=mail

DISPLAY_MAIL_TYPE defaults to the value of MAIL_TYPE if not specified.

DN

The DN option is used to specify the LDAP or X.500 Distinguished Name used to bind
to the LDAP directory or X.500 DSA — the DN is essentially the username to use to login
to the server — although when using the directory channel over UDP transport, the
DN is used by the LDAP server only for logging purposes and it is not passed to an X.500
DSA (if an X.500 DSA is backing up the LDAP server) during the bind. The DN is
specified in LDAP DN syntax according to RFC 1485; e.g.,

DN=cn=Directory Channel,o=Example Computing,st=California,c=US

3–22

Aliases, Forwarding, and Centralized Naming
Directory Channels

FILTERFILE

The directory channel processes each name by performing a regular expression match
on the pmdf_dirchan group of rules in the ldapfilter.conf file in the PMDF
table directory, i.e., the file PMDF_TABLE:ldapfilter.conf (OpenVMS) or the file
/pmdf/table/ldapfilter.conf (UNIX) or normally (the exact drive may be different
depending upon installation) the file C:\pmdf\table\ldapfilter.conf (NT). Do not
modify the supplied ldapfilter.conf file, as your changes will be lost when you
upgrade or reinstall PMDF. Instead, to use a different file, specify the FILTERFILE
option with the filename of the desired file. For example, on OpenVMS

FILTERFILE=PMDF_TABLE:example_ldapfilter.txt

or on UNIX

FILTERFILE=/pmdf/table/example_ldapfilter.txt

or on NT

FILTERFILE=C:\pmdf\table\example_ldapfilter.txt

The default ldapfilter.conf file contains a rich set of default rules which provide for
exact and approximate matching of names and initials. However, if you want to make
changes, see the comments in the file and Section 3.2.7.6 for details. The filters specified
in this file are as defined in RFC 2254 (which obsoletes RFCs 1960 and 1558, the earlier
descriptions of such filters).

FILTERTAG

The directory channel processes each name by performing a regular expression match
on a group of rules found in the file specified by the FILTERFILE option. The FILTERTAG
option is used to specify the group of rules to use. For example:

FILTERTAG=example_dirchan

The default is pmdf_dirchan. Do not modify the supplied ldapfilter.conf file, as
your changes will be lost when you upgrade or reinstall PMDF. Instead, to use a different
file, see the FILTERFILE option.

HINT_TYPE

When multiple matches to a search are found, the directory channel returns choices
to the sender. In addition to the distinguished name and e-mail address, the directory
channel can optionally return one more attribute from the entries to help the sender
choose between them. For example,

HINT_TYPE=title

While any attribute can be specified, some suggestions are title, uid, telephoneNumber,
or description.

LDAP_BASE (distinguished name)

The LDAP_BASE specifies the distinguished name of the location in the LDAP or X.500
directory information tree from which to base searches. See Section 3.2.7.1.2 for details.

LDAP_SERVERS (domain name or IP address)

The LDAP_SERVERS option is used to specify the IP address or domain name of the LDAP
server to use. See Section 3.2.7.1.1 for details.

3–23

Aliases, Forwarding, and Centralized Naming
Directory Channels

MAIL_TYPE (attribute type)

When the directory channel searches the LDAP directory or X.500 directory for a name,
it requests that an e-mail address be returned. The MAIL_TYPE option is used to specify
the attribute type requested from the directory. MAIL_TYPE must match the attribute
type returned by your LDAP server; (while servers may accept aliases, they return one
specific attribute type with the value). The default is MAIL_TYPE=mail. You may need
to specify this option if you are using a non-PMDF LDAP server or you are using an
LDAP or X.500 schema other than COSINE/Internet schema (RFC 1274). You will want
to specify this option if you use a different directory attribute, such as pMDFMailAddress
to specify a local delivery address. For example:

MAIL_TYPE=pMDFMailAddress

PASSWORD (string)

The PASSWORD option is used to specify a simple authentication credential to be sent with
the DN (that specified by the DN option) when binding to the LDAP directory or X.500
DSA. This can be used to allow the directory channel more access to the directory than
is allowed for anonymous users. For example:

PASSWORD=secret

If a PASSWORD is specified, a DN must also be specified, although a DN may be specified
without a PASSWORD. The PASSWORD value is ignored when using the connectionless
protocol over a UDP transport.

SIZELIMIT (integer >= -1)

When the directory channel performs a search for an e-mail address, many entries
may match the search criteria. If this is the case, the original mail message is returned
to the sender along with a list of possible address choices. The SIZELIMIT option controls
the maximum number of choices which are returned; e.g.,

SIZELIMIT=10

The default value for SIZELIMIT is 50. You may want to make this limit smaller to
reduce ‘‘trawling’’ of your database. Note that this limit may be superseded by a smaller
limit which has been imposed by the manager of the LDAP directory or X.500 DSA.

Specify a value of -1 to allow any number of matches to be returned; specify a value of 0
to suppress the return of possible matches. Note that this is a change of behavior from
versions of PMDF prior to V5.1-9 when a value of 0 allowed any number of matches to
be returned.

TRANSPORT (TCP or UDP)

The TRANSPORT option is used to specify whether to use connection oriented LDAP protocol
over TCP or connectionless oriented protocol over UDP. For example:

TRANSPORT=UDP

The default is TRANSPORT=TCP. When running over UDP, the slightly different CLDAP
protocol is actually used. CLDAP is more suited for lower overhead over reliable network
connections. Use LDAP over TCP if you may have packet loss to your server.

When using UDP, all information must fit in a single UDP datagram. If you use UDP, it
is suggested that you specify a small SIZELIMIT option, e.g., 10 or less. If the response
from the LDAP server exceeds the size of a UDP datagram, you will not get any choices
returned for ambiguous names.

3–24

Aliases, Forwarding, and Centralized Naming
Directory Channels

TRIM (integer)

When multiple matches to a search are found, the directory channel returns to the
sender a list of the matches. TRIM affects the level of detail provided in the returned
information. If TRIM is a positive integer, it specifies how many elements to trim off of
each matching distinguished name starting with the most general element and working
down to the most specific element. A TRIM value of zero specifies that no trimming is
to be done. A negative value specifies the number of elements to leave. For example, if
the returned match is Joe User, Accounting, Example Computing, California,
US then the following table shows the results of various TRIM values.

TRIM Result

4 Joe User

3 Joe User, Accounting

0 Joe User, Accounting, Example Computing, California, US

-1 Joe User

-2 Joe User, Accounting

The default value of TRIM is -1 so that only the most specific element is returned. A
common choice for TRIM is the number of elements in your LDAP_BASE distinguished
name.

3.2.7.4 Example Option Files

An example option file is shown below.

example.com=2
LDAP_SERVERS=ldap.example.com
LDAP_BASE=o=Example Computing,st=California,c=US

The example.com=2 option specifies that LDAP directory or X.500 directory operations
are to be done for the example.com pseudo domain. The LDAP server ldap.example.com
is used; queries will begin at the position o=Example Computing, st=California, c=US in
the LDAP or X.500 directory hierarchy.

Shown below is an example of an option file for a directory channel which services
two different pseudo domains.

example.com=2
sales.example.com=2
LDAP_SERVERS=ldap.example.com
example.com_LDAP_BASE=o=Example Computing, st=California, c=US
example.com_TRIM=3
example.com_HINT_TYPE=title
sales.example.com_LDAP_BASE=ou=Sales, o=Example Computing, st=California, c=US
sales.example.com_TRIM=4
sales.example.com_HINT_TYPE=telephoneNumber

3–25

Aliases, Forwarding, and Centralized Naming
Directory Channels

3.2.7.5 Default Mailbox Syntax Supported

The ldapfilter.conf file provided with PMDF supports a number of syntaxes.
For the exact syntaxes supported, see the file itself, located in the PMDF table directory,
and Section 3.2.7.6. Here are a few examples of syntaxes that are likely to match ‘‘Joe
Wilson’’:

"Joe Wilson"@example.com
Joe_Wilson@example.com
Joe.Wilson@example.com
J.Wilson@example.com
Wilson@example.com
Wilsen@example.com
title=President@example.com

The last example is valid if the value of ‘‘title’’ in Joe Wilson’s entry is ‘‘President’’.

3.2.7.6 LDAP Filter Configuration File, ldapfilter.conf

The file ldapfilter.conf contains information used by LDAP clients, e.g., the
PMDF directory channel doing an LDAP or X.500 directory lookup. Blank lines and
lines that start with the hash character, #, are treated as comments and ignored. The
configuration information consists of lines that contain one to five tokens. Tokens are
separated by white space. Double quotes can be used to include white space inside a
token, e.g., "text moretext".

3.2.7.6.1 Filter Sets

The file consists of a sequence of one or more filter sets. A filter set begins with a
line containing a single token called a tag. The tag is used by the client to select the
filter set.

3.2.7.6.2 Filter Lists

A filter set consists of a sequence of one or more filter lists. The first line in a
filter list must contain four or five tokens: The value pattern, the delimiter list, a filter
template, a match description, and an optional search scope.

1. The value pattern is a regular expression that is matched against the search value
passed by the client to select the filter list to be used.

2. The delimiter list is a list of characters (in the form of a single string) that are used
to break the search value into distinct words.

3. The filter template is used to construct an LDAP filter. Standard LDAP filter format
as specified in RFC 1960 (which obsoletes RFC 1558) is used.

The filter template is similar in concept to a C language printf style format string.
Everything is taken literally except for the character sequences:

3–26

Aliases, Forwarding, and Centralized Naming
Directory Channels

Sequence Description

%v Substitute with entire search string value

%v$ Substitute with last word of search string value

%vn Substitute word n; n is a single digit 1-9

%vm-n Substitute words m through n

%vm- Substitute word m through the last word

Words are numbered from 1 to 9, left to right.

4. The match description is used as information to describe the sort of LDAP search
that took place. It should correctly complete both of the following phrases:

One "match description" match was found for...

and

Three "match description" matches were found for....

5. The search scope is optional, and should be one of base onelevel, or subtree. If
search scope is not provided, the default is subtree.

The remaining lines of the filter list should each contain two or three tokens: A
filter template, a match description and an optional search scope. The value pattern and
delimiter list tokens are the same as previously specified.

3.2.7.6.3 Example LDAP Filter Configuration File

Example 3–6 shows a sample LDAP filter configuration file containing one filter set,
pmdf_lookup, which contains three filter lists.

Example 3–6 Sample LDAP Filter File

ldap filter file
#
pmdf_lookup
"[0-9][0-9-]*" " " "(telephoneNumber=*%v)" "phone number"

"@" " " "(mail=%v)" "email address"
"(mail=%v*)" "start of email address"

"=" " " "%v" "arbitrary filter"

3.2.8 CCSO/ph/qi Directory Operations

When a service type of 4 is specified, the directory channel will query a CCSO directory
to look up mailbox names.7 The types of queries are controlled with the QUERY_METHOD_
channel options. In the event of an ambiguous match, the possible choices will be
returned along with the original message to the message originator.

7 Interactive OpenVMS users may use the pop-up CCSO addressing form to query CCSO directories from within VMS
MAIL, PMDF MAIL, or DECwindows MAIL. See <REFERENCE>(HEAD1_CCSOFORMS) for details.

3–27

Aliases, Forwarding, and Centralized Naming
Directory Channels

The directory channel queries a CCSO directory via a TCP/IP connection to either a
local or remote qi server.

VMS
Alternatively, on OpenVMS platforms if you are using Bruce Tanner’s qi implemen-

tation, then the channel can use a connectionless protocol to communicate directly with
the CCSO database.8 See <REFERENCE>(HEAD4_CCSOFORMCONNECTIONLESS)
for details on configuring this. When using TCP/IP on OpenVMS, UCX emulation is
required of your TCP/IP package.

When a single, unambiguous match is found for a pseudo domain mailbox name,
the message is redirected to the address associated with the matching entry’s e-mail
field. The name of the e-mail field is given by the EMAIL_NAME_FIELD option. The email
field should therefore be an internal address to which to forward the message. If the
matching entry has no email field, then the message is returned to the originator with a
note stating so.

If more than one match is found, then the message is returned to the originator
along with a list of up to fifty possible matches. The SIZELIMIT option may be used
to place a different limit on the number of matches returned. The list of matches will
show, for each match, the values of the name and department fields. Different fields
can be selected with the NAME_FIELD_NAME and DEPARTMENT_FIELD_NAME options. In
addition, an email address to use for the match will be generated from the mail field and
mail domain information generated by a qi siteinfo command. If the qi server does
not return mailfield information then the address associated with the field named email
will be returned. A different field can be selected with the PUBLIC_EMAIL_FIELD_NAME
option.

As an example, suppose that a qi server’s response to a siteinfo command is:

-200:0:version:VMS qi V2.12
-200:1:administrator:directory_manager@example.com
-200:2:mailfield:alias
-200:3:maildomain:example.com
200:Ok.

In this case the mail field name is ‘‘alias’’ and the mail domain name is example.com.
For an entry with an alias field value of Bob.Smith, the generated email address would
then be Bob.Smith@example.com.

If no matches are found then the message is returned with a note stating so.

8 Copies of Bruce Tanner’s implementation of qi and CCSO may be obtained from ftp.cerritos.edu; log in as
anonymous and look in the vmsnet subdirectory for a qi*.zip file. Each qi*.zip file is a complete distribution
distinguished by its version number.

3–28

Aliases, Forwarding, and Centralized Naming
Directory Channels

3.2.8.1 Required Options

Channel options must be used to specify the qi server with which to communicate
and to control aspects of the CCSO queries performed. To this end, the QI_SERVERS
and one or more QUERY_METHOD_ options must be specified in the directory channel’s
option file.

3.2.8.1.1 QI_SERVERS Option

The QI_SERVERS option specifies the TCP/IP host names of the qi servers to use.
This is a required option; if it is not specified, the directory channel will not perform look
ups.

The option’s value takes the form, (note the use of the vertical bar character, |),

host1+port1|host2+port2|host3+port3...

where host1, host2, host3, ... and port1, port2, port3, ... are, respectively, the
TCP/IP hosts and ports to which to connect. The hosts will be attempted in the order
listed, from left to right, until a connection is successfully made to one of the hosts or the
list is exhausted. IP addresses may be used in place of host names. If the port number
is omitted then the standard qi port, port 105, will be used. When omitting the port
number, also omit the +.

VMS
To bypass TCP/IP and communicate directly with an OpenVMS CCSO database,

specify the hostname <local-access> (that exact string, including angle brackets).
This is only supported on OpenVMS platforms and only in conjunction with Bruce Tan-
ner’s qi implementation for OpenVMS. See <REFERENCE>(HEAD4_CCSOFORMCONNECTIONLES
for further details.

For instance, to use the hosts ph.example.com and admin.example.com as qi
servers, you can specify

QI_SERVERS=ph.example.com|admin.example.com+5000

Since the port number was omitted for ph.example.com, port 105 will be used. Port
5000 is used when connecting to admin.example.com.

3.2.8.1.2 QI_QUERY_METHOD_ Options

When attempting to locate an entry in a CCSO directory, the directory channel
will generate up to ten qi query commands. The query commands will be tried one after
the other until either a match (or matches) is found or the list of possible query methods
is exhausted. The forms of the query commands are controlled by ‘‘query methods’’
specified in the option file. Since both the format of mailbox names and the behavior
of qi query commands vary so widely, no default query methods are supplied by the
directory channel. A set of one or more query methods must be specified.

3–29

Aliases, Forwarding, and Centralized Naming
Directory Channels

Each query command will be of the form

query name-value return ...

where name-value is derived from the mailbox and pseudo domain name, and the ...
portion of the command signifies the names of various CCSO directory fields which will
be requested.

The method by which the name-value string is derived is controlled with the
QUERY_METHOD_0, QUERY_METHOD_1, ..., QUERY_METHOD_9 options:

QUERY_METHOD_n=qi-command|name-format|translate-from-chars|translate-to-char

Here qi-command is an optional qi server command to issue prior to the query command
(e.g., set exact=on). name-format is a formatting string describing how to format the
pseudo domain address for inclusion in the query command. translate-from-chars
is an optional field specifying one or more characters which, when they appear in the
mailbox name, will be translated to the optional character translate-to-char.

Table 3–2 describes control sequences which may be used in the name-format

formatting string. Substitutions are done after any character translations have been
performed.

Table 3–2 Query Method Formatting String Control Sequences

Sequence Usage

%s Substitute in the value of the mailbox name

%*s Same as %s but with wild card, *, suffixes added to each blank delimited part of the
field value; if LEADING_WILDCARDS=1 is specified in the option file then wild card
prefixes will also be added

%h Substitute in the pseudo domain name

To specify a literal %, | , or \, specify \%, \ | , or \\.

As an example, let us assume that the address John.Doe@example.com is to be
looked up in a CCSO database. In this case, the mailbox name is John.Doe and the pseudo
domain name is example.com. Under this assumption, Table 3–3 shows sample query
methods and the query commands that would result. In the table, the qi-command

portion of the query method has been omitted.

Table 3–3 Example Formatting Strings

Formatting string Resulting query command

|%s query John.Doe return ...

|name=%s|_.| query name=John Doe return ...

|%*s query John.Doe* return ...

name=%*s|_.| query name=John* Doe* return ...

In the second and fourth examples a space character follows the final |. Thus, the
characters . and _ are changed to a space wherever they appear in a mailbox name.

3–30

Aliases, Forwarding, and Centralized Naming
Directory Channels

To continue the above example, suppose that the three query methods shown below
are specified:

QUERY_METHOD_0=set approx=off soundex=off|email=%s@%h
QUERY_METHOD_1=set approx=on|%s|_.|
QUERY_METHOD_2=|%*s|_.|

With these settings, a look up for John.Doe@example.com would result in the following
sequence of qi commands.

set approx=off soundex=off
query email=John.Doe@example.com return ...
set approx=on
query John Doe return ...
query John* Doe* return ...

These commands will be tried one after the other until either a match is returned or the
list of methods exhausted.

3.2.8.2 Additional Options

Additional options are listed below:

DEPARTMENT_FIELD_NAME (text string <= 251 characters long)

Specify the name of the CCSO directory’s department field. This should be the name of
the field giving the department name or other useful identifying information associated
with a directory entry. This field is only used in the event of multiple matches. If not
specified, the field name ‘‘department’’ is assumed. See Section 3.2.8 for futher details.

EMAIL_FIELD_NAME (text string <= 251 characters long)

Specify the name of the CCSO directory’s email field. This should be the field with the
‘‘internal’’ email address to use for forwarding mail to an individual in the database. If
not specified, the field name ‘‘email’’ is assumed. See Section 3.2.8 for further details.

LEADING_WILDCARDS (0 or 1)

Specifies whether or not leading wild cards, *, are put into strings formatted with the
%*s control sequence. By default, LEADING_WILDCARDS=0, a leading wild card is not
put into such strings since that reduces the efficiency of the look up process with some
qi servers. Specify a value of 1 to have leading wild cards added.

NAME_FIELD_NAME (text string <= 251 characters long)

Specify the name of the CCSO directory’s name field. This should be the name of the
field giving the name associated with a directory entry. This name is only used when
rejecting a message either because the matching database entry lacks an email field or
in the event of multiple matches. If not specified, the field name ‘‘name’’ is assumed. See
Section 3.2.8 for further details.

NO_MATCH_HOST (text string <= 252 characters long)

Specify a host to redirect messages to when no matches can be found in the CCSO directory.
For instance, if

NO_MATCH_HOST=hub.example.com

and no match can be found for the user Nerble, then the message will be forwarded on
to Nerble@hub.example.com rather than return the message as undeliverable.

3–31

Aliases, Forwarding, and Centralized Naming
Directory Channels

PUBLIC_EMAIL_FIELD_NAME (text string <= 251 characters long)

Specify the name of the CCSO directory’s public e-mail field. This should be the field
with the ‘‘public’’ e-mail address to use as a hint when the address to be looked up is
ambiguous. This field will only be used when information from the siteinfo command
cannot be used. See Section 3.2.8 for further details. If not specified, the field name
‘‘email’’ is used.

QI_SERVERS (text string <= 252 characters long)

Specify the qi servers to contact. See Section 3.2.8.1.1 for details.

QUERY_METHOD_0, ..., QUERY_METHOD_9 (text string <= 252 characters long)

Specify the query methods to use. See Section 3.2.8.1.2 for details.

RECV_TIMEOUT (integer >= 0 seconds)

This option controls how long the directory channel will wait for a response from the
qi server before giving up (timing out). By default, the channel will wait 120 seconds
(RECV_TIMEOUT=120). To disable the timeout mechanism, specify RECV_TIMEOUT=0.
This will cause the channel to wait indefinitely.

When a timeout occurs, the channel closes its connection to the qi server. When necessary,
the channel will attempt to reestablish a connection with a qi server.

SITEINFO (0 or 1)

In the case of an ambiguous address, the message is bounced back to the sender with
hints as to how to resolve the ambiguity. These hints will include the e-mail addresses
of the possible matches. When SITEINFO=1, the default, the e-mail addresses will, if
possible, be constructed from information gathered with the siteinfo command. When
SITEINFO=0, the addresses will be the value, if any, of the email address field for each
possible match. The PUBLIC_EMAIL_FIELD_NAME option specifies the name of the field
to use for this purpose.

SIZELIMIT (integer >= -1)

When the directory channel performs a search for an e-mail address, many entries may
match the search criteria. If this is the case, the mail is returned to the sender along
with a list of possible choices. The SIZELIMIT option controls the maximum number of
choices which are returned; e.g.,

SIZELIMIT=10

The default value for SIZELIMIT is 50. You may want to make this limit smaller to
reduce ‘‘trawling’’ of your database. Note that this limit may be superseded by a smaller
limit which has been imposed by the manager of the qi server or CCSO directory.

Specify a value of -1 to allow any number of matches to be returned; specify a value of
0 to suppress the return of possible matches.

STRIP_QUOTES (0 or 1)

Controls whether or not outer quotes are stripped from the local part of an address to be
looked up. By default, STRIP_QUOTES=1, quotes are stripped. Thus, for the address

"Bob Smith"@example.com

query commands of the form

3–32

Aliases, Forwarding, and Centralized Naming
Directory Channels

query Bob Smith return ...

would be generated. Were STRIP_QUOTES=0 specified, then the queries would be of the
form

query "Bob Smith" return ...

which may not be appropriate.

3.2.8.3 Example Option Files

An example option file is shown below.

example.com=4
QI_SERVERS=qi.example.com|vaxc.example.com+5200
QUERY_METHOD_0=set exact=on|alias=%s
QUERY_METHOD_1=set approx=on|%*s

The example.com=4 option specifies that CCSO directory operations are to be done for
the example.com pseudo domain. The QI server qi.example.com is used. If it is not
reachable, then the qi server on port 5200 of vaxc.example.com will be used.

Shown below is an example of an option file for a directory channel which services
two different pseudo domains.

stateu.edu=4
students.stateu.edu=4
QI_SERVERS=ph.athena.stateu.edu
stateu.edu_SIZELIMIT=10
students.stateu.edu_SIZELIMIT=15
students.stateu.edu_DEPARTMENT_FIELD_NAME=school
QUERY_METHOD_0=set exact=on|alias=%s
QUERY_METHOD_1=set approx=on|%*s

3.3 Address Reversal

Header From: addresses and other backwards-pointing addresses and forwards-
pointing header addresses receive one additional processing step. This additional
processing step is referred to as address reversal, and can be performed via LDAP lookups,
and/or via use of a reverse database and/or REVERSE mapping. Section 3.3.1 discusses use
of LDAP lookups for address reversal; Section 3.3.2 discusses use of the reverse database
and REVERSE mapping. An LDAP lookup, if any, is performed prior to checking the reverse
database and/or REVERSE mapping.

3–33

Aliases, Forwarding, and Centralized Naming
Address Reversal

3.3.1 LDAP Lookups for Address Reversal

If the PMDF options LDAP_HOST, LDAP_PORT, and REVERSE_URL are specified in the
PMDF option file (see Section 7.3.2), then each address passing through PMDF will be
checked against the LDAP server specified by the LDAP_HOST and LDAP_PORT options,
using the LDAP query specified by the REVERSE_URL option. If the LDAP query succeeds
and returns a value, that value will be substituted in place of the original address.

For the REVERSE_URL option, standard LDAP URLs must be used, except with the
host and port omitted, as the host and port are instead specified via the LDAP_HOST and
LDAP_PORT PMDF options. That is, the LDAP URL should be specified as

ldap:///dn[?attributes[?scope?filter]]

where the square bracket characters [and] shown above indicate optional portions of
the URL. The dn is required and is a distinguished name specifying the search base; it
might correspond to the organization’s top level in the Directory Information Tree, or it
might correspond to a subset of the organization, based upon the domain name in the
original address. The optional attributes, scope, and filter portions of the URL
further refine what information to return. For address reversal, the desired attributes

to specify returning would typically be the mail attribute (or some similar attribute). The
scope may be any of base (the default), one, or sub. And the desired filter would
typically be based upon the mailbox (local portion) of the incoming addresses. Certain
substitution sequences may be used to construct the LDAP search URL; see Table 3–1
for details.

3.3.2 The Address Reversal Database and REVERSE Mapping

Header From: addresses and other backwards-pointing addresses and forwards-
pointing header addresses receive one additional processing step.9 PMDF uses each
address specification with any routing address but less any personal name fields as an
index key to a special database called the address reversal database.

The address reversal database must be world readable and is generally located in
the PMDF table directory.a This database file is built with the PMDF CRDB (OpenVMS)
or pmdf crdb (UNIX and NT) utility.

If the address is found in the database, the corresponding right hand side from the
database is substituted for the address. If the address is not found an attempt is made
to locate a mapping table named REVERSE in the mapping file. No substitution is made
and rewriting terminates normally if the table does not exist or no entries from the table
match.

9 This processing can be restricted to only backwards pointing addresses if the third bit, bit 2, in the PMDF option
USE_REVERSE_DATABASE is cleared; see Section 7.2.

a On OpenVMS systems the database is the file pointed at by the PMDF_REVERSE_DATABASE logical, which by
default points to the file PMDF_TABLE:reverse.dat. On UNIX systems, the database is the file pointed to
by the PMDF Tailor file option PMDF_REVERSE_DATABASE, by default /pmdf/table/reversedb.*. On
NT systems, the database is the file pointed at by the PMDF_REVERSE_DATABASE Registry entry, generally
C:\pmdf\table\reversedb.*.

3–34

Aliases, Forwarding, and Centralized Naming
Address Reversal

Note 1: You do not need to have an address reversal database in order to use a REVERSE mapping.
That is, you can use a REVERSE mapping without having an address reversal database.
And, of course, the reverse is true: you do not need to have a REVERSE mapping to use
an address reversal database.

Note 2: If you have a compiled configuration, then you must recompile and reinstall your
configuration in order for changes to the REVERSE mapping table, (or indeed for any
changes to the PMDF mappings file), to take effect.

If the address matches a mapping entry, the result of the mapping is tested. The resulting
string will replace the address if the entry specifies a $Y; a $N will discard the result of
the mapping. If the mapping entry specifies $D in addition to $Y, the resulting string will
be run through the reversal database once more, and if a match occurs the template from
the database will replace the mapping result (and hence the address). See Table 3–4 for
a description of additional flags available for the REVERSE mapping, and Table 5–2 for a
list of general mapping table substitution sequences and metacharacters.

Table 3–4 REVERSE Mapping Table Flags

Flags Description

$Y Use output as new address

$N Address remains unchanged

$D Run output through the reversal database

$A Add pattern as reverse database entry

$F Add pattern as forward database entry

Flag
comparisons Description

$:B Match only header (body) addresses

$:E Match only envelope addresses

$:F Match only forward pointing addresses

$:R Match only backwards pointing addresses

$:I Match only message-ids

The reverse and noreverse channel keywords, and the PMDF options
USE_REVERSE_DATABASE and REVERSE_ENVELOPE may be used to control the specifics
of when and how address reversal is applied. In particular, address reversal will not
be applied to addresses in messages when the destination channel is marked with the
noreverse keyword. If USE_REVERSE_DATABASE is set to 0, address reversal will not be
used with any channel. The REVERSE_ENVELOPE option controls whether or not address
reversal is applied to envelope From: addresses as well as message header addresses.
See the descriptions of these options and keywords for additional information on their
effects.

The primary use of address reversal is to substitute a generic address (perhaps an
address on a central machine) for addresses on remote, and possibly transitory, systems.
Address reversal is a particularly powerful tool when used in conjunction with aliases or
the directory channel.

3–35

Aliases, Forwarding, and Centralized Naming
Address Reversal

Entries in the address reversal database consist of two e-mail addresses: the address
to match against and the address with which to replace a match. The database is usually
created by preparing a text file and processing it with the PMDF CRDB (OpenVMS) or pmdf
crdb (UNIX or NT) utility.

For example, suppose a site wants to replace all reverse pointing addresses of
the form user@example.com with an address of the form first.last@example.com
where first.last is formed from the first (given) and last (family) names of the owner of
the account USER. This will then cause the outside world to only see addresses of the form
first.last@example.com and never see internal addresses. A text file reverse.txt
containing lines of the form

Note: The exact format needed for reverse database entries is determined by the value of the
option USE_REVERSE_DATABASE in the OPTION.DAT file.

user1@example.com first1.last1@example.com
user2@example.com first2.last2@example.com

. .

. .

. .

should then be set up and converted to an address reversal database with the OpenVMS
commands,

$ PMDF CRDB reverse.txt PMDF_TABLE:reverse.tmp
$ RENAME PMDF_TABLE:reverse.tmp PMDF_REVERSE_DATABASE

An intermediate, temporary database is used so as to minimize any window of time during
which the database file is in an undefined state as it is being generated or regenerated.

or the UNIX commands,

pmdf crdb reverse.txt /pmdf/table/reversedb

As another example, suppose that the internal addresses at example.com are actually
of the form user@host.example.com, but, fortunately, the username space is such that
user@hosta.example.com and user@hostb.example.com specify the same person
for all hosts at example.com. Then, rather than have to enter all possible user and
host combinations in the address reversal database, the following, very simple REVERSE
mapping may be used in conjunction with the address reversal database:

REVERSE

@.example.com $0@example.com$Y$D

This mapping maps addresses of the form user@host.example.com to user@example.com.
The $D flag causes the address reversal database to then be consulted. The address re-
versal database should contain entries of the form shown in the previous example.

Additional examples are given in Sections 3.4 and 3.6.

Normally a REVERSE mapping or reverse database must be constructed manually.
The design and maintenance of such a database is likely to be a very site-specific task.
The database, for the most part, may end up being the inverse of the translations imposed
by aliases on the local system. This is not a requirement, however, and it may be

3–36

Aliases, Forwarding, and Centralized Naming
Address Reversal

useful to have the database perform other, nonbijective (i.e., non-invertible), address
transformations.

Although there is no address reversal database or mapping table by default, address
reversal is activated automatically once such an address reversal database or REVERSE
mapping exists. (Note that if you have a compiled PMDF configuration, then you must
recompile—and on OpenVMS reinstall—your PMDF configuration in order for changes
to the REVERSE mapping to take effect.)

3.4 The Forward Database and FORWARD Address Mapping

Address reversals are not applied to envelope To: addresses. The reasons for this
omission are fairly obvious — envelope To: addresses are continuously rewritten and
modified as messages proceed through the mail system. The entire goal of routing is
to convert envelope To: addresses to increasingly system and mailbox-specific formats.
The canonicalization functions of address reversal are entirely inappropriate for envelope
To: addresses.

In any case, plenty of machinery is available in PMDF to perform substitutions on
envelope To: addresses. The alias file, alias database, and general database, as well as
the directory channel and its associated databases, provide precisely this functionality.

PMDF also has available the forward database and FORWARD mapping, used for
special sorts of forwarding purposes, such as pattern based forwarding, source-specific
forwarding, or ‘‘autoregistration’’ of addresses. Note that the forward database and
FORWARD mapping are intended for use primarily for certain special sorts of address
forwarding; most sorts of address forwarding, however, are better performed using one
of PMDF’s other forwarding mechanisms. See Section 3.5 for an overview of various
forwarding techniques.

The various substitution mechanisms for envelope To: addresses discussed previ-
ously provide functionality equivalent to the reversal database, but none yet discussed
provide functionality equivalent to the reverse mapping. And circumstances do arise
where mapping functionality for envelope To: addresses is useful and desirable.

The FORWARD mapping table provides this functionality of pattern based forwarding,
and also provides a mechanism for source specific forwarding. If a FORWARD mapping
table exists in the mapping file, it is applied to each envelope To: address. No changes
are made if this mapping does not exist or no entries in the mapping match. See
Chapter 5 for details on the mapping file.

If the address matches a mapping entry, the result of the mapping is tested. The
resulting string will replace the envelope To: address if the entry specifies a $Y; a $N
will discard the result of the mapping. See Table 3–5 for a list of additional flags.

The FORWARD mapping, if present, is consulted before any forward database lookup.
If a FORWARD mapping matches and has the flag $G, then the result of the FORWARD
mapping will be checked against the forward database, if forward database use has been
enabled via the appropriate setting of USE_FORWARD_DATABASE. (Note that if channel
specific forward database use has been specified, then the source address and source

3–37

Aliases, Forwarding, and Centralized Naming
The Forward Database and FORWARD Address Mapping

channel will be prefixed to the result of the FORWARD mapping before looking up in the
forward database.) If a matching FORWARD mapping entry specifies $D, then the result
of the FORWARD mapping (and optional forward database lookup) will be run through the
PMDF address rewriting process again. If a matching FORWARD mapping entry specifies
$H, then no further FORWARD mapping or database lookups will be performed during that
subsequent address rewriting (that resulting from the use of $D).

Table 3–5 FORWARD Mapping Table Flags

Flags Description

$Y Use output as new address

$N Address remains unchanged

$D Run output through the rewriting process again

$G Run output through the forward database, if forward database use has been
enabled

$H Disable further forward database or FORWARD mapping lookups

$I Hold the message as a .HELD file

Example 3–7 illustrates the use of a complex REVERSE and FORWARD mapping.
Suppose that a system or pseudo domain named am.sample.example.com associated with
the mr_local channel produces RFC 822 addresses of the general form:

"lastname, firstname"@am.sample.example.com

or

"lastname,firstname"@am.sample.example.com

Although these addresses are perfectly legal they often confuse other mailers which do not
fully comply with RFC 822 syntax rules — mailers which do not handle quoted addresses
properly, for instance. Consequently, an address format which does not require quoting
tends to operate with more mailers. One such format is

firstname.lastname@am.sample.example.com

Example 3–7 A Complex FORWARD and REVERSE Mapping Example

REVERSE

|mr_local|",$ *"@am.sample.example.com $Y"$1,$ $2"@am.sample.example.com
|mr_local|",*"@am.sample.example.com $Y"$1,$ $2"@am.sample.example.com
||"*,$ *"@am.sample.example.com Y3.$2@am.sample.example.com
||"*,*"@am.sample.example.com Y3.$2@am.sample.example.com
|mr_local|.*@am.sample.example.com $Y"$2,$ $1"@am.sample.example.com
||*.*@am.sample.example.com Y2.$3@am.sample.example.com

FORWARD

"*,$ *"@am.sample.example.com $Y"$0,$ $1"@am.sample.example.com
"*,*"@am.sample.example.com $Y"$0,$ $1"@am.sample.example.com
.@am.sample.example.com $Y"$1,$ $0"@am.sample.example.com

So the goals of the sample mapping tables in Example 3–7 are threefold. (1) Allow
any of these three address formats above to be used. (2) Present only addresses in the

3–38

Aliases, Forwarding, and Centralized Naming
The Forward Database and FORWARD Address Mapping

original format to the mr_local channel, converting formats as necessary. (3) Present
only addresses in the new unquoted format to all other channels, converting formats
as necessary. (The REVERSE mapping shown assumes that bit 3 in the PMDF option
USE_REVERSE_DATABASE is set; see Section 7.2.)

In cases where address forwardings need to be autoregistered, or source specific,
the forward database is available. Note that use of the forward database for simple
forwarding of messages is generally not appropriate; the alias database is a more efficient
way to perform such forwarding. By default, the forward database is not used at all; its
use must be explicitly enabled via the USE_FORWARD_DATABASE option, as described in
Section 7.3.1. Forward database lookups are performed after address rewriting and after
alias expansion is performed, and after any FORWARD mapping is checked. If a forward
database lookup succeeds, the resulting substituted address is then run through the
PMDF address rewriting process all over again.

The forward database is a PMDF crdb database, created using the PMDF CRDB
(OpenVMS) or pmdf crdb (UNIX or NT) utility from a source text file. The format of the
source text file by default is expected to be:

user1@domain1 changedmailbox1@changeddomain1

user2@domain2 changedmailbox@changeddomain2

But if source specific use of the forward database has been enabled by setting bit 3 of
the USE_FORWARD_DATABASE option, then the source text file format expected is:

source-channel|source-address|original-address changed-address

For instance, an entry such as

snads_local|Bobby@BLUE|12345678@PMDF user.with.a.long.name@else.where.com

would allow the Bobby@BLUE SNADS user to send to a SNADS address of 12345678@PMDF
when they want to send to user.with.a.long.name@else.where.com.

3.5 Forwarding Mail

PMDF provides several mechanisms for forwarding mail. The method appropriate
to a task at hand depends upon the scope of the forwarding:

Forwarding mail for selected users. To forward mail for selected users, it is best
to use aliases. You may also use aliases to accept mail for a non-existent user and
forward it on to one or more real users. See Section 3.5.1.

Forwarding mail to a list of users. Aliases are also used to create mailing lists. See
Section 4.1; Section 4.1.3 contains a mailing list example.

Forwarding mail for selected users in other than the local domain. To forward mail
for selected users in an arbitrary domain (a domain other than the local channel
name), use of the directory channel is often appropriate. See Section 3.2.

3–39

Aliases, Forwarding, and Centralized Naming
Forwarding Mail

Forwarding all mail for a given host to another host. In this case there are several
approaches. The most efficient method requires that you be able to blindly change
user@old-host into user@new-host without any conflict in user names; i.e., not
have to worry that the username ‘‘user’’ on old-host conflicts with a different person
on new-host who has the same username. When this is the case, simple rewrite
rules in the PMDF configuration file may be used. The less efficient, but just as
effective, approaches involve using either a FORWARD mapping or directory channel.
See Section 3.5.2.

3.5.1 Forwarding Mail for Selected Users

To forward mail for a few selected users, use the alias file. If, however, you will
be doing this for several thousand users, then use the alias database. The difference
between the two is that the alias file is loaded into memory while the alias database,
intended for large numbers of aliases, is not. The alias database is a keyed, indexed file
and has excellent performance even when it contains over a hundred thousand aliases.

VMS
On OpenVMS systems, the database is an RMS keyed, indexed file, and may be

tuned with RMS tuning tools, if necessary.

Suppose you want to forward mail for the two local users Judy.Public and jdoe to,
respectively, pjudy@vaxa.example.com and johndoe%a1@mr.xyzzy.org. To do this
with the alias file you would simply add to the PMDF alias file, the two entries

Judy.Public: pjudy@vaxa.example.com
jdoe: johndoe%a1@mr.xyzzy.org

If you are using a compiled configuration, then be sure to recompile (and on OpenVMS
reinstall) it after making this change.

To add these two entries to your alias database you should locate the source file used
to generate that database, add these two entries to that file, and then regenerate the
database with the PMDF CRDB (OpenVMS) or pmdf crdb (UNIX and NT) utility. There
is no need to recompile your configuration after making changes to the alias database.
However, resident servers (such as the PMDF SMTP server) may need to be restarted if
you want them to see the change immediately.

On OpenVMS or UNIX systems, you may instead add these entries to the alias
database using the PMDF DB (OpenVMS) or pmdf db (UNIX) utility. See the appropriate
edition of the PMDF User’s Guide for more details.

There are several points that you should note:

• PMDF’s aliases only affect mail passing through PMDF. For instance, in the above
example, the jdoe alias will have no effect for mail sent with VMS MAIL to JDOE
unless you also forward JDOE’s mail to IN%JDOE:

3–40

Aliases, Forwarding, and Centralized Naming
Forwarding Mail

$ MAIL
MAIL> SET FORWARD/USER=JDOE IN%JDOE
MAIL> EXIT
$

This forwarding causes mail sent to JDOE to be handled by PMDF. This then allows
PMDF’s alias for jdoe to then take effect.

• Aliases are case insensitive. The alias for Judy.Public will match judy.public,
JUDY.PUBLIC, JuDy.PUBlic, etc.

• Aliases only apply to local addresses, or to addresses matching a channel marked
with the aliaslocal channel keyword. They do not apply to arbitrary addresses,
such as in messages passing through your system for a different host (unless that
host is handled by a PMDF channel marked aliaslocal).

• Aliases only affect the envelope To: address. The message header will not be
rewritten; i.e., the alias will not be expanded into the message header.

• In a similar vein to the previous item, messages passing through your system with
an address such as johndoe%a1@xyzzy.org will not have that address magically
replaced with the alias jdoe@local-host. The ability to do this is, however, very
useful and may be accomplished with the address reversal database or REVERSE
mapping. If you want to do this, then refer to Section 3.6.

3.5.2 Forwarding All Mail for a Host

When attempting to forward all mail for one or more hosts to another host, you must
take into account mailbox name conflicts. Two sorts of conflicts may arise. First, when
forwarding mail for the host old-host-1 to the host new-host, you must ascertain
whether or not there are mailbox names on old-host-1 which also exist on new-host

but correspond to different users. For example, suppose you forward mail for bob@old-
host-1 to bob@new-host. Have you just now sent Bob Smith’s mail (bob@old-host-1)
to Bilbo O. Baggin’s mailbox (bob@new-host)? The second potential conflict arises when
forwarding both mail for old-host-1 and old-host-2 to new-host: are there conflicts
between mailbox names on old-host-1 and old-host-2?

After you determine what sort of conflicts may arise, you can go ahead and set
up the appropriate form of forwarding. If there are no mailbox name conflicts and the
mailbox names remain unchanged, then you can use domain rewrite rules as described in
Section 3.5.2.1. That is, if you will simply be forwarding all mail for user@old-host-
1, user@old-host-2, ... etc., to user@new-host with no change in the user part,
then you can use rewrite rules. This is the most efficient and straightforward method.
If there are conflicts or the mailbox name does not remain unchanged, then you will
have to use either a FORWARD mapping, alias database, or directory channel. Use of the
FORWARD mapping is preferable when you can algorithmically map the incoming address
to its forwarding address, e.g., if addresses of the form First.Last@example.com map
to Last@host.example.com. If, however, you cannot specify a simple algorithm, then
you should use either the alias database or a directory channel. Use the alias database
when the incoming addresses are local addresses (e.g., old-host-1 is the local host).
Otherwise, use the directory channel—or in some cases, use of a special channel marked
with aliaslocal may be appropriate. The directory channel has the least optimal
performance of all the options as it entails the use of an extra channel processing step.

3–41

Aliases, Forwarding, and Centralized Naming
Forwarding Mail

See Section 3.5.2.2 for an example in which the FORWARD mapping is used; for information
on the alias database or directory channel, see, respectively, Sections 3.1.2 or 3.2.

3.5.2.1 Using Rewrite Rules to Forward Mail

Suppose you want to forward all mail for old-host-1 and old-host-2 to new-

host leaving the mailbox portion of the address unchanged. Then, to the upper portion
of the PMDF.CNF file you would add the two rewrite rules

old-host-1 $U%new-host$E$F
old-host-2 $U%new-host$E$F

The EF causes these rewrite rules to only affect envelope To: addresses. It’s that easy!
Well, not quite. You should also consider whether or not you want to ‘‘transparently’’
forward these messages. The example shown above causes the forwarding to be
transparent in the sense that no occurrence of user@old-host-1 in the message header
will be changed. If you want those occurrences to be changed also, then remove the $E
from the rewrite rules. Moreover, if you want user@old-host-1 to always be changed
to user@new-host regardless of whether or not the address in question is forward (e.g.,
To: or cc:) or backward pointing (e.g., From:), then omit the $F.

One disadvantage to using rewrite rules to do this is that it often requires identifying
and listing each old host name. If that is not feasible and you can identify the old
host names via pattern matching, then use the FORWARD mapping as described in
Section 3.5.2.2.

3.5.2.2 Using the FORWARD Mapping to Forward Mail

The FORWARD mapping is normally used to make pattern based, cosmetic changes
to addresses after a message’s envelope To: address has been rewritten and the
destination of the message determined. However, with the FORWARD mapping’s $D flag, it
is possible to start the rewriting process anew using the output of the FORWARD mapping.
That is, the FORWARD mapping may be used to alter an envelope To: address and then,
using that altered address, redirect where the message should go. Again, note that
the FORWARD mapping is used when the changes can be described in a pattern based,
algorithmic fashion. If that is not possible then you will have to use either the alias file
or database or a directory channel.

For instance, suppose that the following forwardings need to be effected:

First.Last@example.com !
LastF@example.com (no change in destination host)
First_Last@example.com !
LastF@example.com (no change in destination host)
"First Last"@example.com !
LastF@example.com (no change in destination host)
First.Last@MR.example.com ! "Last, First"%A1@MR.VAXA.example.com
First_Last@MR.example.com ! "Last, First"%A1@MR.VAXA.example.com
"First Last"@Mr.example.com ! "Last, First"%A1@MR.VAXA.example.com
*-LIST@Obsolete.example.com ! *-L@Listserv.example.com
%vax@VAXA.example.com ! *@VAX*.example.com

3–42

Aliases, Forwarding, and Centralized Naming
Forwarding Mail

These forwardings may be realized with the FORWARD mapping table shown in Exam-
ple 3–8. The following items of note are identified with callouts in that example.

! The first three entries do not require a $D flag as there is no change in the host name
portion of the address.

" In the left-hand column a ‘‘$ ’’ sequence is used to represent a literal space.

This and subsequent entries do involve a change in host name and thus the $D flag
is specified.

$ In the left hand column a $% sequence is used to represent a literal percent sign. An
unquoted percent sign would be interpreted as a wild card which matches a single
character as in the first three entries.

See Section 3.4 for instructions on how to create and use a FORWARD mapping; see
Chapter 5 for complete details on the syntax and rules which apply to entries in the
FORWARD mapping table.

Example 3–8 Using a FORWARD Mapping Table to Forward Messages

FORWARD

%*.*@example.com $2$0@example.com$Y !
%*_*@example.com $2$0@example.com$Y
"%*$ *"@example.com $2$0@example.com$Y "

!
.@MR.example.com "$1,$ $0"%A1@MR.VAXA.example.comYD #
_@MR.example.com "$1,$ $0"%A1@MR.VAXA.example.comYD
"*$ *"@MR.example.com "$1,$ $0"%A1@MR.VAXA.example.comYD

!
*-LIST@Obsolete.example.com $0-L@Listserv.example.com$Y$D
$%vax@VAXA.example.com $0@VAX$1.example.comYD $

3.5.2.3 Using the Forward Database to Forward Mail

The forward database can be used to perform forwarding similar to that performed
using the alias file or alias database; see Section 3.5.1 above. But when the alias file
or alias database can be used, their use is generally preferable to using the forward
database as their use is more efficient.

The sort of case where use of the forward database for forwarding mail is appropriate
is generally when different sorts of forwarding need to be performed depending upon the
source of the message being forwarded. Forward database forwarding can be made source
specific, via the USE_FORWARD_DATABASE option. For instance, autoregistered addresses
are often a case where source specific forwarding is appropriate; see Section 3.7.

3–43

Aliases, Forwarding, and Centralized Naming
Centralized Naming

3.6 Centralized Naming

Centralized naming is used when you want to have all incoming messages use a
uniform, centralized addressing format (e.g., John.Doe@example.com) which you will
convert to internal addresses, and for outbound mail have all instances of internal
addresses converted to the uniform, centralized format.b The advantages to centralized
naming include enhanced security as the outside world does not see actual host names
or user names, stability in that mail addresses do not become outdated as internal host
names change or employees and students change accounts, and ease of use for users
in the outside world when the centralized naming scheme replaces possibly awkward
internal mailbox names with more presentable and mnemonic mailbox names.

3.6.1 Address Formats for Centralized Names

Before implementing a centralized naming scheme you must first determine what
address format you want to use. First.Last@domain is becoming more and more
popular although there remains the issue of what to do when you have two users named
Mike Smith.c

Without a doubt, RFC 822 is the most heavily used addressing format in the world
today. When choosing a format, make sure that it does not rub RFC 822 the wrong way:
even if your organization does not use RFC 822 based messaging, much of the world does.
A lot of people outside your organization may want or need to exchange mail with your
users. Similarly, your users might find it desirable to have addresses which are easily
gatewayed to or through the Internet. If this is not the case, then the likelihood that
their addresses will be altered to the point of being unreplyable is increased. Watch out
for characters called ‘‘specials’’ in RFC 822 as they will require quoting if they appear in
the mailbox part of an address. The RFC 822 specials are

SPACE () < > @ , ; : \ " . []

Use of any special (other than period, which is handled differently — periods are usually
safe as long as they do not appear adjacent to one another or at the very beginning or
very end of an address) is disasterous as many misconfigured or otherwise broken mailers
do not properly handle addresses with quoting. Underscores, although not a special, can
also lead to problems. Many gateways convert spaces to underscores and underscores
to something else (hopefully). Often the address is not properly inverted when coming
back out the gateway or when it is transported elsewhere. Some messaging formats such
as X.400 do not even allow underscores in addresses. As of this writing a heavily used
AT&T gateway removes the first underscore and everything following it in the mailbox
part of addresses presented to it.

b Note that although a single, ‘‘central’’ host name is used by the outside world, this does not mean that all mail from the
outside world must flow through a single, central host. For instance, on the Internet, DNS MX records may be used to
equate several hosts with the central host name. Preferences may be associated with each host so equated.

c The popularity of First.Last@domain derives not so much from beauty or elegance, but rather from the fact that
it works and interoperates well between many different messaging systems.

3–44

Aliases, Forwarding, and Centralized Naming
Centralized Naming

3.6.2 Routing Issues in Centralized Naming

By definition, centralized naming is only useful if it is consistently used. This in
turn means that the flow of messages within the organization may need to be altered or
controlled to insure that the proper name translations are applied at the proper times.

In many cases this happens automatically. For example, suppose PMDF is serving
both as a centralized naming authority and as the only gateway between the Internet,
a cc:Mail postoffice and an ALL-IN-1 installation. In this situation any message
travelling between systems has to flow through PMDF and name translations will always
be applied.

However, things are not always so simple. Suppose that PMDF is acting as a
centralized naming authority for several hundred UNIX workstations, all using SMTP
based mail and all with direct Internet access. In this situation messages are likely to
escape to the Internet without passing through PMDF and hence without having proper
name translations done.

There are two ways to solve this problem. One is to adjust message routing to force
all messages to pass through the central naming authority. The other is to distribute the
centralized naming functionality, in effect making all the systems into central naming
authorities. A combination approach is also possible, where a number of systems act
as centralized naming authorities and other systems route mail through an appropriate
authority.

3.6.3 Implementing Centralized Names

Once you have settled on a naming scheme and dealt with routing issues it is time to
implement it. First you should establish an appropriate forwarding mechanism to convert
incoming addresses to your internal format, i.e., to accept incoming mail and forward it
to the appropriate internal mailbox. Several methods of doing this are discussed in
Section 3.5. A specific example is also presented below. After establishing a method to
handle incoming mail, you are ready to begin emitting mail to the outside world using
your new address format. This is accomplished with either an address reversal database
or REVERSE mapping as described in Section 3.3.2. Either of these will convert addresses
in outbound mail messages to your centralized naming format. If your format leaves the
mailbox portion of addresses alone, then you can accomplish this step more efficiently
with domain rewrite rules similar to those described in Section 3.5.2.1. In this case,
however, you would use the $R flag instead of $F.

If the conversion from internal addresses to centralized addresses is very algorithmic
and an address in one format contains all of the information required to construct the
equivalent address in the other format, then you should be able to use FORWARD and
REVERSE mappings. However, this is rarely the case. At best, it is usually only possible
to do this in one direction (e.g., Jane.Doe@Example.com ! jdoe@Example.com). It
is far more likely that you will need to use the alias and address reversal databases,
possibly in conjunction with the REVERSE mapping too. This is the situation covered in
the example which follows.

3–45

Aliases, Forwarding, and Centralized Naming
Centralized Naming

Suppose the domain Example.Com has two general purpose computing machines,
Marvel.Example.Com and Admin.Example.Com, an enclave of cc:Mail users reached
via the gateway ccMail.Example.Com, and ALL-IN-1 IOS users reached via PMDF-
MR using the gateway A1.Example.Com. From the outside world all mail to Example
employees is addressed to first.last@Example.Com and Example.Com is actually
the host Marvel.Example.Com. Suppose further that within ALL-IN-1, the mailbox
name space is of the form ‘‘Last, First’’, in cc:Mail it is ‘‘First Last’’, and on
vaxa.Example.Com and Admin.Example.Com mailbox names correspond to usernames.
The name space for the four machines is shown in Table 3–6.

Table 3–6 Name Space and Centralized Naming Scheme for Example.Com

Internal address Centralized address

Marvel.Example.Com mailboxes

richardsr@Marvel.Example.Com Mr.Fantastic@Example.Com
grimmb The.Thing
storms Invisible.Girl
stormj Human.Torch

Admin.Example.Com mailboxes

wchristopher@Admin.Example.Com Warren.Christopher@Example.Com
lbentsen Lloyd.Bentsen
laspin Les.Aspin
jreno Janet.Reno
bbabbitt Bruce.Babbitt
mespy Mike.Espy
rbrown Ronald.Brown
rreich Robert.Reich
dshalala Donna.Shalala
hcisneros Henry.Cisneros
fpena Federico.Pena
holeary Hazel.OLeary
rriley Richard.Riley
jbrown Jesse.Brown

ccMail.Example.Com mailboxes

"Harry Blackmun"@ccMail.Example.Com Harry.Blackmun@Example.Com
"William Rehnquist" William.Rehnquist
"John Paul Stevens" John.Paul.Stevens
"Sandra Day OConnor" Sandra.Day.OConnor
"Antonin Scalia" Antonin.Scalia
"Anthony Kennedy" Anthony.Kennedy
"David Souter" David.Souter
"Clarence Thomas" Clarence.Thomas
"Ruth Bader Ginsberg" Ruth.Bader.Ginsburg

3–46

Aliases, Forwarding, and Centralized Naming
Centralized Naming

A1.Example.Com mailboxes

"Burford, Anne"@A1.Example.Com Anne.Burford@Example.Com
"Deaver, Michael" Michael.Deaver
"Donovan, Raymond" Raymond.Donovan
"Meese, Ed" Ed.Meese
"Nofziger, Lyn" Lyn.Nofziger

For this case, we can easily map back and forth between the centralized format
and cc:Mail or ALL-IN-1 addresses. However, we can only take advantage of this
with outbound messages. For inbound messages you still need to know which host,
ccMail.Example.Com or A1.Example.Com, to which to direct a message. We will use
an alias database to handle incoming mail.

There should be a DNS MX record for Example.Com which points to
Marvel.Example.Com. Moreover, Marvel.Example.Com should either use Exam-
ple.Com as its official local host name (host name on the local channel), or rewrite
Example.Com to its official local host name. By doing this, mail to user@Example.Com
is equated to the local channel and user is then looked up in to the alias file or database.
This then allows us to use the alias database as a means of forwarding incoming mail for
Example.Com to its correct, internal destination. Also, USE_REVERSE_DATABASE should
be set to 5,

USE_REVERSE_DATABASE=5

in the PMDF option file. A setting of 5 causes PMDF to apply the REVERSE mapping
and address reversal database to all header addresses instead of just reverse pointing
addresses.

The alias database source file shown in Example 3–9, the address reversal database
source file shown in Example 3–10, and the REVERSE mapping table shown in Exam-
ple 3–11 together implement this centralized naming scheme.d For instance, a mes-
sage coming from jreno@Admin.Example.Com will have its From: address changed to
Janet.Reno@Example.Com in accord with the entry in the address reversal database.
Similarly messages from
"Harry Blackmun"@ccMail.Example.Com and "Sandra Day OConnor"@Example.Com
will have their From: addresses changed to Harry.Blackmun@Example.Com and San-
dra.Day.OConnor@Example.Com by the second and first entries in the REVERSE map-
ping table. Incoming mail messages to Janet.Reno@Example.Com will be forwarded to
jreno@Admin.Example.Com in accord with the entry in the alias database.

d Many sites maintain a single source file from which, using a site-supplied procedure, they generate alias and reverse
database source files.

3–47

Aliases, Forwarding, and Centralized Naming
Centralized Naming

Example 3–9 Alias Database Source File

!
! Marvel.Example.Com users
!
Mr.Fantastic richardsr@Marvel.Example.Com
The.Thing grimmb@Marvel.Example.Com
Invisible.Girl storms@Marvel.Example.Com
Human.Torch stormj@Marvel.Example.Com
!
! Admin.Example.Com users
!
Warren.Christopher wchristopher@Admin.Example.Com
Lloyd.Bentsen lbentsen@Admin.Example.Com
Les.Aspin laspin@Admin.Example.Com
Janet.Reno jreno@Admin.Example.Com
Bruce.Babbitt bbabbitt@Admin.Example.Com
Mike.Espy mespy@Admin.Example.Com
Ronald.Brown rbrown@Admin.Example.Com
Robert.Reich rreich@Admin.Example.Com
Donna.Shalala dshalala@Admin.Example.Com
Henry.Cisneros hcisneros@Admin.Example.Com
Federico.Pena fpena@Admin.Example.Com
Hazel.OLeary holeary@Admin.Example.Com
Richard.Riley rriley@Admin.Example.Com
Jesse.Brown jbrown@Admin.Example.Com
!
! ccMail.Example.Com users
!
Harry.Blackmun "Harry Blackmun"@ccMail.Example.Com
William.Rehnquist "William Rehnquist"@ccMail.Example.Com
John.Paul.Stevens "John Paul Stevens"@ccMail.Example.Com
Sandra.Day.OConnor "Sandra Day OConnor"@ccMail.Example.Com
Antonin.Scalia "Antonin Scalia"@ccMail.Example.Com
Anthony.Kennedy "Anthony Kennedy"@ccMail.Example.Com
David.Souter "David Souter"@ccMail.Example.Com
Clarence.Thomas "Clarence Thomas"@ccMail.Example.Com
Ruth.Bader.Ginsburg "Ruth Bader Ginsberg"@ccMail.Example.Com
!
! A1.Example.Com users
!
Anne.Burford "Burford, Anne"@A1.Example.Com
Michael.Deaver "Deaver, Michael"@A1.Example.Com
Raymond.Donovan "Donovan, Raymond"@A1.Example.Com
Ed.Meese "Meese, Ed"@A1.Example.Com
Lyn.Nofziger "Nofziger, Lyn"@A1.Example.Com

The alias and address reversal databases are generated from your source files with
the PMDF CRDB (OpenVMS) or pmdf crdb (UNIX or NT) utility as described in Sections
3.1.2 and 3.3.2. See Chapter 29 and Chapter 30 for information on the CRDB or crdb
utility itself. When generating these databases on VMS, it is best to use an intermediate
file so as to eliminate any windows during which the ‘‘live’’ databases are in a mixed
state. For instance, use the OpenVMS commands,

3–48

Aliases, Forwarding, and Centralized Naming
Centralized Naming

Example 3–10 Reverse Database Source File

!
! Marvel.Example.Com users
!
richardsr@Marvel.Example.Com Mr.Fantastic@Example.Com
grimmb@Marvel.Example.Com The.Thing@Example.Com
storms@Marvel.Example.Com Invisible.Girl@Example.Com
stormj@Marvel.Example.Com Human.Torch@Example.Com
!
! Admin.Example.Com users
!
wchristopher@Admin.Example.Com Warren.Christopher@Example.Com
lbentsen@Admin.Example.Com Lloyd.Bentsen@Example.Com
laspin@Admin.Example.Com Les.Aspin@Example.Com
jreno@Admin.Example.Com Janet.Reno@Example.Com
bbabbitt@Admin.Example.Com Bruce.Babbitt@Example.Com
mespy@Admin.Example.Com Mike.Espy@Example.Com
rbrown@Admin.Example.Com Ronald.Brown@Example.Com
rreich@Admin.Example.Com Robert.Reich@Example.Com
dshalala@Admin.Example.Com Donna.Shalala@Example.Com
hcisneros@Admin.Example.Com Henry.Cisneros@Example.Com
fpena@Admin.Example.Com Federico.Pena@Example.Com
holeary@Admin.Example.Com Hazel.OLeary@Example.Com
rriley@Admin.Example.Com Richard.Riley@Example.Com
jbrown@Admin.Example.Com Jesse.Brown@Example.Com

Example 3–11 REVERSE Mapping Table

REVERSE

"*$ *$ *"@ccMail.Example.Com $0.$1.$2@Example.Com$Y
"*$ *"@ccMail.Example.Com $0.$1@Example.Com$Y
"*,$ *"@A1.Example.Com $1.$0@Example.Com$Y

$ PMDF CRDB alias-source-file PMDF_TABLE:aliases.tmp
$ PMDF CRDB reverse-source-file PMDF_TABLE:reverse.tmp
$ RENAME PMDF_TABLE:aliases.tmp PMDF_ALIAS_DATABASE
$ RENAME PMDF_TABLE:reverse.tmp PMDF_REVERSE_DATABASE

or, on UNIX systems, the commands,

pmdf crdb alias-source-file PMDF_ALIAS_DATABASE
pmdf crdb reverse-source-file PMDF_REVERSE_DATABASE

or, on NT systems, the commands,

C:\ pmdf crdb alias-source-file PMDF_ALIAS_DATABASE
C:\ pmdf crdb reverse-source-file PMDF_REVERSE_DATABASE

If you are using the PMDF multithreaded SMTP server (tcp_* channels), then be
sure to restart the SMTP server after generating new database files. If you have merely
added entries to an existing database file, then you do not need to restart the SMTP
server.

3–49

Aliases, Forwarding, and Centralized Naming
Autoregistration

3.7 Autoregistration

Some mail systems, such as SNADS mail systems, cannot handle real RFC 822
(Internet) addresses. Typically, one must set up algorithms or table lookups to translate
between the real RFC 822 addresses, and addresses that can be used on the SNADS
side. So that one does not need to register all possible addresses (the entire Internet) in
advance, when sending to such mail systems, it may be useful to autoregister addresses;
that is, when a previously unseen address appears in a message, automatically generate
a translation address for it.

Autoregistration is enabled using the forward database, reverse database, and the
special flags $A and $F in the REVERSE mapping table.

Typically, the autoregistration is only to be performed for messages going out special
channels such as SNADS channels, therefore typically a channel specific reverse database
and channel specific REVERSE mapping table should be used. If a non-channel specific
reverse database was already in use, note that it is not usually necessary to make the
entire reverse database channel specific. Instead, it is usually possible to continue using
the former non-channel specific entries in the reverse database, as well as the additional
new channel specific entries; see below.

The components of setting up autoregistration of addresses are as follows.

1. Enable use of the forward database. Set bit 0 (value 1) for the PMDF option USE_
FORWARD_DATABASE. A general discussion of PMDF options and the PMDF option
file, option.dat, may be found in Chapter 7.

2. Ensure that a forward database exists. If you do not already have a forward database,
then you must create one with the PMDF CRDB (OpenVMS) or pmdf crdb (UNIX
or NT) utility. e.g., on OpenVMS:

$ PMDF CRDB/LONG_RECORDS NLA0: PMDF_FORWARD_DATABASE

or on UNIX:

pmdf crdb -long_records /dev/null PMDF_FORWARD_DATABASE
chown pmdf /pmdf/table/forwarddb.*

or on NT:

C:\ pmdf crdb -long_records nul PMDF_FORWARD_DATABASE

3. Ensure that a reverse database exists. If you do not already have a reverse database,
then you must create one with the PMDF CRDB (OpenVMS) or pmdf crdb (UNIX
or NT) utility. e.g., on OpenVMS:

$ PMDF CRDB/LONG_RECORDS NLA0: PMDF_REVERSE_DATABASE

or on UNIX:

pmdf crdb -long_records /dev/null PMDF_REVERSE_DATABASE
chown pmdf /pmdf/table/reversedb.*

or on NT:

C:\ pmdf crdb -long_records nul PMDF_REVERSE_DATABASE

3–50

Aliases, Forwarding, and Centralized Naming
Autoregistration

4. If a new pseudo host or domain name will be used for autoregistration purposes,
ensure that the other mail system knows to route that pseudo host name to the PMDF
system. SNADS systems need routing information for any new pseudo host name
you will be using in the autoregistration.

5. Create a PMDF sequence number file for use in the autoregistration. The typical
way to generate unique usernames for autoregistration is to use a PMDF sequence
number file. In order to use a PMDF sequence number file for such a purpose, you
must first create one; see Section 5.3.2.6 for additional details. e.g., on OpenVMS:

$ CREATE/FDL=PMDF_COM:sequence_number.fdl PMDF_TABLE:autoreg.dat

Or on UNIX:

su pmdf
% touch /pmdf/table/autoreg.dat

Or on NT:

C:\ copy nul C:\pmdf\table\autoreg.dat

If you prefer to use some other mechanism, say provide your own image which the
REVERSE mapping will invoke, that is another option, in which case you will not
need such a sequence number file.

6. Put the entry or entries triggering autoregistration into the REVERSE mapping
table. If you do not already have a PMDF mappings file, then you must create
one and to it add a REVERSE mapping table with entries for performing the address
autoregistration. (A general discussion of the PMDF mappings file may be found
in Chapter 5; a discussion of the REVERSE mapping in particular may be found in
Section 3.3.2.)

There will be two forms of entries, the first form blocking autoregistration of any
addresses which should not be autoregistered (such as native SNADS addresses),
and the second form performing the autoregistration of any other addresses. Each
entry blocking autoregistration will have the general form

*|dest-channel|orig-address $N

while each autoregistration entry will have the general form

*|dest-channel|orig-address YA$Freplace-address

where replace-address is an address with which to replace the real RFC 822
address. For instance, when sending to SNADS, which is limited to an eight character
username and an eight character pseudo host name, a typical sort of approach might
be to generate eight character pseudo usernames using a PMDF sequence number
file, and use a fixed pseudo host name, say INTERNET. For instance, assuming that
SNADS hosts are SNADS1, SNADS2, etc., then on OpenVMS:

REVERSE

|snads_|*@SNADS1 $N
|snads_|*@SNADS2 $N

! ...etc...
|snads_|* YAF#PMDF_TABLE:autoreg.dat|16|8#@INTERNET

or on UNIX:

3–51

Aliases, Forwarding, and Centralized Naming
Autoregistration

REVERSE

|snads_|*@SNADS1 $N
|snads_|*@SNADS2 $N

! ...etc...
|snads_|* YAF#/pmdf/table/autoreg.dat|16|8#@INTERNET

or on NT:

REVERSE

|snads_|*@SNADS1 $N
|snads_|*@SNADS2 $N

! ...etc...
|snads_|* YAF#C:\pmdf\table\autoreg.dat|16|8#@INTERNET

7. If you want to continue to do non-channel specific reverse database reversals for
other addresses, change the $N blocking entries shown above to use YD to cause the
addresses to be passed back for a reverse database lookup, plus add a final REVERSE
entry to cause any other addresses to be passed back for a reverse database lookup.
For instance, on UNIX:

REVERSE

|snads_|*@SNADS1 YD$2@SNADS1
|snads_|*@SNADS2 YD$2@SNADS2

! ...etc...
|snads_|* YAF#/pmdf/table/autoreg.dat|16|8#@INTERNET
||* YD$2

Note that these YD entries are passing back only the original address for the
reverse database probe, and omitting the channel specific information.

8. Make the reverse database and REVERSE mapping lookups channel specific. Set the
PMDF option USE_REVERSE_DATABASE=29.

9. Recompile, if necessary, and restart PMDF components. If using a compiled PMDF
configuration, recompile (and on OpenVMS reinstall) it. Restart any resident process
components of PMDF, e.g., the SMTP server and the SNADS and PROFS processes.

3–52

4 Mailing Lists and MAILSERV

PMDF has flexible mailing list facilities, and facilities for performing automated
processing of certain (typically mailing list related) messages.

PMDF mailing lists are implemented as a special form of PMDF alias; controlling
mailing list headers, access to post to mailing lists, setting up moderated mailing
lists, etc., are controlled via the alias that defines the mailing list. See Chapter 3 for
background general information on aliases and on the PMDF alias file and the optional
alias database. Details specifically on mailing list definitions, with their many options
and variations, are described below in Section 4.1.

PMDF has a facility for providing automated processing of certain sorts of messages,
for instance, requests to send particular files, or requests to subscribe or unsubscribe
from particular mailing lists. This facility is called MAILSERV. While often used in
conjunction with mailing lists, note that MAILSERV per se has nothing to do with
mailing list postings; for defining mailing lists, and enabling and restricting mailing
list postings, see instead Section 4.1. Rather, MAILSERV is a general facility for certain
sorts of automated message handling; MAILSERV can be used independently of whether
mailing lists are in use. MAILSERV is described below in Section 4.3.

4.1 Mailing Lists

A mailing list address is a special address created through the alias file or alias
database; see Chapter 3 for general background on aliases, the alias file, and alias
database. Associated with each mailing list address is a text file which contains one
or more mail addresses, or an LDAP URL that returns one or more mail addresses.
Note that an LDAP query URL can return multiple addresses either because the LDAP
query matches multiple entries containing a desired attribute(s), or because the LDAP
query matches a multivalued attribute of a single entry.) This text file or LDAP URL
is sometimes referred to as the mailing list or distribution list. When a message is
received by PMDF for the mailing list address, the message is then passed on to each
address specified in the mailing list file or LDAP URL. Note that addresses in that file or
addresses returned by the LDAP URL can themselves be aliases or mailing list addresses.

A mailing list address alias with associated mailing list file file-spec is specified
in the alias file with an entry of the form

alias: <file-spec, named-parameters, error-return-address, \
reply-to-address, errors-to-address, \
warnings-to-address, comments

A mailing list address alias with associated LDAP URL ldap-url is specified in the
alias file with an entry of the form

4–1

Mailing Lists and MAILSERV
Mailing Lists

alias: <ldap-url, named-parameters, error-return-address, \
reply-to-address, errors-to-address, \
warnings-to-address, comments

Similar definitions can also be made in the alias database, (though of course omitting the
colon, as just white space separates the alias from its definition in the alias database).

The parameters following the file specification, file-spec, or LDAP URL, ldap-
url, are optional.

file-spec must be a full file path specification (device, directory, etc.). All files
included in this fashion should, like the alias file itself, be world readable.1 Addresses
should appear one per line in this file and be in RFC 822 format; the addresses can
either be ‘‘real’’ addresses or further aliases (but not of the form ‘‘alias: <file-spec’’).
Mailing list files can include comment lines as well as references to include files via the
include operator, <.

ldap-url must be a standard LDAP URL, with the host and port omitted; (host
and port are instead specified via the LDAP_HOST and LDAP_PORT PMDF options; see
Section 7.3.2. That is,

ldap:///dn[?attributes[?scope[?filter]]]

where dn is required and is a distinguished name specifying the search base. The optional
attributes, scope, and filter portions of the URL further refine what information to
return. For a mailing list, the desired attributes to specify returning would typically
be the mail attribute (or some similar attribute). The scope can be any of base (the
default), one, or sub. And the desired filter might be to request the return of all objects
that are in Department X or that have, say, the ‘‘member-of-list-y’’ attribute. Certain
substitution sequences can be used to construct the LDAP search URL; see Table 3–1 for
details.

The action of parameters that can add headers can be modified by the special
characters shown in Table 4–1, by appending the special character at the end of the
value for the parameter.

Table 4–1 Parameter Action Modifiers

Character Description

Insert if not already present; inserts as a Resent- if already present

* Only insert if not already present

& Insert if not already present; add to old field if already present

^ Delete any old field present; always insert the new field

\ Delete old field and don’t insert a new one

Note: If you are using a compiled configuration, then you must recompile (and on OpenVMS
reinstall) the configuration in order for a change to the primary alias file, PMDF_ALIAS_
FILE, to take effect. Changes made to mailing list files referenced in the alias file take

1 For mailing lists set up to use deferred expansion, e.g., via a process channel as in Example 4–2, Example 4–3, and
Example 4–4, the mailing list file need not be world readable, but rather need only be accessible by the account running
PMDF service jobs — usually the SYSTEM account on OpenVMS or the pmdf account on UNIX.

4–2

Mailing Lists and MAILSERV
Mailing Lists

effect immediately; that is, recompiling the PMDF configuration is not necessary in order
for changes in mailing list files to take effect.

Note: Mailing lists can be tested with the PMDF TEST/REWRITE/CHECK_EXPANSIONS
(OpenVMS) or pmdf test -rewrite -check_expansions (UNIX and Windows) utility.
See Chapter 29 and Chapter 30 for details.

4.1.1 Named Parameters

The named-parameters appearing in

alias: <file-spec, named-parameters, error-return-address, \
reply-to-address, errors-to-address, \
warnings-to-address, comments

are used to specify optional modifiers to the list expansion process. There can be zero
or more named parameters, separated by commas, and they must appear before any
positional parameters (e.g., error-return-address, reply-to-address, etc.). The
general syntax of a named parameter is:

[name] value

Here name is the name of the parameter and value is its corresponding value. The
square brackets are a mandatory part of the syntax: they do not indicate an optional
field.

See Table 4–1 for a description of controls on the effect of named parameters relating
to the addition of headers, such as specifying whether a header is to be added only if
not originally present, or added unconditionally, and whether the header supplements or
substitutes for an originally present header.

The available named parameters are:

AUTH_CHANNEL
CANT_CHANNEL

AUTH_CHANNEL is used to specify a source channel that can submit messages to the
mailing list. CANT_CHANNEL is used to specify a source channel that can not submit
messages to the mailing list. The argument should be a (possibly wildcarded) channel
name. AUTH_CHANNEL also accepts a space-separated list of channel names.

AUTH_LIST
CANT_LIST
USERNAME_AUTH_LIST
USERNAME_CANT_LIST

AUTH_LIST is used to specify a list of addresses that are allowed to post to the mailing
list. The value item must be either the full file path specification for a world readable
file containing the list of addresses allowed to post to the list, or an LDAP URL that
returns the list of addresses allowed to post to the list. PMDF will match the envelope
From: address against the addresses in the list; if no match occurs, the attempted posting
fails and an error is returned to the would be postings originator. USERNAME_AUTH_
LIST is analogous to AUTH_LIST, but for (possibly wildcarded) usernames rather than
addresses; note that usernames are generally only useful for messages submitted from

4–3

Mailing Lists and MAILSERV
Mailing Lists

the L channel or submitted with SASL authentication via SMTP (SMTP AUTH) since for
messages submitted from other sources the username will simply be that of the account
under which the submitting PMDF process is running. Note that for messages submitted
via SMTP with authentication (SMTP AUTH), the username that authenticated will be
prefixed with the asterisk, *, character. For instance, to specify that only the user JDOE
can submit to a list, whether submitting from the L channel or via SMTP (e.g., from
a POP or IMAP client that performs SASL SMTP authentication), the USERNAME_
AUTH_LIST file would need to contain the entries:

JDOE
$*JDOE

where the first entry would match for messages submitted from the L channel and the
second entry would match for messages submitted via SMTP AUTH. Note that as asterisk
is normally a wildcard character, matching of only the exact literal asterisk character is
specified by using the dollar character to quote the asterisk.

CANT_LIST has the opposite effect as AUTH_LIST: it supplies the full file path
specification of a world readable file containing a list of addresses, or an LDAP URL
returning a list of addresses, specifying which addresses can not post to the list.
USERNAME_CANT_LIST is analogous to CANT_LIST, but for (possibly wildcarded)
usernames rather than addresses; note that usernames are generally only useful for
messages submitted from the L channel or submitted with SASL authentication via
SMTP (SMTP AUTH) since for messages submitted from other sources the username
will simply be that of the account under which the submitting PMDF process is running.

One common use of this facility is to restrict a list so that only list members can post. This
can be done by specifying the same file as both the list file and the AUTH_LIST file. For
example, assuming that the list is named test-list and the list file is PMDF_TABLE:test-
list.dis, the alias file entry would be:

test-list: <pmdf_table:test-list.dis, \
[auth_list] pmdf_table:test-list.dis

AUTH_MAPPING
CANT_MAPPING

AUTH_MAPPING and CANT_MAPPING are similar to AUTH_LIST and CANT_LIST except
that they use mappings rather than explicit files of addresses. The value item
associated with these named parameters is the name of a mapping table to use. By
default, the mapping is given the envelope From: address as input. The transport
and application connection information can be added to the input by specifying the
INCLUDE_CONNECTIONINFO option in the PMDF option file.

If AUTH_MAPPING is used at least one mapping entry must match or the posting is
rejected. If an entry does match the resulting string is checked; if it begins with an
F, f, N, or n the posting is rejected. The mailing list will expand normally if the resulting
string begins with any other character.

If CANT_MAPPING is used, the posting is accepted if no entry matches. If an entry does
match the resulting string is checked; if it begins with a T, t, Y, or y the posting is
accepted. The posting is rejected if the resulting string begins with any other character.

The most common use of AUTH_MAPPING is to restrict postings to all users of a given
(usually local) host. For example, if the local host name is ymir.claremont.edu, the
following mailing list definition could be used for the gripes-list:

4–4

Mailing Lists and MAILSERV
Mailing Lists

gripes: <pmdf_table:gripes-list.dis, [auth_mapping] x-gripes

The corresponding mapping file entries would be:

X-GRIPES

*@ymir.claremont.edu Y

Using a mapping table name beginning X- is recommended, so that this private mapping
table name will not collide with a standard Process Software mapping table name.

AUTH_USERNAME
CANT_USERNAME

AUTH_USERNAME is used to specify a username or wildcarded username pattern for an
account or accounts allowed to post to the list. Note that this is generally only useful for
senders submitting from the L channel or via SMTP SASL; for messages submitted from
other sources, the messages are considered to be submitted under the username of the
PMDF process that received and enqueued the message, e.g., the account under which
the PMDF SMTP server is running. Attempted postings from any other sender will be
rejected.

CANT_USERNAME can be used to specify a username or wildcarded username pattern for
an account or accounts whose postings should be rejected.

Note that for messages submitted via SMTP with authentication (SMTP AUTH), the
username that authenticated will be prefixed with the asterisk, *, character. Also note
that the asterisk character is normally a wildcard, and must be quoted with the dollar
character in order to be interpreted as a literal asterisk character. For instance, to specify
that the only sender who can post to a list is user JDOE who will be submitted solely
via SMTP with SMTP AUTH, you would use:

[AUTH_USERNAME] $*JDOE

Without the dollar sign, specifying just *JDOE would allow postings not only from user
JDOE but also from any users AJDOE, BOBJDOE, etc.

For specifying more than one username (or wildcarded username pattern), see the
USERNAME_AUTH_LIST and USERNAME_CANT_LIST parameters described below.

BLOCKLIMIT
LINELIMIT

The BLOCKLIMIT and LINELIMIT parameters can be used to limit the size of messages
that can be posted to the list. The value item must be an integer number of blocks for
[BLOCKLIMIT], or an integer number of lines for [LINELIMIT]. The number of bytes
in a block is specified via the BLOCK_SIZE PMDF option; see Section 7.3.5. The default
value is 0, meaning that no limit is imposed on the size of message that can be posted
to the list (apart, that is, from any channel or system wide limits).

CONVERSION_TAG

The CONVERSION_TAG named parameter can be used to set a tag which conversion file
entries can match upon. The value item should be the string to use as the tag. For
instance, if a list is defined

listname: </pmdf/table/listname.dis, [CONVERSION_TAG] listtag

then conversion file entries could include a tag=listtag; clause to match. For instance,
if for some mailing list it was desired to convert any text/html parts in posted messages

4–5

Mailing Lists and MAILSERV
Mailing Lists

to text/plain, and if a site had an HTML to TEXT convertor called htmltotextconvert
and had set up the conversion channel and a CONVERSIONS mapping table to apply to
list postings, then a conversion file entry could be

in-chan=*; out-chan=*; in-type=text; in-subtype=html; tag=listtag;
out-type=text; out-subtype=plain; parameter-copy-0=*;
command="htmltotextconvert ’INPUT_FILE’ ’OUTPUT_FILE’"

DEFERRED

The DEFERRED named parameter can be used to add a Deferred-delivery: header line.
The value should be a date and time, in ISO 8601 P format.

Note that by default PMDF does not honor Deferred-delivery: headers; see Section 2.3.4.19
for a discussion.

ISO 8601 P format is, e.g.,

PyearYmonthMweekWdayDThourHminuteMsecondS

where the values year, month, etc., are integer values specifying an offset (delta) from
the current time. The initial P is required; other fields can be omitted, though the T is
required if any time values are specified.

DELAY_NOTIFICATIONS
NODELAY_NOTIFICATIONS

The DELAY_NOTIFICATIONS named parameter requests that NOTARY delay notifications
be sent for mailing list postings; the NODELAY_NOTIFICATIONS named parameter
requests that NOTARY delay notifications not be sent for mailing list postings. The value
specification is currently ignored and should always be NONE.

ENVELOPE_FROM

This parameter takes a required value specifying an address to replace the message’s
original envelope From: address. This sets only the envelope From: address, unlike the
error-return-address positional parameter which also sets an Errors-to: address.

EXPIRY

The EXPIRY named parameter is used to add an Expiry-Date: header line. The value
should be a date and time, in ISO 8601 P format (as described for the DEFERRED
parameter above). The PMDF periodic return job will return messages whose Expiry-
Date: has passed.

EXPANDABLE
NONEXPANDABLE

The EXPANDABLE named parameter is used to specify that the associated list can be
expanded (and hence its contents seen) by various protocols which can attempt such an
operation. It does not mean, or imply, that the contents of the list will be expanded
into message headers. The value specification is currently ignored and should always
be NONE. The NONEXPANDABLE named parameter specifies that the associated list can
not be expanded. Again, the value specified is currently ignored and should always be
NONE. EXPANDABLE is the default.

NONEXPANDABLE is useful in blocking the expansion of mailing lists via SMTP’s EXPN
command.

4–6

Mailing Lists and MAILSERV
Mailing Lists

FILTER

The FILTER parameter can be used to specify a filter file to apply on attempted message
postings. The argument must be a URL specifying the path to the filter file to apply.

HEADER_ADDITION

HEADER_ADDITION can be used to specify a file of headers to be added to posted messages.
The argument must be a full file specification for the file containing headers to be added.

In particular this facility can be used to add the standard mailing list headers defined
in RFC 2369. For instance, a site domain.com that has set up a list named listname,
using the MAILSERV channel to manage subscription and unsubscription requests, and
with certain list information and archives available at an FTP site, might use a header
addition file along the lines of the following:

List-Help: <ftp://ftp.domain.com/pub/listname-help.txt> (FTP),
<mailto:mailserv@domain.com?body=send%20/pub/listname-help.txt>,
<mailto:mailserv@domain.com?body=help> (MAILSERV Instructions),
<mailto:listname-owner@domain.com?subject=help> (List Manager)

List-Subscribe:
<mailto:mailserv@domain.com?body=subscribe%20listname>

List-Unsubscribe:
<mailto:mailserv@domain.com?body=unsubscribe%20listname>

List-Post: <mailto:listname@domain.com>
List-Owner: <mailto:listname-owner@domain.com?Subject=listname>
List-Archive: <ftp://ftp.domain.com/pub/listname/archive/>,

<mailto:mailserv@domain.com?body=send%20/pub/listname/archive/*>

HEADER_ALIAS
HEADER_EXPANSION

The HEADER_ALIAS named parameter forces the use of the original alias in any original
headers constructed using this alias. HEADER_EXPANSION forces the alias to expand
into its component addresses in any constructed header lines. The value specification is
currently ignored and should always be NONE. These named parameters correspond to the
expand and no-expand options for entries in personal alias databases. HEADER_ALIAS is
the default for entries in the system alias file and database.

Note that these parameters are only valid when headers are originally being constructed,
as for instance for messages submitted via the L channel. These parameters are not
relevant for incoming messages (such as incoming SMTP messages) for which the headers
are already present in one form or another.

HOLD_LIST
NOHOLD_LIST
HOLD_MAPPING
NOHOLD_MAPPING

The HOLD_LIST named parameter can be used to specify a list of originator addresses
whose attempts to post to the list should be sidelined as .HELD messages. The
NOHOLD_LIST named parameter can be used to specify the list of originator addresses
whose postings should not be so sidelined, while all other postings will be sidelined. The
value must be a full file specification for a file of addresses, or an LDAP URL returning
a list of addresses.

The HOLD_MAPPING and NOHOLD_MAPPING named parameters are used analogously, but
via mapping tables rather than via lists. The value should be the name of a PMDF

4–7

Mailing Lists and MAILSERV
Mailing Lists

mapping table.

By default, the mapping tables are given the envelope From: address as input. The
transport and application connection information can be added to the input by specifying
the INCLUDE_CONNECTIONINFO option in the PMDF option file.

IMPORTANCE
PRECEDENCE
PRIORITY
SENSITIVITY

The IMPORTANCE, PRECEDENCE, PRIORITY, and SENSITIVITY named parameters are
used to generate respective headers; the value specification is inserted on the respective
header line.

KEEP_DELIVERY
KEEP_READ

By default, PMDF strips delivery receipt and read receipt requests from messages posted
to mailing lists. The KEEP_DELIVERY and KEEP_READ named parameters can be used
to override this behavior, causing PMDF to retain any delivery receipt or read receipt
requests, respectively, on messages posted to the list. The value specification is currently
ignored and should always be NONE.

Note that passing receipt requests through to mailing lists is quite dangerous; the default
behavior of stripping such requests is strongly recommended.

MODERATOR_ADDRESS
MODERATOR_LIST
MODERATOR_MAPPING
USERNAME_MODERATOR_LIST

The MODERATOR_ named parameters are used to establish a moderated mailing list. All
postings to the list not originating from a moderator are sent to the list’s moderator.
The address of the moderator must be specified with the MODERATOR_ADDRESS named
parameter. The moderator address determines where moderator mail is sent when
someone other than the moderator posts. The value of that named parameter is the
moderator’s address. For example,

test-list: <d1:[bob]test.dis, \
[MODERATOR_ADDRESS] bob@example.com

When there can be multiple moderator addresses (for instance, both robert@a1.example.com
and bob@example.com), use MODERATOR_LIST, USERNAME_MODERATOR_LIST, or
MODERATOR_MAPPING to specify all addresses from which postings should be passed
directly to the list and not sent to the list’s moderator. MODERATOR_LIST specifies
either the name of a file containing a list of moderator addresses, or an LDAP URL
returning a list of moderator addresses. USERNAME_MODERATOR_LIST specifies ei-
ther the name of a file containing a list of (possibly wildcarded) moderator usernames,
or an LDAP URL returning a list of (possibly wildcarded) moderator usernames; note
that usernames are generally only useful for messages submitted from the L channel
or submitted with SASL authentication via SMTP (SMTP AUTH) since for messages
submitted from other sources the username will simply be that of the account under
which the submitting PMDF process is running. Note that for messages submitted via
SMTP with authentication (SMTP AUTH), the username that authenticated will be pre-
fixed with the asterisk, *, character. For instance, to specify that only the user JDOE
is the list moderator, whether submitting from the L channel or via SMTP (e.g., from
a POP or IMAP client that performs SASL SMTP authentication), the USERNAME_
MODERATOR_LIST file would need to contain the entries:

4–8

Mailing Lists and MAILSERV
Mailing Lists

JDOE
$*JDOE

where the first entry would match for messages submitted from the L channel and the
second entry would match for messages submitted via SMTP AUTH. Note that as asterisk
is normally a wildcard character, matching of only the exact literal asterisk character is
specified by using the dollar character to quote the asterisk.

MODERATOR_MAPPING specifies the name of a mapping table used to verify whether or
not an address is a moderator address. By default, the mapping is given the envelope
From: address as input. The transport and application connection information can be
added to the input by specifying the INCLUDE_CONNECTIONINFO option in the PMDF
option file.

If a MODERATOR_LIST or MODERATOR_MAPPING parameter is used, thereby specifying
who can post directly to the list, then a MODERATOR_ADDRESS parameter should also be
present to specify the address to which to send postings not from any moderator.

The use of the MODERATOR_ADDRESS parameter alone, without the MODERATOR_LIST pa-
rameter, is equivalent to using MODERATOR_ADDRESS and a MODERATOR_LIST consisting
of just the one moderator address.

ORIGINATOR_REPLY
NOORIGINATOR_REPLY

ORIGINATOR_REPLY is used to control whether or not the originator’s address is added
to any generated Reply-to: header. The value item should be the full file path
specification for a world readable file containing the list of addresses that should never
be added. (This is usually the mailing list itself.) PMDF will match the envelope From:
address against the addresses in the list; if no match occurs, the originator’s address will
be added to any generated Reply-to: header.

NOORIGINATOR_REPLY specifies that any generated Reply-to: header should contain
only explicitly specified addresses. The value item is ignored. NOORIGINATOR_REPLY
is the default.

PUBLIC
PRIVATE

The PUBLIC named parameter specifies that the associated alias is public and hence can
appear in any constructed header lines. The value specification is currently ignored
and should always be NONE. The PRIVATE named parameter specifies that the alias is
private and should appear as an empty group construct in message headers. The value
specification is optional and if specified is used as the name for the group. Neither
PUBLIC nor PRIVATE have any effect if the HEADER_EXPANSION named parameter is
also specified. These named parameters correspond to the public and private options for
entries in personal alias databases. PUBLIC is the default for entries in the system alias
file and database.

Note that these parameters are only valid when headers are originally being constructed,
as for instance for messages submitted via the L channel. These parameters are not
relevant for incoming messages (such as incoming SMTP messages) for which the headers
are already present in one form or another.

4–9

Mailing Lists and MAILSERV
Mailing Lists

RECEIVEDFOR
NORECEIVEDFOR
RECEIVEDFROM
NORECEIVEDFROM

These named parameters control features of what appears in the Received: header con-
structed when expanding the alias, and override normal channel receivedfor, nore-
ceivedfor, receivedfrom, or noreceivedfrom keyword settings; see Section 2.3.4.62
for a discussion of the channel keywords. The value specification is currently ignored
and should always be NONE.

REPROCESS

The REPROCESS named parameter is used to request deferred expansion of the mailing
list, where rather than expanding the mailing list ‘‘on line’’, the message should instead
be enqueued to the reprocess channel; the reprocess channel can then performing the
mailing list processing in a separate step. The value specification is currently ignored
and should always be reprocess.

Use of this parameter defers much of the processing overhead of handling the message
to the later step when the reprocess channel runs, rather than doing the processing as
the message is initially accepted. This deferred processing can be especially helpful in
cases such as incoming SMTP messages addressed to large mailing lists, where ‘‘on line’’
delays could lead to connection time outs.

Use of this parameter as in:

listname: </pmdf/table/listname.dis, [REPROCESS] reprocess

thus provides essentially identical functionality as defining a mailing list in two stages
through the reprocess channel to obtain deferred expansion (the mailing list addresses
aren’t even expanded until the reprocess channel runs) such as:

listname: listname-expand@reprocess
listname-expand: </pmdf/table/listname.dis

SEQUENCE_PREFIX
SEQUENCE_SUFFIX
SEQUENCE_STRIP

The SEQUENCE_PREFIX and SEQUENCE_SUFFIX named parameters request that a
sequence number be prepended or appended to the Subject: lines of messages posted
to the list. The value item gives the full file path specification of a sequence number
file. This file is read, incremented, and updated each time a message is posted to the
list. The number read from the file is prepended, in the case of SEQUENCE_PREFIX, or
appended, in the case of SEQUENCE_SUFFIX, to the message’s Subject: header line. This
mechanism provides a way of uniquely sequencing each message posted to a list so that
recipients can more easily track postings and determine whether or not they have missed
any.

By default, a response to a previously posted message (with a previous sequence number)
retains the previous sequence number as well as adding a new sequence number to the
subject line; the build up of sequence numbers shows the entire ‘‘thread’’ of the message
in question. However, the SEQUENCE_STRIP named parameter can be used to request
that only the highest numbered, i.e., most recent, sequence number be retained on the
subject line. The value item is currently ignored and should always be NONE.

Important note: To ensure that sequence numbers are only incremented for successful postings,
a SEQUENCE_PREFIX or SEQUENCE_SUFFIX named parameter should always appear as

4–10

Mailing Lists and MAILSERV
Mailing Lists

the last named parameter; that is, if other named parameters are also being used, the
SEQUENCE_* named parameter should appear at the end of the list of named parameters.

Sequence number files are binary files and must have the proper file attributes and
access permissions in order to function correctly. PMDF will create an appropriate initial
sequence number file automatically if sequence numbers are requested for a mailing
list created via an alias in the PMDF_ALIAS_FILE or PMDF_ALIAS_DATABASE.2 This
initial sequence number file will be empty (but have the right file attributes and access
permissions); the first sequence number based on this file will be ‘‘[1]’’.

TAG

The TAG named parameter can be used to prefix specified text to the Subject: header of
posted messages. The value item should be the string to be added. (Note that multiple
tags may be specified, separated by a vertical bar.) For instance,

schedule-list: <d1:[adam]schedule-list.dis, [TAG] Schedule posting -- , \
[AUTH_LIST] d1:[adam]schedule-list.dis

will cause any postings to the list schedule-list to have a Subject: header that begins
‘‘Schedule posting –’’ followed by whatever the original subject of the posting might have
been.

USERNAME

The USERNAME named parameter can be used to set the username that PMDF will
consider to ‘‘own’’ these mailing list messages. The pmdf qm utility will allow that
username to inspect and bounce messages in the queue resulting from expansion of
this mailing list. The value item should be the username of the account to ‘‘own’’ the
mailing list postings. On OpenVMS, note that the username specified will be forced to
uppercase.

4.1.1.1 Specifying Multiple Access Control Parameters

Note that when specifying multiple sorts of access control parameters, the effect is
cumulative (a logical AND operation). For instance, specifying both [CANT_LIST] and
[AUTH_LIST] on a list means that only those addresses that are in the [AUTH_LIST]
and not in the [CANT_LIST] can post to the list.

Note also that the [AUTH_LIST], [AUTH_MAPPING], [CANT_LIST], and [CANT_MAPPING]
parameters provide a separate sort of control from [MODERATOR_LIST] and [MODERA-
TOR_MAPPING]; they do different things and can be used effectively in conjunction. The
[AUTH_*] and [CANT_*] parameters control who can post at all; only addresses that
make it through those access filters then get checked for the next question, the [MODERA-
TOR_*] access filter, of whether the sender can post directly vs. whether their attempted
posting is referred to [MODERATOR_ADDRESS].

2 On OpenVMS, these logical names usually point to the files aliases. and aliases.dat, respectively, in the
PMDF_TABLE: directory; on UNIX, these options in the PMDF tailor file usually point to the file aliases and to
the file aliasesdb.*, respectively, in the /pmdf/table directory; on NT, these NT Registry entries usually point
to the file aliases and to the file aliasesdb.* in the PMDF table directory.

4–11

Mailing Lists and MAILSERV
Mailing Lists

4.1.2 Positional Parameters

With one exception, the positional parameters in a mailing list specification provide
alternate addresses to which certain sorts of list related activity should be directed (e.g.,
an address to which errors should be sent rather than back to the list itself).

The positional parameters are so named for a reason: their position in the comma
separated list distinguishes which parameter is being specified. When more than one
parameter (positional or otherwise) is specified, they must be separated by commas. If
you want to specify a positional parameter but omit other positional parameters which
come first, then specify asterisks, *, for the omitted parameters. For example, in the
following

test-list: <pmdf_table:test.dis, *, *, \
postmaster@example.com

the errors-return-address and reply-to-address parameters have been omitted.

See Table 4–1 for a description of controls on the effect of positional parameters, such
as specifying whether a header is to be added only if not originally present, or added
unconditionally, and whether the header supplements or substitutes for an originally
present header.

Without further ado, the positional parameters are:

error-return-address

error-return-address specifies an address to replace the message’s regular envelope
From: address as well as an address to be inserted into the header as an Errors-
to: address. This address is optional; if no error-return-address is specified no
replacements or additions will be made.

Note that the address can be specified with an asterisk as a subaddress, as follows:

postmaster+*@example.com

With this format, the envelope To: address is encoded as a subaddress (replacing the
asterisk) within the newly formed envelope From: address. This means that every
address on the mailing list gets a different envelope From: address. For example, let’s
say that jane@myvax.example.com is on the mailing list. Her envelope From: address
would look like:

postmaster+jane+40myvax+2eexample+2ecom@example.com

reply-to-address

The reply-to-address parameter specifies an address to be inserted into the header
on a Reply-to: header line.

errors-to-address

The errors-to-address parameter specifies an address to be placed on the Errors-
to: header line, if this address should be different from the error-return-address

that’s used as the envelope From: address.

warnings-to-address

The warnings-to-address parameter specifies an address to be placed on the Warnings-
to: header line. This header line is not generated if this address is not specified.

4–12

Mailing Lists and MAILSERV
Mailing Lists

comments

The comments parameter specifies a string to be placed in a Comments: header line.
This header line will add to any Comments: header lines already present in the message
being posted to the list.

4.1.3 Basic Mailing List Example

Example 4–2 shows a simple alias file for an OpenVMS host example.com which
includes a mailing list named staff; Example 4–3 shows a similar alias file for a UNIX
host example.com. Mail to the staff list should be addressed to staff@example.com.3

Example 4–1 shows the actual file containing the addresses of each member of the mailing
list (including some printer and FAX addresses); this file is referenced in the sample
aliases files shown in Example 4–2 and Example 4–3.

The use of the indirect stafflist alias directed to the process channel defers the
processing so that performance as perceived by the sender is improved. A process channel
must be defined for this to work. A process channel is automatically defined by the
PMDF configuration utility, as well as rewrite rules that rewrite process to the actual
name associated with the process channel, usually process.localhost.

The use of the AUTH_LIST named parameter here restricts the list such that
only members of the list can post to it. Two positional parameters, error-return-
address and comments, are used. The error-return-address parameter specifies
the postmaster’s address; the comments parameter generates a Comments: header line
reading ‘‘EXAMPLE Computer Center Staff Mailing List’’ which will appear in each
posting to the list.

Example 4–1 Sample Mailing List File staff.dis

!
! staff.dis -- employee mailing list
sue@example.com
ralph@example.com
"Karl R. Smith" <karl@example.com>
lisa@other.example.com
!
! Addresses for people who do not have regular e-mail
"/at=Mr. Potato/o=Potato Farm/ms=Mail Stop PF/"@printer1.example.com
"/at=Dr. Pepper/fn=1-909-555-1212/"@text-fax.example.com

3 From within VMS MAIL, use in%"staff@example.com" or simply in%staff if sending from the node example.com
itself. The VMS MAIL command SET FORWARD/USER can be used to make the simple address staff recognized (as
opposed to in%staff or in%"staff@example.com"):

MAIL> SET FORWARD/USER=STAFF "IN%""STAFF@example.com"""

4–13

Mailing Lists and MAILSERV
Mailing Lists

Example 4–2 Sample OpenVMS aliases File Defining a Mailing List4

!
! Standard aliases
postmast: postmaster
postmaster: ralph@example.com
root: system
!
! The staff mailing list; errors are sent to postmaster@example.com
staff: stafflist@process
stafflist: <pmdf_table:staff.dis, \

[auth_list] pmdf_table:staff.dis, \
postmaster@example.com, *, *, *, \
EXAMPLE Computer Center Staff Mailing List

Example 4–3 Sample UNIX aliases File Defining a Mailing List4

!
! Standard aliases
postmast: postmaster
postmaster: ralph@example.com
root: system
!
! The staff mailing list; errors are sent to postmaster@example.com
staff: stafflist@process
stafflist: </pmdf/table/staff.dis, \

[auth_list] /pmdf/table/staff.dis, \
postmaster@example.com, *, *, *, \
EXAMPLE Computer Center Staff Mailing List

Example 4–4 Sample NT aliases File Defining a Mailing List

!
! Standard aliases
postmast: postmaster
postmaster: administrator
!
! The staff mailing list; errors are sent to postmaster@example.com
staff: stafflist@process
stafflist: <C:\pmdf\table\staff.dis, \

[auth_list] C:\pmdf\table\staff.dis, \
postmaster@example.com, *, *, *, \
EXAMPLE Computer Center Staff Mailing List

As noted previously, addresses in the mailing file should be in standard RFC 822 format
(e.g., not in the form supplied to VMS MAIL).

4 This example assumes that you have a process channel and a rewrite rule that rewrites the pseudodomain process to
the actual pseudodomain name associated with your process channel. If you are using an old configuration generated
prior to PMDF V5.1, you can need to add, in addition to a process channel if you are lacking one, an appropriate rewrite
rule rewriting process to the actual name associated with your process channel, or change stafflist@process to
stafflist@process.localhost.

4–14

Mailing Lists and MAILSERV
Mailing Lists

The command PMDF TEST/REWRITE/CHECK_EXPANSIONS (OpenVMS) or pmdf
test -rewrite -check_expansions (UNIX and Windows) can be used to test the
list. For instance, on OpenVMS systems use the command

PMDF TEST/REWRITE/CHECK_EXPANSIONS/FROM="sue@example.com" staff

Or, on UNIX or Windows systems,

pmdf test -rewrite -check_expansions -from="sue@example.com" staff

Note the use of the /FROM (OpenVMS) or -from (UNIX and Windows) qualifier to provide
an authorized address (as specified in the [AUTH_LIST] list) to treat as the posting
address when attempting the list expansion. (By default such a command would use as
the posting address the official return address for the local postmaster as specified by
the RETURN_ADDRESS option in the PMDF option file; that is, by default PMDF would
perform its test as if the local postmaster were attempting to send a message to the list.)

4.1.4 Restrictions on Mailing List Aliases

There are some important restrictions that should be observed when using mailing
list aliases:

1. The addresses in the mailing list file should be formatted as pure RFC 822 addresses,
e.g., user@host. Do not try to use DECnet or other routing conventions that you
can get away with in the rewrite rules table. Not only can such things fail, they can
not produce a visible error (see the next item). Source routes are the only exotica
that are permitted.

2. Certain types of bogus addresses in a list alias will not generate a ‘‘bad address’’
return message. Specifically, if, for a given address in the list, the system name is
illegal or there is a syntax error in the address specification, then the copy of the
message to that address can be silently dropped and no one will be the wiser. If the
mailing list file associated with an alias does not exist, then mail to the list itself can
be dropped. However, errors in the mailbox part of the address (e.g., ‘‘no such user’’)
will be handled correctly.

System managers should take care to test each list they set up to insure that all the
recipient addresses are correct. The PMDF TEST/REWRITE/CHECK_EXPANSIONS
(OpenVMS) or pmdf test -rewrite -check_expansions (UNIX and Windows)
utility provide a way to do this. Lists should be checked periodically and also
whenever extensive changes are made.

3. PMDF reads the alias file only as each program using PMDF initializes itself. This
means that if you are using a permanently resident server (such as the multi-
threaded SMTP server, or PMDF-LAN Lotus Notes channels) you should be sure
to stop and restart the server each time a mailing list alias definition is changed in
the alias file (or any of the files the alias file includes). (The pmdf restart utility
provides a simple way to restart any such PMDF detached processes.) On the other
hand, mailing list files referenced by the alias file are read and reread as needed, so
servers need not be restarted when one of these mailing list files is changed.

4–15

Mailing Lists and MAILSERV
Mailing Lists

4. Each PMDF process sees the alias database existing as of when it first needed to
access the database. This means that if you are using a permanently resident server
(such as the multi-threaded SMTP server, or PMDF-LAN Lotus Notes channels)
you should be sure to stop and restart the server each time a mailing list alias
definition’s left hand side is changed in the alias database, and each time a mailing
list definition’s right hand side is changed if a new alias database file has been
created (but not if an existing alias database file was updated ‘‘in place’’ using the
PMDF CRDB/APPEND or pmdf crdb -append utility). On the other hand, mailing
list files referenced by the alias file are read and reread as needed, so servers need
not be restarted when one of these mailing list files is changed.

5. The alias file is always read into memory in its entirety each time PMDF is used.
All files included by the primary alias file are also loaded into memory. (Mailing
list files are not loaded into memory.) The use of a huge alias file can eat up lots of
memory. Liberal use of the mailing list reference operator, <, to reference long lists
is recommended. Long lists of addresses coded directly into the alias file or any files
it includes should be avoided. Use of an alias database for large numbers of aliases
is also recommended.

6. Be sure to observe the length restrictions associated with aliases when defining
mailing lists, particularly as mailing list definitions can get rather long. Aliases in the
alias database can contain up to 32 characters in a short database, up to 80 characters
in a long database, and up to 252 characters in a huge database. In the cases of a
short database the translation value can contain up to 80 characters; in the case of a
long database the translation value can contain up to 256 characters; in the case of a
huge database the translation value can contain up to 1024 characters. In some cases
failing to observe length restrictions can lead to addresses being silently dropped from
lists. Aliases in the alias file can contain up to 60 characters (referring here to the
left hand side of the definition). The right hand side of an alias file definition is not
specifically limited; however, each physical line is limited to 1024 characters—use
the backslash line continuation character to continue a long definition over multiple
physical lines. Thus note that particularly long mailing list definitions (definitions
involving quite a few of the optional parameters) can, for reasons of length, need to
be stored in a huge records alias database or in the alias file, rather than an alias
database of shorter records.

4.2 Personal Mailing Lists (OpenVMS and UNIX)

On OpenVMS and UNIX, users can also create their own PMDF personal mailing
lists. Such personal mailing lists are defined using the PMDF DB utility or PMDF MAIL’s
ALIAS commands on OpenVMS, or using the pmdf db utility on UNIX, and the definitions
are stored in the user’s personal alias database. Such personal mailing list definitions
are therefore quite akin to system mailing list definitions that might be stored in the
PMDF system alias database, but made at a user level.

Users can either choose to keep their personal mailing list definitions entirely
private—only the user himself can use the list definition to send to the list. Or
users can choose to mark some of their personal mailing lists as PUBLIC lists; in
that case, other users can send to the first user’s personal mailing list by sending to
firstuser+listname@domainname. That is, users can make PUBLIC (i.e., ‘‘publish’’)
their personal list definitions as subaddresses of their own address.

4–16

Mailing Lists and MAILSERV
Personal Mailing Lists (OpenVMS and UNIX)

See the appropriate edition of the PMDF User’s Guide for additional details.

4.3 Mail and List Server

The mail server channel provides a group of automated server facilities that respond
to commands sent as electronic mail messages. The basic idea is very simple. A user
sends a mail message to the server requesting some type of service. The server responds
by sending one or more response messages. The server can also update various local
databases as part of the processing of some commands (e.g., mailing lists).

The mail server channel program presently provides three general types of services:
distribution of general information about itself, file serving, and mailing list manipula-
tion.

Distribution of general information means that the mail server will send general
information about the server, in the form of mail messages, in response to requests for
information. These requests are currently limited to the commands HELP, INDEX, INFO
(a synonym for HELP), and LISTS.

File serving means that the mail server will process commands requesting files
and will mail the requested files back to the requestor. The SEND command is used
to request files and the DIRECTORY command can be used to find out what files are
actually available. The ENCODING and MODE commands are used to specify how the file
or files are read and encoded prior to being sent.

Mailing list manipulation means that the mail server will accept requests for
subscription to or removal from various mailing lists that have been placed under the
control of the mail server. The SUBSCRIBE and UNSUBSCRIBE commands perform the
basic mailing list functions. The DIRECTORY/LIST command can be used to find out
what lists are available, and the SEND/LIST command can be used to obtain a list of the
current subscribers to a given list.5

It is important to keep in mind that MAILSERV merely handles files; in particular,
MAILSERV can manage mailing list membership files. But MAILSERV has nothing to do
with mailing list postings; postings to the list are handled by PMDF proper and not
MAILSERV. MAILSERV merely manages subscriptions to and from the list and queries for
a copy of the list. For a complete discussion on PMDF mailing lists, see Section 4.1.

5 By default, the SEND/LIST command can not be used. Access to that command is controlled through the
MAILSERV_ACCESS mapping table; see Section 4.3.7.

4–17

Mailing Lists and MAILSERV
Mail and List Server

4.3.1 Mail Server Implementation

The mail server is a PMDF channel program associated with the mailserv channel.
The mail server runs as a master channel program; there is no slave program associated
with the channel.

The mail server only processes mail. It does not process interactive messages as the
LISTSERV servers on BITNET do. It is limited to processing mail messages, interpreting
the body of the message as commands. The mail server does not allow access to files
outside of the directory tree pointed at by the PMDF_MAILSERV_FILES_DIR logical (on
OpenVMS systems) or PMDF tailor file option (on UNIX systems) or Registry entry (on
NT systems).

4.3.2 Mail Server Installation and Configuration

The following sections describe the steps necessary to set up the mail server.

4.3.2.1 Setting Up the Channel

The first step to take in activating the mail server is to add an appropriate channel
entry to your PMDF configuration file. The channel table entry should have the form:

mailserv logging
MAILSERV-DAEMON

The logging keyword can be removed if you don’t care about logging usage of your mail
server.

A couple of alias entries also need to be added to the PMDF alias file. They should
look like this:

mailserv: mailserv@MAILSERV-DAEMON
mailserv-reply: postmaster

The first alias will route mail sent to the mail server on your local host to the
MAILSERV channel. The second alias will route any bounced messages (the return address
of MAILSERV replies is mailserv-reply@local-host-name unless overridden by the
MAILSERV_REPLY channel option) to the Postmaster. This will hopefully prevent any
mail loops.

An option file can also be specified, if desired. The name of this file should be
mailserv_option stored in the PMDF table directory, hence usually the file

PMDF_TABLE:mailserv_option. on OpenVMS or
/pmdf/table/mailserv_option on UNIX or
C:\pmdf\table\mailserv_option on NT.

The available options are:

4–18

Mailing Lists and MAILSERV
Mail and List Server

COMMAND_LIMIT (integer >= -1)

This option specifies the maximum number of commands allowed in a single message to
the MAILSERV channel. Any commands beyond the limit will not be processed. When a
value of -1 is specified, no limit will be imposed. This is the default.

LIBERAL (0 or 1)

If this option is set to 1, then MAILSERV is more liberal in what it accepts. It will strip
out leading quote characters (>, the greater-than sign), and will continue processing after
reading an invalid command, and will strip out stray <mailto:...> strings.

LIST_MAPPING_FLAGS (integer)

This option controls the format of the MAILSERV_LISTS mapping table probe. This
option takes a bit-encoded value. The default value is 0, meaning that the mapping
probe consists simply of the list name. Bit 0 (value 1), if set, prepends the subscribee
address and a vertical bar to the mapping probe. Bit 1 (value 2), if set, prepends the
address used to send the request to MAILSERV and a vertical bar to the mapping probe.

MAILSERV_PERSONAL (string <= 252 characters long)

This option specifies the contents of the personal name field used in From: headers of
messages generated by the MAILSERV channel. When specifying a personal name field
to use, there is no need to enclose the field in quotes; e.g., it is valid to specify

MAILSERV_PERSONAL=Don’t fence me in

MAILSERV_REPLY (address <= 252 characters long)

By default, MAILSERV will generate a reply address of mailserv-reply@local-host
in all messages which it generates. (local-host is here the official local host name of
the system running the MAILSERV channel.) This default can be overridden with the
MAILSERV_REPLY option which can be used to specify an alternate address. Note that
list-specific defaults can also be established via the MAILSERV_LISTS mapping table; see
Section 4.3.5.

MAXBLOCKS (integer >= -1)

Specifies the maximum number of blocks of data in a single message back from the server.
Any response requiring more blocks will be broken into multiple messages, no single
part exceeding this limit. MIME’s message/partial mechanism is used to ‘‘fragment’’ the
message into multiple messages. When a value of -1 is specified, no limit is imposed.
This is the default.

Note that the size of a ‘‘block’’ is controlled with the PMDF BLOCK_SIZE option presented
in Section 7.1. By default, a block is 1024 bytes.

MAXLINES (integer >= -1)

Specifies the maximum number of lines of data in a single message back from the server.
Any response requiring more lines will be broken into multiple messages, no single
part exceeding this limit. MIME’s message/partial mechanism is used to ‘‘fragment’’
the message into multiple messages. When a value of -1 is specied, no limit is imposed.
This is the default.

4–19

Mailing Lists and MAILSERV
Mail and List Server

4.3.2.2 Directories, Logical Names, and Basic Files on OpenVMS

The mail server uses two directories: a file directory (with optional subdirectories)
and a mailing list directory.

On OpenVMS, the file directory is located by the PMDF_MAILSERV_FILES_DIR
logical name. This is normally a rooted logical name that points to the top directory of
the set of directories containing the files that the mail server can distribute. A command
such as one of the following might be used to define the logical name:

$ define/system/exec/translate=conceal pmdf_mailserv_files_dir disk4:[mailserv.files.]
$ define/system/exec/translate=conceal pmdf_mailserv_files_dir disk2:[mailserv.]
$ define/system/exec/translate=conceal pmdf_mailserv_files_dir disk3:

Note that the logical name must either be a rooted reference or a reference to an entire
device.

PMDF does not define this logical name itself. It should be defined during system
startup immediately after the PMDF startup procedure has been run. This definition
should not be placed in the PMDF supplied startup procedure, pmdf_startup.com, as
that procedure is replaced when PMDF is updated and any local changes made to it will
be lost. A convenient place to put these logical definitions is in the optional site-supplied
PMDF_COM:pmdf_site_startup.com file which, as discussed in the PMDF Installation
Guide, OpenVMS Edition, will be executed automatically, if it exists, by the regular
PMDF startup procedure.

The file mailserv_help.sample provided in the PMDF table directory should be
copied to the PMDF_MAILSERV_FILES_DIR directory and given the name help.txt. This
file describes the commands the mail server understands. It can be modified to include
site-specific information if desired. There is no imposed structure for the file help.txt.

The file mailserv_index.sample provided in the PMDF table directory should be
revised to reflect the files MAILSERV can provide. Once revised, it should be copied to
the PMDF_MAILSERV_FILES_DIR directory and given the name index.txt. There is no
imposed structure for the file index.txt.

The second directory is where mailing list files are kept. This directory is located
with the PMDF_MAILSERV_MAIL_DIR logical name. This logical name refers to a single
directory; it must not be a rooted logical name. A command such as one of the following
might be used to define this logical name:

$ define/system/exec pmdf_mailserv_mail_dir disk2:[mailserv.maillist]
$ define/system/exec pmdf_mailserv_mail_dir disk1:[maillists]
$ define/system/exec pmdf_mailserv_mail_dir disk7:[users.maillists]

PMDF does not define this logical name itself. It should be defined during system startup
immediately after the PMDF startup procedure has been run. The mailing list services of
the mail server will be disabled if this logical name is not defined. Again, this definition
should not be placed in the startup procedure supplied by PMDF as that procedure is
replaced when PMDF is updated and any changes made to it will be lost.

A file lists.txt should be created and placed in the PMDF_MAILSERV_MAIL_
DIR directory. This file should list the mailing lists the mail server handles and should
give a brief description of each list. There is no imposed structure for the file lists.txt;
it is simply an ordinary text file.

4–20

Mailing Lists and MAILSERV
Mail and List Server

At this point the mail server should be usable. Try it out by sending some requests
to MAILSERV on the local host and seeing what responses you get.

4.3.2.3 Directories and Basic Files on UNIX

The mail server uses two directories: a file directory (with optional subdirectories)
and a mailing list directory.

On UNIX, the PMDF tailor file option PMDF_MAILSERV_FILES_DIR normally points
to /pmdf/mailserv/files and the PMDF tailor file option PMDF_MAILSERV_MAIL_DIR
normally points to /pmdf/mailserv/mail. (Note that if you change these tailor file
options, your changes will be lost next time you upgrade PMDF.)

These two directories should be created and set to be owned by the pmdf account,
e.g.,

mkdir -m755 /pmdf/mailserv
chown pmdf /pmdf/mailserv
mkdir -m755 /pmdf/mailserv/files
chown pmdf /pmdf/mailserv/files
mkdir -m755 /pmdf/mailserv/mail
chown pmdf /pmdf/mailserv/mail

The file mailserv_help.sample provided in the PMDF table directory should be
copied to the PMDF_MAILSERV_FILES_DIR directory and given the name help.txt.
This file describes the commands the mail server understands. It can be modified to
include site-specific information if desired. There is no imposed structure for the file
help.txt.

The file mailserv_index.sample provided in the PMDF table directory should be
revised to reflect the files MAILSERV can provide. Once revised, it should be copied to
the PMDF_MAILSERV_FILES_DIR directory and given the name index.txt. There is
no imposed structure for the file index.txt.

A file lists.txt should be created and placed in the PMDF_MAILSERV_MAIL_
DIR directory. This file should list the mailing lists the mail server handles and should
give a brief description of each list. There is no imposed structure for the file lists.txt;
it is simply an ordinary text file.

At this point the mail server should be usable. Try it out by sending some requests
to MAILSERV on the local host and seeing what responses you get.

4.3.2.4 Directories and Basic Files on NT

The mail server uses two directories: a file directory (with optional subdirectories)
and a mailing list directory.

On NT, the Registry entry PMDF_MAILSERV_FILES_DIR normally points to
C:\pmdf\mailserv\files\ and the Registry entry PMDF_MAILSERV_MAIL_DIR nor-
mally points to C:\pmdf\mailserv\mail\. These two directories are created by the
PMDF installation procedure.

4–21

Mailing Lists and MAILSERV
Mail and List Server

The file mailserv_help.sample provided in the PMDF table directory should be
copied to the PMDF_MAILSERV_FILES_DIR directory and given the name help.txt. This
file describes the commands the mail server understands. It can be modified to include
site-specific information if desired. There is no imposed structure for the file help.txt.

The file mailserv_index.sample provided in the PMDF table directory should be
revised to reflect the files MAILSERV can provide. Once revised, it should be copied to
the PMDF_MAILSERV_FILES_DIR directory and given the name index.txt. There is
no imposed structure for the file index.txt.

A file lists.txt should be created and placed in the PMDF_MAILSERV_MAIL_
DIR directory. This file should list the mailing lists the mail server handles and should
give a brief description of each list. There is no imposed structure for the file lists.txt;
it is simply an ordinary text file.

At this point the mail server should be usable. Try it out by sending some requests
to MAILSERV on the local host and seeing what responses you get.

4.3.3 Setting Up Mailing Lists

As mentioned previously, it is important to keep in mind that MAILSERV list
membership files are solely that—list membership files. Postings to the list are handled
by PMDF proper and not MAILSERV, which merely manages subscriptions to and from
the list and handles queries for a copy of the list. For a complete discussion of PMDF
mailing lists, see Section 4.1.

Each mailing list maintained by the mail server must be set up by creating a world
readable6 mailing list distribution file in the PMDF_MAILSERV_MAIL_DIR directory
and adding an entry for the list to the PMDF alias file (or alias database). The mailing
list distribution file has the same format as the mailing list distribution files used by the
alias file. See Section 4.1. For example, suppose you want to create a new mailing list
called info-boink. First, create the (initially empty) distribution list file and set its
protections: on OpenVMS,

$ create pmdf_mailserv_mail_dir:info-boink.dis -
_$ /protection=(s:rwed,o:rwed,g:re,w:re)
^Z
$

or on UNIX,

touch /pmdf/mailserv/mail/info-boink.dis
chmod 755 /pmdf/mailserv/mail/info-boink.dis
chown pmdf /pmdf/mailserv/mail/info-boink.dis

or on NT,

C:\> copy nul C:\pmdf\mailserv\mail\info-boink.dis

6 If the mailing list is set up to use deferred expansion, e.g., via the process channel, then the mailing list file need not be
world readable, but rather need only be accessible by the account running PMDF service jobs — usually the SYSTEM
account on OpenVMS or the pmdf account on UNIX.

4–22

Mailing Lists and MAILSERV
Mail and List Server

Next the aliases for the list should be added to the aliases file, PMDF_ALIAS_
FILE, (or added to the alias database). Large lists should be set up for deferred address
expansion. (This can prevent remote mail connections from timing out while the mailing
list is expanded.) The following lines would be added to the aliases file for the info-
boink list on OpenVMS:

info-boink: info-boink-expand@process
info-boink-expand: <PMDF_MAILSERV_MAIL_DIR:info-boink.dis, \

info-boink-error
info-boink-request: mailserv
info-boink-error: postmaster

or on UNIX:

info-boink: info-boink-expand@process
info-boink-expand: </pmdf/mailserv/mail/info-boink.dis, \

info-boink-error
info-boink-request: mailserv
info-boink-error: postmaster

or on NT:

info-boink: info-boink-expand@process
info-boink-expand: <C:\pmdf\mailserv\mail\info-boink.dis, \

info-boink-error
info-boink-request: mailserv
info-boink-error: postmaster

The definition as shown above requires that your PMDF configuration include a
process channel; note that the PMDF configuration utility normally creates such a process
channel. See Section 26.7 for more details on the process channel.

The info-boink mailing list should now be ready to use. These steps should be
repeated to set up any additional mailing lists to be maintained by the mail server.

VMS
On OpenVMS, for the convenience of your VMS MAIL users, you can add a VMS

MAIL forwarding address so that VMS MAIL users can simply send to info-boink
(rather than having to send to IN%info-boink):

$ MAIL
MAIL> SET FORWARD/USER=INFO-BOINK IN%info-boink

UNIX

On UNIX, the case of the mailing list files is important. If the mailing list file is in
all lowercase, then users may specify the list name in any mixture of upper and lower
case on their MAILSERV commands. However, if the mailing list file is in mixed or all
upper case, then users must specify the exact same matching case in their MAILSERV
commands.

4–23

Mailing Lists and MAILSERV
Mail and List Server

4.3.4 Welcome Messages for Mailing Lists

It is possible to have a welcome message sent to subscribers when they subscribe to
a list with the SUBSCRIBE command. When a user is subscribed to the list list,
MAILSERV will search for the file list.txt in the PMDF_MAILSERV_MAIL_DIR
directory. If this file exists, then it will be sent to the new subscribee. Welcome messages
generally contain such information as who maintains the list, list usage policies, the list’s
posting address, etc..

4.3.5 List and File Name Mapping, and From: Address Control

The PMDF mail server provides a facility which can be used to transform the list
and file names specified in user commands prior to actual use. For instance, this can be
used to provide access to the same underlying list membership file under two different
apparent names. It can also be used to allow use of apparent list names containing
characters not allowed in OpenVMS file names. The two mappings MAILSERV_FILES
and MAILSERV_LISTS provide this functionality.

The MAILSERV_FILES mapping, if present, is applied to all file names. The mapping
table template (right hand side) should set either the $Y or $T flag if the string result
produced by the mapping should replace the file that the user specified; if neither of
these are set then the results of the mapping will be ignored.

The MAILSERV_LISTS mapping, if present, is applied to all list names. The mapping
table template (right hand side) should set either the $Y or $T flag if the string result
produced by the mapping should replace the file or list name the user specified. If the
$A flag is specified, then the string result produced by the mapping will be used as the
From: address in any MAILSERV messages sent back to the user regarding this list. If
no flags are set, then the results of the mapping will be ignored. Both a replacement list
name and a From: address can be specified by separating them with a comma, e.g.,

MAILSERV_LISTS

externalname YAinternalname,externalname-request@example.com

4.3.6 Default List Name Constructed From To: Address

PMDF will use the username of the To: address to which a message was sent as
a default list name. That is, if a user submits a command to MAILSERV where that
command does not include an explicit list name, the default list name based on the
To: address will be used. Configuring to take advantage of this feature is usually
done by aliasing addresses of the form listname-request@localhost to point to
listname@MAILSERV.

For instance, if an alias such as

4–24

Mailing Lists and MAILSERV
Mail and List Server

listname-request: listname@MAILSERV-DAEMON

is created, then a user can send a message to listname-request consisting of just
the command SUBSCRIBE with no argument in order to subscribe to the list named
listname.

4.3.7 Access Control

Access to each type of mail server functionality is controlled using the MAILSERV_ACCESS
mapping table in the PMDF mapping file. Use of this mapping is optional; reasonable
defaults are assumed for each sort of access if no mapping is specified.

Access control is necessarily based on addressing information. Since it is in
practice possible to forge any sort of address, simple From: address information access
checks offer only marginal protection at best. Although they can make it difficult for
unsophisticated users to unintentionally cause damage they offer no protection at all
against malicious attack.

So for greater protection, MAILSERV can be configured to generate a challenge-
response double-check; see Section 4.3.7.4.

4.3.7.1 Access Check Strings

Each command presented to the mail server is used to compose one or more access
query strings. The MAILSERV_ACCESS mapping is then applied to each of these strings.
The result of the mapping is examined and determines whether or not the requested
operation is allowed. If the operation is not allowed the mail server returns an indication
to the requestor indicating that an access failure has occurred.

The access query strings are always in one of the following two formats:

command-keyword|command-parameter|address
command-keyword|command-parameter|address1|address2

command-keyword is derived from the name of the command being checked. It will
be DIRECTORY for the DIRECTORY command, DIRECTLIST for the DIRECTORY/LIST
command, PURGELIST for the PURGE/LIST command, SEND for the SEND command,
SENDLIST for the SEND/LIST command, SUBSCRIBE for the SUBSCRIBE command,
and UNSUBSCRIBE for the UNSUBSCRIBE command. Although commands can be
abbreviated, abbreviations do not carry over into the command-keyword strings.

ERRORHELP is a special command-keyword used to construct entries specifying an
error message file to send back to users in response to any errors processing the users’
commands.

The command-parameter depends on the command. In the case of the file
commands, DIRECTORY and SEND, the parameter is the name of the particular file
being accessed. The file name string consists of the directory specification, if any, (that
is, the subdirectory, if any, under PMDF_MAILSERV_MAIL_DIR), the file name, and

4–25

Mailing Lists and MAILSERV
Mail and List Server

the file type. Wildcards don’t carry over into access strings; the wildcard expansion
process is done first and then each resultant file generates a separate access check. In
the case of list commands, DIRECTORY/LIST, PURGE/LIST, SEND/LIST, SUBSCRIBE,
and UNSUBSCRIBE, the command-parameter is the name of the list; more precisely,
it is the filename of the list, without the .dis extension. Wildcards are once again
expanded prior to doing any access checks.

When a mail server request involves only one address, the single-address form of
access query string is built, and address is the address of the originator (envelope From:
address) for the request. In some cases, notably the SUBSCRIBE and UNSUBSCRIBE
commands, two addresses can be involved — the address responsible for the request and
the address on whose behalf the request is presented, (i.e., the address for which the
request is being made). In these cases the two-address form of access query string is
used, where the request is made by address1 for address2.

Note that a user’s own subaddress is not considered to be a second address in
that the one address form of access query string is constructed for the case of a user
subscribing or unsubscribing one of their own subaddresses, i.e., a user user subscribing
or unsubscribing an address of the form user+string.

These rules are summarized in Table 4–2.

Table 4–2 Access Check Strings

MAILSERV command MAILSERV_ACCESS check string format Default access

DIRECTORY file-spec DIRECTORY|file-spec|from-address Allowed

DIRECTORY/LIST list-name DIRECTLIST|list-name|from-address Allowed

DIRECTORY/LIST DIRECTLIST|list-name|from-address Allowed

HELP HELP|HELP.TXT|from-address Allowed

INDEX INDEX|INDEX.TXT|from-address Allowed

LISTS LISTS|LISTS.TXT|from-address Allowed

PURGE/LIST list-name PURGELIST|list-name|from-address Disallowed

SEND file-spec SEND|file-spec|from-address Allowed

SEND/LIST list-name SENDLIST|list-name|from-address Disallowed

SET MAIL list-name SETMAIL|list-name|from-address Disallowed

SET MAIL list-name other-address SETMAIL|list-name|from-address|other-address Disallowed

SET NOMAIL list-name SETMAIL|list-name|from-address Disallowed

SET NOMAIL list-name other-address SETMAIL|list-name|from-address|other-address Disallowed

SUBSCRIBE list-name SUBSCRIBE|list-name|from-address Allowed

SUBSCRIBE list-name subaddress SUBSCRIBE|list-name|from-address Allowed

SUBSCRIBE list-name other-address SUBSCRIBE|list-name|from-address|other-address Allowed

UNSUBSCRIBE list-name UNSUBSCRIBE|list-name|from-address Allowed

UNSUBSCRIBE list-name subaddress UNSUBSCRIBE|list-name|from-address Allowed

UNSUBSCRIBE list-name other-address UNSUBSCRIBE|list-name|from-address|other-address Disallowed

invalid command ERRORHELP|from-address|from-address Allowed

4–26

Mailing Lists and MAILSERV
Mail and List Server

Note: As always for PMDF mapping tables, if using entries that contain wildcards, e.g., *
or %, it is important to put more specific entries before less specific entries. And keep
in mind that wildcard matches can include the vertical bar character, |; or in other
words, a wildcard such as an asterisk can match across a vertical bar. In particular, for
MAILSERV_ACCESS mapping SUBSCRIBE and UNSUBSCRIBE checks note that one
should put two address checks before wildcarded one address checks.

4.3.7.2 Access Check Mapping Results

Access check mapping entries set flags to indicate whether or not the request should
be honored. A $Y or $T specifies that the request should be honored. A $N or $F indicates
that the request should be rejected.

A $< specifies that the entry has returned a file name. The file name should be
specified as a full absolute path. This file is opened and read as a series of addresses.
The request is rejected if the requestor’s address does not appear in the list. A $> does
the same thing except that rejection occurs if the requestor’s address is in the list. $<
and $> cannot be used in the same entry; if they are the result is unpredictable.

For an entry that would otherwise succeed, a $* specifies that the entry has returned
a referral address. Instead of honoring the request directly the mail server forwards the
request to the specified referral address. The request is rejected if the referral address
is bogus. A message is also sent to the requestor indicating that his or her request
has been referred elsewhere. This message can be suppressed by appending $S to the
mapping’s result. The first line in the example below allows user@a.b.c.d to subscribe
others to the info-boink list; all others who try to subscribe to the list will get referred
to user@a.b.c.d.

MAILSERV_ACCESS

SUBSCRIBE|info-boink|user@a.b.c.d|* $Y
SUBSCRIBE|info-boink|* $*user@a.b.c.d

To specify referral for a command that would normally fail, such as by default third
party UNSUBSCRIBES, note that one must specify $Y as well as $*, e.g.,

MAILSERV_ACCESS

UNSUBSCRIBE|info-boink|user@a.b.c.d|* $Y
UNSUBSCRIBE|info-boink|*|* Y*user@a.b.c.d

If both $* and $< or $> are used simultaneously the string returned by the mapping
entry should consist of the file name, a comma, and then the referral address.

For SUBSCRIBE, UNSUBSCRIBE, and SENDLIST access check mapping entries, a
$K specifies that, rather than immediately performing the requested action, MAILSERV
should send a message to the address in question (the [un]subscribee address or the
address apparently making the SEND/LIST request) asking the user to confirm the
requested action. This MAILSERV message will contain a cookie—a string that the
user must include in a confirmation message, if they want the action to be performed.
See Section 4.3.7.4 for further details.

4–27

Mailing Lists and MAILSERV
Mail and List Server

For a SENDLIST access check mapping entry, a $X specifies that by default, any
RFC 822 comment fields should be stripped from the distribution list sent back to
the user. A user who is allowed to get a copy of the list (note that SEND/LIST is
disabled by default) can override this default with the optional /COMMENTS qualifier
of the SEND/LIST command.

Normally, a successful SUBSCRIBE or UNSUBSCRIBE causes a ‘‘You have been
[un]subscribed to/from the list ...’’ message to be sent to the [un]subscribee address.
In a SUBSCRIBE or UNSUBSCRIBE access check mapping entry, a $D alters that behavior.
When $D is specified, the usual notification message to the [un]subscribee address in the
case of a third party [un]subscribe can be blocked by specifying /NONOTIFY; a notification
message back to the [un]subscriber will still be sent.

The available flags are summarized in Table 4–3.

Table 4–3 MAILSERV_ACCESS Mapping Table Flags

Flag Description

$Y Honor the request

$T Honor the request

$N Do not honor the request

$F Do not honor the request

$* If honoring, refer request to the specified address

$K If honoring, send a cookie response back to the address in question; see
Section 4.3.7.4

$S Suppress ‘‘Your request has been referred to...’’ messages

$D Honor /[NO]NOTIFY requests on [UN]SUBSCRIBE commands

$< Honor requests from senders in the specified file

$> Do not honor requests from senders in the specified file

$V When performing a third party command where $K is set, send the ‘‘please
confirm’’ message to the address issuing the command, rather than the address
on whose behalf the command was issued

$X When checking a SEND/LIST command, default to not including comments in
returned list

Flag
comparisons Description

$:K Match only when processing the confirmation (response to $K) of a command

4.3.7.3 Access Defaults

The DIRECTORY, DIRECTORY/LIST, SEND, and SUBSCRIBE commands all allow full
access if no access mapping is provided or the access check string does not match any
mapping entry. The SEND/LIST and PURGE/LIST commands refuse all access and the
UNSUBSCRIBE command only allows users to unsubscribe themselves from lists and no
one else. See Table 4–2 for a summary of these defaults.

4–28

Mailing Lists and MAILSERV
Mail and List Server

4.3.7.4 Access Confirmation via a Challenge-Response Cycle

Given the nature of contemporary messaging protocols, it is fairly easy to forge an
e-mail address. Thus the security offered by regular mail server access checks, which are
primarily e-mail envelope From: address based, is rather fragile; it can protect against
naive users, but is not sufficient to protect against a malicious attacker who forges his
envelope From: address.

Greater security for some commands can be obtained by having MAILSERV engage
in a challenge-response cycle, by setting the $K flag in appropriate MAILSERV_ACCESS
access check entries.

When a successful MAILSERV_ACCESS SUBSCRIBE, UNSUBSCRIBE, or SENDLIST
access check entry returns the $K flag, then rather than immediately performing the
requested operation, MAILSERV instead sends a challenge message to the purported
address to be affected by the command. (This would be the purported From: address for
most commands, or the subscribee or unsubscribee address for third party SUBSCRIBE or
UNSUBSCRIBE commands.) The challenge message from MAILSERV will contain a cookie
string—the user will have to confirm the request via a response including that exact
cookie string.

For instance, suppose a site example.com wants to allow any users in the exam-
ple.com domain to subscribe themselves, or any other address, to the list, but does not
want to allow any non-example.com addresses to perform any subscriptions to the list.
Then a MAILSERV_ACCESS mapping such as the following could be used:

MAILSERV_ACCESS

SUBSCRIBE|example-list|*@example.com|* YK
SUBSCRIBE|example-list|*|* $N
SUBSCRIBE|example-list|*@example.com YK
SUBSCRIBE|example-list|* $N

With such a mapping in effect, suppose a malicious user forger@somewhere.edu
sends a message to MAILSERV. For this message they forge the envelope From: ad-
dress to appear to be John.Doe@example.com—an address apparently within ex-
ample.com. Suppose this forged message is a third-party subscribe request— the
apparent (forged) John.Doe@example.com From: address requesting that the mali-
cious user’s true address forger@somewhere.edu be subscribed. But because of the
$K on the first entry in this sample MAILSERV_ACCESS table, MAILSERV does not di-
rectly subscribe the malicious outside user to example-list; instead, MAILSERV sends
a message to John.Doe@example.com including a challenge (cookie) string. Unless
John.Doe@example.com sends back a confirmation message including the cookie, the
subscribe of forger@somewhere.edu will not be performed. In particular,
forger@somewhere.edu would have to guess or otherwise obtain the cookie string in
order to achieve their attempted subscribe.

On an implementation note, any initial messages awaiting cookie confirmation are
stored in the directory PMDF_QUEUE:[mailserv.spool] (OpenVMS) or
/pmdf/queue/mailserv/spool/ (UNIX); if no cookie confirmation is received, such
messages will time out after seven days and be returned to the sender (envelope From:
address).

4–29

Mailing Lists and MAILSERV
Mail and List Server

4.3.7.5 Access Example

The following mapping controls access to the info-boink list. It specifies that
user@a.b.c.d has full access to the list and handles subscription requests by referral.
Users in domain f.g.h.i cannot access the list in any way. It also specifies that anyone
not in the domain f.g.h.i can retrieve a copy of the list membership.

MAILSERV_ACCESS

|info-boink|user@a.b.c.d| $Y
*|info-boink|user@a.b.c.d $Y
|info-boink|@f.g.h.i|* $N
|info-boink|@f.g.h.i $N
SUBSCRIBE|info-boink|user@a.b.c.d|* $Y
SUBSCRIBE|info-boink|* $*user@a.b.c.d
SENDLIST|info-boink|* $Y

4.3.8 Server Commands

The commands recognized by the mail server are described in the PMDF User’s
Guide. A brief description of each command is given in Table 4–4.

Table 4–4 Summary of Mail and List Server Commands

Command Description

CONFIRM Confirm a command from a previous message
DIRECTORY List available files
DIRECTORY/LIST List available mailing lists
ENCODING Set default file transmission encoding
END Terminate processing, accept no additional commands
EXIT Synonymous with END
FINISH Synonymous with END
HELP Obtain the site-supplied file containing help information
INDEX Obtain the site-supplied file containing an index of available files
LISTS Obtain the site-supplied file describing available mailing lists
MAXIMUM Set maximum message size; larger messages will be fragmented
MODE Set the default file access mode
PURGE/LIST Remove comment lines from the list file
QUIT Synonymous with END
SEND Send the specified files
SEND/LIST Send the membership list for a given mailing list
SEND/LIST/COMMENTS Send the membership list for a given mailing list, including members’

RFC 822 comment fields
SEND/LIST/NOCOMMENTS Send the membership list for a given mailing list, stripping members’

RFC 822 comment fields
SET MAIL Set an address to receive list postings
SET NOMAIL Set an address to not receive list postings
STOP Synonymous with END
SUBSCRIBE Subscribe to a mailing list
SUBSCRIBE/NOMAIL Subscribe to a mailing list an address which should not receive list

postings

4–30

Mailing Lists and MAILSERV
Mail and List Server

Table 4–4 (Cont.) Summary of Mail and List Server Commands

Command Description

SUBSCRIBE/NOTIFY Subscribe to a mailing list, requesting a notification message to the
subscribee address in the case of a third-party subscribe

SUBSCRIBE/NONOTIFY Subscribe to a mailing list, requesting no notification message to the
subscribee address in the case of a third-party subscribe

UNSUBSCRIBE Unsubscribe from a mailing list
UNSUBSCRIBE/NOTIFY Unsubscribe from a mailing list, requesting a notification message to the

unsubscribee address in the case of a third-party unsubscribe
UNSUBSCRIBE/NONOTIFY Unsubscribe from a mailing list, requesting no notification message to

the unsubscribee address in the case of a third-party unsubscribe

4.3.9 MAILSERV Channel Usage Logging

The logging channel keyword, described in Section 2.3.4.84, can be used with the
MAILSERV channel to enable logging activity. Activity is logged in the PMDF mail log
file. See Section 31.1 for a general description of this file. When logging is enabled, then
in addition to normal channel enqueue and dequeue entries, the MAILSERV channel will
also write a log entry for each command processed. The ‘‘type of entry’’ item in each such
log file entry will be a single character selected from the set F, S:

Logging
Code Type Description

F Failure Error processing command; command not executed
S Success Command successfully executed

The format of the log file entries for the MAILSERV channel command processing will
be:

1. The date the entry was made (e.g., ‘‘29-NOV-2012’’).

2. The time the entry was made (e.g., ‘‘12:13:18’’).

3. The name of the channel logging the entry (‘‘mailserv’’).

4. The beginning time and ending time of the execution of the command in
HHMMSSHHMMSS format.

5. The success (S) or failure (F) of the command.

6. The ‘‘message size’’ field will always be zero, 0, for MAILSERV command entries.

7. The envelope From: address of the originator of the message whose command is
being executed.

8. The MAILSERV command.

9. The number of seconds spent processing the command.

4–31

Mailing Lists and MAILSERV
Examples of Mailing Lists with MAILSERV Subscription Handling

4.4 Examples of Mailing Lists with MAILSERV Subscription Handling

Mailing lists and MAILSERV are separate facilities in PMDF: mailing lists are set up,
and postings to them controlled, via definition in the PMDF alias file or alias database,
whereas MAILSERV is a general file serving facility that can also handle automated
mailing list subscription and membership requests. Mailing lists can be used with or
without MAILSERV, and MAILSERV can be used with or without mailing lists.

Nevertheless, it is common task to set up mailing lists whose subscription commands
are to be handled by MAILSERV. This section discusses a few sample mailing list
scenarios.

4.4.1 An Open, With Exceptions, Mailing List

This section will discuss an example of a mailing list for which no general stringent
posting or subscription restrictions are to be imposed, with the exception of a ‘‘list owner’’
maintained subsidiary list of addresses specifically prohibited from posting to the list.
Such a list definition in the PMDF alias file might be:

open-list: open-list-expand@process
open-list-expand: <PMDF_MAILSERV_MAIL_DIR:open-list.dis, \

[CANT_LIST] PMDF_MAILSERV_MAIL_DIR:open-list-reject.dis, \
[USERNAME] open-list-owner, \
[HEADER_ADDITION] PMDF_TABLE:open-list-headers.txt, \
open-list-owner@example.com, \
open-list@example.com

open-list-request: MAILSERV

In this definition, the only access control established for list postings is that no addresses
in the PMDF_MAILSERV_MAIL_DIR:open-list-reject.dis file can post; this file
might initially be empty, to be added to by open-list-owner@example.com if abusive
postings are received.

The above list definition references a file of headers to be added to messages posted
to the list; such a file might be:

List-Help: <mailto:mailserv@example.com?body=help> (MAILSERV Instructions),
<mailto:open-list-owner@example.com?subject=help> (List Manager)

List-Subscribe:
<mailto:open-list-request@example.com?body=subscribe%20open-list>

List-Unsubscribe:
<mailto:open-list-request@example.com?body=unsubscribe%20open-list>

List-Post: <mailto:open-list@example.com>
List-Owner: <mailto:open-list-owner@example.com?Subject=open-list>

For the list open-list, third party subscribes by anyone other than open-list-
owner@example.com will be disallowed, but all other subscribes will be permitted.
open-list-owner@example.com will be permitted to perform third party unsubscribes,
but all others can only unsubscribe themselves. Members of the list will be allowed to
request the list membership file. MAILSERV responses to user messages to MAILSERV re-
garding the open-list list will have a From: address of open-list-owner@example.com.

4–32

Mailing Lists and MAILSERV
Examples of Mailing Lists with MAILSERV Subscription Handling

The open-list-reject list will also be handled by MAILSERV; only the open-list-
owner@example.com address will have any access to this subsidiary list.

MAILSERV_ACCESS

SUBSCRIBE|open-list|open-list-owner@example.com|* $Y !
SUBSCRIBE|open-list|open-list-owner@example.com $Y "
SUBSCRIBE|open-list|*|* $N #
SUBSCRIBE|open-list|* $Y $
UNSUBSCRIBE|open-list|open-list-owner@example.com|* $Y %
UNSUBSCRIBE|open-list|open-list-owner@example.com KY &
UNSUBSCRIBE|open-list|*|* $N '
UNSUBSCRIBE|open-list|* $Y (
SENDLIST|open-list|open-list-owner@example.com $Y)
SENDLIST|open-list|* \

X<PMDF_MAILSERV_MAIL_DIR:open-list.dis +>

PURGELIST|open-list|open-list-owner@example.com $Y +?
!
SUBSCRIBE|open-list-reject|open-list-owner@example.com|* KVYD +@
SUBSCRIBE|open-list-reject|* $N +A
UNSUBSCRIBE|open-list-reject|open-list-owner@example.com|* KVYD +B
UNSUBSCRIBE|open-list-reject|* $N +C
SENDLIST|open-list-reject|open-list-owner@example.com $Y +D
PURGELIST|open-list-reject|open-list-owner@example.com $Y +E
DIRECTLIST|open-list-reject|* $N +F
|open-list-reject| $N +G

MAILSERV_LISTS

open-list $Aopen-list-owner@example.com ,>

More specifically:

! This entry specifies that open-list-owner@example.com can subscribe other
addresses to the list.

" This entry specifies that open-list-owner@example.com can subscribe himself to
the list. Note that !, above, does not enable this; in order to allow open-list-
owner@example.com to subscribe himself, this separate entry is required.

This entry disallows third party subscribes: userA cannot subscribe userB to the list.
The earlier entry, !, explicitly allows open-list-owner@example.com to perform
third-party subscribes of other addresses; if anyone else attempts to perform a third-
party subscribe, the attempt will fall-through to this entry and be denied.

$ This entry allows general users to subscribe themselves. Note that this is a default
behavior and hence this entry is, strictly speaking, redundant. However, it is included
for completeness and clarity.

% This entry specifies that open-list-owner@example.com can unsubscribe other
addresses from the list.

& This entry specifies that open-list-owner@example.com can unsubscribe himself,
though due to the $K in the entry, MAILSERV will double check and ask him to confirm
any such request. Note that %, above, does not enable open-list-owner@example.com
to unsubscribe himself; % applies only to third party unsubscribes.

' This entry disallows third party unsubscribes in general. Note that third party
unsubscribes are disallowed by default, so this entry is not, strictly speaking,
necessary; however, it is included for completeness and clarity.

4–33

Mailing Lists and MAILSERV
Examples of Mailing Lists with MAILSERV Subscription Handling

(This entry explicitly allows general users to unsubscribe themselves; note that such
direct unsubscribes are allowed by default, so this entry is not, strictly speaking,
necessary; however, it is included for completeness and clarity.

) This entry allows open-list-owner@example.com to request and receive a copy
of the list file. As opposed to the next entry, +>, note that a $X is not specified
on this entry; comments in the list entries (such as MAILSERV notes regarding
who subscribed the addressee and when) will be included by default if open-list-
owner@example.com requests a copy of the list.

+> This entry allows anyone already subscribed to the list to request and receive a copy
of the list file. The $X in the entry causes any comments in the list file (such as notes
about who subscribed an address and when) to be stripped, by default, when sending
the list file.

+? This entry allows open-list-owner@example.com to use the command PURGE/LIST
open-list to cause comment lines (such as addresses unsubscribed via MAILSERV) to
be removed from the list file.

+@ This entry allows open-list-owner@example.com to subscribe other addresses
to the open-list-reject list. The $K means that the subscriptions will not be
immediately performed, but rather MAILSERV will send back a message to (due to
the $V) open-list-owner@example.com asking him to confirm the subscription.
The $D means that open-list-owner can use the /NONOTIFY qualifier on subscribe
requests, e.g., SUBSCRIBE/NONOTIFY open-list-reject, to cause omission of the
usual ‘‘You have been subscribed by open-list-owner@example.com to open-list-reject
list’’ message to the subscribee address.

+A This entry disallows all subscribe access (other than that explicitly allowed earlier
in +@) to the open-list-reject list.

+B This entry allows open-list-owner@example.com to unsubscribe other addresses from
the open-list-reject list. The $K means that the unsubscriptions will not be
immediately performed, but rather MAILSERV will send back a message to (due to
the $V) open-list-owner@example.com asking him to confirm the unsubscription.
The $D means that open-list-owner can use the /NONOTIFY qualifier on unsubscribe
requests, e.g., UNSUBSCRIBE/NONOTIFY open-list-reject, to cause omission of the
usual ‘‘You have been unsubscribed by open-list-owner@example.com from open-list-
reject list’’ message to the unsubscribee address.

+C This entry disallows all unsubscribe access (other than that explicitly allowed earlier
in +B) to the open-list-reject list.

+D This entry allows open-list-owner@example.com to use the command SEND/LIST
open-list-reject to request a copy of the open-list-reject list.

+E This entry allows open-list-owner@example.com to use the command PURGE/LIST
open-list-reject to purge commented lines (including addresses unsubscribed via
MAILSERV) from the open-list-reject list.

+F This entry causes open-list-reject to not be displayed as a list in response to
any DIRECTORY/LIST command.

+G This entry disallows any other MAILSERV access to the open-list-reject list.

,> This MAILSERV_LISTS entry specifies that MAILSERV responses to user messages
to MAILSERV regarding open-list will have a From: address of open-list-
owner@example.com.

4–34

Mailing Lists and MAILSERV
Examples of Mailing Lists with MAILSERV Subscription Handling

4.4.2 A Semi-restricted Mailing List

This example will discuss an example of a somewhat restricted list. Subscription
requests are referred to a list owner. Only members of the list can post directly to the
list; if others attempt to post, their postings will be referred to the list owner. Such a list
definition in the PMDF alias file might be:

group-list: group-list-expand@process
group-list-expand: <PMDF_MAILSERV_MAIL_DIR:group-list.dis, \

[MODERATOR_ADDRESS] group-list-owner@example.com, \
[MODERATOR_LIST] PMDF_MAILSERV_MAIL_DIR:group-list.dis, \
[USERNAME] group-list-owner, \
[HEADER_ADDITION] PMDF_TABLE:group-list-headers.txt, \
group-list-owner@example.com, \
group-list@example.com

group-list-request: MAILSERV

Because the entire list is used for the [MODERATOR_LIST] argument, anyone already
on the list can post directly to the list. But attempted postings from anyone else will be
referred to the [MODERATOR_ADDRESS] argument, group-list-owner@example.com

The above list definition references a file of headers to be added to messages posted
to the list; such a file might be:

List-Help: <mailto:mailserv@example.com?body=help> (MAILSERV Instructions),
<mailto:group-list-owner@example.com?subject=help> (List Manager)

List-Subscribe:
<mailto:group-list-owner@example.com?subject=subscribe%20group-list>

List-Unsubscribe:
<mailto:mailserv@example.com?body=unsubscribe%20group-list>

List-Post: <mailto:group-list-owner@example.com> (List Moderator)
List-Owner: <mailto:group-list-owner@example.com?Subject=group-list>

Only group-list-owner@example.com will be permitted to subscribe users to
the list. group-list-owner can also unsubscribe other users from the list. And
group-list-owner@example.com will have to confirm any SUBSCRIBE or UNSUB-
SCRIBE commands; that is, when group-list-owner@example.com sends a SUB-
SCRIBE or UNSUBSCRIBE request to MAILSERV, MAILSERV will send back to group-
list-owner@example.com a message containing a cookie string, which group-list-
owner@example.com will need to include in a second, confirming message in order for
the command to actually be performed. Users can unsubscribe themselves, but attempts
to unsubscribe others will be referred to the group-list-owner. Only members of the
list will be permitted to request the list membership file, and MAILSERV will require that
such requests be confirmed with a second request message including a cookie string that
MAILSERV sends out to the supposed requestor address.

MAILSERV_ACCESS

4–35

Mailing Lists and MAILSERV
Examples of Mailing Lists with MAILSERV Subscription Handling

SUBSCRIBE|group-list|group-list-owner@example.com|* KV$Y !
SUBSCRIBE|group-list|group-list-owner@example.com KY "
SUBSCRIBE|group-list|*|* $*group-list-owner@example.com #
SUBSCRIBE|group-list|* $*group-list-owner@example.com $
UNSUBSCRIBE|group-list|group-list-owner@example.com|* KV$Y %
UNSUBSCRIBE|group-list|group-list-owner@example.com KY &
UNSUBSCRIBE|group-list|*|* Y*group-list-owner@example.com '
UNSUBSCRIBE|group-list|* $Y (
SENDLIST|group-list|group-list-owner@example.com $Y)
SENDLIST|group-list|* X<PMDF_MAILSERV_MAIL_DIR:group-list.dis +>
PURGELIST|group-list|group-list-owner@example

MAILSERV_LISTS

group-list $Agroup-list-owner@example.com +?

More specifically:

! This entry explicitly allows group-list-owner@example.com to subscribe others
to the list; a later entry, #, will cause third-party subscribe attempts from any other
sending address to be redirected to group-list-owner@example.com. Note the
use of $K; this means that any subscription will not be performed immediately, but
rather MAILSERV will send back a challenge message to (due to the $V group-list-
owner@example.com asking him to confirm the subscription.

" This entry explicitly allows group-list-owner@example.com to subscribe himself
to the list; a later entry, $, will cause direct subscribe attempts from any other send-
ing address to be redirected to group-list-owner@example.com. Note the use of
$K; this means that such a subscription will not be performed immediately, but rather
MAILSERV will send back a challenge message to group-list-owner@example.com
asking him to confirm the subscription.

This entry causes third party subscribe attempts to be redirected to group-list-
owner@example.com.

$ This entry causes direct subscribe attempts to be redirected to
group-list-owner@example.com.

% This entry allows group-list-owner@example.com to unsubscribe other addresses
from the list. Note the use of $K; this means that any unsubscription will not be
performed immediately, but rather MAILSERV will send back a challenge message
to (due to the $V) group-list-owner@example.com asking him to confirm the
unsubscription.

& This entry allows group-list-owner@example.com to unsubscribe himself from
the list. Note the use of $K; this means that any unsubscription will not be performed
immediately, but rather MAILSERV will send back a challenge message to group-
list-owner@example.com asking him to confirm the unsubscription.

' This entry causes third-party unsubscribe attempts to be redirected to group-list-
owner@example.com. Since third party unsubscribes are disallowed by default,
an alternative would be to not put in any entry and get the default behavior of
disallowing them. But it can be useful for group-list-owner to know about
attempted third party unsubscribes; for instance, users whose addresses change can
be attempting to unsubscribe their old addresses.

(This entry allows general users to unsubscribe themselves. This is allowed by
default, so strictly speaking this entry is not necessary; however, it is included for
completeness and clarity.

4–36

Mailing Lists and MAILSERV
Examples of Mailing Lists with MAILSERV Subscription Handling

) This entry allows group-list-owner@example.com to get a copy of the list
membership file.

+> This entry allows members of group-list to get a copy of the list membership file;
because of the $X in the entry, they will not get comment lines by default.

+? This entry allows group-list-owner@example.com to purge the list membership
file of comment lines (such as MAILSERV comment lines showing unsubscribed users).

+@ This MAILSERV_LISTS entry specifies that MAILSERV responses to user messages
to MAILSERV regarding group-list will have a From: address of group-list-
owner@example.com.

4–37

5 The Mapping File

Many components of PMDF employ table lookup oriented information. One
particular type of table is used more often in PMDF than any other. Generally speaking,
this sort of table is used to transform (i.e., map) an input string into an output string.
Such tables, referred to as mapping tables, are usually presented as two columns, the
first or left-hand column giving the possible input strings and the second or right-hand
column giving the resulting output string for the input it is associated with. Most of
the PMDF databases are instances of just this sort of mapping table. PMDF database
files, however, do not provide wildcard lookup facilities, owing to inherent inefficiencies
in having to scan the entire database for wildcard matches.

The mapping file provides PMDF with facilities for supporting multiple mapping
tables. Full wildcard facilities are provided, and multi-step and iterative mapping
methods can be accommodated as well. This approach is more compute-intensive than
using a database, especially when the number of entries is large. However, the attendant
gain in flexibility can actually serve to eliminate the need for most of the entries in an
equivalent database, and this can actually result in lower overhead overall.

A complete list of the mapping table names recognized by PMDF is provided under
the index entry ‘‘Mappings’’. You can test mapping tables with the PMDF TEST/MAPPING
(OpenVMS) or pmdf test -mapping (UNIX and NT) utility. See Chapter 29 and
Chapter 30 for details.

5.1 Locating and Loading the Mapping File

All mappings are kept in the PMDF mapping file.1 Each time a PMDF program
begins running, this file is read and loaded into memory. This overhead can be avoided
by compiling your PMDF configuration, in which case the contents of the mapping file
will be incorporated into the compiled configuration. The disadvantage to this, however,
is that it means that the configuration must be recompiled and reinstalled whenever a
change is made to the mapping file or to an include file used by the mapping file. See
Section 8.1 for details on compiling your configuration.

The mapping file should be world readable. Failure to allow world read access will
lead to erratic behavior.

1 This is the file pointed to by the PMDF_MAPPING_FILE logical (OpenVMS), PMDF Tailor file entry (UNIX), or Registry
entry (NT), and hence is usually PMDF_TABLE:mappings. (OpenVMS) or /pmdf/table/mappings (UNIX)
or C:\pmdf\table\mappings (NT).

5–1

The Mapping File
File Format

5.2 File Format

The mapping file consists of a series of separate tables. Each table begins with its
name. Names always have an alphabetic character in the first column. The table name
is followed by a required blank line, and then by the entries in the table. Entries consist
of zero or more indented lines. Each entry line consists of two columns separated by one
or more spaces or tabs. Any spaces within an entry must be quoted; see Section 5.3.1.
It is required that a blank line appear after each mapping table name and between each
mapping table; no blank lines can appear between entries in a single table. Comments
are introduced by an exclamation mark, !, appearing in the first column.

Pictorially, the format that results looks like this:

TABLE-1-NAME

pattern1-1 template1-1

pattern1-2 template1-2

pattern1-3 template1-3

. .

. .

. .
pattern1-n template1-n

TABLE-2-NAME

pattern2-1 template2-1

pattern2-2 template2-2

pattern2-3 template2-3

. .

. .

. .
pattern2-n template2-n

.

.

.

TABLE-m-NAME

.

.

.

In this example an application using the mapping table TABLE-2-NAME would map
the string pattern2-2 into whatever is specified by template2-2. Each pattern or
template can contain up to 252 characters. There is no limit to the number of entries that
can appear in a mapping (although excessive numbers of entries can eat up huge amounts
of CPU and can consume excessive amounts of memory). Long lines can be continued
by ending them with a backslash, (\). The white-space between the two columns and
before the first column can not be omitted.

Duplicate mapping table names are not allowed in the mapping file.

5–2

The Mapping File
File Format

5.2.1 Including Other Files in the Mapping File

Other files can be included in the mapping file. This is done with a line of the form:

<file-spec

This will effectively substitute the contents of the file file-spec into the mapping file
at the point where the include appears. The file specification should specify a full file
path (device, directory, etc.). All files included in this fashion must be world readable.
Comments are also allowed in such included mapping files. Includes can be nested up to
three levels deep. Include files are loaded at the same time the mapping file is loaded —
they are not loaded on demand, so there is no performance or memory savings involved
in using include files.

5.3 Mapping Operations

All mappings in the mapping file are applied in a consistent way. The only things
that change from one mapping to the next is the source of input strings and what the
output from the mapping is used for.

A mapping operation always starts off with an input string and a mapping table.
The entries in the mapping table are scanned one at a time from top to bottom in the
order in which they appear in the table. The left hand side of each entry is used as
pattern and the input string is compared in a case-blind fashion with that pattern.

5.3.1 Mapping Entry Patterns

Patterns can contain wildcard characters. In particular, the usual OpenVMS
wildcard characters are allowed: an asterisk, *, will match zero or more characters
and each percent sign, %, will match a single character. Asterisks, percent signs, spaces,
and tabs can be quoted by preceeding them with a dollar sign, $. Quoting an asterisk or
percent sign robs it of any special meaning. Spaces and tabs must be quoted to prevent
them from ending prematurely a pattern or template. Literal dollar sign characters
should be doubled, $$, the first dollar sign quoting the second one. Additional wildcards
available in patterns are listed in Table 5–1.

Table 5–1 Mapping Pattern Wildcards

Wildcard Description

% Match exactly one character

* Match zero or more characters, with maximal or ‘‘greedy’’ left-to-right matching

Back match Description

$n* Match the nth wildcard or glob

5–3

The Mapping File
Mapping Operations

Table 5–1 (Cont.) Mapping Pattern Wildcards

Modifiers Description

$_ Use minimal or ‘‘lazy’’ left-to-right matching

$@ Turn off ‘‘saving’’ of the succeeding wildcard or glob

$^ Turn on ‘‘saving’’ of the succeeding wildcard or glob; this is the default

Glob

wildcard Description

$A% Match one alphabetic character, A–Z or a–z

$A* Match zero or more alphabetic characters, A–Z or a–z

$B% Match one binary digit (0 or 1)

$B* Match zero or more binary digits (0 or 1)

$D% Match one decimal digit 0–9

$D* Match zero or more decimal digits 0–9

$H% Match one hexadecimal digit 0–9 or A–F

$H* Match zero or more hexadecimal digits 0–9 or A–F

$O% Match one octal digit 0–7

$O* Match zero or more octal digits 0–7

$S% Match one symbol set character, i.e., 0–9, A–Z, a–z, _, $

$S* Match zero or more symbol set characters, i.e., 0–9, A–Z, a–z, _, $

$T% Match one tab or vertical tab or space character

$T* Match zero or more tab or vertical tab or space characters

$X% A synonym for $H%

$X* A synonym for $H*

$[c]% Match character c

$[c]* Match arbitrary occurrences of character c

$[c1c2...cn]% Match exactly one occurrence of character c1, c2, ..., or cn

$[c1c2...cn]* Match arbitrary occurrences of any characters c1, c2, ..., or cn

$[c1-cn]% Match any one character in the range c1 to cn

$[c1-cn]* Match arbitrary occurrences of characters in the range c1 to cn

$<IPv4> Match an IPv4 address, ignoring bits

$(IPv4) Match an IPv4 address, keeping prefix bits

${IPv6} Match an IPv6 address

Note that to specify multiple modifiers, or to specify modifiers and a back match, the
syntax uses just one dollar character. For instance, to back match the initial wild card,
without saving the back match itself, one would use $@0, not $@$0.

Note that the PMDF TEST/MATCH (OpenVMS) or pmdf test -match (UNIX) utility
can be used to test mapping patterns and specifically to test wildcard behavior in
patterns.

5–4

The Mapping File
Mapping Operations

5.3.1.1 The $_ modifier: minimal vs. maximal Matching

Asterisk, *, wildcards maximize what they match working from left to right across
the pattern. For instance, when the string a/b/c is compared to the pattern */*, the
left asterisk will match a/b and the right asterisk will match c.

The $_ modifier causes wildcard matching to be minimized, where the least possible
match is considered the match, working from left to right across the pattern. For
instance, when the string a/b/c is compared to the pattern $_*/$_*, the left $_* will
match a and the right $_* will match b/c.

5.3.1.2 IP Matching

With IPv4 ‘‘prefix bits’’ matching, an IP address or subnet is specified, optionally
followed by a slash and the number of bits from the prefix that are significant when
comparing for a match. For instance,

$(123.45.67.0/24)

will match anything in the 123.45.67.0 subnet.

With IPv4 ‘‘ignore bits’’ matching, an IP address or subnet is specified, optionally
followed by a slash and the number of bits to ignore when checking for a match. For
instance,

$<123.45.67.0/8>

will match anything in the 123.45.67.0 subnet. Or another example is that

$<123.45.67.4/2>

will match anything in the range 123.45.67.4–123.45.67.7.

IPv6 matching matches an IPv6 address or subnet.

5.3.1.3 Character Matching

Within globs, i.e., within a $[...] construct, the backslash character, (\), is the
quote character. To represent a literal hyphen, -, or right bracket,], within a glob the
hyphen or right bracket must be quoted with a backslash.

All other characters in a pattern just represent and match themselves. In particular,
single and double quote characters as well as parentheses have no special meaning in
either mapping patterns or templates; they are just ordinary characters. This makes it
easy to write entries that correspond to illegal addresses or partial addresses.

Also note that within a single $[...] construct, there can be multiple ranges of
characters (c1c2...cn) and multiple lists of characters (c1-cn) mixed and matched.

5–5

The Mapping File
Mapping Operations

5.3.2 Mapping Entry Templates

If the comparison of the pattern in a given entry fails, no action is taken; the scan
proceeds to the next entry. If the comparison succeeds, the right hand side of the entry is
used as a template to produce an output string. The template effectively causes the
replacement of the input string with the output string that is constructed from the
instructions given by the template.

Almost all characters in the template simply produce themselves in the output. The
one exception is a dollar sign.

A dollar sign followed by a dollar sign, space, or tab produces a dollar sign, space,
or tab in the output string. Note that all these characters must be quoted in order to be
inserted into the output string.

A dollar sign followed by a digit N calls for a substitution; a dollar sign followed by
an alphabetic character is referred to as a ‘‘metacharacter’’. Metacharacters themselves
will not appear in the output string produced by a template. See Table 5–2 for a list of the
special substitution and standard processing metacharacters. Any other metacharacters
are reserved for mapping-specific applications.

Note that any of the metacharacters $C, $E, $L, or $R, when present in the
template of a matching pattern, will influence the mapping process, controlling whether
it terminates or continues. That is, it is possible to set up iterative mapping table entries,
where the output of one entry becomes the input of another entry. If the template of a
matching pattern does not contain any of the metacharacters $C, $E, $L, or $R, then $E
(immediate termination of the mapping process) is assumed.

The number of iterative passes through a mapping table is limited to prevent infinite
loops. A counter is incremented each time a pass is restarted with a pattern that is the
same length or longer than the previous pass. If the string has a shorter length than
previously, the counter is reset to zero. A request to again iterate a mapping is not
honored after the counter has exceeded 10.

Table 5–2 Mapping Template Substitutions and Metacharacters

Substitution
sequence Section Substitutes

$n 5.3.2.1 nth wildcarded field as counted from left to right starting from 0

$#...# 5.3.2.6 Sequence number substitution.

$]...[5.3.2.7 LDAP search URL lookup; substitute in result.

${...} 5.3.2.8 General database substitution.

$ | ... | 5.3.2.9 Apply specified mapping table to supplied string.

$[...] 5.3.2.10 Invoke site-supplied routine; substitute in result.

5–6

The Mapping File
Mapping Operations

Table 5–2 (Cont.) Mapping Template Substitutions and Metacharacters

Metacharacter Section Description

$C 5.3.2.3 Continue the mapping process starting with the next table entry; use
the output string of this entry as the new input string for the mapping
process.

$E 5.3.2.3 End the mapping process now; use the output string from this entry as
the final result of the mapping process.

$L 5.3.2.3 Continue the mapping process starting with the next table entry; use
the output string of this entry as the new input string; after all entries
in the table are exhausted make one additional pass starting with the
first table entry. A subsequent match can override this condition with a
$C, $E, or $R metacharacter.

$R 5.3.2.3 Continue the mapping process starting with the first entry of the the
mapping table; use the output string of this entry as the new input
string for the mapping process.

$?x? 5.3.2.5 Mapping entry succeeds x percent of the time.

$\ 5.3.2.2 Force subsequent text to lowercase.

$^ 5.3.2.2 Force subsequent text to uppercase.

$_ 5.3.2.2 Leave subsequent text in its original case.

$:x 5.3.2.4 Match only if the specified flag is set.

$;x 5.3.2.4 Match only if the specified flag is clear.

5.3.2.1 Wildcard Field Substitutions, $n

A dollar sign followed by a digit n is replaced with the material that matched the
nth wildcard in the pattern. The wildcards are numbered starting with 0. For example,
the entry

PSI$%*::* $1@$0.psi.example.com

would match the input string PSI%A::B and produce the resultant output string
b@a.psi.example.com. The input string PSI%1234::USER would also match produc-
ing USER@1234.psi.example.com as the output string. The input string PSIABC::DEF
would not match the pattern in this entry and no action would be taken; i.e., no output
string would result from this entry.

5.3.2.2 Controlling Text Case, $\ , $^, $_

$\ forces subsequent text to lowercase, $^ forces subsequent text to uppercase, and
$_ causes subsequent text to retain its original case. For instance, these metacharacters
can be useful when using mappings to transform addresses for which case is significant.

5–7

The Mapping File
Mapping Operations

5.3.2.3 Processing Control, $C, $L, $R, $E

The $C, $L, $R, and $E metacharacters influence the mapping process, controlling
whether and when the mapping process terminates. $C causes the mapping process to
continue with the next entry, using the output string of the current entry as the new
input string for the mapping process. $L causes the mapping process to continue with
the next entry, using the output string of the current entry as the new input string for the
mapping process, and, if no matching entry is found, making one additional pass through
the table starting with the first table entry; a subsequent matching entry with a $C, $E,
or $R metacharacter overrides this condition. $R causes the mapping process to continue
from the first entry of the table, using the output string of the current entry as the new
input string for the mapping process. $E causes the mapping process to terminate; the
output string of this entry is the final output. $E is the default.

Mapping table templates are scanned left to right. So to set a $C, $L, or $R flag for
entries that can ‘‘succeed’’ or ‘‘fail’’, e.g., general database substitutions, or random value
controlled entries, put the $C, $L, or $R metacharacter to the left of the part of the entry
that can succeed or fail; otherwise, if the remainder of the entry fails, the flag will not
be seen.

5.3.2.4 Check for Special Flags

Some mapping probes have special flags set. $:x causes an entry to match only if
the flag x is set. $;x causes an entry to match only if the flag x is clear. See specific
mapping table descriptions for any special flags that can apply for that table.

When the intention is that an entry should succeed and terminate if the flag check
succeeds, but that the mapping process should continue if the flag check fails, then the
entry should use the $C metacharacter to the left of the flag check and use the $E flag
to the right of the flag check.

5.3.2.5 Entry Randomly Succeeds or Fails, $?x?

$?x? in a mapping table entry causes the entry to ‘‘succeed’’ x percent of the time;
the rest of the time, the entry ‘‘fails’’ and the output of the mapping entry’s input is
taken unchanged as the output. (Note that, depending upon the mapping, the effect
of the entry ‘‘failing’’ is not necessarily the same as the entry not matching in the first
place.) The argument between the ?’s, x, should consist of a real number specifying the
success percentage.

For instance, suppose that a system with IP address 123.45.6.78 is sending your
site just a little too much e-mail and you’d like to slow it down; if you’re using the
multithreaded TCP SMTP channel, you can use a PORT_ACCESS mapping table in the
following way. Suppose you’d like to allow through only 25 percent of its connection
attempts and temporarily reject the other 75 percent of its connection attempts. The
following PORT_ACCESS mapping table uses $?25? to cause the entry with the $Y (accept
the connection) to succeed only 25 percent of the time; the other 75 percent of the time,
when this entry fails, the initial $C on that entry causes PMDF to continue the mapping
from the next entry, which causes the connection attempt to be rejected with a temporary
SMTP error (in this example, 452 4.4.0) and the text message ‘‘Try again later’’.

5–8

The Mapping File
Mapping Operations

PORT_ACCESS

TCP|*|25|123.45.6.78|* C?25?$Y
TCP|*|25|123.45.6.78|* $N452$ 4.4.0$ Try$ again$ later

Or to similarly reject many, but not all, POP3 and IMAP connection attempts from a
system with IP address 123.45.6.78:

PORT_ACCESS

! POP3 connections
TCP|*|110|123.45.6.78|* C?25?$Y
TCP|*|110|123.45.6.78|* $N-ERR$ Try$ again$ later

! IMAP connections
TCP|*|143|123.45.6.78|* C?25?$Y
TCP|*|143|123.45.6.78|* $N*$ BYE$ Try$ again$ later

See Section 21.2.1 for details on the PORT_ACCESS mapping table.

Another example would be to randomly issue a temporary failure message for a
certain percentage of SMTP messages from a particular envelope From: address; for
instance, suppose the goal is to issue a temporary failure message with extended SMTP
code 4.5.9 to 80 percent of the messages that busybee@some.where attempts to send to
your local channel users. Then a SEND_ACCESS mapping table could be used, e.g.,

SEND_ACCESS

tcp_*|busybee@some.where|l|* C?20?$Y
tcp_*|busybee@some.where|l|* NX4.5.9|Try$ again$ later

5.3.2.6 Sequence Number Substitutions, $#...#

A $#...# substitution increments the value stored in a PMDF sequence file and
substitutes that value into the template. This can be used to generate unique, increasing
strings in cases where it is desirable to have a uniquifier in the mapping table output;
for instance, when using a mapping table to generate file names.

Permitted syntax is any one of:

$#seq-file-spec|radix|width#

or

$#seq-file-spec|radix#

or

$#seq-file-spec#

where the optional seq-file-spec argument is a full file specification for an (already
existing) PMDF sequence file, and where the optional radix and width arguments
specify the radix (base) in which to output the sequence value, and the number of digits
to output, respectively. The seq-file-spec argument can be omitted, in which case
PMDF will use its own temporary sequence file (that will be created and used for the
duration of this image). The default radix is 10. Radices in the range -36 to 36 are also
allowed; for instance, base 36 gives values expressed with digits 0,...,9,A,...,Z. By default,

5–9

The Mapping File
Mapping Operations

the sequence value is printed in its natural width, but if the specified width calls for a
greater number of digits, then the output will be padded with 0’s on the left to obtain
the desired number of digits. Note that if a width is explicitly specified, then the radix
must be explicitly specified also.

As noted above, when specifying an explicit PMDF sequence file in a mapping, that
file must already exist. To create a PMDF sequence file, on OpenVMS use the command

$ CREATE/FDL=PMDF_COM:sequence_number.fdl seq-file-spec

or on UNIX use the command

% touch seq-file-spec

or

% cat >seq-file-spec

or on NT use the command

C:\> copy nul seq-file-spec

A sequence number file accessed via a mapping table must be world readable in order to
operate properly. You must also have a PMDF user account in order to use such sequence
number files.

VMS
On OpenVMS, if you did not create a PMDF user account PMDF_USER during your

PMDF installation, you should use the PMDF_COM:create_pmdf_user_account.com
procedure to create it.

5.3.2.7 LDAP Query URL Substitutions, $]...[

A substitution of the form $]ldap-url[is handled specially. ldap-url is
interpreted as an LDAP query URL and the result of the LDAP query is substituted.
Standard LDAP URLs are used, with the host and port omitted; the host and port are
instead specified with the LDAP_HOST and LDAP_PORT PMDF options (see Section 7.3.2
for further discussion of this option). That is, the LDAP URL should be specified as

ldap:///dn[?attributes[?scope?filter]]

where the square bracket characters [and] shown above indicate optional portions of
the URL. The dn is required and is a distinguished name specifying the search base.
The optional attributes, scope, and filter portions of the URL further refine what
information to return. That is, attributes specifies the attribute or attributes to be
returned from LDAP directory entries matching this LDAP query. The scope can be
any of base (the default), one, or sub. filter describes the characteristics of matching
entries.

Certain LDAP URL substitution sequences are available for use within the LDAP
query URL; see Table 3–1 for a full list.

5–10

The Mapping File
Mapping Operations

5.3.2.8 General Database Substitutions, ${...}

A substitution of the form ${text} is handled specially. The text part is used as a key
to access the PMDF general database.2 This database is generated with the PMDF CRDB
(OpenVMS) or pmdf crdb (UNIX and NT) utility. If text is found in the database, the
corresponding template from the database is substituted. If text does not match an entry
in the database, the input string is used unchanged as the output string.

If a general database exists, it should be world readable to ensure that it operates
properly.

Note that when wanting to use processing control metacharacters such as $C, $R, or
$L in a mapping table entry that does a general database substitution, the processing
control metacharacter should be placed to the left of the general database substitution
in the mapping table template; otherwise the ‘‘failure’’ of a general database substitution
will mean that the processing control metacharacter will not be seen.

5.3.2.9 Mapping Table Substitutions, $ | ... |

A substitution of the form $ | mapping;argument | is handled specially. PMDF looks
for an auxiliary mapping table named mapping in the PMDF mapping file, and uses
argument as the input to that named auxiliary mapping table. The named auxiliary
mapping table must exist and must set the $Y flag in its output if it is successful; if
the named auxiliary mapping table does not exist or doesn’t set the $Y flag, then that
auxiliary mapping table substitution fails and the original mapping entry is considered
to fail: the original input string will be used as the output string.

Note that when wanting to use processing control metacharacters such as $C, $R,
or $L in a mapping table entry that does a mapping table substitution, the processing
control metacharacter should be placed to the left of the mapping table substitution in
the mapping table template; otherwise the ‘‘failure’’ of a mapping table substitution will
mean that the processing control metacharacter will not be seen.

5.3.2.10 Site-supplied Routine Substitutions, $[...]

A substitution of the form $[image,routine,argument] is handled specially. The
image,routine,argument part is used to find and call a customer-supplied routine.
At run-time on OpenVMS, PMDF uses LIB$FIND_IMAGE_SYMBOL to dynamically load
and link to the routine routine from the shareable image image; at run-time on UNIX,
PMDF uses dlopen and dlsym to dynamically load and call the routine routine from
the shared library image; at run-time on NT, PMDF calls the routine routine from the
dynamic link library image. The routine routine is then called as a function with the
following argument list:

2 The PMDF general database is referenced via the PMDF_GENERAL_DATABASE logical (OpenVMS) or PMDF tailor
file option (UNIX) or Registry entry (NT). Hence, by default, the general database is PMDF_TABLE:general.dat
(OpenVMS) or the file /pmdf/table/generaldb.* (UNIX) or the file C:\pmdf\table\generaldb.*
(NT).

5–11

The Mapping File
Mapping Operations

status := routine (argument, arglength, result, reslength)

argument and result are 252 byte long character string buffers. On OpenVMS,
argument and result are passed by descriptor (a class S descriptor is used to ensure
maximum compatibility); on UNIX and NT, argument and result are passed as a
pointer to a character string, (e.g., in C, as char*.) arglength and reslength are
signed, long integers passed by reference. On input, argument contains the argument

string from the mapping table template, and arglength the length of that string. On
return, the resultant string should be placed in result and its length in reslength. This
resultant string will then replace the ‘‘$[image,routine,argument]’’ in the mapping
table template. The routine routine should return 0 if the mapping table substitution
should fail and -1 if the mapping table substitution should succeed. If the substitution
fails, then normally the original input string will be used unchanged as the output string.

Note that when wanting to use processing control metacharacters such as $C, $R, or
$L in a mapping table entry that does a site-supplied routine substitution, the processing
control metacharacter should be placed to the left of the site-supplied routine substitution
in the mapping table template; otherwise the ‘‘failure’’ of a mapping table substitution
will mean that the processing control metacharacter will not be seen.

The site-supplied routine callout mechanism allows PMDF’s mapping process to be
extended in all sorts of complex ways. For example, in a PORT_ACCESS or SEND_ACCESS
mapping table, a call to some type of load monitoring service could be performed and the
result used to decide whether or not to accept a connection or message.

VMS
On OpenVMS systems, since LIB$FIND_IMAGE_SYMBOL is used to dynamically load

the site-supplied image image, then image must be a logical name pointing to the actual
shareable image. Moreover, as this mechanism will be invoked by PMDF in a variety of
contexts, the logical must be an executive mode logical, any logicals it references must
also be executive mode logicals, and the image itself must be world readable and installed
as a known image.

UNIX

On UNIX systems, the site-supplied shared library image image should be world
readable.

Note: This facility is not designed for use by casual users; it is intended to be used to extend
PMDF’s capabilities system-wide.

5.3.3 A Complex Mapping Example

Example 5–1 shows a mapping that will take a roman numeral as input and will
output the equivalent decimal integer. Although this example is completely contrived,
it does show almost all of the features of the mapping facility. Multiple passes over the
patterns are used, as well as continuations and substitutions.

5–12

The Mapping File
Mapping Operations

Example 5–1 Mapping File Example

ROMAN-TO-INTEGER

|0|% Input$ Error$E
0%*|0| $0$1|0|$R
*|0| Value$ =$ 0E
|4|MMM $03|3|$1$C
|4|MM $02|3|$1$C
|4|M $01|3|$1$C
|4| $00|3|$1$C
|3|CM $09|2|$1$C
|3|DCCC $08|2|$1$C
|3|DCC $07|2|$1$C
|3|DC $06|2|$1$C
|3|D $05|2|$1$C
|3|CD $04|2|$1$C
|3|CCC $03|2|$1$C
|3|CC $02|2|$1$C
|3|C $01|2|$1$C
|3| $00|2|$1$C
|2|XC $09|1|$1$C
|2|LXXX $08|1|$1$C
|2|LXX $07|1|$1$C
|2|LX $06|1|$1$C
|2|L $05|1|$1$C
|2|XL $04|1|$1$C
|2|XXX $03|1|$1$C
|2|XX $02|1|$1$C
|2|X $01|1|$1$C
|2| $00|1|$1$C
|1|IX $09|0|$1$R
|1|VIII $08|0|$1$R
|1|VII $07|0|$1$R
|1|VI $06|0|$1$R
|1|V $05|0|$1$R
|1|IV $04|0|$1$R
|1|III $03|0|$1$R
|1|II $02|0|$1$R
|1|I $01|0|$1$R
|1| $00|0|$1$R
* |4|0R

The operation of this example mapping is best understood by tracing an input string
through the process. For instance, suppose the input string CDLXIV is given. On the
first pass through, the very last pattern, *, is the one that matches — it produces the
output string |4|CDLXIV and, because of the $R specified in the template, resumes the
mapping process from the start of the table using the output string |4|CDLXIV as the
new input string.

On the second pass through, the pattern that matches first is *|4|*, which
produces the new string 0|3|CDLXIV. Scanning continues from this point because of
the $C sequence. The next pattern that matches is *|3|CD*, which produces the
string 04|2|LXIV. Processing continues and the pattern *|2|LX* matches, producing
046|1|IV. Processing continues and the pattern *|1|IV* matches, producing 0464|0|,
and the $R takes the process back to the top of the table.

5–13

The Mapping File
Mapping Operations

On the third pass through, the pattern that matches first is 0%*|0|, which produces
464|0| and restarts at the top again.

On the fourth pass through, the pattern that matches first is *|0|, which produces
the string ‘‘Value = 464’’ and exits because of the $E.

5–14

6 Character Set Conversions and Message Reformatting

6.1 CHARSET-CONVERSION Mapping Table

One very basic mapping table in PMDF is the character set conversion table. The
name of this table is CHARSET-CONVERSION. It is used to specify what sorts of channel-
to-channel character set conversions, labelling conversions, and message reformatting
should be done.

On many systems there is no need to do character set conversions or message
reformating and therefore this table is not needed. Situations arise, however, where
character conversions must be done. For example, sites running Japanese OpenVMS
may need to convert between DEC Kanji and the ISO-2022 Kanji currently used on the
Internet. Another possible use of conversions arises when multinational characters are
so heavily used that the slight discrepancies between the DEC Multinational Character
Set (DEC-MCS) and the ISO-8859-1 character set specified for use in MIME may become
an issue, and actual conversion between the two may therefore be needed.

The CHARSET-CONVERSION mapping can also be used to alter the format of
messages. Facilities are provided to convert a number of non-MIME formats into MIME.
Changes to MIME encodings and structure are also possible. These options are used
when messages are being relayed to systems that only support MIME or some subset
of MIME. And finally, conversion from MIME into non-MIME formats is provided in a
small number of cases.

PMDF will probe the CHARSET-CONVERSION mapping table in two different ways.
The first probe is used to determine whether or not PMDF should reformat the message
and if so, what formatting options should be used. (If no reformatting is specified PMDF
does not bother to check for specific character set conversions.) The input string for this
first probe has the general form:

IN-CHAN=in-channel;OUT-CHAN=out-channel;CONVERT

Here in-channel is the name of the source channel (where the message comes from)
and out-channel is the name of the destination channel (where the message is going).
If a match occurs the resulting string should be a comma-separated list of keywords.
Table 6–1 lists the available keywords.

Note: Make sure that there is no whitespace in the resulting string, for example around commas
or equal signs.

Table 6–1 CHARSET-CONVERSIONS Mapping Table Keywords

Keyword Action

Always Force conversion even when conversion channel is an intermediate
destination

Appledouble Convert other MacMIME formats to Appledouble format

6–1

Character Set Conversions and Message Reformatting
CHARSET-CONVERSION Mapping Table

Table 6–1 (Cont.) CHARSET-CONVERSIONS Mapping Table Keywords

Keyword Action

Applesingle Convert other MacMIME formats to Applesingle format

BASE64 Switch MIME encodings to BASE64

Binhex Convert other MacMIME formats, or parts including Macintosh type and
Mac creator information, to Binhex format

Block Extract just the data fork from MacMIME format parts

Bottom ‘‘Flatten’’ any message/rfc822 body part (forwarded message) into a
message content part and a header part

Delete ‘‘Flatten’’ any message/rfc822 body part (forwarded message) into a
message content part, deleting the forwarded headers

Level Remove redundant multipart levels from message

Macbinary Convert other MacMIME formats, or parts including Macintosh type and
Macintosh creator information, to Macbinary format

No Disable conversion

Pathworks Convert message to Pathworks Mail format

QUOTED-PRINTABLE Switch MIME encodings to QUOTED-PRINTABLE

Record,Text Line wrap text/plain parts at 80 characters

Record,Text=n Line wrap text/plain parts at n characters

RFC1154 Convert message to RFC 1154 format

Top ‘‘Flatten’’ any message/rfc822 body part (forwarded message) into a
header part and a message content part

UUENCODE Switch MIME encodings to X-UUENCODE

Yes Enable conversion

A No is assumed if no match occurs.

6.2 Character Set Conversion

If PMDF probes and finds that the message is to be reformatted, it will proceed
to check each part of the message. Any text parts are found and their character set
parameters are used to generate the second probe. Only when PMDF has checked and
found that conversions may be needed does it ever perform the second probe. The input
string in this second case looks like this:

IN-CHAN=in-channel;OUT-CHAN=out-channel;IN-CHARSET=in-char-set

The in-channel and out-channel are the same as before, and the in-char-set is
the name of the character set associated with the particular part in question. If no match
occurs for this second probe, no character set conversion is performed (although message
reformatting, e.g., changes to MIME structure, may be performed in accordance with the
keyword matched on the first probe). If a match does occur it should produce a string of
the form:

6–2

Character Set Conversions and Message Reformatting
Character Set Conversion

OUT-CHARSET=out-char-set

Here the out-char-set specifies the name of the character set to which the in-char-

set should be converted. Note that both of these character sets must be defined in the
character set definition table, charsets.txt, located in the PMDF table directory. No
conversion will be done if the character sets are not properly defined in this file. This
is not usually a problem since this file defines several hundred character sets; most
of the character sets in use today are defined in this file. See the description of the
PMDF CHBUILD (OpenVMS) or pmdf chbuild (UNIX and NT) utility in Chapter 29 and
Chapter 30 for further information on the charsets.txt file.

If all the conditions are met, PMDF will proceed to build the character set mapping
and do the conversion. The converted message part will be relabelled with the name of
the character set to which it was converted.

6.2.1 Converting DEC-MCS to ISO-8859-1 and Back

Suppose that DEC-MCS is used locally, but this needs to be converted to ISO-8859-1
for use on the Internet. In particular, suppose the connection to the Internet is via a set
of TCP channels (including but not limited to tcp_local), and l and d channels are in
use locally. The table shown in Example 6–1 brings such conversions about.

Example 6–1 Converting DEC-MCS to and from ISO-8859-1

CHARSET-CONVERSION

IN-CHAN=l;OUT-CHAN=tcp_*;CONVERT Yes
IN-CHAN=d;OUT-CHAN=tcp_*;CONVERT Yes
IN-CHAN=tcp_*;OUT-CHAN=l;CONVERT Yes
IN-CHAN=tcp_*;OUT-CHAN=d;CONVERT Yes
IN-CHAN=*;OUT-CHAN=*;CONVERT No
IN-CHAN=l;OUT-CHAN=tcp_*;IN-CHARSET=DEC-MCS OUT-CHARSET=ISO-8859-1
IN-CHAN=d;OUT-CHAN=tcp_*;IN-CHARSET=DEC-MCS OUT-CHARSET=ISO-8859-1
IN-CHAN=tcp_*;OUT-CHAN=l;IN-CHARSET=ISO-8859-1 OUT-CHARSET=DEC-MCS
IN-CHAN=tcp_*;OUT-CHAN=d;IN-CHARSET=ISO-8859-1 OUT-CHARSET=DEC-MCS

6.2.2 Converting DEC-KANJI to ISO-2022-JP and Back

The table shown in Example 6–2 specifies a conversion between local usage of DEC
Kanji and the ISO 2022 based JP code used on the Internet.

6–3

Character Set Conversions and Message Reformatting
Message Reformatting

Example 6–2 Converting DEC-Kanji to and from ISO-2022-JP

CHARSET-CONVERSION

IN-CHAN=l;OUT-CHAN=l;CONVERT No
IN-CHAN=l;OUT-CHAN=d;CONVERT No
IN-CHAN=d;OUT-CHAN=l;CONVERT No
IN-CHAN=d;OUT-CHAN=d;CONVERT No
IN-CHAN=l;OUT-CHAN=*;CONVERT Yes
IN-CHAN=d;OUT-CHAN=*;CONVERT Yes
IN-CHAN=*;OUT-CHAN=l;CONVERT Yes
IN-CHAN=*;OUT-CHAN=d;CONVERT Yes
IN-CHAN=l;OUT-CHAN=*;IN-CHARSET=DEC-KANJI OUT-CHARSET=ISO-2022-JP
IN-CHAN=d;OUT-CHAN=*;IN-CHARSET=DEC-KANJI OUT-CHARSET=ISO-2022-JP
IN-CHAN=*;OUT-CHAN=l;IN-CHARSET=ISO-2022-JP OUT-CHARSET=DEC-KANJI
IN-CHAN=*;OUT-CHAN=d;IN-CHARSET=ISO-2022-JP OUT-CHARSET=DEC-KANJI

6.3 Message Reformatting

As described above, the CHARSET-CONVERSION mapping is also used to effect the
conversion of attachments between MIME and several proprietary mail formats. Use of
the Pathworks Mail conversion is described in Section 18.3.

The following sections give examples of some of the other sorts of message
reformatting which can be affected with the CHARSET-CONVERSION mapping.

6.3.1 Non-MIME Binary Attachment Conversion

Mail in certain non-standard (non-MIME) formats, e.g., mail in certain proprietary
Sun formats or mail from the Microsoft Mail (MSMAIL) SMTP gateway, is automatically
converted into MIME format if CHARSET-CONVERSION is enabled for any of the channels
involved in handling the message. If you have a tcp_local channel then it is normally
the incoming channel for messages from a Microsoft Mail SMTP gateway, and the
following will enable the conversion of messages delivered to your local users:

CHARSET-CONVERSION

IN-CHAN=tcp_local;OUT-CHAN=l;CONVERT Yes

You may also want to add entries for channels to other local mail systems. For instance,
an entry for the mr_local channel:3

CHARSET-CONVERSION

IN-CHAN=tcp_local;OUT-CHAN=l;CONVERT Yes
IN-CHAN=tcp_local;OUT-CHAN=mr_local;CONVERT Yes

Alternatively, to cover every channel you can simply specify OUT-CHAN=* instead of OUT-
CHAN=l. However, this may bring about an increase in message processing overhead as
all messages coming in the tcp_local channel will now be scrutinized instead of just
those bound to specific channels.

3 There is no need to make entries for cc:Mail or Novell MHS channels as they will automatically perform the necessary
conversions.

6–4

Character Set Conversions and Message Reformatting
Message Reformatting

Note: More importantly, such undiscriminated conversions may place your system in the
dubious and frowned upon position of converting messages — not necessarily your own
site’s — which are merely passing through your system, a situation in which you should
merely be acting as a transport and not necessarily altering anything beyond the message
envelope and related transport information.

To convert MIME into the format Microsoft Mail SMTP gateway understands, use
a separate channel in your PMDF configuration for the Microsoft Mail SMTP gateway,
e.g., tcp_msmail, and put the following in the mappings. file:

CHARSET-CONVERSION

IN-CHAN=*;OUT-CHAN=tcp_msmail;CONVERT RFC1154

6.3.2 Relabelling MIME Headers

Some user agents or gateways may emit messages with MIME headers which are less
informative than they might be, but which nevertheless contain enough information to
construct more precise MIME headers. Although the best solution is to properly configure
such user agents or gateways, if they are not under your control, you can instead ask
PMDF to try to reconstruct more useful MIME headers.

If the first probe of the CHARSET-CONVERSION mapping table yields a ‘‘Yes’’ or ‘‘Al-
ways’’ keyword, then PMDF will check for the presence of a conversions file, (named
by the logical PMDF_CONVERSION_FILE on OpenVMS or the PMDF_CONVERSION_FILE
option in the PMDF tailor file on UNIX, hence usually PMDF_TABLE:conversions. on
OpenVMS, or /pmdf/table/conversions on UNIX, or C:\pmdf\table\conversions
on NT). If a conversions file exists, then PMDF will look in it for an entry with RELA-
BEL=1 and if it finds such an entry, PMDF will then perform any MIME relabellings
specified in the entry. See Section 22.1.3 for complete information on PMDF conversions
file entries.

For instance, the combination of a CHARSET-CONVERSION table such as

CHARSET-CONVERSION

IN-CHAN=tcp_local;OUT-CHAN=mr_local;CONVERT Yes

and PMDF conversions file entries of

out-chan=mr_local; in-type=application; in-subtype=octet-stream;
in-parameter-name-0=name; in-parameter-value-0=*.ps;
out-type=application; out-subtype=postscript;
parameter-copy-0=*; relabel=1

out-chan=mr_local; in-type=application; in-subtype=octet-stream;
in-disposition=attachment;
in-dparameter-name-0=filename; in-dparameter-value-0=*.ps;
out-type=application; out-subtype=postscript;
out-disposition=attachment; dparameter-copy-0=*; relabel=1

out-chan=mr_local; in-type=application; in-subtype=octet-stream;
in-parameter-name-0=name; in-parameter-value-0=*.msw;
out-type=application; out-subtype=msword;
parameter-copy-0=*; relabel=1

6–5

Character Set Conversions and Message Reformatting
Message Reformatting

out-chan=mr_local; in-type=application; in-subtype=octet-stream;
in-disposition=attachment;
in-dparameter-name-0=filename; in-dparameter-value-0=*.msw;
out-type=application; out-subtype=msword;
out-disposition=attachment; dparameter-copy-0=*; relabel=1

will result in messages that arrive on the tcp_local channel and are routed to the
mr_local channel, and that arrive originally with MIME labelling of application/octet-
stream but have a filename parameter with the extension ‘‘ps’’ or ‘‘msw’’, being rela-
belled as application/postscript or application/msword, respectively. (Note that
this more precise labelling is what the original user agent or gateway should have per-
formed itself.) Such a relabelling can be particularly useful in conjunction with a MIME-
CONTENT-TYPES-TO-MR mapping table, used to convert such resulting MIME types back
into appropriate MRTYPE tags, which needs precise MIME labelling in order to function
optimally; if all content types were left labelled only as application/octet-stream,
the MIME-CONTENT-TYPES-TO-MR mapping table could only, at best, unconditionally
convert all such to one sort of MRTYPE.

With the above example and MIME-CONTENT-TYPES-TO-MR mapping table entries
including

APPLICATION/POSTSCRIPT PS
APPLICATION/MSWORD MW

a labelling coming in:

Content-type: application/octet-stream; name=stuff.ps

would be relabelled as:

Content-type: application/postscript

and then converted into an MRTYPE tag PS to let Message Router know to expect
PostScript.

Sometimes it is useful to do relabelling in the opposite sort of direction, ‘‘downgrad-
ing’’ specific MIME attachment labelling to application/octet-stream, the label for
generic binary data. In particular, ‘‘downgrading’’ specific MIME labelling is often used in
conjunction with the convert_octet_stream channel keyword on the mime_to_x400
channel (PMDF-X400) or xapi_local channel (PMDF-MB400) to force all binary MIME
attachments to be converted to X.400 bodypart 14 format.

For instance, the combination of a CHARSET-CONVERSION mapping table such as

CHARSET-CONVERSION

IN-CHAN=*;OUT-CHAN=mime_to_x400*;CONVERT Yes

and PMDF conversions file entries of

out-chan=mime_to_x400*; in-type=application; in-subtype=*;
out-type=application; out-subtype=octet-stream; relabel=1

out-chan=mime_to_x400*; in-type=audio; in-subtype=*;
out-type=application; out-subtype=octet-stream; relabel=1

out-chan=mime_to_x400*; in-type=image; in-subtype=*;
out-type=application; out-subtype=octet-stream; relabel=1

6–6

Character Set Conversions and Message Reformatting
Message Reformatting

out-chan=mime_to_x400*; in-type=video; in-subtype=*;
out-type=application; out-subtype=octet-stream; relabel=1

will result in ‘‘downgrading’’ various specific MIME attachment labelling to the generic
application/octet-stream labelling (so that convert_octet_stream will apply)
for all messages going to mime_to_x400* channels.

6.3.3 MacMIME Format Conversions

Macintosh files have two parts, a resource fork which contains Macintosh specific
information, and a data fork which contains data usable on other platforms. This
introduces an additional complexity when transporting Macintosh files, as there are four
different formats in common use for transporting the Macintosh file parts.5 Three of the
formats, Applesingle, Binhex, and Macbinary, consist of the Macintosh resource fork and
Macintosh data fork encoded together in one piece. The fourth format, Appledouble, is
a multipart format with the resource fork and data fork in separate parts. Appledouble
is hence the format most likely to be useful on non-Macintosh platforms, as in this case
the resource fork part may be ignored and the data fork part is available for use by non-
Macintosh applications. But the other formats may be useful when sending specifically
to Macintoshes.

PMDF can convert between these various Macintosh formats. The CHARSET-
CONVERSION keywords Appledouble Applesingle, Binhex, or Macbinary tell PMDF
to convert other MacMIME structured parts to a MIME structure of
multipart/appledouble, application/applefile, application/mac-binhex40,
or application/macbinary, respectively. Further the Binhex or Macbinary keywords
also request conversion to the specified format of non-MacMIME format parts that do nev-
ertheless contain X-MAC-TYPE and X-MAC-CREATOR parameters on the MIME Content-
type: header. The CHARSET-CONVERSION keyword Block tells PMDF to extract just
the data fork from MacMIME format parts, discarding the resource fork; (since this loses
information, use of Appledouble instead is generally preferable).

For instance, the following CHARSET-CONVERSION table would tell PMDF to convert
to Appledouble format when delivering to the VMS MAIL mailbox or a GroupWise
postoffice, and to convert to Macbinary format when delivering to the Message Router
channel:

CHARSET-CONVERSION

IN-CHAN=*;OUT-CHAN=l;CONVERT Appledouble
IN-CHAN=*;OUT-CHAN=wpo_local;CONVERT Appledouble
IN-CHAN=*;OUT-CHAN=mr_local;CONVERT Macbinary

The conversion to Appledouble format would only be applied to parts already in one of
the MacMIME formats. The conversion to Macbinary format would only be applied to
parts already in one of the MacMIME formats, or non-MacMIME parts which included
X-MAC-TYPE and X-MAC-CREATOR parameters on the MIME Content-type: header.

5 See RFC 1740 (MacMIME) and RFC 1741 (Binhex).

6–7

Character Set Conversions and Message Reformatting
Message Reformatting

When doing conversion to Appledouble or Block format, the MAC-TO-MIME-CONTENT-
TYPES mapping table may be used to indicate what specific MIME label to put on the
data fork of the Appledouble part, or the Block part, depending on what the Macintosh
creator and Macintosh type information in the original Macintosh file were. Probes for
this table have the form format|type|creator|filename where format is one of
SINGLE, BINHEX or MACBINARY, where type and creator are the Macintosh type and
Macintosh creator information in hex, respectively, and where filename is the file name.
For instance, to convert to Appledouble when sending to the l channel and when doing
so to use specific MIME labels for any MS Word or PostScript documents converted from
MACBINARY or BINHEX parts, appropriate tables might be:

CHARSET-CONVERSION

IN-CHAN=*;OUT-CHAN=l;CONVERT Appledouble

MAC-TO-MIME-CONTENT-TYPES

! PostScript
MACBINARY|45505346|76677264|* APPLICATION/POSTSCRIPT$Y
BINHEX|45505346|76677264|* APPLICATION/POSTSCRIPT$Y

! Microsoft Word
MACBINARY|5744424E|4D535744|* APPLICATION/MSWORD$Y
BINHEX|5744424E|4D535744|* APPLICATION/MSWORD$Y

Note that the template (right hand side) of the mapping entry must have the $Y flag
set in order for the specified labelling to be performed. Sample entries for additional
types of attachments may be found in the file mac_mappings.sample in the PMDF
table directory.

If you want to convert non-MacMIME format parts to Binhex or Macbinary format,
such parts need to have X-MAC-TYPE and X-MAC-CREATOR MIME Content-type:
parameter values provided. Note that MIME relabelling can be used to force such
parameters onto parts that would not otherwise have them; see Section 6.3.2 for a
discussion of MIME relabelling.

6.4 Service Conversions

PMDF’s conversion service facility may be used to process with site-supplied
procedures a message so as to produce a new form of the message. Unlike either the
sorts of CHARSET-CONVERSION operations discussed above or the conversion channel,
which operate on the content of individual MIME message parts, conversion services
operate on entire MIME message parts (MIME headers and content) as well as entire
MIME messages. Also, unlike other CHARSET-CONVERSION operations or conversion
channel operations, conversion services are expected to do their own MIME disassembly,
decoding, re-encoding, and reassembly.

Like other CHARSET-CONVERSION operations, conversion services are enabled through
the CHARSET-CONVERSION mapping table. If the first probe of the CHARSET-CONVERSION

6–8

Character Set Conversions and Message Reformatting
Service Conversions

mapping table yields a ‘‘Yes’’ or ‘‘Always’’ keyword, then PMDF will check for the pres-
ence of a PMDF conversions file. 6 If a conversions file exists, then PMDF will look in
it for an entry specifying a SERVICE-COMMAND, and if it finds such an entry, execute it.
The conversions file entries should have the form

in-chan=channel-pattern;
in-type=type-pattern; in-subtype=subtype-pattern;
service-command=command

Of key interest is the command string. This is the command which should be executed
to perform a service conversion (e.g., invoke a document converter). The command must
process an input file containing the message text to be serviced and produce as output
a file containing the new message text. On OpenVMS, the command must exit with an
odd-valued status code if successful and an even-valued status code if unsuccessful. On
UNIX, the command must exit with a 0 if successful and a non-zero value otherwise.

For instance, the combination of a CHARSET-CONVERSION table such as

CHARSET-CONVERSION

IN-CHAN=bsout_*;OUT-CHAN=*;CONVERT Yes

and a PMDF conversions file entry on OpenVMS of

in-chan=bsout_*; in-type=*; in-subtype=*;
service-command="@PMDF_COM:COMPRESS.COM COMPRESS ’INPUT_FILE’ ’OUTPUT_FILE’"

or on UNIX of

in-chan=bsout_*; in-type=*; in-subtype=*;
service-command="/pmdf/bin/compress.sh compress $INPUT_FILE $OUTPUT_FILE"

or on NT of

in-chan=bsout_*; in-type=*; in-subtype=*;
service-command="c:\pmdf\bin\compress.exe %INPUT_FILE% %OUTPUT_FILE%"

will result in all messages coming from a bsout_* channel being compressed.

DCL symbols (OpenVMS) or environment variables (UNIX and NT) are used to pass
the names of the input and output files as well as the name of a file containing the list of
the message’s envelope recipient addresses. The names of these environment variables
are:

Variable Usage

INPUT_FILE Name of the input file to process

OUTPUT_FILE Name of the output file to produce

INFO_FILE Name of the file containing envelope recipient addresses

The values of these three environment variables may be substituted into the command
line by using standard command line substitution: i.e., preceding and following the

6 The conversions file is located via the PMDF_CONVERSION_FILE logical (OpenVMS) or PMDF tailor file option
(UNIX), or Registry entry (NT), and is usually PMDF_TABLE:conversions. (OpenVMS) or
/pmdf/table/conversions (UNIX) or C:\pmdf\table\conversions (NT).

6–9

Character Set Conversions and Message Reformatting
Service Conversions

variable’s name with an apostrophe on OpenVMS, preceding the variable’s name with a
dollar character on UNIX, or preceding and following the variable’s name with a percent
sign on NT. For example, when INPUT_FILE and OUTPUT_FILE have the values a.in
and a.out, then the following declaration on OpenVMS,

in-chan=bsout_*; in-type=*; in-subtype=*;
service-command="@PMDF_COM:CONVERT.COM ’INPUT_FILE’ ’OUTPUT_FILE’"

executes the command

@PMDF_COM:CONVERT.COM A.IN A.OUT

On UNIX, the declaration

in-chan=bsout_*; in-type=*; in-subtype=*;
service-command="/pmdf/bin/convert.sh $INPUT_FILE $OUTPUT_FILE"

executes the command

/pmdf/bin/convert.sh a.in a.out

On NT, the declaration

in-chan-bsout_*; in-type=*; in-subtype=*;
service-command="c:\pmdf\bin\convert.exe %INPUT_FILE% %OUTPUT_FILE%"

executes the command

c:\pmdf\bin\convert.exe a.in a.out

6.5 Complex Conversions

PMDF’s native conversion facilities are fairly limited, so the ability to call external
converters is crucial.

For complex conversions of message attachments using external, third-party pro-
grams and site-supplied procedures, such as document convertors, see Chapter 22. Such
complex conversions can be performed by the script and conversion channels.

Invoking the conversion channel is controlled by the CONVERSIONS mapping table,
and invoking the script channel is controlled by the SCRIPT mapping table. The
conversion channel or the script channel is then run to execute a site-specified external
conversion procedure.

The PMDF conversions file, discussed in Section 22.1.3, is used to specify the details
of external CONVERSIONS table triggered conversions and to specify the details of some
internal CHARSET-CONVERSION table triggered conversions.

Note: If you have both a CONVERSIONS mapping table and a CHARSET-CONVERSION
mapping table, the CONVERSIONS mapping table takes precedence. In this case, all
entries with RELABEL=1 in the conversions file are skipped. A conversions file entry can
be changed from being associated with the CHARSET-CONVERSION mapping table to
being associated with the CONVERSIONS mapping table by replacing the RELABEL=1

6–10

Character Set Conversions and Message Reformatting
Complex Conversions

parameter with the COMMAND parameter. The command specified could be as simple as
copying the input file to the output file.

6–11

7 The PMDF Option File

PMDF uses an option file to provide a means of overriding the default values of
various parameters that apply to PMDF as a whole. Various PMDF channels also have
their own channel-level option files. This (global) PMDF option file has the same format
but is otherwise distinct — it applies to PMDF as a whole and not to any specific channel.

A variety of configuration options are controlled by options in the PMDF option file.
In particular, the option file is used to establish sizes of the various tables into which the
configuration and alias files are read.

7.1 Locating and Loading the Option File

On OpenVMS systems, the option file is referenced via the PMDF_OPTION_FILE
logical name. By default, this points to the file PMDF_TABLE:option.dat. On UNIX
systems, the option file is the file specified with the PMDF_OPTION_FILE option in
the PMDF tailor file.1 By default, this is file /pmdf/table/option.dat. On NT
systems, the option file is the file specified with the PMDF_OPTION_FILE PMDF Tailor
NT Registry entry. Typically this points to the file C:\pmdf\table\option.dat.

Each time a PMDF program begins running, this file is read and loaded into memory.
This overhead can be avoided by compiling your PMDF configuration, in which case
the contents of the option file will be incorporated into the compiled configuration. The
disadvantage to this, however, is that it means that the configuration must be recompiled
and reinstalled whenever a change is made to the option file. See Chapter 8 for details
on compiling your configuration.

The PMDF option file should be world readable.

7.2 Option File Format

Option files consist of several lines. Each line contains the setting for one option.
An option setting has the form:

option=value

value can be either a string or an integer, depending on the option’s requirements. If
the option accepts an integer value a base can be specified using notation of the form
b%v, where b is the base expressed in base 10 and v is the actual value expressed in
base b.

1 The PMDF tailor file is /etc/pmdf_tailor.

7–1

The PMDF Option File
Option File Format

Comments are allowed. Any line that begins with an exclamation point is considered
to be a comment and is ignored. Blank lines are also ignored in any option file.

7.3 Available Options

Table 7–1 lists the available options. Further descriptions of the options can be found
in the subsections below.

Table 7–1 PMDF Global Option File Options

Option Section Usage

ACCESS_ERRORS 7.3.4 Control the information issued in certain error
messages

ACCESS_ORCPT 7.3.12 Include the original recipient information in
SEND_ACCESS and ORIG_SEND_ACCESS
mapping table probes.

ALIAS_DOMAINS 7.3.1 Control the format of alias file and alias
database lookups

ALIAS_HASH_SIZE 7.3.9 Set the number of aliases allowed in the alias
file

ALIAS_MEMBER_SIZE 7.3.9 Set the number of alias expansions allowed in
the alias file

BLOCK_LIMIT 7.3.5 Limit the size of messages allowed through
PMDF

BLOCK_SIZE 7.3.5 Set the size of PMDF ‘‘blocks’’
BOUNCE_BLOCK_LIMIT 7.3.5 Limit the amount of original message content

included in bounce messages
CHANNEL_TABLE_SIZE 7.3.9 Set the number of channels allowed in the

PMDF configuration
CIRCUITCHECK_COMPLETED_
BINS

7.3.6 Specify the bins for the message circuit check
message counters

CIRCUITCHECK_PATHS_SIZE 7.3.9 Number of circuit check paths (entries) to allow
in the circuit check configuration file

COMMENT_CHARS 7.3.8 Set the ‘‘comment’’ character(s) in PMDF
configuration files

CONTENT_RETURN_BLOCK_
LIMIT

7.3.5 Force NOTARY non-return of content flag for
messages over the specified size

CONVERSION_SIZE 7.3.9 Set the number of entries allowed in the
conversion file

† DELIVERY_RECEIPT_OFF 7.3.11 Specify the RFC 822 comment string for
disabling delivery receipt requests

† DELIVERY_RECEIPT_ON 7.3.11 Specify the RFC 822 comment string for
requesting a delivery receipt

DEQUEUE_DEBUG 7.3.10 Enable debugging of message dequeue
operations

DISABLE_DELIVERY_RECEIPT 7.3.4 Disable the generation of all successful delivery
receipts.

† DIS_NESTING 7.3.11 Control the level of nesting allowed for VMS
MAIL @DIS distribution lists

DOMAIN_HASH_SIZE 7.3.9 Set the number of rewrite rules allowed

†Available only on OpenVMS

7–2

The PMDF Option File
Available Options

Table 7–1 (Cont.) PMDF Global Option File Options

Option Section Usage

EXPROUTE_FORWARD 7.3.1 Control whether the exproute keyword
affects forward pointing headers

FILTER_DISCARD 7.3.3 Control whether messages discarded by a
mailbox filter are immediately deleted, or
instead routed to the filter_discard channel for
delayed deletion

† FORM_NAMES 7.3.11 List the names of pop-up form images
‡ FSYNC 7.3.8 Do an fsync upon file close

HELD_SNDOPR 7.3.7 Send operator or syslog messages when
messages are HELD

HISTORY_TO_RETURN 7.3.4 Control the amount of delivery attempt history
included in bounced messages

HOST_HASH_SIZE 7.3.9 Set the number of channel host names
ID_DOMAIN 7.3.1 Set the domain name used in constructing

message IDs
IMPROUTE_FORWARD 7.3.1 Control the effect of the improute keyword

on forward pointing headers
INCLUDE_CONNECTIONINFO 7.3.12 Include the transport and application connection

information in various mapping table probes.
LDAP_HOST 7.3.2 Host to which to connect for LDAP queries
LDAP_PASSWORD 7.3.2 The password to use when binding for LDAP

queries
LDAP_PORT 7.3.2 Port to which to connect for LDAP queries
LDAP_TIMEOUT 7.3.2 Timeout value for LDAP queries
LDAP_TLS_MODE 7.3.2 Whether to use TLS for LDAP queries
LDAP_USERNAME 7.3.2 The DN under which to bind for LDAP queries
LINE_LIMIT 7.3.5 Limit the size of messages allowed through

PMDF
LINES_TO_RETURN 7.3.4 Lines included when returning samples of

message content (as in warning messages)
† LOG_ALQ 7.3.6 Specify the default allocation quantity for the

PMDF log file
LOG_CONNECTION 7.3.6 Include connection information in log entries
LOG_DELAY_BINS 7.3.6 Specify the bins for delivery delay range

counters
† LOG_DEQ 7.3.6 Specify the default extend quantity for the

PMDF log file
LOG_FILENAME 7.3.6 Include message file names in PMDF log entries
LOG_FORMAT 7.3.6 Control the format of the PMDF log file
LOG_HEADER 7.3.6 Include message headers in PMDF log entries
LOG_LOCAL 7.3.6 Include the local domain name on ‘‘bare user

name’’ addresses in PMDF log entries
LOG_MESSAGE_ID 7.3.6 Include message IDs in PMDF log entries
LOG_MESSAGES_SYSLOG 7.3.6 Send PMDF log file entries to syslog (UNIX) or

event log (NT)
† LOG_NODE 7.3.6 Include the node name for an enqueueing

process in PMDF log entries
† LOG_NOTARY 7.3.6 Include a NOTARY (delivery receipt) flags

indicator in PMDF log entries

†Available only on OpenVMS

‡Available only on UNIX and NT

7–3

The PMDF Option File
Available Options

Table 7–1 (Cont.) PMDF Global Option File Options

Option Section Usage

LOG_PROCESS 7.3.6 Include enqueuing process ID in PMDF log
entries

LOG_SENSITIVITY 7.3.6 Include message’s sensitivity value in log entries
LOG_SIZE_BINS 7.3.6 Specify the bins for message size range

counters
LOG_SNDOPR 7.3.6 Send an operator or syslog message if PMDF’s

logging facilities encounter a difficulty
LOG_USERNAME 7.3.6 Include the username for an enqueuing process

in PMDF log entries
† MAIL_DELIVERY_FILENAME 7.3.11 Specify the file name used by DELIVER

MAIL_OFF 7.3.1 Specify the comment string that disables mail
delivery for list addresses

MAP_NAMES_SIZE 7.3.9 Set the number of mapping tables
MAX_ALIAS_LEVELS 7.3.1 Set the level of alias nesting allowed
MAX_FILEINTOS 7.3.3 Maximum number of files that can be specified

by a mailbox filter’s fileinto operator
MAX_FORWARDS 7.3.3 Maximum number of forwarding addresses that

can be specified by a mailbox filter’s forward
operator

MAX_HEADER_BLOCK_USE 7.3.1 Fine tune message fragmentation
MAX_HEADER_LINE_USE 7.3.1 Fine tune message fragmentation
MAX_INLINE_DIR_LEVELS 7.3.1 Set the level of inline directory channel lookup

nesting allowed
MAX_INTERNAL_BLOCKS 7.3.5 Specify size of messages beyond which to

buffer to temporary files
MAX_LIST_SIZE 7.3.3 Maximum number of entries that can be in a

mailbox filter’s list
MAX_LOCAL_RECEIVED_LINES 7.3.7 Occurrences of the local host name in

Received: headers after which a message
will be HELD

MAX_MIME_LEVELS 7.3.5 Degree to look inside MIME messages during
processing

MAX_MIME_PARTS 7.3.5 Number of parts to look at when processing
MIME messages

MAX_MR_RECEIVED_LINES 7.3.7 Number of MR-Received: headers after which a
message will be HELD

MAX_RECEIVED_LINES 7.3.7 Number of Received: headers after which a
message will be HELD

MAX_TOTAL_RECEIVED_LINES 7.3.7 Number of Received:, MR-Received: or X400-
Received: headers after which a message will
be HELD

MAX_URLS 7.3.2 Maximum number of URLs that can be active
(nesting of references)

MAX_X400_RECEIVED_LINES 7.3.7 Number of X400-Received: headers after which
a message will be HELD

† MISSING_ADDRESS 7.3.11 VMS MAIL From: address to substitute for a
missing address

MISSING_RECIPIENT_POLICY 7.3.1 Legalize messages that lack any recipient
headers

MP_SIGNED_MODE 7.3.11 Control PMDF’s support of multipart/signed
messages

†Available only on OpenVMS

7–4

The PMDF Option File
Available Options

Table 7–1 (Cont.) PMDF Global Option File Options

Option Section Usage

† MULTINET_MM_EXCLUSIVE 7.3.11 Control whether delivery is to VMS MAIL or
MultiNet MM

† NAME_TABLE_NAME 7.3.1 Control whether logical name tables can be
used for aliasing

NORMAL_BLOCK_LIMIT 7.3.5 Maximum size of message to treat as being of
normal or higher priority

NON_URGENT_BLOCK_LIMIT 7.3.5 Maximum size of message to treat as being of
non-urgent priority

POST_DEBUG 7.3.10 Enable debugging of PMDF periodic delivery job
operations

† READ_RECEIPT_OFF 7.3.11 Specify the RFC 822 comment string for
disabling read receipt requests

† READ_RECEIPT_ON 7.3.11 Specify the RFC 822 comment string for
requesting a read receipt

RECEIVED_DOMAIN 7.3.1 Specify the domain name (identifying the
system itself) to use in constructing Received:
headers

RETURN_ADDRESS 7.3.4 Set the return address for the local postmaster
RETURN_DEBUG 7.3.10 Enable debugging of PMDF periodic return job

operations
RETURN_DELIVERY_HISTORY 7.3.4 Control whether delivery attempt history is

included in returned messages
† RETURN_DELTA 7.3.4 Set the offset from midnight, or delta time

between runs, of the execution of the PMDF
periodic return job

RETURN_ENVELOPE 7.3.4 Control use of empty return address in
notification messages

RETURN_PERSONAL 7.3.4 Set the personal name for the postmaster
RETURN_UNITS 7.3.4 Control whether the PMDF periodic return job

runs on a daily or hourly schedule
REVERSE_ENVELOPE 7.3.1 Control application of address reversal to

envelope addresses
REVERSE_URL 7.3.2 URL for doing address reversal

† SAFE_TCL_MODE 7.3.11 Control PMDF MAIL’s support of Safe-Tcl
message parts

SEPARATE_CONNECTION_LOG 7.3.6 Write connection log entries to a separate file
than message log entries

SNDOPR_PRIORITY 7.3.6 Set the priority of operator broadcast or the
syslog level of syslog messages

STRING_POOL_SIZE 7.3.9 Set the number of strings allowed for general
PMDF configuration use

SUPPRESS_CONTENT_DISP 7.3.1 Suppress the generation of Content-disposition
headers

URGENT_BLOCK_LIMIT 7.3.5 Maximum size of message to treat as being of
urgent priority

USE_ALIAS_DATABASE 7.3.1 Control use of the alias database
USE_DOMAIN_DATABASE 7.3.1 Control use of the domain database
USE_ERRORS_TO 7.3.4 Control use of Errors-to: information when

returning messages
USE_FORWARD_DATABASE 7.3.1 Control use of the forward database

† USE_MAIL_DELIVERY 7.3.11 Control whether users can use DELIVER

†Available only on OpenVMS

7–5

The PMDF Option File
Available Options

Table 7–1 (Cont.) PMDF Global Option File Options

Option Section Usage

USE_PERSONAL_ALIASES 7.3.1 Control use of personal alias databases
USE_REVERSE_DATABASE 7.3.1 Control use and format of the REVERSE

mapping and reverse database
USE_WARNINGS_TO 7.3.4 Control use of Warnings-to: information when

returning messages
† VMS_MAIL_EXCLUSIVE 7.3.11 Control whether delivery is to VMS MAIL or

MultiNet MM
WILD_POOL_SIZE 7.3.9 Set the total number of wildcards allowed in

mappings patterns

†Available only on OpenVMS

7.3.1 Addresses, Aliases, Headers, and Rewriting Options

The options described in this section affect and modify various aspects of PMDF
address, alias, and rewriting handling, and the information placed in certain sorts of
headers.

ALIAS_DOMAINS (integer)

This option takes a bit encoded integer argument controlling the format of alias file and
alias database lookups. The default value is 1, meaning that alias file and alias database
lookups probe with only the local part (mailbox portion) of the address. Note that for
addresses matching the local channel, such a probe is made even if bit 0 (value 1) is not
set. Setting bit 1 (value 2) causes a probe to be made using the entire address (including
the domain name). Setting bit 2 (value 4) causes a wildcard * probe to be made, (akin
to the sort of wildcard * probe made when doing a directory channel crdb lookup). If all
bits are set, i.e., ALIAS_DOMAINS=7, then the order of the probes is to first probe with
the entire address (the most specific check), next probe with a wildcard * local part plus
the domain name, and finally probe with just the local part.

Bit Value Usage

0 1 Look up localpart. Clearing this bit disables the lookup of local parts only for channels
other than the local channel; for the local channel, local parts are always looked up.

1 2 Look up localpart@domainname.

2 4 Try an * lookup if no exact match is found.

Bit 0 is the least significant bit.

Note that by default only addresses rewritten to the local channel are checked against
the alias file and alias database. However, via use of the aliaslocal channel keyword
it is possible to cause addresses matching other channels to be checked against the alias
file and alias database.

7–6

The PMDF Option File
Available Options

EXPROUTE_FORWARD (integer 0 or 1)

This option controls the application of the exproute channel keyword to forward-
pointing (To:, Cc:, and Bcc: lines) addresses in the message header. A value of 1 is the
default and specifies that exproute should affect forward-pointing header addresses. A
value of 0 disables the action of the exproute keyword on forward-pointing addresses.

ID_DOMAIN (string)

The ID_DOMAIN specifies the domain name to use when constructing message IDs. By
default, the official host name of the local channel is used.

IMPROUTE_FORWARD (integer 0 or 1)

This option controls the application of the improute channel keyword to forward-
pointing (To:, Cc:, and Bcc: lines) addresses in the message header. A value of 1 is the
default and specifies that improute should affect forward-pointing header addresses. A
value of 0 disables the action of the improute keyword on forward-pointing addresses.

MAIL_OFF (string)

Specify the comment string that disables mail delivery for list addresses. The default is
NOMAIL.

MAX_ALIAS_LEVELS (integer)

The MAX_ALIAS_LEVELS option controls the degree of indirection allowed in aliases,
that is, how deeply aliases can be nested, with one alias referring to another alias, etc.
The default value is 10.

MAX_INLINE_DIR_LEVELS (integer)

The MAX_INLINE_DIR_LEVELS option controls the degree of indirection allowed in
directory channel inline lookups, that is, how deeply directory channel aliases can be
nested, with one directory channel entry referring to another directory channel entry,
etc. The default value is 10. Note that this option only applies when the inline channel
keyword is used on the directory channel.

MISSING_RECIPIENT_POLICY (integer)

According to RFC 822, messages are required to contain at least one recipient header: a
To:, Cc:, or Bcc: header. This RFC states that a message without any such headers
is illegal. This requirement has been relaxed in the updated RFC 2822 standard: such
messages are no longer illegal. However, some remote systems that conform to RFC 822
will not accept these messages. In many cases, it can be useful to have PMDF modify
the message to include at least one recipient header.

The MISSING_RECIPIENT_POLICY option takes an integer value specifying what
approach to use for such messages; the default value, if the option is not explicitly present,
is 1, meaning that no action is taken.

Value Action

1 Pass the message through unchanged

2 Place envelope To: recipients in a To: header

3 Place all envelope To: recipients in a single Bcc: header

4 Generate an empty group construct To: header (i.e. ‘‘To: Recipients not specified: ;’’)

5 Generate a blank Bcc: header

6 Reject the message

7–7

The PMDF Option File
Available Options

Note that the The missingrecipientpolicy channel keyword, discussed in Sec-
tion 2.3.4.48, can be used to set per-channel controls for this sort of behavior.

NAME_TABLE_NAME (string; OpenVMS only)

The NAME_TABLE_NAME option specifies the name of a logical name table to be
searched for address aliases by PMDF. This table name can itself be a logical name
(in the process or system directory) which specifies one or more tables to search. This
option has no default; if it is not specified logical name tables are not searched for aliases.

RECEIVED_DOMAIN (string)

The RECEIVED_DOMAIN option sets the domain name to use when constructing
Received: headers. By default, the offical host name of the local channel is used.

REVERSE_ENVELOPE (0 or 1)

The REVERSE_ENVELOPE option controls whether or not PMDF applies address
reversal to envelope From: addresses as well as header addresses. This option will
have no effect if the USE_REVERSE_DATABASE option is set to 0 or if neither the
reverse database nor a REVERSE mapping exist. The default is 1, which means that
PMDF will attempt to apply any address reversal to envelope From: addresses. A value
of 0 will disable this use of the address reversal database and REVERSE mapping.

SUPPRESS_CONTENT_DISP (integer 0, 1, or 2)

This option suppresses the addition of a Content-disposition header to a message or
message part when PMDF parses out and re-assembles the MIME parts of a message.
PMDF can be configured to do this in several ways, for example, by using the inner
or innertrim channel keywords, or by using the CHARSET-CONVERSION mapping
table.

Normally, when parsing the MIME part headers, if PMDF finds a name parameter
in the Content-type header, it will add a Content-disposition header with a
filename parameter. This appears to cause problems with messages generated by
Outlook Calendar, with message parts that are of type text/calendar and do not have
a Content-disposition header. The generation of this header by PMDF can be suppressed
by specifing the SUPPRESS_CONTENT_DISP option. A value of 1 always suppresses
the generation of a Content-disposition header, and a value of 2 suppresses the generation
of the Content-disposition header only for text/calendar message parts.

USE_ALIAS_DATABASE (integer 0, 1, or 2)

The USE_ALIAS_DATABASE option controls whether and how PMDF makes use of the
alias database as a source of system aliases for local addresses. A value of 0 disables use
of the alias database. A value of 1, the default, causes PMDF to check the database if
it exists. A value of 2 requires use the alias database. With this setting, if the database
does not exist or is inaccessable for any other reason, all messages will be rejected with
a temporary error.

USE_DOMAIN_DATABASE (0 or 1)

The USE_DOMAIN_DATABASE option controls whether or not PMDF makes use of the
domain database as a source of rewrite rules. The default is 1, which means that PMDF
will check the database if it exists. A value of 0 will disable this use of the domain
database.

USE_FORWARD_DATABASE (integer)

The USE_FORWARD_DATABASE controls whether or not PMDF makes use of the
forward database. This value is a decimal integer representing a bit-encoded integer,
the interpretation of which is given in the table below.

7–8

The PMDF Option File
Available Options

Bit Value Usage

0 1 When set, the forward database is used.

3 8 When set, channel-level granularity is used with the forward database entries. Forward
database entries’ left hand sides must have the form (note the vertical bars, |)

source-channel|from-address|to-address

4 16 When set, channel-level granularity is used with the FORWARD mapping. FORWARD
mapping entries’ patterns (left hand sides) must have the form (note the vertical bars,
|)

source-channel|from-address|to-address

Bit 0 is the least significant bit.

The default value for USE_FORWARD_DATABASE is 0, which means that PMDF will
not use the forward database at all. Note that a FORWARD mapping, if present, is
always consulted.

USE_PERSONAL_ALIASES (0 or 1)

The USE_PERSONAL_ALIASES option controls whether or not PMDF makes use of
personal alias databases as a source of aliases for local addresses. The default is 1,
which means that PMDF will check such databases, if they exist. A value of 0 will
disable personal aliases and make them unavailable to all users.

USE_REVERSE_DATABASE (0-511)

The USE_REVERSE_DATABASE option controls whether or not PMDF makes use of the
address reversal database and REVERSE mapping as a source of substitution addresses.
This value is a decimal integer representing a bit-encoded integer, the interpretation of
which is given in the table below.

Bit Value Usage

0 1 When set, address reversal is applied to addresses after they have been rewritten by
the PMDF address rewriting process.

1 2 When set, address reversal is applied before addresses have had PMDF address
rewriting applied to them.

2 4 When set, address reversal will be applied to all addresses, not just to backwards-
pointing addresses.

3 8 When set, channel-level granularity is used with the REVERSE mapping. REVERSE
mapping table (pattern) entries must have the form (note the vertical bars, |)

source-channel|destination-channel|address

4 16 When set, channel-level granularity is used with address reversal database entries.
Reversal database entries’ left hand sides must have the form (note the vertical bars,
|)

source-channel|destination-channel|address

5 32 Apply REVERSE mapping even if a reverse database entry has already matched.

6 64 Apply address reversal to message ids.

Bit 0 is the least significant bit.

7–9

The PMDF Option File
Available Options

Bit Value Usage

7 128 When set, this modifies the effect of bit 4 (channel-level granularity of address reversal
database entries); when this bit is also set, the address reversal database entries take
the form (note the vertical bars, |)

destination-channel|address

8 256 When set, this modifies the effect of bit 3 (channel-level granularity of REVERSE
mapping table entries); when this bit is also set, the REVERSE mapping table entries
take the form (note the vertical bars, |)

destination-channel|address

Bit 0 is the least significant bit.

The default value for USE_REVERSE_DATABASE is 5, which means that PMDF will
reverse Envelope From: addresses and both backwards and forwards pointing addresses
after they have passed through the normal address rewriting process. Simple address
strings are presented to both the REVERSE mapping and the reverse database. Note
that a value of 0 disables the use of the address reversal completely.

Note that the default of 5 represents a change from earlier versions of PMDF in which
this option had a default value of 1 (reverse only backwards pointing addresses).

7.3.2 LDAP and URL Lookup Options

This section lists options affecting LDAP and URL lookups.

LDAP_HOST (host name)

Specify the default host to which to connect when making LDAP queries.

LDAP_PASSWORD (string)

The password to use when binding for LDAP queries.

LDAP_PORT (integer)

Specify the port to which to connect when making LDAP queries. The default value is
389, the standard LDAP port number.

LDAP_TIMEOUT (integer)

Control how long to wait (in hundredths of seconds) before timing out on an LDAP query.
The default value is 200.

LDAP_TLS_MODE (1 or 2)

Control whether TLS is used for LDAP queries. The default if the option is not specified
is to not use TLS. A value of 1 tells PMDF to try to use TLS to look up the alias in LDAP,
but continue without it if TLS is not available. A value of 2 tells PMDF to require TLS.
Note that in order to use TLS, your LDAP server must be configured to do TLS on its
end.

You may need to have the Certificate Authority (CA) certificate to be used by LDAP on
your PMDF system. If so, the CA certificate should be placed in the file pmdf_table:ldap-
cacert.pem.

7–10

The PMDF Option File
Available Options

LDAP_USERNAME (distinguished-name)

The DN under which to bind for LDAP queries.

MAX_URLS (integer)

Maximum number of URLs that can be active when reiteratively performing URL
lookups; that is, this is the maximum degree of nesting of URL references. The default
value is 5.

REVERSE_URL (URL)

URL to query for address reversal. Standard LDAP URL syntax is used, except omitting
the LDAP server and port which are instead specified via the LDAP_HOST and LDAP_
PORT options. Also, certain substitution sequences are available, as shown in Table 3–1.

7.3.3 Mailbox Filter Options

This section lists options affecting mailbox filters.

FILTER_DISCARD (1, 2, or 3)

This option controls whether mailbox filter discard actions cause such discarded messages
to go to the bitbucket channel (i.e., be immediately discarded), or cause such messages
to go to the filter_discard channel (which will leave them around for a short period
before discarding them). The default is FILTER_DISCARD=1, meaning that messages
discarded by a mailbox filter are immediately discarded. Setting FILTER_DISCARD=2
causes discarded messages to instead be routed to the filter_discard channel; see
Section 16.2.5. Setting FILTER_DISCARD=3 causes messages to be routed to the filter_
discard channel as with FILTER_DISCARD=2, however these messages are not added
to the PMDF queue cache database, improving performance.

MAX_FILEINTOS (integer)

This option specifies the maximum number of folders that can be specified by a mailbox
filter’s fileinto operator. The default is 10.

MAX_FORWARDS (integer)

This option specifies the maximum number of forwarding addresses that can be specified
by a mailbox filter’s redirect operator. The default is 32.

MAX_LIST_SIZE (integer)

This option specifies the maximum number of entries that can be in a mailbox filter’s list
type. The default is 64.

7.3.4 Notification Messages and Jobs Options

This section lists options affecting notification messages and the PMDF periodic
return job. See also the BOUNCE_BLOCK_LIMIT and CONTENT_RETURN_BLOCK_
LIMIT options, discussed in Section 7.3.5.

7–11

The PMDF Option File
Available Options

ACCESS_ERRORS (integer 0 or 1)

PMDF provides facilities to restrict access to channels on the basis of the NETMBX
privilege or rightslist identifiers on OpenVMS, or on the basis of group ids on UNIX.
If ACCESS_ERRORS is set to 0 (the default), when an address causes an access failure
PMDF will report it as an ‘‘illegal host or domain’’ error. This is the same error that would
occur if the address was simply illegal. Although confusing, this usage nevertheless
provides an important element of security in circumstances where information about
restricted channels should not be revealed. Setting ACCESS_ERRORS to 1 will override
this default and provide a more descriptive error.

DISABLE_DELIVERY_RECEIPT (integer 0 or 1)

Setting DISABLE_DELIVERY_RECEIPT to 1 disables the generation of all successful
delivery receipts. The default is 0.

HISTORY_TO_RETURN (1-200)

The HISTORY_TO_RETURN option controls how many delivery attempt history records
are included in returned messages. The delivery history provides some indication of how
many delivery attempts were made and in some cases indicates the reason the delivery
attempts failed. The default value for this option is 20.

LINES_TO_RETURN (integer)

The LINES_TO_RETURN option controls how many lines of message content PMDF
includes when generating a notification message for which it is appropriate to return
only a sample of the contents. The default is 20. If the value 0 is specified, only headers
are included.

Note that this option is irrelevant when generating a NOTARY bounce message,
where either the full content or merely headers are included, according to the choice
specified during the initial submission of the message. So in practice, this option is
mostly only relevant to the warning messages the PMDF return job sends about messages
awaiting further delivery retries in the PMDF queue area.

RETURN_ADDRESS (string)

The RETURN_ADDRESS option sets the return address for the local Postmaster. The
local Postmaster’s address is postmaster@localhost by default, but it can be overriden
with the address of your choice. Care should be taken in the selection of this address
— an illegal selection can cause rapid message looping and pile-ups of huge numbers of
spurious error messages.

RETURN_DELIVERY_HISTORY (0 or 1)

This flag controls whether or not a history of delivery attempts is included in returned
messages. The delivery history provides some indication of how many delivery attempts
were made and in some cases indicates the reason the delivery attempts failed. A value
of 1 enables the inclusion of this information and is the default. A value of 0 disables
return of delivery history information. The HISTORY_TO_RETURN option controls how
much history information is actually returned.

RETURN_DELTA (+01:00:00 or +00:30:00; OpenVMS only)

On OpenVMS systems, the RETURN_DELTA option controls when the message return
system runs. When RETURN_UNITS is set to 0, RETURN_DELTA should be set to the
time after midnight when the daily job should start. The default is 30 minutes after
midnight. When RETURN_UNITS is set to 1, RETURN_DELTA should be set to the
interval between runs. In this case the default is one hour. In either case the value is
given as a standard VMS delta time.

7–12

The PMDF Option File
Available Options

RETURN_ENVELOPE (integer)

The RETURN_ENVELOPE option takes a single integer value, which is interpreted as
a set of bit flags. Bit 0 (value = 1) controls whether or not return notifications generated
by PMDF are written with a blank envelope address or with the address of the local
postmaster. Setting the bit forces the use of the local postmaster address, clearing the
bit forces the use of a blank address. Note that the use of a blank address is mandated
by RFC 1123. However, some systems do not handle blank envelope From: addresses
properly and can require the use of this option.

Bit 1 (value = 2) controls whether or not PMDF replaces all blank envelope addresses
with the address of the local postmaster. Again, this is used to accomodate incompliant
systems that don’t conform to RFC 821, RFC 822, or RFC 1123.

Note also that the returnenvelope channel keyword can be used to impose this sort of
control on a per-channel basis.

RETURN_PERSONAL (string)

The RETURN_PERSONAL option specifies the personal name to use when PMDF
generates postmaster messages, e.g., bounce messages. By default, PMDF uses the string
‘‘PMDF e-Mail Interconnect’’.

RETURN_UNITS (0 or 1)

The time units used by the message return system is controlled with this option; that is,
this option controls the interpretation of the values specified for the notices keyword.
A value of 0 selects units of days; a value of 1 selects units of hours. By default, units of
days are used.

On OpenVMS, if hours are selected, 1, then, after the next time the message return job
is submitted, the message return job will begin running every hour.

On UNIX systems, the scheduling of the execution of the message return job is performed
by changing the crontab entry controlling when it runs; see the appropriate edition of
the PMDF Installation Guide for information on that crontab entry.

If you choose to set RETURN_UNITS=1, see also the discussion in Section 1.4.4.1.

USE_ERRORS_TO (0 or 1)

The USE_ERRORS_TO option controls whether or not PMDF makes use of the
information contained in Errors-to: header lines when returning messages. Setting this
option to 1 directs PMDF to make use of this header line. A value of 0, the default,
disables use of this header line. Note that this default represents a change from the
default in previous versions of PMDF.

USE_WARNINGS_TO (0 or 1)

The USE_WARNINGS_TO option controls whether or not PMDF makes use of the
information contained in Warnings-to: header lines when returning messages. Setting
this option to 1 directs PMDF to make use of these header lines. The default is 0, which
disables use of this header line. Note that this default represents a changes from the
default in previous versions of PMDF.

7–13

The PMDF Option File
Available Options

7.3.5 Message Size Options

This section lists options relating to message size, such as limits on the size of
messages allowed in PMDF, message size affecting message processing priority, limits
on the extent to which PMDF looks into messages of complex MIME structure, and fine
tuning of message fragmentation.

BLOCK_LIMIT (integer > 0)

This option places an absolute limit on the size, in blocks, of any message which can be
sent or received with PMDF. Any message exceeding this size will be rejected. By default,
PMDF imposes no size limits. Note also that the blocklimit channel keyword can be
used to impose limits on a per-channel basis. The size in bytes of a block is specified
with the BLOCK_SIZE option.

BLOCK_SIZE (integer > 0)

PMDF uses the concept of a ‘‘block’’ in several ways. For example, the PMDF log files
(resulting from placing the logging keyword on channels) record message sizes in terms
of blocks. Message size limits specified via the maxblocks keyword are also in terms
of blocks. Normally a PMDF block is equivalent to 1024 characters. This option can be
used to modify this sense of what a block is. A good alternative might be 512, to match
the OpenVMS definition of a block.

Note: PMDF stores message sizes internally as an integer number of blocks. If the size of a
block in bytes is set to a very small value it is possible for a very large message to cause
an integer overflow. A message size of greater than 2**31 blocks would be needed, but
this value is not inconceivable if the block size is small enough.

BOUNCE_BLOCK_LIMIT (integer)

This option can be used to force bounces of messages over the specified size to return
only the message headers, rather than the full message content.

CONTENT_RETURN_BLOCK_LIMIT (integer)

This option can be used to force on the NOTARY non-return of content flag for messages
over the specified size; if such a message is subsequently bounced by a system that
supports NOTARY, then the original message contents will not be included in the bounce
message.

LINE_LIMIT (integer)

This option places an absolute limit on the overall number of lines in any message which
can be sent or received with PMDF. Any message exceeding this limit will be rejected.
By default, PMDF imposes no line count limits. Note also that the linelimit channel
keyword can be used to impose limits on a per-channel basis.

MAX_HEADER_BLOCK_USE (real number between 0 and 1)

The MAX_HEADER_BLOCK_USE keyword controls what fraction of the available
message blocks can be used by message headers. See Section 2.3.4.77 for additional
information on how this option interacts with the maxblocks channel keyword.

MAX_HEADER_LINE_USE (real number between 0 and 1)

The MAX_HEADER_LINE_USE keyword controls what fraction of the available message
lines can be used by message headers. See Section 2.3.4.77 for additional information on
how this option interacts with the maxlines channel keyword.

7–14

The PMDF Option File
Available Options

MAX_INTERNAL_BLOCKS (integer)

The MAX_INTERNAL_BLOCKS option specifies how large (in PMDF blocks) a message
PMDF will keep entirely in memory; messages larger than this size will be written to
temporary files. The default is 30. For systems with lots of memory, increasing this
value can provide a performance improvement.

MAX_MIME_LEVELS (integer)

Specify the maximum depth to which PMDF should process MIME messages. The default
is 100, meaning that PMDF will process up to one hundred levels of message nesting.
Higher values can require additional amounts of memory and, for the Dispatcher,
additional per-thread storage space; see the discussion of the STACKSIZE Dispatcher
option in Section 11.3.1.

MAX_MIME_PARTS (integer)

Specify the maximum number of MIME parts which PMDF should process in a MIME
message. The default value is 0, meaning no limit is imposed.

NORMAL_BLOCK_LIMIT (integer)

The NORMAL_BLOCK_LIMIT option can be used to instruct PMDF to downgrade the
priority of messages based on size: messages above the specified size will be downgraded
to non-urgent priority. This priority, in turn, can affect whether the message is processed
immediately, or whether it is left to wait for processing until the next periodic job runs;
see Section 2.3.4.9. The value is interpreted in terms of PMDF blocks, as specified by
the BLOCK_SIZE option. Note also that the normalblocklimit channel keyword can
be used to impose such downgrade thresholds on a per-channel basis. Section 2.3.4.10,

NON_URGENT_BLOCK_LIMIT (integer)

The NON_URGENT_BLOCK_LIMIT option can be used to instruct PMDF to downgrade
the priority of messages based on size: messages above the specified size will be down-
graded to lower than non-urgent priority, meaning that they will not be processed imme-
diately and will wait for processing until the next periodic job runs; see Section 2.3.4.9.
The value is interpreted in terms of PMDF blocks, as specified by the BLOCK_SIZE op-
tion. Note also that the nonurgentblocklimit channel keyword can be used to impose
such downgrade thresholds on a per-channel basis.

URGENT_BLOCK_LIMIT (integer)

The URGENT_BLOCK_LIMIT option can be used to instruct PMDF to downgrade the
priority of messages based on size: messages above the specified size will be downgraded
to normal priority. This priority, in turn, can affect whether the message is processed
immediately, or whether it is left to wait for processing until the next periodic job runs;
see Section 2.3.4.9. The value is interpreted in terms of PMDF blocks, as specified by
the BLOCK_SIZE option. Note also that the urgentblocklimit, channel keyword can
be used to impose such downgrade thresholds on a per-channel basis.

7.3.6 Logging, Monitoring, and Counters Options

The options listed in this section affect PMDF logging, monitoring, and counters.
The CIRCUITCHECK_COMPLETED_BINS option relates to PMDF circuit check counter
binning. The LOG_DELAY_BINS and LOG_SIZE_BINS options relate to PMDF counters
binning. The LOG_SNDOPR option can be set by sites that want to have OPCOM
messages (OpenVMS) or syslog messages (UNIX) or event log entries (NT) in cases of
logging or counters updating problems. OpenVMS sites that have heavy message traffic

7–15

The PMDF Option File
Available Options

logged to the PMDF log file can find it useful to adjust the LOG_ALQ and LOG_DEQ
option so that the underlying file allocation uses larger extents. The rest of these logging
options affect the formatting of the PMDF log file and logging of optional additional
information.

CIRCUITCHECK_COMPLETED_BINS (comma-separated list of up to eight integers)

This option specifies the bin divisions, in seconds, for the PMDF circuit check counters.
The default values are 120, 300, 900, 1800, 3600, 7200, 14400, and 28800; i.e., two
minutes, five minutes, fifteen minutes, thirty minutes, one hour, two hours, four hours,
and eight hours, respectively.

LOG_ALQ (integer; OpenVMS only)

The LOG_ALQ option specifies the default allocation quantity (in OpenVMS blocks) for
the PMDF log file, mail.log_current. The default value is 2000, or twice the LOG_
DEQ value if LOG_DEQ has been explicitly set. On a busy system that is updating that
log file frequently, increasing this value can provide increased efficiency.

LOG_CONNECTION (integer)

The LOG_CONNECTION option controls whether or not connection information, e.g., the
domain name of the SMTP client sending the message, is saved in the mail.log file.
This value is a decimal integer representing a bit-encoded integer, the interpretation of
which is given in the table below.

Bit Value Usage

0 1 When set, connection information is included in E, D and R log records.

1 2 When set, connection open/close/fail records are logged by message enqueue and
dequeue agents such as the SMTP and X.400 clients and servers. This bit also
enables use of the $T flag (for causing logging) in PORT_ACCESS rejection entries.

2 4 When set, I records are logged recording ETRN events.

4 16 When set, C entries can include site-supplied text from a PORT_ACCESS mapping
table entry.

Bit 0 is the least significant bit.

Thus for instance enabling LOG_CONNECTION=3 will result both in additional sorts
of log file entries—entries showing when an SMTP connection is opened or closed—and
also additional information in regular log file entries showing the name of the system
connecting (or being connected to), or the channel hostname of the enqueuing channel
when the enqueuing channel is not an SMTP channel. (This is a change from PMDF
V5.1 and earlier, where the value was simply 0 or 1, with 1 enabling all the then-
available connection logging.) TCP/IP channels have a channel level option that can
override this setting for particular channels; see Section 21.1.2.2. For examples of the
sort of information resulting from setting LOG_CONNECTION=3, see Figure 31–10 and
Figure 31–11.

LOG_CONNECTIONS_SYSLOG (integer; UNIX and NT only)

Send PMDF connection log file entries to syslog (UNIX) or event log (NT).

LOG_DELAY_BINS (comma-separated list of up to five integers)

This option specifies the bin divisions for the PMDF counters tracking numbers of
messages delivered in the specified number of seconds. The defaults values are 60, 600,
6000, 60000, 600000.

7–16

The PMDF Option File
Available Options

LOG_DEQ (integer; OpenVMS only)

The LOG_DEQ option specifies the default extend quantity (in OpenVMS blocks) for the
PMDF log file, mail.log_current. The default value is 1000. On a busy system that
is updating that log file frequently, increasing this value can provide increased efficiency.

LOG_FILENAME (0 or 1)

The LOG_FILENAME option controls whether or not the names of the files in which
messages are stored are saved in the mail.log file. A value of 1 enables file name
logging. When file name logging is enabled, the file name will appear as the first field
after the final form envelope To: address. A value of 0 (the default) disables file name
logging.

LOG_FORMAT (1, 2, or 3)

The LOG_FORMAT option controls formatting options for the mail.log file. A value of
1 (the default) is the standard format. A value of 2 requests non-null formatting: empty
address fields are converted to the string ‘‘<>’’. A value of 3 requests counted formatting:
all variable length fields are preceded by ‘‘N:’’, where ‘‘N’’ is a count of the number of
characters in the field.

LOG_HEADER (0 or 1)

The LOG_HEADER option controls whether PMDF writes message headers to the
mail.log file. A value of 1 enables message header logging. The specific headers
written to the log file are controlled by a site-supplied log_header.opt file. The format
of this file is that of other PMDF header option files; see Section 2.3.7. For instance, a
log_header.opt file containing

To: MAXIMUM=1
From: MAXIMUM=1
Defaults: MAXIMUM=-1

would result in writing the first To: and the first From: header per message to the log
file.

A value of 0 (the default) disables message header logging.

LOG_LOCAL (0 or 1)

The LOG_LOCAL option controls whether or not the domain name for the local host is
appended to logged addresses that don’t already contain a domain name. A value of 1
enables this feature, which is useful when logs from multiple systems running PMDF
are concatenated and processed. A value of 0, the default, disables this feature.

LOG_MESSAGE_ID (0 or 1)

The LOG_MESSAGE_ID option controls whether or not message IDs are saved in the
mail.log file. A value of 1 enables message ID logging. When message ID logging is
enabled, the message ID will be logged after the final form envelope To: address entry—
and after the message file name, if LOG_FILENAME=1 is also enabled. A value of 0 (the
default) disables message ID logging.

LOG_MESSAGES_SYSLOG (integer; UNIX and NT only)

Send PMDF message log file entries to syslog (UNIX) or event log (NT). A value of 1 adds
entries to both the syslog/event log and to the mail.log file. A value of 2 adds entries only
to syslog/event log (not to mail.log).

7–17

The PMDF Option File
Available Options

LOG_NODE (0 or 1; OpenVMS only)

The LOG_NODE option controls whether or not the node associated with a process that
enqueues mail is saved in the mail.log file. This can be useful information when PMDF
is running in a multi-node cluster. A value of 1 enables node name logging. When the
node name is logged, it will appear as the first field following the date and time stamps
in log entries. A value of 0 (the default) disables node name logging.

LOG_NOTARY (0 or 1)

The LOG_NOTARY option controls whether PMDF includes an indicator of NOTARY
(delivery receipt) flags in the mail.log file entries. A value of 1 enables NOTARY flag
logging. A value of 0 (the default) disables it. The NOTARY flags will be logged as a bit
encoded integer after the current form of the envelope To: address.

LOG_PROCESS (0 or 1)

The LOG_PROCESS option controls whether or not the id of the process that enqueues
mail is saved in the mail.log file. A value of 1 enables process id logging. A value of
0 (the default) disables it. The process id will be logged after the date and time stamps
in log entries—and after the node name, if LOG_NODE=1 is also enabled. The process
id field itself will consist of the process id in a hexadecimal representation followed by a
period, next in the case of a multithreaded channel the thread id followed by a period,
followed by a counter. That is, in the case of a single threaded channel

process-id.counter

or in the case of a multithreaded channel

process-id.thread-id.counter

Note in particular that via the process id and thread id, TCP/IP channel message
enqueue/dequeue (E/D) records can be correlated with SMTP connection open/close (O/C)
records.

LOG_SENSITIVITY (0 or 1)

The LOG_SENSITIVITY option controls whether message Sensitivity: header values are
included in log entries. A value of 1 enables such logging; the default value of 0 disables
such logging. If logging is enabled, the sensitivity value will be logged in an integer
representation after the connection information, before the transport information.

LOG_SIZE_BINS (comma-separated list of up to five integers)

This option specifies the bin divisions for the PMDF counters tracking numbers of
messages of the specified number of (PMDF) blocks. The default values are 2, 10, 50,
100, 500.

LOG_SNDOPR (0 or 1)

The LOG_SNDOPR option controls the production of OPCOM messages (OpenVMS) or
syslog messages (UNIX) or event log entries (NT) by the PMDF message logging facility.
If this feature is enabled by specifying a value of 1, the logging facility will produce a
message if it encounters any difficulty writing to the log file. A value of 0 (the default)
turns off these messages.

LOG_USERNAME (0 or 1)

The LOG_USERNAME option controls whether or not the username associated with a
process that enqueues mail is saved in the mail.log file. Note that messages submitted
via SMTP with authentication (SMTP AUTH) will be considered to be owned by the
username that authenticated, prefixed with the asterisk, *, character. A value of 1
enables username logging. When username logging is enabled, the username will be

7–18

The PMDF Option File
Available Options

logged after the final form envelope To: address field in log entries—and after the message
ID, if LOG_MESSAGE_ID=1 is also enabled. A value of 0 (the default) disables username
logging.

SEPARATE_CONNECTION_LOG (0 or 1)

The SEPARATE_CONNECTION_LOG option controls whether the connection log infor-
mation generated by setting LOG_CONNECTION=1 is stored in the usual PMDF mes-
sage logging files, mail.log*, or stored separately in connection.log* files. SEP-
ARATE_CONNECTION_LOG=0, the default, causes connection logging to be stored in
the regular message log files; a value of 1 causes the connection logging to be stored
separately.

SNDOPR_PRIORITY (integer)

Set the priority of operator broadcast or the syslog level of syslog messages or the severity
of the NT event log entry.

7.3.7 Message Loop Detection and HELD Messages

This section lists options relating to PMDF’s facility to sideline as .HELD messages
that appear to be looping. See also Section 33.4.7 and Section 34.4.7 for discussions of
such sidelined messages.

HELD_SNDOPR (0 or 1)

The HELD_SNDOPR option controls the production of OPCOM messages (OpenVMS) or
syslog messages (UNIX) or event log entries (NT) when a message is forced into a held
state because it has too many Received: header lines. (See the documentation on MAX_
*RECEIVED_LINES options below for additional information.) A value of 1 instructs
PMDF to issue a message when this happens. A value of 0 (the default) turns off these
messages.

MAX_LOCAL_RECEIVED_LINES (integer)

As PMDF processes a message, it scans any Received: header lines attached to the
message looking for references to the official local host name. (Any Received: line that
PMDF inserts will contain this name). If the number of Received: lines containing this
name exceeds the MAX_LOCAL_RECEIVED_LINES value, the message is entered into
the PMDF queue in a held state. The default for this value is 10 if no value is specified
in the option file. This check blocks certain kinds of message forwarding loops. The
message must be manually moved from the held state for processing to continue. See
Section 33.4.7 or Section 34.4.7 for advice on dealing with held messages.

MAX_MR_RECEIVED_LINES (integer)

As PMDF processes a message, it counts the number of MR-Received: header lines
in the message’s header. If the number of MR-Received: lines exceeds the MAX_MR_
RECEIVED_LINES value, the message is entered into the PMDF queue in a held state.
The default for this value is 20 if no value is specified in the option file. This check blocks
certain kinds of message forwarding loops. The message must be manually moved from
the held state for processing to continue. See Section 33.4.7 or Section 34.4.7 for advice
on dealing with held messages.

7–19

The PMDF Option File
Available Options

MAX_RECEIVED_LINES (integer)

As PMDF processes a message, it counts the number of Received: header lines in the
message’s header. If the number of Received: lines exceeds the MAX_RECEIVED_LINES
value, the message is entered into the PMDF queue in a held state. The default for this
value is 50 if no value is specified in the option file. This check blocks certain kinds of
message forwarding loops. The message must be manually moved from the held state
for processing to continue. See Section 33.4.7 or Section 34.4.7 for advice on dealing with
held messages.

MAX_TOTAL_RECEIVED_LINES (integer)

As PMDF processes a message, it counts the number of Received:, MR-Received:, X400-
Received: header lines in the message’s header. If the number of all such header lines
exceeds the MAX_TOTAL_RECEIVED_LINES value, the message is entered into the
PMDF queue in a held state. The default for this value is 100 if no value is specified
in the option file. This check blocks certain kinds of message forwarding loops. The
message must be manually moved from the held state for processing to continue. See
Section 33.4.7 or Section 34.4.7 for advice on dealing with held messages.

MAX_X400_RECEIVED_LINES (integer)

As PMDF processes a message, it counts the number of X400-Received: header lines
in the message’s header. If the number of Received: lines exceeds the MAX_X400_
RECEIVED_LINES value, the message is entered into the PMDF queue in a held state.
The default for this value is 50 if no value is specified in the option file. This check blocks
certain kinds of message forwarding loops. The message must be manually moved from
the held state for processing to continue. See Section 33.4.7 or Section 34.4.7 for advice
on dealing with held messages.

7.3.8 File Format and File Handling Options

The options described in this section affect the format of various PMDF files and
affect the handling of message files.

COMMENT_CHARS (integer list {33, 59})

This option controls what characters are taken to signal a comment when they appear in
the first column of various PMDF input files. The value of this option takes the form of a
list of ASCII character values in decimal. The default is the list {33, 59}, which specifies
exclamation points and semicolons as comment introduction characters.

FSYNC (0 or 1; UNIX and NT only)

On UNIX and NT platforms, the FSYNC option can be used to cause PMDF to use
the fsync function (UNIX) or FlushFileBuffers function (NT) to flush disk output when
closing a message file. If such flushing is not performed explicitly by PMDF, it is left up
to the O/S to perform on its own timetable; potentially, if a UNIX or NT system crashes
at just the wrong moment, messages not yet synched to disk could be lost. The tradeoff,
however, is that performing explicit flushing for every message incurs a performance
penalty. FSYNC=1, meaning that flushes are performed explicitly by PMDF, is the
default, ensuring message safety at the expense of a performance hit.

7–20

The PMDF Option File
Available Options

7.3.9 Internal Size Options

This section describes PMDF options relating to internal PMDF sizing issues. In
general these options should not be set manually, but should instead be automatically
resized when necessary by using the pmdf cnbuild utility, as described in Section 8.1.4.

ALIAS_HASH_SIZE (integer <= 32,767)

This option sets the size of the alias hash table. This in turn is an upper limit on the
number of aliases that can be defined in the alias file. The default is 256; the maximum
value allowed is 32,767.

ALIAS_MEMBER_SIZE (integer <= 30,000)

This option controls the size of the index table that contains the list of alias translation
value pointers. The total number of addresses on the right hand sides of all the alias
definitions in the alias file cannot exceed this value. The default is 320; the maximum
allowed is 30,000.

CHANNEL_TABLE_SIZE (integer <= 32,767)

This option controls the size of the channel table. The total number of channels in the
configuration file cannot exceed this value. The default is 256; the maximum is 32,767.

CIRCUITCHECK_PATHS_SIZE (integer <= 256)

This option controls the size of the circuit check paths table, and thus the total number
of circuit check configuration file entries. The default is 10.

CONVERSION_SIZE (integer <= 2000)

This option controls the size of the conversion entry table, and thus the total number of
conversion file entries cannot exceed this number. The default is 32.

DOMAIN_HASH_SIZE (integer <= 32,767)

This option controls the size of the domain rewrite rules hash table. Each rewrite rule
in the configuration file consumes one slot in this hash table, thus the number of rewrite
rules cannot exceed this option’s value. The default is 512; the maximum number of
rewrite rules allowed is 32,767.

HOST_HASH_SIZE (integer <= 32,767)

This option controls the size of the channel hosts hash table. Each channel host specified
on a channel definition in the PMDF configuration file (both official hosts and aliases)
consumes one slot in this hash table, so the total number of channel hosts cannot exceed
the value specified. The default is 512; the maximum value allowed is 32,767.

MAP_NAMES_SIZE (integer > 0)

The MAP_NAMES_SIZE option specifies the size of the mapping table name table, and
thus the total number of mapping tables cannot exceed this number. The default is 32.

STRING_POOL_SIZE (integer <= 10,000,000)

The STRING_POOL_SIZE option controls the number of character slots allocated to the
string pool used to hold rewrite rule templates, alias list members, mapping entries, etc.
A fatal error will occur if the total number of characters consumed by these parts of the
configuration files exceeds this limit. The default is 65,000; the maximum allowed value
is 10,000,000.

7–21

The PMDF Option File
Available Options

WILD_POOL_SIZE (integer <= 200,000)

The WILD_POOL_SIZE option controls the total number of patterns that can appear
throughout mapping tables. A fatal error will occur if the total number of mapping
patterns exceeds this limit. The default is 8,000; the maximum allowed value is 200,000.

7.3.10 Debugging Options

This section lists options for enabling debugging of various PMDF facilities.

DEQUEUE_DEBUG (0 or 1)

This option specifies whether or not debugging output from PMDF’s dequeue facility QU
is produced. If enabled with a value of 1, this output will be produced on all channels
that use the QU routines. The default value of 0 disables this output.

POST_DEBUG (0 or 1)

This option specifies whether or not debugging output is produced by PMDF’s periodic
delivery job. If enabled with a value of 1, this output will be produced in the post.log
file. The default value of 0 disables this output.

On UNIX, when debugging the periodic delivery job it can also be useful to set the PMDF
tailor option PMDF_POST_VERIFY=1, to cause the delivery job script to echo which steps
it has performed to the log file.

RETURN_DEBUG (0 or 1)

The RETURN_DEBUG option enables or disables debugging output in the nightly
message bouncer batch job. A value of 0 disables this output (the default) while a value
of 1 enables it. Debugging output, if enabled, appears in the output log file, if such a
log file is present. However, on OpenVMS, the output log file is customarily discarded
once the batch job terminates; thus to retain the output log file for inspection, the usual
approach is to set RETURN_DEBUG and then use the SET ENTRY DCL command to
modify the batch job itself to preserve the log file. On UNIX, the presence of an output
log file is controlled by the crontab entry for the return job; see the appropriate edition
of the PMDF Installation Guide for more details. On NT, the presence of an output log
file is controlled by the Scheduler entry that schedules the running of the PMDF return
job.

On UNIX and NT, when debugging the periodic return job it can also be useful to set
the PMDF tailor option (UNIX) or Registry entry (NT) PMDF_RETURN_VERIFY=1, to
cause the delivery job script to echo which steps it has performed to the log file.

7.3.11 Options for OpenVMS User Agents

This section lists options relating to OpenVMS user agents such as VMS MAIL,
PMDF MAIL, and DECwindows MAIL.

7–22

The PMDF Option File
Available Options

DELIVERY_RECEIPT_OFF (string; OpenVMS only)

This option is used to specify a special RFC 822 comment string used in IN% addresses
in VMS MAIL to disable any requests for a delivery receipt. The default if this option is
not specified is:

(NO-DELIVERY-RECEIPT)

The enclosing parentheses are required and must be specified in the option value.

DELIVERY_RECEIPT_ON (string; OpenVMS only)

This option is used to specify a special RFC 822 comment string used in IN% addresses
in VMS MAIL to request a delivery receipt. The default if this option is not specified is:

(DELIVERY-RECEIPT)

The enclosing parentheses are required and must be specified in the option value.

DIS_NESTING (non-negative integer; OpenVMS only)

The DIS_NESTING option controls how many nesting levels PMDF allows in the
expansion of VMS MAIL distribution lists. A value of 0 disables the ability to use VMS
MAIL distribution lists. Currently this option only affects the PMDF MAIL utility. The
default value for this option is 20.

FORM_NAMES (list of comma separated strings; OpenVMS only)

Multiple values should be separated with commas but not with spaces. The default is
‘‘FAX-FORM,PH-FORM,X500-FORM’’.

MAIL_DELIVERY_FILENAME (string)

The MAIL_DELIVERY_FILENAME option sets the actual filename used by users to
store message delivery option information. The default name is mail.delivery if this
option is not used to change the name. No device or directory can be specified here; these
files are always located in users’ home directories.

MISSING_ADDRESS (string)

This option can be used to specify the address to insert in the VMS MAIL From: header
if no From: address was originally present; the default is missing-address@no.where.

MP_SIGNED_MODE (0 or 1)

The MP_SIGNED_MODE option controls whether or not PMDF interprets (parses)
messages of type multipart/signed. The default is 0, which means PMDF treats
the message as opaque. The risk in parsing multipart/signed messages is that the
exact content would most likely change when PMDF re-assembles the message, thus
invalidating the signature.

MULTINET_MM_EXCLUSIVE (-3 to 3; OpenVMS only)

This option is documented for historical reasons only; delivery to MultiNet MM is no
longer supported. (Prior to PMDF V5.2, the local channel supported delivery to MultiNet
MM as an alternative to delivery to VMS MAIL.)

The MULTINET_MM_EXCLUSIVE option controls whether or not PMDF’s local channel
delivers exclusively to MultiNet MM or not. Possible values are:

7–23

The PMDF Option File
Available Options

Value Usage

-3 Never deliver mail to MultiNet MM mailboxes.
-2 Not used at present; do not specify.
-1 Deliver mail to MultiNet MM mailboxes only if MultiNet MM is specified as part of the user’s

profile information.
0 Deliver mail to MultiNet MM mailboxes if the user has the appropriate MultiNet MM mailbox

files in his or her home directory.
+1 Deliver mail to the user’s Multinet MM mailbox by default unless the user’s profile information

specifies some other type of delivery.
+2 Not used at present; do not specify.
+3 Deliver mail to the user’s Multinet MM mailbox unconditionally.

The default is -1, which means that MultiNet MM delivery will be used only when the
user has profiled MultiNet MM as his or her preferred mailbox format.

READ_RECEIPT_OFF (string; OpenVMS only)

This option is used to specify a special RFC 822 comment string used in IN% addresses
in VMS MAIL to disable any requests for a read receipt. The default if this option is not
specified is:

(NO-READ-RECEIPT)

The enclosing parentheses are required and must be specified in the option value.

READ_RECEIPT_ON (string; OpenVMS only)

This option is used to specify a special RFC 822 comment string used in IN% addresses
in VMS MAIL to request a read receipt. The default if this option is not specified is:

(READ-RECEIPT)

The enclosing parentheses are required and must be specified in the option value.

SAFE_TCL_MODE (0–3)

This option is a bit encoded integer. The lowest bit, when set, allows components of
PMDF to interpret message parts of type application/safe-tcl upon user confirmation.
(At present, PMDF MAIL is the only component of PMDF which supports Safe-Tcl.) The
second lowest bit, when set, puts PMDF’s Safe-Tcl interpreter into a very paranoid mode
in which it will not allow information from sensitive message header lines to be disclosed
to Safe-Tcl scripts.

The default value for this option is 3 which allows Safe-Tcl scripts to be executed upon
user confirmation, but does so in ‘‘paranoid’’ mode.

USE_MAIL_DELIVERY (0 or 1)

The USE_MAIL_DELIVERY option controls whether or not PMDF checks to see if a
given user has a mail.delivery file in their home directory and, if the file exists, uses
it to direct message delivery operations on the local channel for the user. The default is 1,
which means that PMDF will check for these files. A value of 0 will disable consultation
of mail.delivery files.

7–24

The PMDF Option File
Available Options

VMS_MAIL_EXCLUSIVE (-3 to 3; OpenVMS only)

This option is documented for historical reasons only; delivery to MultiNet MM is no
longer supported. (Prior to PMDF V5.2, the local channel supported delivery to MultiNet
MM as an alternative to delivery to VMS MAIL.)

The VMS_MAIL_EXCLUSIVE option controls whether or not PMDF’s local channel
delivers exclusively to VMS MAIL or not. Possible values are:

Value Usage

-3 Never deliver mail to VMS MAIL mailboxes.
-2 Not used at present; do not specify.
-1 Deliver mail to VMS MAIL mailboxes only if VMS MAIL is specified as part of the user’s profile

information.
0 Deliver mail to VMS MAIL mailboxes unless the user has some other sort of mailbox in his or

her home directory or has specified some other kind of delivery as part of his or her profile
information.

+1 Deliver mail to the user’s VMS MAIL mailbox by default unless the user’s profile information
specifies some other type of delivery.

+2 Not used at present; do not specify.
+3 Deliver mail to the user’s VMS MAIL mailbox unconditionally.

The default is 0, which means that either VMS MAIL is used unless a given user has
the necessary MultiNet MM files in his or her home directory or has profiled the use of
MultiNet MM.

7.3.12 Miscellaneous Options

This section contains other options.

INCLUDE_CONNECTIONINFO (integer)

The INCLUDE_CONNECTIONINFO option provides a means of including the transport
and application connection information in various mapping probes that otherwise would
not include this material. If included, the information appears at the beginning of
the mapping probe in the same format used in the FROM_ACCESS, MAIL_ACCESS, and
ORIG_MAIL_ACCESS mappings. The value of the option is a decimal integer representing
a bit-encoded integer, the interpretation of which is given in the table below. The
default is 0. Each currently defined bit corresponds to a particular non-positional alias
parameter.

Bit Value Mapping

0 1 AUTH_MAPPING

1 2 MODERATOR_MAPPING

2 4 CANT_MAPPING

5 32 HOLD_MAPPING

6 64 NOHOLD_MAPPING

Bit 0 is the least significant bit.

7–25

The PMDF Option File
Available Options

ACCESS_ORCPT (0 or 1)

The ACCESS_ORCPT option provides a means of including the original recipient address
(the value of the ORCPT option in the SMTP protocol exchange) in the probes for the
SEND_ACCESS and ORIG_SEND_ACCESS mapping tables. The default is 0, which
means that the ORCPT value is not included in the probe. If this option is set to 1, the
ORCPT value appears at the end of the mapping table probe.

7–26

8 Maintaining the Configuration

The critical PMDF configuration files,

• the configuration file, discussed in Section 1.2, Section 2.2 and Section 2.3,

• the alias file, discussed in Chapter 3,

• the mappings file, discussed in Chapter 5,

• the conversion file, discussed in Chapter 6,

• the option file, discussed in Chapter 7,

• the security configuration file, discussed in Chapter 14,

• the system wide filter file, discussed in Section 16.2.3, and

• the circuit check configuration file, discussed in Section 31.3.1.1,

may be pre-processed and compiled into a single image referred to as a ‘‘compiled config-
uration’’. By pre-processing these files and storing them into an image, the initialization
time for PMDF is significantly reduced thereby improving PMDF’s performance. Com-
piling the configuration will be discussed in Section 8.1.

When updating the PMDF configuration, regardless of whether the PMDF configu-
ration is compiled, it is important to ensure that any affected components of PMDF are
made aware of the change. That is, if the PMDF configuration is not compiled, then
components need to be restarted after changes to the PMDF configuration files; if a com-
piled configuration is used, then the configuration needs to be recompiled after changes
and then components need to be restarted. An overview of what components need to
be restarted when various changes are made to the PMDF configuration is provided in
Section 8.2.

8.1 Compiling the Configuration

PMDF contains a utility, cnbuild, to compile the configuration, option, mapping,
conversion, alias, security, and system wide filter configuration files into a single
shareable image (on OpenVMS) or a single image in shared memory (on UNIX) or
a dynamic link library (on Windows). The main reason for compiling configuration
information is simple: performance. 1 Another feature of using a compiled configuration
is that you can test configuration changes more conveniently, since the configuration files
themselves are not ‘‘live’’ when a compiled configuration is in use.

1 A test on a µVAX II system showed that reading a fairly complex configuration and alias file took about 6 seconds of CPU
time. By contrast, initialization of PMDF took about 1 second of CPU time when the data was precompiled as a shareable
image.

8–1

Maintaining the Configuration
Compiling the Configuration

Whenever a component of PMDF (e.g., a channel program) must read the configura-
tion file it first checks to see if a compiled configuration exists. If it does, the image is
merged into the running program (on OpenVMS) or attached to by the running program
(on UNIX or Windows). 2 If the attempt to load the compiled configuration fails for any
reason, PMDF falls back on the old method of reading the text files instead.

Note: The only penalty paid for compilation is the need to rebuild and, on OpenVMS systems,
reinstall the image every time the configuration, option, mapping, conversion, alias, or
security configuration files are edited.

On OpenVMS systems, the image file is referenced with the PMDF_CONFIG_DATA
logical. This logical translates to PMDF_EXE:CONFIG_DATA.EXE; PMDF_EXE itself is
a logical which translates to PMDF_ROOT:[xxx_EXE] depending upon the architecture
(VAX, Alpha, or IA64). The image file can be installed with the standard OpenVMS
INSTALL utility.

On UNIX systems, the name of the image file is specified with the PMDF_CONFIG_
DATA option in the PMDF tailor file. By default, this is the file /pmdf/lib/config_data.

On Windows systems, the name of the image file is specified with the PMDF_
CONFIG_DATA PMDF Tailor Registry entry. Usually this is the file C:\pmdf\lib\config_data.

Note: As always when there is a change to the PMDF configuration, resident PMDF processes
(such as the multithreaded SMTP server) should be restarted with the pmdf restart
command.

8.1.1 Compiling the Configuration on OpenVMS

The pmdf cnbuild utility on OpenVMS is used to compile a PMDF configuration
(configuration file, alias file, PMDF option file, mapping file, conversion file, security
configuration file, and system wide filter file). After you are satisfied with your configu-
ration file, alias file, option file, mapping file, conversion file, security configuration file,
and system wide filter file, issue the OpenVMS command

$ PMDF CNBUILD

to compile your configuration into a loadable, shareable image. The alias, option,
mapping, conversion, security configuration, system wide filter, and configuration files
will be read and the compiled configuration image will be created. Any errors detected
in the files will be reported and will cause the compilation to abort without producing an
image.

When CNBUILD is run, a shareable image is created that is suitable for use on
the architecture that you ran cnbuild on (VAX, Alpha, or I64). To generate shareable
images for the other architectures, you must run cnbuild on systems of each of those
other architectures.

2 There are two exceptions to this rule. The first is the pmdf cnbuild utility itself, which for obvious reasons
always reads the text files and never tries to load the image form of the configuration data. The other exception is
the pmdf test utility, which may be instructed to ignore any compiled image with the /NOIMAGE_FILE (OpenVMS)
or -noimage_file (UNIX or Windows) qualifier, which is useful for testing changes prior to compiling them.

8–2

Maintaining the Configuration
Compiling the Configuration

Once the image has been produced it must be installed for proper operation:

$ INSTALL CREATE PMDF_CONFIG_DATA/OPEN/SHARED/HEADER

If the image already exists and is being updated, use the command:

$ INSTALL REPLACE PMDF_CONFIG_DATA

In a cluster environment, the image should be replaced on every system that is running
PMDF. You may also want to purge old copies of the image in PMDF_EXE:, since the files
are fairly large.

At system startup, the PMDF startup procedure will install the PMDF_CONFIG_
DATA image if one exists. There is no need to add the INSTALL command shown above
to your system startup procedure.

Refer to Chapter 29 for complete details on the use of the CNBUILD utility.

Note: As always when there is a change to the PMDF configuration, e.g., a new compiled
configuration, any resident PMDF processes such as the multithreaded SMTP server,
POP3 server, IMAP server, BN_SLAVE, or FAX_RECEIVE should be restarted with the
PMDF RESTART command.

8.1.2 Compiling the Configuration on UNIX

The pmdf cnbuild utility on UNIX is used to compile a PMDF configuration (con-
figuration file, alias file, PMDF option file, mapping file, conversion file, security config-
uration file, and system wide filter file). After you are satisfied with your configuration
file, alias file, option file, mapping file, conversion file, security configuration file, and
system wide filter file, issue the command

pmdf cnbuild

to compile your configuration into a single image and load the resulting image into shared
memory. The alias, option, mapping, conversion, security configuration, system wide
filter, and configuration files will be read and the compiled configuration image will be
created. Any errors detected in the files will be reported and will cause the compilation
to abort without producing an image.

Refer to Chapter 30 for complete details on the use of the cnbuild utility.

Note: As always when there is a change to the PMDF configuration, such as a new compiled
configuration, any resident PMDF processes such as POP, IMAP, and TCP SMTP servers
should be restarted with the pmdf restart command.

8–3

Maintaining the Configuration
Compiling the Configuration

8.1.3 Compiling the Configuration on Windows

The pmdf cnbuild utility on Windows is used to compile a PMDF configuration
(configuration file, alias file, PMDF option file, mapping file, conversion file, security
configuration file, and system wide filter file). After you are satisfied with your configu-
ration file, alias file, option file, mapping file, conversion file, security configuration file,
and system wide filter file, issue the command

C:\> pmdf cnbuild

to compile your configuration into a single dynamic link library. The alias, option,
mapping, conversion, security configuration, system wide filter, and configuration files
will be read and the compiled configuration image will be created. Any errors detected
in the files will be reported and will cause the compilation to abort without producing an
image.

Refer to Chapter 30 for complete details on the use of the cnbuild utility.

Note: As always when there is a change to the PMDF configuration, such as a new compiled
configuration, any resident PMDF processes such as the Dispatcher and Job Controller
should be restarted with the pmdf restart command.

8.1.4 Extending Table Sizes

PMDF uses a variety of internal tables to store configuration information. The sizes
of these tables are specified by various option file options. If no specifications are given,
default sizes are used. The result for small configurations can be wasted memory, while
for large configurations PMDF may fail with a table overflow error.

The solution to these problems is to specify larger or smaller tables using the option
file. The option file controls the size of the various tables very precisely; the result will
be optimum memory usage with no overflows.

The cnbuild utility can be used to generate such specifications in the option file
automatically. This use of cnbuild does not mean that the configuration must be
compiled. Either cnbuild is quite capable of generating such an option file without
generating a corresponding compiled configuration. The details of this use of cnbuild
are described below.

The size of the tables cnbuild creates in the precompiled image is set before
cnbuild actually reads the configuration and alias files. As a result, small configurations
generate images with lots of wasted space in them, while large configurations may exceed
the default sizes of the tables and cause PMDF to report the infamous ‘‘no room in table’’
error message.

The solution to these problems is to generate a PMDF option file that describes the
size of your configuration. The PMDF option file is described in Chapter 7. However, it
is not necessary to know the format of that file; cnbuild is capable of building an option
file for you.

8–4

Maintaining the Configuration
Compiling the Configuration

To generate an option file that specifies proper table sizes to hold your configuration,
use the OpenVMS command,

$ PMDF CNBUILD/NOIMAGE/MAXIMUM/OPTION

or the UNIX or Windows command,

pmdf cnbuild -noimage_file -maximum -option_file

Such a command will create a new PMDF option file with appropriate table sizes.

If you use a compiled configuration, you must then recompile your configuration.
Consult Section 8.1 for details on compiling your configuration.

If you continue to get ‘‘no room in table’’ sorts of errors after using cnbuild to resize
your PMDF option file (and after then recompiling, if you use a compiled configuration),
then you likely have a configuration syntax error that is causing PMDF to believe it
sees spurious configuration entries; see some of the suggestions in Section 33.3.1 or
Section 34.3.1 for possible syntax errors for which to check.

Note that you only have to resize your configuration when its size changes enough
to warrant it. It is not necessary to do this when minor changes are made; the size
information output by cnbuild leaves room for moderate changes without resizing. The
OpenVMS command,

$ PMDF CNBUILD/NOIMAGE/STATISTICS

or the UNIX or Windows command

pmdf cnbuild -noimage_file -statistics

may be used to determine exactly how close your configuration really is to the current
sizes set in the option file.

8.2 Restarting After Configuration Changes

In general, if you are using a compiled PMDF configuration then you will need
to recompile it after any changes to the files that comprise the PMDF compiled
configuration: the PMDF configuration file and any files it includes, the alias file and
any files it includes (but not alias database or mailing list files), the option file and any
files it includes, the mappings file and any files it includes, the conversions file and any
files it includes, the system wide filter file, the circuit check configuration file, and the
security configuration file and any files it includes.

In general, you will need to restart any resident processes after any changes of which
that resident process needs to be aware; such changes may include changes to the basic
PMDF configuration (such as the changes above requiring recompilation of a compiled
configuration) and may also include other, component-specific changes.

8–5

Maintaining the Configuration
Restarting After Configuration Changes

8.2.1 Restarting Specific Components

Table 8–1 provides an overview of when specific components should be restarted. For
restarting PMDF components, use the PMDF RESTART (OpenVMS) or pmdf restart
(UNIX or NT) utility, described in Chapter 29 or Chapter 30, respectively.

Table 8–1 Restarting Components

Component Restart after changes to:

Circuit check • The PMDF configuration1, especially (but not only) the circuit check configuration file

Dispatcher • The Dispatcher configuration file, dispatcher.cnf, and files it includes

• The PORT_ACCESS mapping table in the PMDF mapping file

• On OpenVMS, the PMDF_TIMEZONE logical name’s value6

SMTP server • The PMDF configuration1

• The TCP/IP channel option file

• New (replaced) PMDF databases2

HTTP server • The HTTP server configuration file, http.cnf
• The Dispatcher configuration file, dispatcher.cnf, and files it includes for

changes affecting the HTTP service definition

• The HTTP_ACCESS mapping table in the PMDF mapping file

• Add the filter, destinationfilter, sourcefilter, or related channel
keywords to a channel, or create a new system wide filter file

IMAP server • The IMAP server configuration file, imapd.cnf
• The Dispatcher configuration file, dispatcher.cnf, and files it includes for

changes affecting the IMAP service definition

• Initial creation of the PMDF password database

• Conversion from PMDF V5.0 or earlier password database format to PMDF V5.1 and
later format

• On UNIX, initial creation of the PMDF profile database

• The PMDF configuration1 as it relates to the IMAP server, particularly:

• The security configuration file

• The PORT_ACCESS mappings authentication control features

• On OpenVMS, certain channel keyword changes on the local channel definition

1Here the PMDF configuration comprises the base PMDF configuration files or compiled configuration, i.e., the
PMDF configuration, alias, mappings, conversion, option, system wide filter, and security configuration files.

2While a new version of a PMDF database requires restarting PMDF components— for instance, a new version
of the PMDF alias database requires restarting the SMTP server in order for the SMTP server to see the new
version—a database updated ‘‘in place’’, via for instance the PMDF CRDB/APPEND (OpenVMS) or pmdf crdb
-append (UNIX and NT) command does not require restarting any components, particularly not the SMTP server.

8–6

Maintaining the Configuration
Restarting After Configuration Changes

Table 8–1 (Cont.) Restarting Components

Component Restart after changes to:

POP server • The POP server configuration file, pop3d.cnf
• The Dispatcher configuration file, dispatcher.cnf, and files it includes for

changes affecting the POP3 service definition

• Initial creation of the PMDF password database

• Conversion from PMDF V5.0 or earlier password database format to PMDF V5.1 and
later format

• On UNIX, initial creation of the PMDF profile database

• The PMDF configuration1 as it relates to the IMAP server, particularly:

• The security configuration file

• The PORT_ACCESS mappings authentication control features

• On OpenVMS, certain channel keyword changes on the local channel definition

POPPASSD
server

• The Dispatcher configuration file, dispatcher.cnf, and files it includes for
changes affecting the POPPASSD service definition

• Initial creation of the PMDF password database

• Conversion from PMDF V5.0 or earlier password database format to PMDF V5.1 and
later format

• The PMDF configuration1 as it relates to the POPPASSD server, particularly:

• The security configuration file

• The PORT_ACCESS mappings authentication control features

Lotus Notes
channel servers

• The PMDF configuration1

• The Dispatcher configuration file, dispatcher.cnf, and files it includes for
changes affecting the LN service definitions

• New (replaced) PMDF databases2

• Lotus Notes channel option files

OpenVMS only

Counters
synchronization
process

• The PMDF_COUNTER_INTERVAL logical

1Here the PMDF configuration comprises the base PMDF configuration files or compiled configuration, i.e., the
PMDF configuration, alias, mappings, conversion, option, system wide filter, and security configuration files.

2While a new version of a PMDF database requires restarting PMDF components— for instance, a new version
of the PMDF alias database requires restarting the SMTP server in order for the SMTP server to see the new
version—a database updated ‘‘in place’’, via for instance the PMDF CRDB/APPEND (OpenVMS) or pmdf crdb
-append (UNIX and NT) command does not require restarting any components, particularly not the SMTP server.

8–7

Maintaining the Configuration
Restarting After Configuration Changes

Table 8–1 (Cont.) Restarting Components

Component Restart after changes to:

OpenVMS only

Process
Symbiont3

• The Process Symbiont option file

• New MR_* channels or changes in the user or daemon channel keyword clauses
on MR_* channels

FAX_RECEIVE • The PMDF configuration1, at least any changes affecting PMDF-FAX

• The FAX_TO_DATA channel option file

MailWorks server,
ALL-IN-1 Sender,
ALL-IN-1 Fetcher
4 5

• The PMDF configuration1

• MRIF channel option files

• New (replaced) PMDF databases2

• The PMDF_TIMEZONE logical name’s value6

Queue to e-mail
symbiont3

• The Q2EMAIL option file

User agents, e.g.,
PMDF MAIL,
VMS MAIL,
PMDF Pine

• The PMDF configuration1

• New (replaced) PMDF databases2

• The PMDF_TIMEZONE logical name’s value6

UNIX and NT

Job Controller • The Job Controller configuration files, job_controller.cnf and
job_controller.cnf_site

1Here the PMDF configuration comprises the base PMDF configuration files or compiled configuration, i.e., the
PMDF configuration, alias, mappings, conversion, option, system wide filter, and security configuration files.

2While a new version of a PMDF database requires restarting PMDF components— for instance, a new version
of the PMDF alias database requires restarting the SMTP server in order for the SMTP server to see the new
version—a database updated ‘‘in place’’, via for instance the PMDF CRDB/APPEND (OpenVMS) or pmdf crdb
-append (UNIX and NT) command does not require restarting any components, particularly not the SMTP server.

3To restart symbionts, use DCL commands: STOP/QUEUE/RESET and START/QUEUE.

4Must be restarted using the server’s own restart mechanism.

5If PMDF_TIMEZONE is not defined, PMDF looks first for SYS$LOCALTIME, then for SYS$TIMEZONE_
DIFFERENTIAL and SYS$TIMEZONE_NAME.

8–8

9 The PMDF Process Symbiont (OpenVMS)

Note: The content of this chapter is only applicable to OpenVMS systems.

During operation, PMDF frequently handles messages by scheduling processes
through OpenVMS batch queues. PMDF uses OpenVMS queues because they offer
enormous advantages, including flexibility in scheduling, cluster-wide submission of
processes, and cluster-wide load balancing through the use of generic and execution
queues. Batch jobs, however, do present overhead that can be significant in heavy
message load environments. That overhead generally comes from scheduler processing
within the VMS print/batch subsystem and from process creation as PMDF batch jobs
execute. Batch jobs also write log files, even when such log files are not necessary.

Overhead due to OpenVMS queue handling has been significantly reduced as of
OpenVMS V5.5. Overhead due to process creation can be significantly reduced by
using the PMDF Process Symbiont instead of standard batch queues for scheduling the
execution of PMDF processes.

The PMDF Process Symbiont has been implemented as a multi-threaded server
symbiont. A single Process Symbiont is capable of handling up to 32 execution queues.
A job submitted to a Process Symbiont queue will be executed by a detached process
created by the symbiont as needed. Unlike a standard batch job, however, the server
process will not be deleted when the job completes. The server process will wait for the
symbiont to present it with another command. If the symbiont does not reuse a server
process within a timeout period, the server process will exit in order to free up a process
slot. Process creation overhead is reduced the most during periods of heavy PMDF load
as multiple messages can be handled by the server process without the timeout period
expiring. Since Process Symbiont queues are also careful to generate channel job log files
only when (a) an error occurs that needs to be logged, or (b) debugging is enabled for the
channel, use of Process Symbiont queues also reduces the number of log files written.

9.1 Symbiont Configuration

The PMDF CONFIGURE QUEUES utility is a convenient way to configure PMDF
to use PMDF Process Symbiont queues; see Section 9.1.1 below. Of course, you can also
manually define queues that use the PMDF Process Symbiont; see Section 9.1.2 below.

Due to the limitations of OpenVMS server symbionts, a PMDF Process Symbiont
queue cannot execute more than one job at a time. Therefore, for adequate message
throughput, multiple simultaneous jobs should be allowed by creating several PMDF
Process Symbiont execution queues with a single generic queue referencing all of them.
Jobs submitted to the generic queue will be scheduled to run on the execution queues in
parallel. Since PMDF submits jobs to MAIL$BATCH by default, that is typically used
as the name of the generic queue.

9–1

The PMDF Process Symbiont (OpenVMS)
Symbiont Configuration

Note that the benefits inherent in reusing server processes can be reduced if you
create too many parallel execution queues. You need to balance your use of parallel and
serial jobs in order to maximize throughput. You should see peak optimization when
jobs can be scheduled across all parallel execution queues without pending too long in
the generic queue. On the other hand, new jobs should still enter each execution queue
within the server timeout period so that each execution queue’s cached process is given
something to do before timing out and deleting itself.

Symbiont server processes log output to the file

PMDF_LOG:task_server_queue-name.log

where queue-name is the name of a specific server queue. Command procedures executed
by the server process continue to write their log output to files in the PMDF log directory
such as post.log and return.log.

9.1.1 The PMDF Queue Configuration Utility

The PMDF CONFIGURE QUEUES utility configures a generic MAIL$BATCH
queue to run a site-specified number of PMDF Process Symbiont queues. The PMDF
CONFIGURE QUEUES utility will ask you how many Process Symbiont queues you
want to run, and which node you want to run each on. The utility then generates the
following files in SYS$STARTUP:, pmdf_init_queues.com, pmdf_start_queues.com,
pmdf_stop_queues.com, and pmdf_delete_queues.com.

Example 9–1 shows a sample PMDF queue configuration utility dialogue.

Example 9–1 Example Process Symbiont Queue Configuration Dialogue on a Node
ALPHA1

$ PMDF CONFIGURE QUEUES
This utility will create the following command files

SYS$STARTUP:PMDF_INIT_QUEUES.COM
SYS$STARTUP:PMDF_START_QUEUES.COM
SYS$STARTUP:PMDF_STOP_QUEUES.COM
SYS$STARTUP:PMDF_DELETE_QUEUES.COM

How many execution queues do you want? [4] 8
Do you want all queues to run on this node ALPHA1? [Y] Yes
Do you want to initalize the queues now? [Y] Yes
Do you want to start the queues now? [Y] Yes

The generated pmdf_init_queues.com procedure can be used to initialize your
PMDF queues, and the pmdf_start_queues.com procedure can be used to start your
PMDF queues. Such commands should be added to your system startup procedure.
Generally PMDF queues are initialized early during system startup (before your
networks are started) and these PMDF queues are then started a little later (after your
networks are started).

9–2

The PMDF Process Symbiont (OpenVMS)
Symbiont Configuration

pmdf_stop_queues.com and pmdf_delete_queues.com are provided for conve-
nience in testing, but are not normally used in production; in particular, there is no need
to stop PMDF queues before shutting down a system.

9.1.2 Manually Configuring PMDF Process Symbiont Queues

A PMDF Process Symbiont queue is created by initializing a server queue with
pmdf_process_smb as its processor on the appropriate cluster node, node:1

$ INITIALIZE/QUEUE/DEVICE=SERVER/NOENABLE_GENERIC -
$_ /PROCESSOR=pmdf_process_smb/ON=node:: -
$_ /PROTECTION=(S:RWE,O:RWD,G:R,W:R) PMDF_1

Note that the /NOENABLE_GENERIC qualifier should be specified in order to prevent
generic printer queues without specifically defined execution queues from unintentionally
printing to this queue. Similarly, the queue should be protected from non-privileged
submissions to prevent users from using the queue for jobs that are not PMDF jobs.

For example, the following sequence of commands will create four parallel Process
Symbiont execution queues serving a single MAIL$BATCH generic queue. An example of
these commands can be found in the file PMDF_COM:init_mail_queues.com-sample.

$ INITIALIZE/QUEUE/DEVICE=SERVER/NOENABLE_GENERIC -
$_ /PROCESSOR=pmdf_process_smb/ON=node:: -
$_ /PROTECTION=(S:RWE, O:RWD, G:R, W:R) PMDF_1

$ INITIALIZE/QUEUE/DEVICE=SERVER/NOENABLE_GENERIC -
$_ /PROCESSOR=pmdf_process_smb/ON=node:: -
$_ /PROTECTION=(S:RWE, O:RWD, G:R, W:R) PMDF_2

$ INITIALIZE/QUEUE/DEVICE=SERVER/NOENABLE_GENERIC -
$_ /PROCESSOR=pmdf_process_smb/ON=node:: -
$_ /PROTECTION=(S:RWE, O:RWD, G:R, W:R) PMDF_3

$ INITIALIZE/QUEUE/DEVICE=SERVER/NOENABLE_GENERIC -
$_ /PROCESSOR=pmdf_process_smb/ON=node:: -
$_ /PROTECTION=(S:RWE, O:RWD, G:R, W:R) PMDF_4

$ INITIALIZE/QUEUE/DEVICE=SERVER/GENERIC=(PMDF_1, PMDF_2, PMDF_3, PMDF_4) -
$_ /PROTECTION=(S:RWE, O:RWD, G:R, W:R) MAIL$BATCH

9.2 Symbiont Option Files

When the first PMDF Process Symbiont server queue is started, then the file
pmdf_process_smb.opt in the PMDF table directory is consulted for option settings.
If the file does not exist, the symbiont will use internal defaults. The file contains lines
of the form

option = value

1 Omit the /ON= qualifier if the node is not a member of a cluster.

9–3

The PMDF Process Symbiont (OpenVMS)
Symbiont Option Files

An exclamation mark, !, introduces a comment line. Blanks and tabs are ignored as
well, except within the value string, where they are compressed to a single blank.

Note: Particularly in regard to white space, the format of the PMDF Process Symbiont option
file differs from the format of other PMDF option files.

In addition to option settings, the file can contain a line consisting of a Process
Symbiont queue name enclosed in square-brackets of the form

[queue-name]

Such a line indicates that option settings following this line are to apply only to the
queue named by queue-name. Initial option settings that appear before any such queue
name tag will apply globally to all queues controlled by the Process Symbiont. Per queue
option settings will override global defaults for that queue. Option and queue names are
not case sensitive.

A sample Process Symbiont option file is shown in Figure 9–1.

Figure 9–1 Sample Process Symbiont Option File

!
! Global defaults for all queues:
!
idle_timeout = 0 05:00:00 !
!
! Now queue specific settings:
!
[PMDF_1] " !first queue
lifetime = 0 12:00:00 #
!
[PMDF_2] $!second queue
process_priority = 3 %

idle_timeout = 0 00:00:01 &

The key items in the above example are

! Set the idle timeout for all queues to 5 hours. This effectively allows PMDF to avoid
process creations for PMDF jobs nearly all of the time.

" Subsequent options will apply only to the queue named PMDF_1.

Set the life time to 12 hours for jobs in the PMDF_1 queue. This will cause the server
process to exit and restart at most every 12 hours.

$ Subsequent options will apply only to the queue named PMDF_2.

% Set the process priority to 3 for jobs in the PMDF_2 queue.

& Set the idle timeout to one second for jobs in the PMDF_2 queue. This will cause a
single process to be reused only when PMDF has a constant stream of work for this
queue. Most of the time there will be no process idle on this queue.

The available options are:

9–4

The PMDF Process Symbiont (OpenVMS)
Symbiont Option Files

IDLE_TIMEOUT

An OpenVMS delta time which specifies the interval that a server process will wait for
another task after it completes a task. If the IDLE_TIMEOUT period expires the server
process will be deleted and a new process must be created the next time a task is to be
processed. If no IDLE_TIMEOUT is specified, the built-in default of one minute will be
used.

PROCESS_PRIORITY

An integer value between 0 and 15 which specifies the OpenVMS process priority for the
server task. If no priority is specified, the built-in default of 4 will be used.

LIFETIME

An OpenVMS delta time which specifies the maximum period over which a single server
process will be used. If LIFETIME expires for a server process it will be deleted when
it finishes the current task. The next task will then cause a new server process to
be created. The task process’ log file will be closed and a new log file started. If no
LIFETIME is specified, the built-in default of 24 hours will be used.

9.3 Restrictions and Limitations

Since OpenVMS does make some distinction between the capabilities of a batch
queue and those of a server queue, there are several parameters used on a typical
SUBMIT command which will not carry over to the Process Symbiont. Parameters such
as /LOG, /NOPRINT, or /WSEXTENT will result in an informational message

%JBC-I-ITMREMOVED, meaningless items removed from request

This message can generally be ignored. Some PMDF components can produce this
message as well, but will nevertheless function properly.

There is currently no way to specify batch job process parameters such as /WSEX-
TENT on jobs submitted to a PMDF Process Symbiont queue. The working set parame-
ters used will be those specified in the system authorization file for the username under
which PMDF jobs are submitted, typically SYSTEM. An informational message will be
displayed and the parameter will be ignored.

The Process Symbiont is not intended as a general purpose replacement for
OpenVMS batch queues, and is only supported for use with the standard PMDF
procedures master.com, post.com, and return.com. Procedures submitted to a
process queue will execute under the username of the submitter as would any batch job.
The detached server process created for executing jobs queued to the queue queue-name
will unconditionally log output to the file

PMDF_LOG:task_server_queue-name.log

If the submitting user does not have write access to the PMDF log directory, then the
server process will not be able to execute. This effectively limits the Process Symbiont
queue to use only by privileged users or the PMDF account, if present, which owns
the PMDF log directory. Accordingly, it is suggested that PMDF Process Symbiont
queues be protected against user write access to prevent inadvertent loss of user print
or batch jobs, (e.g., as shown in the sample INITIALIZE/QUEUE/.../PROTECTION=...
commands shown earlier this chapter). For instance, some OpenVMS components or

9–5

The PMDF Process Symbiont (OpenVMS)
Restrictions and Limitations

layered products can detect PMDF Process Symbiont server queues and believe that
they are print queues. In particular, the DECwindows print facility can send print jobs
to Process server queues since it defaults to using any print or server queue that it sees
first in an alphabetic list.

Information is passed from the symbiont to the task server process through the
process name. Therefore, a user or system-wide login.com which modifies the process
name will prevent the task server process from functioning correctly. Such a login.com
can avoid adverse effects by checking the process mode:

$ if F$MODE() .eqs. "OTHER" then exit

9.4 Troubleshooting

The PMDF Process Symbiont will send OPCOM messages to terminals enabled for
CENTRAL and NETWORK class messages if it detects error or warning conditions. The
possible error messages are described below in Section 9.5.

Fatal conditions will result in the Process Symbiont terminating and all execution
queues under its control immediately changing to the STOPPED state. In such a
situation the OPCOM messages preceding the termination of the symbiont will generally
indicate the problem.

Any attempt to start the process symbiont prior to running the PMDF startup
command procedure will also cause the symbiont to abort with a fatal error. PMDF_
STARTUP must run prior to starting any queues under the control of the process
symbiont. See the section on ‘‘Post-installation Tasks’’ in the OpenVMS edition of the
PMDF Installation Guide for additional restrictions on startup execution order.

Should a detached server process encounter an error condition, it can fail to
successfully complete processing of a job. Examination of the server log,

PMDF_LOG:task_server_queue-name.log

or the task specific log, generally one of

PMDF_LOG:post.log
PMDF_LOG:return.log
PMDF_LOG:channel-name_master.log

will usually point out the error.

Possible failures to look for are process context or parameters, such as the process
name, being altered by a login.com, causing the task server to encounter an unexpected
condition.

It is also possible for detached server processes to encounter an error condition and
terminate abnormally without ever creating a log file. Such terminations will be noted
by the Process Symbiont and the process error status sent back to the Job Controller.
Setting the execution queue for retention on error with

9–6

The PMDF Process Symbiont (OpenVMS)
Troubleshooting

$ SET QUEUE/RETAIN=ERROR queue-name

will allow the termination status of the job to be seen by examining the queue after a
failure. Examining the OpenVMS accounting records for detached process terminations
can also be useful.

9.5 Process Symbiont Errors

Process Symbiont errors will generally result in notification via OPCOM to CEN-
TRAL and NETWORK operator terminals. In addition to standard OpenVMS facility
error status messages, the following PMDF specific messages can be encountered.

PMDF-F-PRCSMBFTL, PMDF process symbiont fatal internal error

The symbiont has encountered a fatal condition and will terminate. All execution queues
will be stopped. A subsequent message should provide additional information. You
should report this error to Process Software technical support, along with all supporting
information.

PMDF-F-OPTIONERR, Error reading process symbiont option file on line: !/ !AZ

The symbiont has encountered a syntax error in the option file. Check your option file,
PMDF_TABLE:pmdf_process_smb.opt. The symbiont will attempt to report the line on
which an error was detected.

PMDF-F-BADSTATE, Unexpected state transition, QUEUE= "!AZ", STATE = "!AZ",
EVENT = "!AZ"

The symbiont has detected an unexpected sequence of events. You should report this
error to Process Software technical support, along with all supporting information.

PMDF-W-PRCSMBWRN, PMDF process symbiont non-fatal warning

The symbiont has encountered a warning condition. Subsequent messages indicate the
nature of the warning.

PMDF-W-INVMRNOTIFY, Invalid or unknown Message Router notification message

The PMDF_MR_NOTIFY device has received an invalid message. Notification is ignored.
If this condition persists there can be an incompatibility with Message Router.

PMDF-W-MRLSUBERR, Error submitting PMDF-MR master for local mailbox "!AD",
status = !UL

The PMDF-MR process could not be started in response to Message Router notification.
This can indicate an incorrect PMDF-MR configuration. Additional information from
PMDF itself should follow this message.

PMDF-W-MRRSUBERR, Error submitting PMDF-MR master for node !AD, mailbox
"!AD", status = !UL

PMDF-MR process could not be started in response to Message Router notification. This
can indicate an incorrect PMDF-MR configuration. Additional information from PMDF
itself should follow this message.

PMDF-W-DNETDISABL, PMDF_MR_NTFY DECnet object error, remote notify has been
disabled

An unrecoverable error has been encountered with the PMDF_MR_NTFY object. The
task object will be disabled and will no longer respond to notification requests. This

9–7

The PMDF Process Symbiont (OpenVMS)
Process Symbiont Errors

generally indicates a network problem. A subsequent message should follow with
additional information.

PMDF-W-DNETERROR, PMDF_MR_NTFY DECnet object error

A temporary error has been encountered with the PMDF_MR_NTFY object. The task
object will continue to respond for notification messages. A subsequent message should
follow with additional information.

PMDF-W-DNETSHUT, DECnet network shutdown, remote notify has been disabled

DECnet has been shut down. The task object will no longer respond to notification
requests. All Process Symbiont execution queues should be stopped and then restarted
in order to restart the symbiont after DECnet is brought back up.

PMDF-W-DNETUNKMSG, Unexpected DECnet control message received, MSGTYPE =
!UL

PMDF_MR_NTFY task object has received an unexpected DECnet control message. This
indicates an unexpected condition. Please report this to Process Software technical
support; be sure to note the MSGTYPE.

9–8

10The PMDF Job Controller (UNIX and Windows)

Note: The PMDF Job Controller is only used on UNIX and Windows platforms. PMDF uses the
OpenVMS Job Controller, as well as batch queues or PMDF Process Symbiont queues on
OpenVMS.

The PMDF Job Controller is responsible for controlling the flow of messages inside
PMDF. When a message is enqueued to a channel, the Job Controller runs the jobs
required to deliver the message. Depending on the channel and how heavily the system
is loaded, the Job Controller may start a new process, add a thread to an existing process,
or verify that a process is already running to deliver the message.

Internally, the Job Controller maintains a set of queues containing process requests.
Each message generates a processing request when it is enqueued to a channel, which
is placed on the appropriate queue. Each queue has a job limit, which specifies the
maximum number of processes that are allowed to run in parallel on that queue.
Requests are executed immediately until the job limit is exceeded, at which point they
are queued to run as soon as a job is available.

The Job Controller uses an in-memory queue cache database to keep track of message
files as they are processed and moved between channels. Normally, every message file
in PMDF’s on-disk queue area has a corresponding entry in the queue cache database.
In extreme cases, the number of messages on disk may exceed the size limit of the in-
memory database structure. If this happens, the Job Controller tracks as many message
files as it can fit in its database. After enough messages have been processed to free
up space inside the database, the Job Controller automatically scans the on-disk queue
areas to update its list of message files. If your site frequently experiences heavy message
backlogs, the max_messages option may be used to tune the number of messages stored
in the queue cache database. See Section 10.3 for more information.

Note: Versions of PMDF prior to V6.2-1 have a limited number of requests (specified by the
capacity keyword) that were stored for each queue. The Job Controller in PMDF V6.2-1
and later stores requests for every message in the queue cache database.

10.1 Job Controller Configuration

During startup, the PMDF Job Controller reads a configuration file that specifies pa-
rameters, queues, and channel processing information. This configuration information is
specified in /pmdf/table/job_controller.cnf (UNIX) or C:\pmdf\table\job_controller.cnf
(NT). The format of the configuration file is described in Section 10.3. There is also a
site-specific configuration file job_controller.cnf_site.

If you want to modify the default queue configuration or add additional queues, you
can do so by modifying the job controller configuration, and then stopping and restarting
the Job Controller with the command:

10–1

The PMDF Job Controller (UNIX and Windows)
Job Controller Configuration

pmdf restart job_controller

On NT, you can also restart the Job Controller from the Services screen under the Control
Panel.

A new Job Controller process is created, using the new configuration, and receives
subsequent requests. The old Job Controller process continues to execute any requests
it has queued until they are all finished, and then it exits. Note that you can stop the
Job Controller at any time using the command:

pmdf shutdown job_controller

which gracefully shuts down the Job Controller, allowing any queued requests to finish.
On NT, you can also shut down the Job Controller from the Services screen under the
Control Panel.

The DEFAULT queue in the Job Controller configuration file, by default the only
queue, is used for any requests which do not explicitly specify the name of a queue.
Processing requests for specific channels can be directed to a specified queue by using
the queue option followed by the name of the queue. This name must match the name
of a defined queue. If the Job Controller does not recognize the requested queue name,
the DEFAULT queue is used.

Typically, you would add additional queues to the Job Controller configuration if
you wanted to separate processing of some channels from that of other channels. For
example, you might need to prevent messages sent to a relatively slow channel from
blocking processing of messages sent to other channels.

You might also choose to use queues with different characteristics. For example,
you might need to control the number of simultaneous requests that some channels are
allowed to process. You can do this by creating a new queue with the desired job limit
and then use the queue option to direct those channels to the new, more appropriate
queue.

In addition to the definition of queues, the Job Controller configuration file also
contains a table of PMDF channels and the commands that the Job Controller is to use
to process requests for each channel. There are two types of requests, termed master
and slave. Typically, a channel’s master program is invoked when there is a message
stored in a PMDF message queue for the channel. The master program dequeues the
message and deivers it. A slave program is invoked to poll a channel and pick up any
messsages inbound on that channel. While nearly all PMDF channels have a master
program, many do not need a slave program. For example, a channel which handles
SMTP over TCP/IP doesn’t use a slave program because a network service, the SMTP
server, receives incoming SMTP messages upon request by any SMTP client. The SMTP
channel’s master program is PMDF’s SMTP client.

10–2

The PMDF Job Controller (UNIX and Windows)
Default Configuration

10.2 Default Configuration

PMDF is distributed with a default Job Controller configuration that is suitable for
most sites. This default configuration defines a single queue named DEFAULT with a
job limit of 4. The DEFAULT queue is used by all PMDF channels which do not specify
a queue using the queue option. (In the default configuration, the queue DEFAULT is
actually the only queue.)

In addition, the supplied Job Controller configuration file includes channel definitions
for all of the supplied and supported PMDF channels.

The Job Controller configuration file is required. If it is not present, or its contents
are incorrect, the Job Controller does not start.

There is no need to modify the configuration file unless you choose to add queues,
modify queue parameters, modify channel options, or add processing information for
locally developed channels. If you do want to make such modifications, you should not
alter the Job Controller configuration file itself since it is replaced when you upgrade
PMDF and you lose your modifications. Instead, create a job_controller.cnf_site
file in the PMDF table directory containing your own definitions. The Job Controller
configuration file reads in this site supplied file, if it exists.

10.3 Configuration File Format

The Job Controller configuration file contains lines of the form

option=value

in accordance with the format of PMDF option files.

In addition to option settings, the file can contain a line consisting of a section and
value enclosed in square-brackets in the form

[section-type=value]

Such a line indicates that option settings following this line are to apply only to the
section named by value. Initial option settings that appear before any such section tags
apply globally to all sections.

Per section option settings override global defaults for that section.

Recognized section types for the Job Controller configuration file are [QUEUE]
to define queues and their parameters, and [CHANNEL] to define channel processing
information.

A sample Job Controller configuration file on UNIX is shown in Figure 10–1; a sample
Job Controller configuration file on NT is shown in Figure 10–2.

10–3

The PMDF Job Controller (UNIX and Windows)
Configuration File Format

Figure 10–1 Sample Job Controller Configuration File on UNIX

!
! Global parameters and defaults for all queues
! and channels.
!
TCP_PORT=27442 !

SLAVE_COMMAND=NULL "
!
! The DEFAULT queue, which is used for channels that don’t
! specify a queue.
!
[QUEUE=DEFAULT] #
JOB_LIMIT=8 $
!
! Another queue for some channels to use.
!
[QUEUE=BIGQUEUE]
JOB_LIMIT=16
!
! Definitions for channel processing; each section
! corresponding to a PMDF channel.
!
[CHANNEL=l] %
MASTER_COMMAND=/pmdf/bin/l_master
!
[CHANNEL=tcp_*]
MASTER_COMMAND=/pmdf/bin/tcp_smtp_client
ANON_HOST=0
!
[CHANNEL=cc_*] &
MASTER_COMMAND=/pmdf/bin/lan_master
SLAVE_COMMAND=/pmdf/bin/lan_slave

Figure 10–2 Sample Job Controller Configuration File on NT

!
! Global parameters and defaults for all queues
! and channels.
!
TCP_PORT=27442 !

SLAVE_COMMAND=NULL "
!
! The DEFAULT queue, which is used for channels that don’t
! specify a queue.
!
[QUEUE=DEFAULT] #
JOB_LIMIT=8 $
!
! Another queue for some channels to use.
!
[QUEUE=BIGQUEUE]
JOB_LIMIT=16

Figure 10–2 Cont’d on next page

10–4

The PMDF Job Controller (UNIX and Windows)
Configuration File Format

Figure 10–2 (Cont.) Sample Job Controller Configuration File on NT

!
! Definitions for channel processing; each section
! corresponding to a PMDF channel.
!
[CHANNEL=l] %
MASTER_COMMAND=pmdf_exe:msgstore_master
!
[CHANNEL=tcp_*]
MASTER_COMMAND=pmdf_exe:tcp_smtp_client
ANON_HOST=0
!
[CHANNEL=cc_*] &
MASTER_COMMAND=pmdf_exe:lan_master
SLAVE_COMMAND=pmdf_exe:lan_slave

The key items in the above examples are:

! This global option defines the TCP port number on which the Job Controller listens
for requests.

" Set a default SLAVE_COMMAND for subsequent [CHANNEL] sections.

This [QUEUE] section defines a queue named "DEFAULT". This queue is used by all
channels that do not specify a queue name using the queue channel keyword.

$ Set the JOB_LIMIT for this queue to 8.

% This [CHANNEL] section applies to a channel named "l", the PMDF local channel.
The only definition required in this section is the MASTER_COMMAND that the Job
Controller issues to run this channel. Since no wildcard appears in the channel
name, the channel must match exactly.

& This [CHANNEL] section applies to any channel whose name begins with "cc_*",
i.e., to any PMDF-LAN cc:Mail channel. For this channel, both a MASTER_COMMAND
and a SLAVE_COMMAND are necessary. Since this channel name includes a wildcard,
it matches any channel whose name begins with "cc_".

Note: The options capacity and udp_port which were valid in Job Controller configuration
files prior to PMDF V6.2-1 have been deprecated. They are ignored by PMDF V6.2-1 and
later.

Note: Although several Job Controller configuration file options are altered or deprecated
in PMDF V6.2-1, existing Job Controller configuration files should still be properly
interpreted by PMDF.

The general Job Controller options are:

10–5

The PMDF Job Controller (UNIX and Windows)
Configuration File Format

DEBUG (integer)

An integer value specifying the level of debugging information written to the Job
Controller log file in the PMDF log directory. The value of DEBUG is a bit mask specifying
what sort of debugging information is requested:

1 Protocol messages between the Job Controller and other PMDF components.

2 Detailed analysis of protocol messages and interactions.

4 Host, queue, and job information.

8 Queue cache database rebuild decisions.

16 Detailed process tracing.

32 Dump each queue on every queue-related action.

Specifying bits 16 or 32 can cause log files to grow very rapidly. Specifying bit 32
will have a noticeable negative impact on PMDF performance.

MAX_MESSAGES (integer)

An integer specifying the number of messages that the Job Controller should provide
space for in the in-memory queue cache database. The default value is 100,000, which
is sufficient for most sites. If your site regularly experiences large message backlogs,
you may wish to increase the value of this option. In the case of a message backlog
overflowing the queue cache database, PMDF automatically scans the on-disk queue
areas and updates the database as soon as space is available. Note that messages are
not lost when the queue cache database fills - they are simply left in the on-disk queue
area.

SECRET (integer)

An integer number containing a shared secret to be used for checksum functions, with a
default value of 0. The Job Controller requires all incoming requests to be authenticated
with a checksum code. This prevents a malicious site from sending malformed requests
to the Job Controller.

TCP_PORT (integer)

An integer number indicating the TCP port on which the Job Controller should listen for
incoming requests. The default is port 27442. This option shouldn’t be changed unless
it conflicts with another application on your system.

The options valid in a [QUEUE] section are:

JOB_LIMIT (integer)

The maximum number of jobs (processes) that a queue may run in parallel to handle
requests. If there are more requests in the queue than there are available jobs, they
are held until a job becomes available to process them. The JOB_LIMIT applies to each
queue individually - the maximum total number of jobs is the sum of the JOB_LIMIT
parameters for all queues. If this parameter is set outside of a [QUEUE] section, it is
used as the default by any queue that doesn’t specify a JOB_LIMIT. The default value is
1.

10–6

The PMDF Job Controller (UNIX and Windows)
Configuration File Format

The options valid in a [CHANNEL] section are:

ANON_HOST (0 or 1)

This option is only useful for tcp_* channels. For all other channels, it should be left to
the default value of 1.

For TCP channels, when anon_host is set to the default value of 0, this causes the
Job Controller to group together messages that are going to be sent to the same remote
host (based on the domain name in the envelope TO address), and then treat them
as a group. This is the most efficient processing method for the standard tcp_local
or tcp_internal channels, which are expected to be sending mail to lots of different
remote domain names, with a small number going to each domain name.

Setting the anon_host option to 1 for TCP channels is recommended for specialty
channels (that can be configured by the system manager on a site-specific basis) which are
set up to send all of its messages to a single remote system. Because this setting allows
all of the threads in all of the SMTP client jobs for that channel to be used simultaneously
to handle all of the messages. (With anon_host=0, one thread is dedicated to each remote
domain name.)

MASTER_COMMAND (file specification)

Specifies the full path to the command to be executed by the Job Controller to run the
channel and dequeue outbound messages in the channel. Some PMDF channels do not
have a MASTER_COMMAND. If that is the case, the reserved value NULL should be specified.
If this parameter is set outside of a [CHANNEL] section, it is used as the default by any
channel that doesn’t specify a MASTER_COMMAND.

MAX_AGE (integer)

Specifies the maximum lifetime for a channel master job in seconds. When a channel
master job has been running for this period of time, it is shut down. This prevents
master jobs for heavily used channels from monopolizing the available job slots, and
gives lesser-used channels a chance to run. If no value is specified, the default value of
1800 (30 minutes) is used.

MAX_CONNS (integer)

For TCP channels only, in addition to the MAX_AGE parameter, the lifetime of a tcp_xxx
channel master job is limited by the number of times it can check with the Job Controller
to see if there are any queued requests. If this parameter is not specified for a channel,
the default value of 300 is used.

QUEUE (queue name)

By default, all channels use the DEFAULT queue. If you have defined additional queues,
use the QUEUE option to direct certain channels to run in certain queues.

SLAVE_COMMAND (file specification)

Specifies the full path to the command to be executed by the Job Controller to run the
channel and poll for any messages inbound on the channel. Most PMDF channels do not
have a SLAVE_COMMAND. If that is the case, the reserved value NULL should be specified.
If this parameter is set outside of a [CHANNEL] section, it is used as the default by any
channel that doesn’t specify a SLAVE_COMMAND.

10–7

The PMDF Job Controller (UNIX and Windows)
Adding Additional Queues

10.4 Adding Additional Queues

The Job Controller creates and manages channel jobs for delivering messages. Each
set of channel jobs is part of an internal queue. The queue provides an area where a set
of channel jobs can run without contention for resources with other channel jobs outside
of the queue. The number of jobs that can run inside a particular queue is set with the
JOB_LIMIT keyword. For example, if you have a CONV queue defined with a JOB_LIMIT
of 10, then only 10 processes can run in that queue at any given time.

Usage of the conversion channel for virus scanning or stripping ‘‘dangerous’’
attached files is a common situation where sites would want to create additional queues.
Virus scanning a message requires a significant amount of time, and conversion
channel jobs can quickly fill every available job slot at a busy site. Delivery channel
jobs such as the l (local) and msgstore channels are only allowed to run infrequently,
causing large delays in message delivery.

A solution to this problem is to define a queue named CONV in the Job Controller
configuration file (job_controller.cnf) that is dedicated to handling conversion
channel jobs:

[QUEUE=CONV]
JOB_LIMIT=10

The conversion channel is told to run its channel jobs inside the new queue with
the queue keyword. For example:

[CHANNEL=conversion]
master_command=/pmdf/bin/conversion
queue=conv

This allows up to 10 conversion channel jobs to run in parallel, while leaving all
of the job slots in the other queues available for other channel jobs.

10.5 Checking that the PMDF Job Controller is Running

You can verify that the PMDF Job Controller is running with the command pmdf
process on either UNIX or NT, or by checking under the Control Panel under Services
for the Job Controller on NT. On UNIX, you should see output similar to that shown below,
perhaps with additional jobs present if your system is currently processing messages.

pmdf process

USER PID S VSZ RSS STIME TIME COMMAND
pmdf 4396 S 16080 8064 14:09:13 0:01 <IMAP_SERVER>
pmdf 4393 S 15968 7816 14:09:13 0:00 <POP_SERVER>
pmdf 4395 S 15624 7568 14:09:13 0:00 <SMTP>
pmdf 4390 S 15080 6680 14:09:12 0:00 /pmdf/bin/dispatcher
pmdf 4392 S 15600 7448 14:09:13 0:01 <HTTP>
root 4394 S 15928 7736 14:09:13 0:00 <POPPASSD>
pmdf 4374 S 12960 2456 14:09:12 0:00 /pmdf/bin/job_controller

10–8

11 The PMDF Multithreaded Service Dispatcher

The PMDF multithreaded Service Dispatcher is a multithreaded connection dis-
patching agent that permits multiple multithreaded servers to share responsibility for
a given service. When using the Service Dispatcher, it is possible to have several mul-
tithreaded SMTP, POP3, and IMAP servers running concurrently. In addition to having
multiple servers for a single service, each server can have one or more active connections.

11.1 Operation of the Service Dispatcher

The Service Dispatcher works by acting as a central receiver for the TCP ports listed
in its configuration. For each defined service, the PMDF Service Dispatcher can create
one or more Worker Processes that will actually handle the connections after they’ve been
established. A schematic of a Service Dispatcher and its Worker Processes is shown in
Figure 11–1.

Figure 11–1 The Service Dispatcher and Its Worker Processes

Service Dispatcher

W o r k e r

Process

W o r k e r

Process

W o r k e r

Process

W o r k e r

Process

W o r k e r

Process

I M A PP O P 3 S M T PS M T PS M T P

 Active

connect ions

 Active

connect ions

 Active

connect ions

 Active

connect ions

 Active

connect ions

In general, when the Service Dispatcher receives a connection for a defined TCP
port, it checks its pool of available Worker Processes and chooses the best candidate
for the new connection. If no suitable candidate is available and the configuration
permits it, the Service Dispatcher can create a new Worker Process to handle this and
subsequent connections. The Service Dispatcher can also proactively create a new Worker

11–1

The PMDF Multithreaded Service Dispatcher
Operation of the Service Dispatcher

Process in expectation of future incoming connections. There are several configuration
options which can be used to tune the PMDF Service Dispatcher’s control of its various
services, and in particular, to control the number of Worker Processes and the number
of connections each Worker Process handles; see Section 11.1.1 and Section 11.3.

11.1.1 Creation and Expiration of Worker Processes

There are automatic housekeeping facilities within the Service Dispatcher to control
the creation of new and expiration of old or idle Worker Processes. The basic options that
control the Service Dispatcher’s behavior in this respect are MIN_PROCS and MAX_PROCS.
MIN_PROCS provides a guaranteed level of service by having a number of Worker
Processes ready and waiting for incoming connections. MAX_PROCS, on the other hand,
sets an upper limit on how many Worker Processes can be concurrently active for the
given service.

Since it is possible that a currently running Worker Process might not be able to
accept any connections either because it is already handling the maximum number
of connections of which it is capable or because the process has been scheduled for
termination, the Service Dispatcher can create additional processes to assist with future
connections.

The MIN_CONNS and MAX_CONNS options provide a mechanism to help you distribute
the connections among your Worker Processes. MIN_CONNS specifies the number of
connections that flags a Worker Process as ‘‘busy enough’’ while MAX_CONNS specifies
the ‘‘busiest’’ that a Worker Process can be.

In general, the Service Dispatcher will create a new Worker Process when the
current number of Worker Processes is less than MIN_PROCS or when all existing Worker
Processes are ‘‘busy enough’’ (the number of currently active connections each has is at
least MIN_CONNS).

Note that if a Worker Process is killed unexpectedly, e.g., by the OpenVMS DCL
STOP/ID command or the UNIX kill command, the Service Dispatcher will still create
new Worker Processes as new connections come in.

11.2 Required Software Versions

On OpenVMS, the Service Dispatcher requires as the underlying TCP/IP package,
any one of MultiNet V3.5A or later with all UCXDRIVER patches (upgrading to MultiNet
V4.0B, which requires no known patches as of this printing, is recommended), Pathway
V2.5.x with all patches (in particular C82195) or later, TCPware V5.0 or later, or TCP/IP
Services for OpenVMS V4.0 or later (with UCX V4.1 requiring upgrading to at least ECO
5).

On OpenVMS, note that the Service Dispatcher requires that your TCP/IP package
provide UCX emulation; if your TCP/IP package is not currently configured for UCX
emulation, you must enable UCX emulation.

11–2

The PMDF Multithreaded Service Dispatcher
Required Software Versions

Your TCP/IP package must be configured to include a loopback adaptor; that is, your
TCP/IP package must recognize the IP address 127.0.0.1 as itself.

11.3 The Dispatcher Configuration File

The Service Dispatcher requires a configuration file to tell it what services to handle
and to set various options for those services. A framework Dispatcher configuration file is
shipped with PMDF, referenced by the PMDF_DISPATCHER_CONFIG_MAIN logical name
(OpenVMS), or PMDF tailor file option (UNIX), or PMDF Tailor Registry entry (NT), and
hence normally dispatcher_main.cnf located in the PMDF table directory; normally
this framework configuration file should not be site modified. (In particular, on UNIX and
NT the framework Dispatcher configuration file defines some internal PMDF services,
PWCHECK and PFILE, whose service definitions should not be modified.)

The framework Dispatcher configuration file reads in the site-specific Service
Dispatcher configuration file which is intended to be site created and site modified, located
via the PMDF_DISPATCHER_CONFIG logical name (OpenVMS), or PMDF tailor file option
(UNIX), or PMDF Tailor Registry entry (NT) and hence is usually dispatcher.cnf
located in the PMDF table directory. The command line PMDF Service Dispatcher
configuration utility, pmdf configure dispatcher (UNIX and VMS), or the PMDF web-
based configuration utility (all platforms), should be used to create an initial configuration
file; see the appropriate edition of the PMDF Installation Guide for instructions and an
example of using this utility.

11.3.1 Configuration File Format

The Service Dispatcher configuration file format is similar to the format of other
PMDF option files. Lines specifying options have the form

option=value

where option is the name of an option and value is the string or integer to which to
set the option. If the option accepts an integer value, value, a base can be specified
using notation of the form b%v, where b is the base expressed in base 10 and v is the
actual value expressed in base b. Such option specifications are grouped into sections
corresponding to the service to which the following option settings apply via lines of the
form

SERVICE=service-name

where service-name is the name of a service. Initial option specifications that appear
before any such section tag apply globally to all sections. A [SERVICE=DISPATCHER]
section can be used to specify options for the Dispatcher itself.

A sample configuration file for an OpenVMS system is shown in Figure 11–2;
a sample configuration file for a UNIX system is shown in Figure 11–3; a sample
configuration file for an NT system is shown in Figure 11–4.

11–3

The PMDF Multithreaded Service Dispatcher
The Dispatcher Configuration File

Figure 11–2 Sample Service Dispatcher Configuration File on OpenVMS,
dispatcher.cnf

! The first set of options, listed without a [SERVICE=xxx]
! header, are the default options that will be applied to all
! services.
!
! Global defaults
!
MIN_PROCS=1
MAX_PROCS=5
MIN_CONNS=3
MAX_CONNS=10
MAX_SHUTDOWN=2
MAX_LIFE_TIME=86400
MAX_LIFE_CONNS=300
MAX_IDLE_TIME=600
!
! Other files can be included using the "<" operator as below
!
<PMDF_TABLE:dispatcher_site.cnf
!
! Now, define the services available to the Dispatcher
!
! multithreaded SMTP server
!
[SERVICE=SMTP]
PORT=25
IMAGE=PMDF_EXE:tcp_smtp_server.exe
LOGFILE=PMDF_LOG:tcp_smtp_server.log
!
! HTTP server
!
[SERVICE=HTTP]
PORT=7633
IMAGE=PMDF_EXE:http_server.exe
LOGFILE=PMDF_LOG:http_server.log
!
! POP3 server
!
[SERVICE=POP3]
PORT=110
IMAGE=PMDF_EXE:pop3d.exe
LOGFILE=PMDF_LOG:pop3d.log
!
! IMAP server
!
[SERVICE=IMAP]
PORT=143
IMAGE=PMDF_EXE:imapd.exe
LOGFILE=PMDF_LOG:imapd.log

11–4

The PMDF Multithreaded Service Dispatcher
The Dispatcher Configuration File

Figure 11–3 Sample Service Dispatcher Configuration File on UNIX, dis-
patcher.cnf

! The first set of options, listed without a [SERVICE=xxx]
! header, are the default options that will be applied to all
! services.
!
MIN_PROCS=1
MAX_PROCS=5
MIN_CONNS=3
MAX_CONNS=10
MAX_SHUTDOWN=2
MAX_LIFE_TIME=86400
MAX_LIFE_CONNS=300
MAX_IDLE_TIME=600
!
! Other files can be included using the "<" operator as below
!
</pmdf/table/dispatcher_site.cnf
!
! Now, define the services available to Dispatcher
!
[SERVICE=SMTP]
PORT=25
IMAGE=/pmdf/bin/tcp_smtp_server
LOGFILE=/pmdf/log/tcp_smtp_server.log
!
! HTTP server
!
[SERVICE=HTTP]
PORT=7633
IMAGE=/pmdf/bin/http_server
LOGFILE=/pmdf/bin/http_server.log
!
[SERVICE=POP3]
PORT=110
IMAGE=/pmdf/bin/pop3d
LOGFILE=/pmdf/log/pop3d.log
!
[SERVICE=IMAP]
PORT=143
IMAGE=/pmdf/bin/imapd
LOGFILE=/pmdf/bin/imapd.log

11.3.2 Available Options

The available Dispatcher configuration file options are:

ASTLM, BIOLM, BYTLM, CPULM, DIOLM, ENQLM, FILLM, JTQUOTA, PGFLQUOTA,
PRCLM, TQELM, WSDEFAULT, WSEXTENT, WSQUOTA (integer; OpenVMS only)

On OpenVMS, use the specified process quota. The default values are:

11–5

The PMDF Multithreaded Service Dispatcher
The Dispatcher Configuration File

Figure 11–4 Sample Service Dispatcher Configuration File on NT, dispatcher.cnf

! The first set of options, listed without a [SERVICE=xxx]
! header, are the default options that will be applied to all
! services.
!
MIN_PROCS=1
MAX_PROCS=5
MIN_CONNS=3
MAX_CONNS=10
MAX_SHUTDOWN=2
MAX_LIFE_TIME=86400
MAX_LIFE_CONNS=300
MAX_IDLE_TIME=600
!
! Other files can be included using the "<" operator as below
!
<C:\pmdf\table\dispatcher_site.cnf
!
! Now, define the services available to Dispatcher
!
[SERVICE=SMTP]
PORT=25
IMAGE=C:\pmdf\bin\tcp_smtp_server
LOGFILE=C:\pmdf\log\tcp_smtp_server.log
!
! HTTP server
!
[SERVICE=HTTP]
PORT=7633
IMAGE=C:\pmdf\bin\http_server
LOGFILE=C:\pmdf\bin\http_server.log
!
[SERVICE=POP3]
PORT=110
IMAGE=C:\pmdf\bin\pop3d
LOGFILE=C:\pmdf\log\pop3d.log
!
[SERVICE=IMAP]
PORT=143
IMAGE=C:\pmdf\bin\imapd
LOGFILE=C:\pmdf\bin\imapd.log

11–6

The PMDF Multithreaded Service Dispatcher
The Dispatcher Configuration File

Option Default value

ASTLM 500

BIOLM 100

BYTLM 200000

CPULM 0

DIOLM 100

ENQLM 0

FILLM 0

JTQUOTA 0

PGFLQUOTA 81920

PRCLM 0

TQELM 500

WSDEFAULT 0

WSEXTENT 0

WSQUOTA 0

A default value of 0 means to use the corresponding PQL_D*SYSGEN parameter value.

For POP and IMAP services, the BYTLM, ENQLM, FILLM, and PGFLQUOTA options are
particularly relevant. A general recommendation for sites using a POP or IMAP server
is to set the Dispatcher option BYTLM in the POP or IMAP service section, respectively,
of the Dispatcher configuration file according to the formula:

BYTLM > 5120 �
X

services

MAX PROCS + 1024 �
X

services

(MAX PROCS �MAX CONNS):

Or if UCX_HOLD=0 is set, the need for BYTLM is instead only

BYTLM > 5120 �
X

services

MAX PROCS

BACKLOG (integer)

This option controls the depth of the TCP backlog queue for the socket. The default value
for each service is MAX_CONNS*MAX_PROCS for that service (with a minimum value of 5).
On OpenVMS, the maximum value is 255; attempts to set higher values will be treated
as a value of 255. This option should not be set higher than the underlying TCP/IP
kernel supports.

DNS_VERIFY_DOMAIN (host name or IP address)

Various groups maintain information about spam sources or open relay sites and some
sites like to check incoming IP connections against the lists maintained by such groups.
This option specifies the host name or IP address of source against which to check
incoming connections. You can have up to five DNS_VERIFY_DOMAIN options for each
service. (Note that SMTP is typically the only service for which such checks make sense.)
For example:

11–7

The PMDF Multithreaded Service Dispatcher
The Dispatcher Configuration File

[SERVICE=SMTP]
PORT=25
DNS_VERIFY_DOMAIN=relays.mail-abuse.org
DNS_VERIFY_DOMAIN=dialups.mail-abuse.org

If this option is enabled on a well-known port (25, 110, or 143), then a standard message
such as the one below will be sent before the connection is closed:

500 5.7.1 access_control: host 192.168.51.32 found on DNS list and rejected

If you want PMDF to log such rejections, you can set the 24th bit of the Dispatcher
debugging DEBUG option, DEBUG=16%1000000, to cause logging of the rejections to
the dispatcher.log file; see Section 11.6. Such dispatcher.log entries will take the
form:

access_control: host a.b.c.d found on DNS list and rejected

ENABLE_RBL (0 or 1)

Specifying ENABLE_RBL=1 causes the Dispatcher to compare incoming connections to the
‘‘Black Hole’’ list at mail-abuse.org.

Note: Setting ENABLE_RBL to 1 is the same as using the option DNS_VERIFY_DOMAIN
set to blackholes.mail-abuse.org. The ENABLE_RBL option has been obsoleted by the
DNS_VERIFY_DOMAIN option.

For example, if the Dispatcher receives a connection from 192.168.51.32, then it
will attempt to obtain the IP address for the hostname 32.51.168.192.blackholes.mail-
abuse.org. If the query is successful, the connection will be closed rather than handed
off to a worker process.

If this option is enabled on a well-known port (25, 110, or 143), then a standard
message such as the one below will be sent before the connection is closed:

500 5.7.1 access_control: host 192.168.51.32 found on DNS list and rejected

If you want PMDF to log such rejections, you can set the 24th bit of the Dispatcher
debugging DEBUG option, DEBUG=16%1000000, to cause logging of the rejections to the
dispatcher.log file; see Section 11.6. Such dispatcher.log entries will take the
form:

access_control: host a.b.c.d found on DNS list and rejected

GROUP (string; UNIX only)
USER (string; UNIX only)

These options control under what user id and group id the service runs. Via these options,
the Dispatcher can give services the access they need to function properly. The IMAP,
POP3, and POPPASSD servers should be set

USER=root

These options should not be set except to those values and for those services where Process
Software specifically directs their use.

HISTORICAL_TIME (integer)

The HISTORICAL_TIME option controls how long (in seconds) expired connections (those
that have been closed) and processes (those that have exited) remain listed for statistical
purposes. The default value is 120 seconds; i.e., two minutes. Note that the setting of this

11–8

The PMDF Multithreaded Service Dispatcher
The Dispatcher Configuration File

option affects the amount of virtual memory that the Dispatcher requires; for instance,
on OpenVMS, busy sites that want to increase the HISTORICAL_TIME setting can also
need to increase the PGFLQUOTA option setting for the Dispatcher service itself in a
[SERVICE=DISPATCHER] section.

IMAGE (file specification)

This is the image that will be run by Worker Processes when created by the Service
Dispatcher. Note that the specified image should be one designed to be controlled by the
Service Dispatcher.

INTERFACE_ADDRESS (IP address)

The INTERFACE_ADDRESS option can be used to specify the IP address interface to
which the Dispatcher service should bind. By default, the Dispatcher binds to all IP
addresses. But for systems having multiple network interfaces each with its own IP
address, it can be useful to bind different services to the different interfaces. Note that if
INTERFACE_ADDRESS is specified for a service, then that is the only interface IP address
to which that Dispatcher service will bind. Only one such explicit interface IP address
can be specified for a particular service (though other similar Dispatcher services can be
defined for other interface IP addresses).

Note that the interfaceaddress channel keyword, Section 2.3.4.37, provides the
complementary capability for specifying which interface address a TCP/IP channel uses
for outgoing connections and messages.

LOGFILE (file specification)

Specifying this option for a service causes the Service Dispatcher to direct output for
corresponding Worker Processes to the specified file. The log file can include the system’s
name (SCSNODE on VMS, if available, or the first part of the Internet hostname) by
including the %s token. For instance,

[SERVICE=DISPATCHER]
LOGFILE=PMDF_LOG:dispatcher-%s.log

MAX_CONNS (integer)

This option specifies the maximum number of concurrent connections handled by a single
server process (Worker Process). When the maximum number of concurrent sessions is
reached, the server process stops listening for new connections. When all currently open
connections are closed the original server will exit. The default value for this option is
10. On OpenVMS, the maximum possible value for this option is 31, where here the limit
is the number of threads supported by OpenVMS’s callable MAIL. On other platforms,
the maximum possible value for this option is 50.

For services where the server image is not multithreaded, this option must be set to 1.

In contrast, servers such as the PMDF SMTP server, POP3 server, or IMAP server
are multi-threaded, and therefore capable of handling multiple clients. For such
multithreaded servers, the choice of setting for this option is mainly a performance issue
relating to the number of processes and the size of the process virtual address space.
Setting MAX_CONNS to higher values allows more connections, but at the potential cost
of decreased performance for each individual connection. If it is set to 1, then for every
incoming client connection, only one server process will be used. When the client shuts
down, the server process will also exit. Note that this value times the MAX_PROCS value
controls the maximum number of simultaneous connections that can be accepted.

11–9

The PMDF Multithreaded Service Dispatcher
The Dispatcher Configuration File

MAX_HANDOFFS (integer)

This option specifies the maximum number of concurrent asynchronous handoffs in
progress that the Dispatcher will allow for newly established TCP/IP connections to a
service port. The default value is 5.

MAX_IDLE_TIME (integer)

When a Worker Process has had no active connections for this period, it will be eligible
for being shut down. Note that this option is only effective if there are more than the
value of MIN_PROCS Worker Processes currently in the Service Dispatcher’s pool for this
service.

MAX_LIFE_CONNS (integer)

As part of the Service Dispatcher’s ability to perform Worker Process housekeeping, this
option requests that Worker Processes only be kept around for the specified number of
connections. After a Worker Process has handled the specified number of connections, it
is subject to being shut down. The global default value is 300.

For instance, when specified in a POP or IMAP service section, this is the number of total
connections the POP3 or IMAP server is able to accept before being restarted. This is
different from the MAX_CONNS option, which limits the number of concurrent connections.
On OpenVMS when serving out the native VMS MAIL mailbox it is recommended to set
this to no more than 100; otherwise problems due to memory leaks in callable MAIL can
be encountered.

MAX_LIFE_TIME (integer)

As part of the Service Dispatcher’s ability to perform Worker Process housekeeping, this
option requests that Worker Processes only be kept around for the specified number of
seconds. When a Worker Process is created, a countdown timer is set to the specified
number of seconds. When the countdown time has expired, the Worker Process is subject
to being shut down.

MAX_PROCS (integer)

This option controls the maximum number of Worker Processes that will be created for
this service. Thus this value times MAX_CONNS thus specifies the maximum number of
simultaneous connections that can be handled.

MAX_SHUTDOWN (integer)

In order to provide a minimum availability for the service, the Service Dispatcher will not
shut down Worker Processes that might otherwise be eligible to be shut down if shutting
them down would result in having more than MAX_SHUTDOWN Worker Processes for the
service in the shutting down state. This means that processes that can be eligible to be
shut down can continue running until a shutdown ‘‘slot’’ is available. Having this option
set to about half of the value of the MAX_PROCS option is usually appropriate.

MIN_CONNS (integer)

The Service Dispatcher attempts to distribute connections evenly across its pool of
currently available Worker Processes. The Service Dispatcher uses this value to
determine the minimum number of connections that each Worker Process must have
before there will be any consideration of adding new Worker Processes to the pool.

MIN_PROCS (integer)

This option determines the minimum number of Worker Processes that will be created by
the Service Dispatcher for the current service. Upon initialization, the Service Dispatcher
will create this many detached processes to start its pool. When a process is shut down,
the Service Dispatcher will ensure that there are at least this many available processes
in the pool for this service.

11–10

The PMDF Multithreaded Service Dispatcher
The Dispatcher Configuration File

PARAMETER

The interpretation and allowed values for the PARAMETER option are service specific. In
the case of an SMTP service, the PARAMETER option can be set to CHANNEL=channelname,
to associate a default TCP/IP channel with the port for that SMTP service. For instance,

[SERVICE=SMTP]
PORT=25
...
PARAMETER=CHANNEL=tcp_incoming

Note that this can be useful if you want to run SMTP servers on multiple ports – perhaps
because your internal POP and IMAP clients have been configured to use a port other
than the normal port 25, thus separating their message traffic from incoming SMTP
messages from external SMTP hosts—and if you want to associate different TCP/IP
channels with the different port numbers.

For an IMAP server or Web500 server, the PARAMETER option can be set to CONFIG_
FILE=filename, to tell the server to use the specified file as its configuration file. Note
that this can be useful if you want to run such servers on multiple ports with the different
servers having different configuration files.

PORT (integer or comma separated list of integers)

Specifies the TCP port(s) on which the Service Dispatcher will listen for incoming
connections for the current service. Connections made to this port or these ports will
be transferred to one of the Worker Processes created for this service. The default is 25
for SMTP, 110 for POP3, and 143 for IMAP. Specifying PORT=0 has the effect of disabling
the current service.

PRIORITY (integer; OpenVMS only)

On OpenVMS, the PRIORITY option can be used to control the priority at which the
Worker Processes will run.

STACKSIZE (integer > 0)

Specifies a minimum per-thread stack size. Various components can have their own
minimum values; the larger of an explicitly specified STACKSIZE option value and the
component’s own internal minimum will be used.

TLS_CERTIFICATE (comma separated list of file-specs)

This option specifies a pair of files in which a TLS certificate can be found. The default,
if this option is not specified, is to look for a certificate in the server-pub.pem and
server-priv.pem files stored in the PMDF table directory. Up to five instances of this
option can be specified, which can be particularly useful for sites that want to have and
use multiple certificates; for instance:

TLS_CERTIFICATE=/pmdf/table/server-pub.pem,/pmdf/table/server-priv.pem
TLS_CERTIFICATE=/pmdf/table/server-smtp-pub.pem,/pmdf/table/server-smtp-priv.pem

Note: The TLS_CERTIFICATE option is only available for PMDF-TLS sites.

TLS_PORT (integer or comma separated list of integers)

Specifies the TCP port(s) on which the Service Dispatcher will listen for incoming TLS
connections for the current service. Connections made to this port or these ports will
automatically negotiate TLS use and be transferred to one of the Worker Processes
created for this service. See also Section 15.2.2.1.

Note: The TLS_PORT option is only available for PMDF-TLS sites.

11–11

The PMDF Multithreaded Service Dispatcher
The Dispatcher Configuration File

UCX_HOLD (0 or 1; OpenVMS only)

On OpenVMS, the UCX_HOLD option controls whether the Dispatcher continues to hold
an assigned I/O channel for each connection for that service while the connnection is
being handled by a worker process. The default value, UCX_HOLD=1, is required for
some TCP/IP packages, such as DEC TCP/IP Services for OpenVMS (UCX). Keeping
such connections open requires that your system have a sufficient CHANNELCNT SYSGEN
parameter.

With some TCP/IP packages, e.g., MultiNet or TCPware, you can want to set this option
to 0, allowing the Dispatcher to deassign the I/O channel after the connection has
been handed off to a worker process, and thereby mitigating the need to increase the
CHANNELCNT value.

WP_TIMEOUT (integer)

This option specifies how many seconds the Dispatcher should wait for a Worker Process
to start, before deciding that the Worker Process must be dead and trying to start another
one. The default is 30. The value should not be set higher than 60.

11.4 Controlling the Service Dispatcher

The Service Dispatcher is a single resident process which starts and shuts down
Worker Processes for various services as needed. The Service Dispatcher process can be
started with the command

pmdf startup dispatcher

Note: The command to start up the Dispatcher subsumes and makes obsolete any other PMDF
STARTUP (OpenVMS) or pmdf startup (UNIX) command that was used previously in
PMDF V5.0 to start up a component of PMDF that the Service Dispatcher has now been
configured to manage. Specifically, you should no longer use PMDF STARTUP SMTP,
POP3, or IMAP (OpenVMS) or pmdf startup smtp, pop3, or imap (UNIX). An attempt
to execute any of the obsoleted commands will cause PMDF to issue a warning.

To shut down the Service Dispatcher, use the command

pmdf shutdown dispatcher

What happens with the Worker Processes when the Service Dispatcher is shut down
depends upon the underlying TCP/IP package.

For instance, on OpenVMS with Multinet as the TCP/IP package shutting down
the Service Dispatcher will not terminate any currently active connections served by
any Worker Processes. Rather, the command requests that the Service Dispatcher itself
terminate, meaning that new connections will no longer be accepted and then assigned
to Worker Processes, and that Worker Processes will automatically terminate as they
finish previously assigned tasks and become idle.

On OpenVMS with UCX as the TCP/IP package however, shutting down the Service
Dispatcher will also cause the Worker Processes to immediately abort their connections.

11–12

The PMDF Multithreaded Service Dispatcher
Controlling the Service Dispatcher

If you modify your PMDF configuration or options that apply to the Service
Dispatcher, you must restart the Service Dispatcher so that the new configuration or
options will take effect. Use the command

pmdf restart dispatcher

Restarting the Service Dispatcher has the effect of shutting down the currently
running Service Dispatcher and then immediately starting a new one.

Individual services can be restarted only on OpenVMS or UNIX platforms. Use the
command

pmdf restart service-name

where service-name is a service defined in the Service Dispatcher configuration file
when the Service Dispatcher was started; for instance, when using the sample Service
Dispatcher configuration file, SMTP, POP3, or IMAP (OpenVMS) or smtp, pop3, or imap
(UNIX). These commands signal the Service Dispatcher to restart only that component
that was specified.

When receiving a command to restart a particular server, the Service Dispatcher
first shuts down that service and then immediately starts a new service (re-reading the
Service Dispatcher configuration file), creating new Worker Processes as requested.

Individual services can be shut down only on OpenVMS and UNIX platforms. Use
the command

pmdf shutdown service-name

where service-name is a service defined in the Service Dispatcher configuration file
when the Service Dispatcher was started.

When receiving a command to shut down a particular service, the Service Dispatcher
stops accepting new connections for that service and terminates the Worker Processes
for that service when they become idle.

Note: If you shut down a particular service, you will need to restart (or shut down and start
up) the Service Dispatcher itself in order to get the service started up again.

11.5 Connection Access Control

The PMDF Service Dispatcher is able to selectively accept or reject incoming SMTP
connections based on IP address and port number. At Dispatcher startup time, the
Dispatcher will look for a mapping table named PORT_ACCESS. If present, the Dispatcher
will format connection information in the form:

TCP|server-address|server-port|client-address|client-port

and try to match against all PORT_ACCESS mapping entries. If the result of the mapping
contains $N or $F, the connection will be immediately closed. Any other result of the
mapping indicates that the connection is to be accepted. $N or $F can optionally be
followed by a rejection message. If present, the message will be sent back down the

11–13

The PMDF Multithreaded Service Dispatcher
Connection Access Control

connection just prior to closure. Note that a CRLF terminator will be appended to the
string before it is sent back down the connection.

The flag $< followed by an optional string causes PMDF to send the string as an
OPCOM broadcast (OpenVMS) or to syslog (UNIX) or to the event log (NT) if access is
rejected. If bit 1 of the LOG_CONNECTION PMDF option is set and the $N flag is set so
that the connection is rejected, then also specifying the $T flag will cause a ‘‘T’’ entry
to be written to the connection log. If bit 4 of the LOG_CONNECTION PMDF option is set,
then site-supplied text can be provided in the PORT_ACCESS entry to include in the ‘‘C’’
connection log entries entries; to specify such text, include two vertical bar characters
in the right hand side of the entry, followed by the desired text. See Table 11–1 for a
summary of the available flags.

Table 11–1 PORT_ACCESS mapping flags

Flag Description

$Y Allow access

Flags with arguments, in argument reading order†

$<string Send string as an OPCOM broadcast (OpenVMS) or to syslog (UNIX)
or to the event log (NT) if access is rejected

$Nstring Reject access with the optional error text string

$Fstring Synonym for $Nstring, i.e., reject access with the optional error text
string

$Ttext If bit 1 of the LOG_CONNECTION PMDF option is set and the $N flag
is set so that the connection is rejected, then $T causes a ‘‘T’’ entry
to be written to the connection log; the optional text text (which must
appear subsequent to two vertical bar characters) can be included in the
connection log entry

†To use multiple flags with arguments, separate the arguments with the vertical bar character, |,
placing the arguments in the order listed in this table.

For example, the following mapping will only accept SMTP connections (to port 25,
the normal SMTP port) from a single network, except for a particular host singled out
for rejection without explanatory text:

PORT_ACCESS

TCP|*|25|192.168.10.70|* $N500
TCP|*|25|192.168.10.*|* $Y
TCP|*|25|*|* $N500$ Bzzzzzzzzt$ thank$ you$ for$ playing.

Note that you will need to restart the Dispatcher after making any changes to the
PORT_ACCESS mapping table so that the Dispatcher will see the changes. (And if you’re
using a compiled PMDF configuration, you’ll first need to recompile your configuration
to get the change incorporated into the compiled configuration.)

The PORT_ACCESS mapping table is specifically intended for performing IP number
based rejections; for more general control at the email address level, the SEND_ACCESS
or MAIL_ACCESS mapping table, as described in Section 16.1, can be more appropriate.

11–14

The PMDF Multithreaded Service Dispatcher
Connection Access Control

11.6 Debugging and Log Files

Service Dispatcher error and debugging output (if enabled) are written to the file
dispatcher.log in the PMDF log directory.

Debugging output can be enabled using the option DEBUG in the Dispatcher
configuration file, or on a per-process level, via the PMDF_DISPATCHER_DEBUG logical
(OpenVMS) or environment variable (UNIX or NT).

The DEBUG option or PMDF_DISPATCHER_DEBUG logical name (OpenVMS) or envi-
ronment variable (UNIX or NT) defines a 32-bit debug mask in hexadecimal. Enabling
all debugging is done by setting the option to -1, or by defining the logical or environ-
ment variable system-wide to the value FFFFFFFF. The actual meaning of each bit is
described in Table 11–2.

Table 11–2 Dispatcher debugging bits

Bit Hexadecimal Decimal Usage

value value

0 x00001 1 Basic Service Dispatcher main module debugging

1 x00002 2 Extra Service Dispatcher main module debugging

2 x00004 4 Service Dispatcher configuration file logging

3 x00008 8 Basic Service Dispatcher miscellaneous debugging

4 x00010 16 Basic service debugging

5 x00020 32 Extra service debugging

6 x00040 64 Process related service debugging

7 x 128 Not used

8 x00100 256 Basic Service Dispatcher and process communication debugging

9 x00200 512 Extra Service Dispatcher and process communication debugging

10 x00400 1024 Packet level communication debugging

11 x00800 2048 Not used

12 x01000 4096 Basic Worker Process debugging

13 x02000 8192 Extra Worker Process debugging

14 x04000 16384 Additional Worker Process debugging, particularly connection
handoffs

15 x08000 32768 Not used

16 x10000 65536 Basic Worker Process to Service Dispatcher I/O debugging

17 x20000 131072 Extra Worker Process to Service Dispatcher I/O debugging

20 x100000 1048576 Basic statistics debugging

21 x200000 2097152 Extra statistics debugging

24 x1000000 16777216 Log PORT_ACCESS mapping, DNS_VERIFY_DOMAIN, and
ENABLE_RBL denials to the dispatcher.log file

11–15

The PMDF Multithreaded Service Dispatcher
Web-based Monitoring of the Service Dispatcher

11.7 Web-based Monitoring of the Service Dispatcher

The Multithreaded Service Dispatcher maintains statistics for connections made to
services controlled by the Dispatcher.

For each connection the Dispatcher receives, it retains information about the
connection including connection times, and source and destination IP addresses. The
Dispatcher statistics module uses this information to build more comprehensive statistics.
For each Worker Process, the Dispatcher maintains statistics on the current, peak
(simultaneous), and total number of connections handled by that process. It also tracks
the starting and ending time for each process.

On a ‘‘higher’’ level, the Dispatcher also maintains statistics (including the minimum,
average, and maximum) on a per-service basis for the number of concurrent connections,
the number of connections received per hour, and the durations of the connections
received.

These statistics are viewable with a web browser.

To support viewing the statistics, note that the PMDF HTTP server must be
configured to serve out the Dispatcher statistics, and access to the PMDF HTTP server
must be enabled. If you have used the web-based PMDF-MTA configuration utility or
if you have used the command line Dispatcher configuration utility, pmdf configure
dispatcher (UNIX and VMS), then you will already have a suitable HTTP server
configuration. These configuration utilities as of PMDF V6.0 will also have generated an
HTTP_ACCESS mapping table that allows access only to systems and subnets listed by
you as ‘‘internal during the configuration’’. But if you are running with a configuration
generated in an older version of PMDF and if you have not already enabled access to the
PMDF Service Dispatcher statistics, then you will need to enable such access by adding
to the PMDF mapping file an HTTP_ACCESS mapping table with entries such as:

HTTP_ACCESS

127.0.0.1|*|*|*|GET|/dispatcher/* $Y
||*|*|GET|/dispatcher/* $N
||*|*|*|* $N

The last entry shown is disabling access to all other HTTP server services.

Once the PMDF Service Dispatcher and PMDF HTTP server are configured, access
to the Dispatcher statistics has been enabled, and the Dispatcher has been started, you
can view the Dispatcher statistics by accessing the URL:

http://hostname:7633/dispatcher/

where hostname is the name of your PMDF system. Figure 11–5 shows an example of
Dispatcher statistics display on a sample system.

Note that since the Dispatcher statistics include detailed information regarding what
connections were made to your system, it may not be appropriate to make this information
publicly available. Just what access permitted is controlled using an HTTP_ACCESS
mapping table. Another example access mapping is shown here:

11–16

The PMDF Multithreaded Service Dispatcher
Web-based Monitoring of the Service Dispatcher

Figure 11–5 Dispatcher Statistics Page

HTTP_ACCESS

||*|*|GET|/dispatcher/ $Y
127.0.0.1|*|*|*|GET|/dispatcher/* $Y
||*|*|GET|/dispatcher/* $N

This will permit anyone to retrieve general information about the Dispatcher statistics,
but only the local system (127.0.0.1) will be permitted to get detailed information about
individual processes or connections. You can add other IP addresses, such as your
workstation from which you run your browser, to this table.

11–17

The PMDF Multithreaded Service Dispatcher
Web-based Monitoring of the Service Dispatcher

11.8 Tuning System Parameters

The number and type of Dispatcher services offered will affect requirements for
various system parameters. The sections below discuss some such operating system
parameters.

11.8.1 System Parameters on OpenVMS

Critical SYSGEN parameters for overall Dispatcher functioning

The SYSGEN parameter MAXPROCESSCNT must be large enough to accomodate the
number of server processes, in addition to any other processes on the system.

Sites running DEC TCP/IP Services (UCX) should set the SYSGEN parameter

CHANNELCNT =
X

services

MAX CONNS +
X

services

(MAX CONNS �MAX PROCS) + 30:

Sites running MultiNet or TCPware can avoid the need to change their system’s
CHANNELCNT by instead setting UCX_HOLD=0 in the Dispatcher configuration file.

SYSGEN parameters relevant for mailbox servers

SYSGEN system minimums and system defaults for quotas can affect the quotas for
server processes. SYSGEN parameters especially relevant for PMDF mailbox servers are:

PQL_MASTLM, PQL_DASTLM,
PQL_MBIOLM, PQL_DBIOLM,
PQL_MBYTLM, PQL_DBYTLM,
PQL_MCPULM, PQL_DCPULM,
PQL_MDIOLM, PQL_DDIOLM,
PQL_MENQLM, PQL_DENQLM,
PQL_MFILLM, PQL_DFILLM,
PQL_MJTQUOTA, PQL_DJTQUOTA,
PQL_MPGFLQUOTA, PQL_DPGFLQUOTA,
PQL_MTQELM, PQL_DTQELM,
PQL_MWSDEFAULT, PQL_DWSDEFAULT,
PQL_MWSQUOTA, PQL_DWSQUOTA,
PQL_MWSEXTENT, PQL_DWSEXTENT (limited by WSMAX),
VIRTUALPAGECNT, and CHANNELCNT.

Rather than using the SYSGEN values, however, the POP and IMAP servers will
preferentially use an explicit quota settings from their Dispatcher configuration file
service sections. These SYSGEN values are only used if a Dispatcher quota option has not
been set.

11–18

The PMDF Multithreaded Service Dispatcher
Tuning System Parameters

The quotas for server processes can be controlled via quota options in the Dispatcher
configuration file. The top of the Dispatcher configuration file can define global default
quotas, and quota values specific for specific services can be set in that service’s definition
section in the Dispatcher configuration file.

11–19

12The PMDF HTTP Server

This chapter describes the PMDF HTTP server that serves out PMDF documentation
and PMDF monitoring information.

12.1 The PMDF HTTP Server

PMDF comes with a minimal HTTP server that can be used to serve out PMDF
documentation. It is also used to support additional management modules, such as
Dispatcher statistics. Note that the PMDF HTTP server is not intended for third party
use; it is intended purely for serving out PMDF information.

12.1.1 Configuring the HTTP Server

In order to use the HTTP server, the PMDF Service Dispatcher must be configured
to handle this HTTP service, the PMDF HTTP server itself must be configured, and
access to the HTTP server must be enabled. The PMDF Service Dispatcher command line
configuration utility, pmdf configure dispatcher (UNIX and VMS), or the PMDF web-
based configuration utility, will configure the Dispatcher to handle the HTTP service and
will generate a minimal HTTP server configuration file; see the appropriate edition of the
PMDF Installation Guide for a description and example. It is highly recommended that
the web-based PMDF configuration utility or the Dispatcher command line configuration
utility be used to create the HTTP service definition and configuration file.

Samples of the default HTTP service definition in the Dispatcher configuration file
can be seen in Examples Example 12–1 through Example 12–3. A sample of the minimal
HTTP server configuration file can be seen in Example 12–4.

Note that the HTTP server listens on port 7633 by default. It can be configured
to listen on a different port in the PMDF Service Dispatcher configuration file,
dispatcher.cnf, located in the PMDF table directory.

The HTTP server configuration file, http.cnf, is located in the PMDF table
directory. In order for the HTTP server to run properly, this configuration file needs
to exist and include entries telling the HTTP server how to handle the various PMDF
specific web pages and CGIs, as shown in Example 12–4.

12–1

The PMDF HTTP Server
The PMDF HTTP Server

Example 12–1 Sample HTTP Service Definition for OpenVMS

!
! HTTP server
!
[SERVICE=HTTP]
PORT=7633
IMAGE=PMDF_EXE:HTTP_SERVER.EXE
LOGFILE=PMDF_LOG:HTTP_SERVER.LOG

Example 12–2 Sample HTTP Service Definition for UNIX

!
! HTTP server
!
[SERVICE=HTTP]
PORT=7633
IMAGE=/pmdf/bin/http_server
LOGFILE=/pmdf/log/http_server.log

Example 12–3 Sample HTTP Service Definition for NT

!
! HTTP server
!
[SERVICE=HTTP]
PORT=7633
IMAGE=C:\pmdf\bin\http_server
LOGFILE=C:\pmdf\log\http_server.log

The following options can be specified in the HTTP server configuration file:

ALLOW_ROBOTS (integer)

By default, the HTTP server prevents robots from trawling through the HTTP server
tree. ALLOW_ROBOTS controls the fetching of the file /robots.txt. ALLOW_ROBOTS=0
(the default) will send back a response that should prevent robots from trawling through
the HTTP server directory tree, while ALLOW_ROBOTS=1 will send back a permissive
response.

DEBUG (0 or 1)

The DEBUG option can be set to 1 to enable debugging of HTTP server activity.

Caution: Since entire transactions are logged, this means that if users use the popstore/MessageStore
password changing CGI or set their mailbox filters, then the user’s entire transaction in-
cluding their password will be written to the debugging file.

DESCRIPTION (string)

Use the DESCRIPTION option to specify an alternate title to appear for the service on the
HTTP server main page.

12–2

The PMDF HTTP Server
The PMDF HTTP Server

Example 12–4 Sample http.cnf File

METHODS=GET,POST,HEAD
!
[PATH=/dispatcher/]
GET=PMDF_HTTP_DISPATCHER
!
[PATH=/doc/]
GET=PMDF_HTTP_GET
!
[PATH=/monitor/]
GET=PMDF_MONITOR_CGI
POST=PMDF_MONITOR_CGI
!
[PATH=/qm/]
GET=PMDF_QM_CGI
POST=PMDF_QM_CGI
!
[PATH=/mailbox_filters/]
GET=PMDF_MAILBOX_FILTERS_CGI
POST=PMDF_MAILBOX_FILTERS_CGI
!
[PATH=/configure/]
GET=PMDF_CONFIG_CGI
POST=PMDF_CONFIG_CGI
!
[PATH=/images/]
GET=PMDF_HTTP_GET
HIDDEN=1
!
! The next three lines activate the password change web page
[PATH=/chng_pwd/]
GET=PMDF_POPSTORE_PWD_CGI
POST=PMDF_POPSTORE_PWD_CGI
!
! The next three lines activate the popstore/MessageStore user interface
![path=/msps_user/]
!GET=PMDF_POPSTORE_USER_CGI
!POST=PMDF_POPSTORE_USER_CGI
!
! The next three lines activate the popstore management interface
![path=/popstore/]
!GET=PMDF_POPSTORE_CGI
!POST=PMDF_POPSTORE_CGI
!
! The next three lines activate the MessageStore management interface
![path=/msgstore/]
!GET=PMDF_MSGSTORE_CGI
!POST=PMDF_MSGSTORE_CGI
!

DOMAINNAME (string)

Use the DOMAINNAME option to specify a hostname that the HTTP server should use in
the URLs that it generates. By default, the HTTP server uses the hostname returned
by the TCP/IP stack. DOMAINNAME is a global option.

12–3

The PMDF HTTP Server
The PMDF HTTP Server

GET (string)

The GET HTTP method is used to retrieve documents or information. The value of the
GET option should be a shareable image (VMS) or shared library (UNIX) or DLL (NT),
which contains the code that implements the GET operation. The value can be a name
from the PMDF tailor file.

HEAD (string)

The HEAD HTTP method is similar to the GET method, except that only the header
information is retrieved and not the actual contents. The value of the HEAD option should
be a shareable image (VMS) or shared library (UNIX) or DLL (NT), which contains the
code that implements the HEAD operation. The value can be a name from the PMDF
tailor file.

HIDDEN (0 or 1)

By default, all service definitions in the HTTP server configuration file are displayed on
the HTTP server main page. Specify the HIDDEN option with a value of 1 on a service
definition to prevent that service from being displayed.

LOGGING (0 or 1)

The LOGGING option can be used to cause PMDF to write out a single log line
showing successful and failed HTTP requests. Setting LOGGING=1 enables the logging;
LOGGING=0, the default, disables it.

Caution: Since entire transactions are logged, this means that if users use the popstore/MessageStore
password changing CGI or set their mailbox filters, then the user’s entire transaction in-
cluding their password will be written to the log file.

METHODS (string)

The METHODS option is used to declare a list of HTTP methods that the HTML sources
can use. The standard ones are GET, POST, and HEAD.

PATH (string)

The PATH option creates a new service definition. Specify the PATH option in square
brackets (see Example 12–4). The value of the option should be the subdirectory
of the PMDF WWW directory that contains the files for the services. (The PMDF
WWW directory is usually PMDF_ROOT:[WWW] on VMS, /pmdf/www on UNIX, and
C:\pmdf\wwww on NT.)

PORT (integer)

Specifies the port for the HTTP server to listen on. It only applies to the HTTP server
running in standalone mode. For the regular HTTP server, the port is specified in the
dispatcher configuration file.

POST (string)

The POST HTTP method is used to submit infromation. The value of the POST option
should be a shareable image (VMS) or shared library (UNIX) or DLL (NT), which contains
the code that implements the POST operation. The value can be a name from the PMDF
tailor file.

REDIRECT (string)

Specifying the REDIRECT option on a service definition causes PMDF to refer over to a
different service definition for what pages should be displayed and what actions should
be done. The value of the REDIRECT option is the path of another service definition in
the HTTP server configuration file.

12–4

The PMDF HTTP Server
The PMDF HTTP Server

12.1.2 Access Control

Access to the HTTP server is disabled by default. Access is controlled via the
HTTP_ACCESS mapping table. An HTTP_ACCESS mapping table, even one with no entries,
allows all access. That is, the line

HTTP_ACCESS

in your PMDF mappings file is equivalent to

HTTP_ACCESS

||*|*|*|* $Y

If you want to allow restricted access to services and files offered by the HTTP server,
you can use an HTTP_ACCESS mapping table with entries controlling particular sorts of
access. If such a mapping table exists in your PMDF mappings file, then on any attempt
to connect to the HTTP server port PMDF will probe the table with a probe string of the
form

source-ip|source-port|destination-ip|destination-port|method|path

where source-ip is the source IP address (on the remote browser), source-port is
the source port number (on the remote browser), destination-ip is the destination IP
address (on the PMDF system), destination-port is the destination port number (on
the PMDF system), method is the HTTP method (about which more below), and path is
the directory path to the information from the URL. The HTTP method is usually GET,
POST, or HEAD: GET is used to retrieve documents or information, HEAD is similar to GET
except that only the header information is sent and not the actual contents, POST is often
used with forms when submitting information. An asterisk, *, can be used as a wild card
in any of the probe string fields.

If the probe string matches a pattern (i.e., the left hand side of an entry in the table),
then the resulting output of the mapping is checked. If the output contains any of the
metacharacters $Y, $y, $T, or $t, then the access will be permitted. If the mapping
output contains any of the metacharacters $N, $n, $F, or $f, then the access will be
denied.

For example, to block people from outside the local network (assuming a local
network of 192.0.2.*) from viewing PMDF documentation, PMDF monitoring information,
or PMDF Service Dispatcher statistics on your server, you could use a mapping table such
as:

HTTP_ACCESS

$(192.0.2.0/24)|*|*|*|GET|/doc/* $Y
$(192.0.2.0/24)|*|*|*|GET|/monitor/* $Y
$(192.0.2.0/24)|*|*|*|GET|/dispatcher/* $Y
||*|*|GET|* $N

12–5

The PMDF HTTP Server
The PMDF HTTP Server

Figure 12–1 PMDF HTTP Server Main Page: Services and Documents Available

The default, if no match is found, allows access to any path configured in the HTTP
configuration file.

12–6

The PMDF HTTP Server
The PMDF HTTP Server

12.1.3 Available Information

Once the HTTP service has been configured, appropriate sorts of HTTP server access
have been enabled via a suitable HTTP_ACCESS mapping table, and the PMDF Service
Dispatcher has been started up, thereby starting the HTTP server, connect to

http://hostname:7633/

to see a menu, as in Figure 12–1, of the services and documents available via the PMDF
HTTP server.

12–7

13POP and IMAP Mailbox Servers

Mailbox servers allow computers running a client program to access mail residing
on the server. POP3 and IMAP4 are protocols for providing such capabilities. PMDF
provides POP and IMAP servers. These servers can be used with clients running on
PC, Macintosh, UNIX, OpenVMS, or other computer systems to acccess mailboxes on the
system running PMDF.1

On NT, PMDF provides a POP server and an IMAP server that serve out PMDF
MessageStore mailboxes; this POP server can also serve out PMDF popstore mailboxes.

On OpenVMS and UNIX, PMDF currently provides two different POP3 servers
and two different IMAP4rev1 servers. The two different POP3 servers provided for
these platforms will be referred to as the legacy mailbox POP server and the PMDF
MessageStore mailbox POP server; the two different IMAP servers provided will be
referred to as the legacy mailbox IMAP server and the PMDF MessageStore mailbox
IMAP server. The legacy mailbox IMAP and POP servers serve out VMS MAIL mailboxes
(OpenVMS) or BSD mailboxes2 (UNIX); the legacy mailbox POP servers can also serve
out PMDF popstore mailboxes. The PMDF MessageStore mailbox IMAP and POP servers
serve out PMDF MessageStore mailboxes; the PMDF MessageStore mailbox POP server
can also serve out PMDF popstore mailboxes.

Table 13–1 summarizes the above descriptions of the mailboxes supported by each
server.

Table 13–1 IMAP and POP Server Mailbox Support

Platform Server Legacy mailbox MessageStore popstore

(VMS MAIL or UNIX BSD) mailbox mailbox

OpenVMS legacy POP yes no yes

OpenVMS MessageStore POP no yes yes

OpenVMS legacy IMAP yes no no

OpenVMS MessageStore IMAP no yes no

UNIX legacy POP yes no yes

UNIX MessageStore POP no yes yes

UNIX legacy IMAP yes no no

UNIX MessageStore IMAP no yes no

NT MessageStore POP no yes yes

NT MessageStore IMAP no yes no

1 Normally the POP and IMAP clients do not run on the PMDF system itself; the PMDF system is the server system serving
out mailboxes to POP and IMAP clients on other systems. But see the appropriate edition of the PMDF User’s Guide for
information on Pine, an IMAP or POP client that runs on the PMDF system, which is provided.

2 Note that the location of those BSD mailboxes can be controlled by PMDF profile database entries.

13–1

POP and IMAP Mailbox Servers

Note that PMDF fully supports running multiple POP or IMAP servers on non-
standard ports; OpenVMS or UNIX sites can run both supplied PMDF POP servers and
both supplied PMDF IMAP servers, if they want, by running the different servers on
different ports.

PMDF’s POP and IMAP servers can be run on any system with a PMDF or PMDF-
MTA license.

13.1 POP and IMAP Standards

The current POP3 standard is RFC 1939,3 and the current IMAP4rev1 standard
is RFC 3501.4 Related RFCs are RFC 1731 (IMAP4 authentication mechanisms), RFC
1733 (Distributed electronic mail models in IMAP4), RFC 2342 (IMAP NAMESPACE
command), and RFC 2449 (POP3 CAPA command). PMDF’s message store IMAP server
also supports RFC 2086 (IMAP4 ACL extension), RFC 2087 (IMAP4 QUOTA extension),
RFC 2088 (IMAP4 non-synchronizing literals), and RFC 2359 (IMAP4 UIDPLUS
extension)) For user authentication during IMAP or POP (or SMTP) connections, PMDF
supports RFC 2222 (SASL; Simple Authentication Security Layer) and RFC 2554
(ESMTP AUTH).

Other RFCs supported in the legacy IMAP server as of PMDF V6.5 include RFC
3516 (IMAP4 BINARY extension), RFC 3348 (IMAP4 CHILDREN extension), RFC 4731
(IMAP4 ESEARCH extension), RFC 2177 (IMAP4 IDLE command), RFC 2088 (IMAP4
LITERAL+), RFC 2193 (IMAP4 MAILBOX-REFERRALS), RFC 4315 (IMAP4 UIDPLUS
extension), RFC 3691 (IMAP4 UNSELECT command), and RFC 5032 (IMAP4 WITHIN
search extension).

Copies of such recent RFCs can be found in the RFC subdirectory of the PMDF
documentation directory, i.e., in PMDF_DOC:[rfc] on OpenVMS or in /pmdf/doc/rfc
on UNIX or in C:\pmdf\doc\rfc (possibly on a drive other than C:) on NT. Note also
that RFCs can be obtained via anonymous FTP from venera.isi.edu.

13.2 Configuring a Mailbox Server

This section describes how to set up a mailbox server. The steps are:

• If you are running any old POP or IMAP server, shut it down; see Section 13.2.1.

• Configure the PMDF Service Dispatcher to handle POP3 or IMAP services; see
Section 13.2.2.

• Set POP3 or IMAP server specific configuration options; see Section 13.2.3.

• Start or restart the PMDF Service Dispatcher, thereby starting up the new services;
see Section 13.3.

3 This current standard obsoletes the older POP standards, including RFCs 918, 937, 1081, 1082, 1225, 1460 and 1725.
4 This current standard obsoletes the older IMAP standards including RFCs 2060, 1064, 1176, 1203, and 1730.

13–2

POP and IMAP Mailbox Servers
Configuring a Mailbox Server

13.2.1 Disabling Old POP or IMAP Servers

If you are already running a POP3 or IMAP server, (including an old PMDF
singlethreaded such server), you need to shut it down before starting up a PMDF
multithreaded POP3 server or multithreaded IMAP server.

13.2.1.1 Old POP3 or IMAP Servers on OpenVMS

You must shut down any old POP3 or IMAP server you can be running. For instance,
MultiNet and TCPware each comes with its own POP3 server which you must disable
before starting the PMDF POP3 server.

To disable the MultiNet POP3 server, use the commands:

$ MULTINET CONFIGURE/SERVER
SERVER-CONFIG> DISABLE POP3
SERVER-CONFIG> RESTART
SERVER-CONFIG> EXIT

If your version of MultiNet also includes an IMAP server, you will need to disable it as
well, using the commands:

$ MULTINET CONFIGURE/SERVER
SERVER-CONFIG> DISABLE IMAP
SERVER-CONFIG> RESTART
SERVER-CONFIG> EXIT

TCPware servers can be disabled using the TCPware menu-driven configuration
utility, invoked via the command:

$ @TCPWARE:CNFNET

13.2.1.2 Old POP3 or IMAP Servers on UNIX

You must shut down any old POP3 or IMAP server you can be running. Check your
/etc/inetd.conf file; if it has any POP3 or IMAP services defined, that is, any lines
such as

pop3 stream tcp nowait root ...
imap stream tcp nowait root ...

you must remove those lines. After modifying your inetd.conf file, you should restart
the inetd daemon. For instance, on UNIX this can be performed by issuing a command
such as the following:

kill -1 ‘cat /var/run/inetd.pid‘

13–3

POP and IMAP Mailbox Servers
Configuring a Mailbox Server

13.2.2 Configuring Mailbox Servers

In order to use PMDF POP3 or IMAP servers, the PMDF Service Dispatcher must
be configured to handle the service. The Service Dispatcher configuration file is normally
dispatcher.cnf located in the PMDF table directory. There are also optional mailbox
server specific configuration files, normally imapd.cnf and pop3d.cnf for the legacy
mailbox servers or imappop.cnf for the PMDF MessageStore mailbox servers, that are
used to control various server options. The PMDF mailbox servers configuration utility
should be used to generate the necessary initial POP3 and/or IMAP service definitions
for inclusion in the PMDF Service Dispatcher configuration file, and to generate initial
POP3 and/or IMAP server configuration files. See the appropriate edition of the PMDF
Installation Guide for instructions and an example of using this utility.

Once the Dispatcher configuration file has been modified to include the new service
definitions, and any desired server configuration options have been set, you must restart
the PMDF Service Dispatcher so that it will start the new services, or start it if it was
not running previously; see Section 13.3 below for details.

13.2.3 Mailbox Server Configuration Options

There are two (three on OpenVMS) sorts of configuration options relating to the
mailbox servers:

• PMDF Service Dispatcher configuration options, controlling things such as the
existence of the POP and IMAP servers, and the number of connections handled
per server process;

• mailbox server specific options, controlling things such as timeouts, debugging, and
logging; and

• (OpenVMS only) the PMDF_SYSTEM_FLAGS logical, controlling handling of DECnet
format node::user addresses.

These options are discussed in Section 13.2.3.1, Section 13.2.3.2, and Section 13.2.3.3,
respectively, below.

13.2.3.1 Service Dispatcher Configuration for Mailbox Servers

In order to run IMAP or POP servers, the Service Dispatcher must be configured to
handle such services. Details on the Service Dispatcher can be found in Chapter 11. And
the PMDF mailbox servers configuration utility, as discussed in the appropriate edition
of the PMDF Installation Guide, can and should be used to generate an initial file for
inclusion in the Service Dispatcher configuration.

Samples of service definitions for the legacy mailbox servers to be included in
the Dispatcher configuration file, dispatcher.cnf, are shown in Example 13–1 for
OpenVMS, and similarly in Example 13–3 for UNIX. The PMDF mailbox servers
configuration utility, if told you want to run only the legacy mailbox servers, would
generate similar definitions as the file dispatcher_mailbox_servers.cnf in the
PMDF table directory. Sample of service definitions for the PMDF MessageStore mailbox

13–4

POP and IMAP Mailbox Servers
Configuring a Mailbox Server

servers to be included in the Dispatcher configuration file are shown in Example 13–2,
Example 13–4, and Example 13–5, for OpenVMS, UNIX, and NT, respectively. See
Chapter 11 for details on the format and meaning of options in this file.

In particular, on OpenVMS and UNIX where two alternate POP servers and two
alternate IMAP servers are available, note that the IMAGE Dispatcher option is used
to select the desired server image: compare Example 13–1 vs. Example 13–2, or
Example 13–3 vs. Example 13–4. Also note that sites can run both legacy mailbox
servers and PMDF MessageStore mailbox servers on the same system by running them
on different ports, as selected by the PORT option.

Example 13–1 Sample dispatcher_mailbox_servers.cnf File on OpenVMS for
Legacy Mailbox Servers—Dispatcher Definitions for POP and IMAP
Servers

!
! POP3 server for both POPSTORE and regular mail
!
[SERVICE=POP3]
PORT=110
IMAGE=PMDF_EXE:POP3D.EXE
LOGFILE=PMDF_LOG:POP3D.LOG
MIN_PROCS=1
MAX_PROCS=6
MAX_SHUTDOWN=4
MIN_CONNS=3
MAX_CONNS=5
MAX_LIFE_CONNS=400
PGFLQUOTA=110000
ENQLM=1000
FILLM=450
!
! IMAP server
!
[SERVICE=IMAP]
PORT=143
IMAGE=PMDF_EXE:IMAPD.EXE
LOGFILE=PMDF_LOG:IMAPD.LOG
MIN_PROCS=1
MAX_PROCS=6
MAX_SHUTDOWN=4
MIN_CONNS=2
MAX_CONNS=5
MAX_LIFE_CONNS=100
PGFLQUOTA=125000
ENQLM=1000
FILLM=450

13–5

POP and IMAP Mailbox Servers
Configuring a Mailbox Server

Example 13–2 Sample dispatcher_mailbox_servers.cnf File on OpenVMS for
PMDF MessageStore Mailbox Servers—Dispatcher Definitions for
POP and IMAP Servers

!
! POP3 server for downloading mail
!
[SERVICE=POP_SERVER]
PORT=110
IMAGE=PMDF_EXE:POP_SERVER.EXE
LOGFILE=PMDF_LOG:POP_SERVER_%s.LOG
MIN_PROCS=1
MAX_PROCS=6
MAX_SHUTDOWN=4
MIN_CONNS=3
MAX_CONNS=5
PGFLQUOTA=100500
ENQLM=146
FILLM=187
!
! IMAP4rev1 server for accessing mail on server
!
[SERVICE=IMAP_SERVER]
PORT=143
IMAGE=PMDF_EXE:IMAP_SERVER.EXE
LOGFILE=PMDF_LOG:IMAP_SERVER_%s.LOG
MIN_PROCS=1
MAX_PROCS=6
MAX_SHUTDOWN=4
MIN_CONNS=3
MAX_CONNS=5
PGFLQUOTA=100500
ENQLM=146
FILLM=187

13.2.3.2 Mailbox Server Specific Options

IMAP server options are described in Section 13.2.3.2.1 below. POP3 server options
are described in Section 13.2.3.2.2 below.

Note that after a server has started running, it will not see changes made to the
configuration option files. Use the PMDF RESTART (OpenVMS) or pmdf restart
command (UNIX or NT) to restart your servers after making changes to these options.
Note that if the server is not running, then the Dispatcher itself must be restarted (or
started up if not already running) in order to start the server, via the PMDF RESTART
DISPATCHER (OpenVMS) or pmdf restart dispatcher (UNIX or NT) command, or
the PMDF STARTUP DISPATCHER (OpenVMS) or pmdf startup dispatcher (UNIX
or NT) command.

13–6

POP and IMAP Mailbox Servers
Configuring a Mailbox Server

Example 13–3 Sample dispatcher_mailbox_servers.cnf File on UNIX for
Legacy Mailbox Servers—Dispatcher Definitions for POP and IMAP
Servers

!
! POP3 server for both POPSTORE and regular mail
!
[SERVICE=POP3]
PORT=110
IMAGE=PMDF_EXE:pop3d_dispatcher
LOGFILE=PMDF_LOG:pop3d_dispatcher.log
MIN_PROCS=1
MAX_PROCS=6
MAX_SHUTDOWN=3
MIN_CONNS=3
MAX_CONNS=5
USER=root
!
! IMAP server
!
[SERVICE=IMAP]
PORT=143
IMAGE=PMDF_EXE:imapd_dispatcher
LOGFILE=PMDF_LOG:imapd_dispatcher.log
MIN_PROCS=1
MAX_PROCS=6
MAX_SHUTDOWN=3
MIN_CONNS=2
MAX_CONNS=5
USER=root

13.2.3.2.1 IMAP Server Configuration Options

The legacy mailbox IMAP server has its own configuration file, while the PMDF
MessageStore mailbox IMAP server has a separate configuration file shared with
the PMDF MessageStore mailbox POP server. The legacy mailbox IMAP server’s
configuration options are stored in a file located via the PMDF_IMAP_CONFIG_FILE logical
name (OpenVMS) or PMDF tailor file option (UNIX) or NT Registry entry (NT); by
default, the legacy mailbox IMAP server configuration file is imapd.cnf located in the
PMDF table directory. The PMDF MessageStore mailbox IMAP server’s configuration
options are stored in a file located via the PMDF_IMAPPOP_CONFIG_FILE logical name
(OpenVMS) or PMDF tailor file option (UNIX) or NT Registry entry (NT); by default, the
PMDF MessageStore mailbox IMAP and POP server configuration file is imappop.cnf
located in the PMDF table directory. For either IMAP server, the configuration file is
optional; if it does not exist reasonable default values will be used.

In either case, the IMAP server option file follows the format of PMDF option files;
see, for instance, Section 7.2 for a description of this format.

Note that any changes to an IMAP server configuration file will not take effect until
the IMAP server is restarted via the OpenVMS command

$ PMDF RESTART/CLUSTER IMAP

or the UNIX command

13–7

POP and IMAP Mailbox Servers
Configuring a Mailbox Server

Example 13–4 Sample dispatcher_mailbox_servers.cnf File on UNIX for PMDF
MessageStore Mailbox Servers—Dispatcher Definitions for POP and
IMAP Servers

!
! POP3 server for downloading mail
!
[SERVICE=POP_SERVER]
PORT=110
IMAGE=pmdf_exe:pop_server
LOGFILE=pmdf_log:pop_server.log
MIN_PROCS=1
MAX_PROCS=6
MAX_SHUTDOWN=4
MIN_CONNS=3
MAX_CONNS=5
!
! IMAP4rev1 server for accessing mail on server
!
[SERVICE=IMAP_SERVER]
PORT=143
IMAGE=pmdf_exe:imap_server
LOGFILE=pmdf_log:imap_server.log
MIN_PROCS=1
MAX_PROCS=6
MAX_SHUTDOWN=4
MIN_CONNS=3
MAX_CONNS=5

pmdf restart imap

or the NT command

C:\> pmdf restart dispatcher

DEBUG (integer)

For both the PMDF legacy mailbox server and the MessageStore mailbox server, this
option takes a value where each bit corresponds to a different subcomponent or set of
debugging information. This option should only be specified when debugging is needed.
Performance of the server is negatively impacted when debugging is enabled.

For the legacy mailbox server, when this option is set to 1 or higher, the POP or IMAP
protocol dialogue between the client and server, on a per thread basis, is written to files
in the PMDF log directory named imap_thread.log.

For the MessageStore mailbox server, if the option is set to 1 or higher, per thread debug
logging is written to files in the PMDF log directory named imaps_thread.log. The
POP or IMAP protocol dialogue output is turned on for the MessageStore servers by
setting this option to a value of 7.

If you are having a problem that needs debug logging turned on, Process Software’s
technical support department will instruct you to set this option’s value as needed to

13–8

POP and IMAP Mailbox Servers
Configuring a Mailbox Server

Example 13–5 Sample dispatcher_mailbox_servers.cnf File on NT for
MessageStore Mailbox Servers—Dispatcher Definitions for POP
and IMAP Servers

!
! POP3 server for both POPSTORE and MessageStore mail
!
[SERVICE=POP3]
PORT=110
IMAGE=C:\pmdf\bin\pop_server
LOGFILE=C:\pmdf\log\pop_server.log
MIN_PROCS=1
MAX_PROCS=6
MAX_SHUTDOWN=3
MIN_CONNS=3
MAX_CONNS=5
!
! IMAP server
!
[SERVICE=IMAP]
PORT=143
IMAGE=C:\pmdf\bin\imap_server
LOGFILE=C:\pmdf\log\imap_server.log
MIN_PROCS=1
MAX_PROCS=6
MAX_SHUTDOWN=3
MIN_CONNS=2
MAX_CONNS=5

capture debug logging for the components that are related to the problem.

Be sure to specify this option in the appropriate IMAP server configuration file,
imapd.cnf for the legacy mailbox server or imappop.cnf for the PMDF MessageStore
mailbox server, if you want to enable debugging for the IMAP server, not in the Dispatcher
configuration file, which enables entirely different debugging! The default is 0.

Caution: Since all input from the client is logged, this means that passwords are also written to
the debugging file.

DEBUG_USER_username (integer)

For the legacy mailbox server, when this option is set to 1, the POP or IMAP protocol
dialogue between the client and server, on a per thread basis, is written to files in the
PMDF log directory named imapd_thread.log, showing all transactions involving only
user username.

For the PMDF MessageStore mailbox server, if this option is set to 7, the POP or IMAP
protocol dialogue between the client and server, on a per thread basis, is written to files in
the PMDF log directory named imaps_thread.log showing all transactions involving
user username. Note that the additional debug logging in the MessageStore mailbox
server cannot be turned on by this user-specific debug option, only by the global DEBUG
option. This option can only turn on the POP/IMAP protocol exchange between the client
and server.

The debugging output includes all dialog between the server and the user’s client,
therefore this should only be used when debugging is needed. Performance of the server
will suffer when this is enabled. Be sure to put this in the appropriate IMAP server

13–9

POP and IMAP Mailbox Servers
Configuring a Mailbox Server

configuration file, imapd.cnf for legacy mailbox server or imappop.cnf for the PMDF
MessageStore mailbox server, if you want to enable debugging for the IMAP server, not
in the Dispatcher configuration file, which enables entirely different debugging! The
default is 0.

Caution: Since all input from the client is logged, this means that the user’s password is also
written to the debugging file.

FORCE_CHECK_TIME (integer; OpenVMS legacy mailbox server only)

This option is an integer value in seconds. On OpenVMS, the server will reopen the
NEWMAIL folder and get the current new mail count on a CHECK command if this
many seconds have passed since the last CHECK command. This is a way to trade off
accuracy versus server overhead because opening a folder is an expensive operation for
the VMS MAIL mailbox. The default is 600. A zero value means the server will not
automatically reopen the folder.

FORCE_COPY_TO_APPEND (0 or 1; OpenVMS legacy mailbox server only)

On OpenVMS, this option can be used to select OpenVMS mailbox style movement of
messages—whereby messages are inserted in original delivery date order into folders
when moved—rather than the standard IMAP style movement whereby messages are
always inserted at the end of a folder when moved (getting a new date in the process).
The default is 1, meaning that standard IMAP style moves are performed. Setting
FORCE_COPY_TO_APPEND=0 selects OpenVMS mailbox style movement. Note that
using FORCE_COPY_TO_APPEND=0 is not safe unless the IMAP client properly pays
attention to UID validity, since the movement of messages into the middle of a folder
invalidates UIDs; note that it will also require the client to perform more work, since
the client will need to update UIDs after such a message move is performed and UIDs
are invalidated.

FORCE_KILL_TIMEOUT (integer)

In the IMAP protocol, a client can connect and stay connected essentially indefinitely,
with the client issuing periodic commands keeping the connection alive—typically the
frequency of such commands being specified by the IMAP client as an option along the
lines of ‘‘how often to check for new mail’’. Unless the user says never to check for new
mail, the connection will stay alive indefinitely. Even restarting the PMDF IMAP server
won’t affect this, because ‘‘live’’ connections must terminate before the IMAP server itself
can shut down. This can be undesirable because it means system resources are wasted.

The FORCE_KILL_TIMEOUT option allows the IMAP server to force a disconnect after
the specified time if it goes into the shutdown state, (as when its Dispatcher configured
MAX_LIFE_CONNS value is reached, or if the PMDF IMAP server or the Dispatcher in
general has been instructed to restart). The value for this option specifies the number
of seconds to wait before shutting down the connection, when in a shutdown state. For
instance, if FORCE_KILL_TIMEOUT=300 is set, then the users connected to the server
shutting down will be disconnected after 300 seconds. Warnings are issued to the client,
and the client program should display them. The user then has to ‘‘Connect’’ or just open
a message, and the client should then reconnect automatically. However, note that the
appearance of the warnings (‘‘dialogue boxes’’) can cause confusion to the users, since the
underlying issue (that the server needs to restart) is outside their frame of reference. A
different option that can be preferable for limiting the resources used by IMAP users is
SESSION_LIFETIME, as its timing depends instead upon a user’s own connection lifetime
and hence its impact will be more predictable from the user point of view.

The default is that the FORCE_KILL_TIMEOUT option is not set.

See the related options SEND_KILL_WARNING, KILL_WARNING_TEXT, and KILL_FINAL_TEXT.

13–10

POP and IMAP Mailbox Servers
Configuring a Mailbox Server

LOGGING (0, 1, or 2)

When this option is set to 1, user login/logout events will be logged to a PMDF log
file. By default, such connection log records are written to the PMDF mail log file
mail.log_current in the PMDF log directory, but if the SEPARATE_CONNECTION_LOG
PMDF option has been set, then they will instead be written to the PMDF connection log
file, connection.log_current. Connection activity is logged with both a time stamp
and client host information when each connection is opened, closed, etc. When this option
is set to 2, only login authentication failures (A records) will be logged to the PMDF log
file. The default is 0, meaning that no such logging is performed. The types of entry
records written are:

Entry Description

A Authentication attempt failed

O Login phase completed (either successful login or aborted connection)

C Connection closed cleanly

X Connection aborted (by either end)†

†Some IMAP/POP clients close the connection without sending a LOGOUT/QUIT command, so an
‘‘X’’ entry can happen in normal operation with such clients.

KILL_FINAL_TEXT (string)

The option is only relevant if FORCE_KILL_TIMEOUT is set to a non-zero value. If so,
this option controls the text of the final ‘‘* BYE’’ message from the IMAP server before
it disconnects clients. The default is ‘‘connection shutting down, try reconnect later’’.

KILL_WARNING_TEXT (string)

The option is only relevant if FORCE_KILL_TIMEOUT is set to a non-zero value and if
SEND_KILL_WARNING is not set to zero. If so, this option controls the text of the warning
string sent when the IMAP server wants to shut down. The default is ‘‘connection
shutting down’’. To this string, the server will append ‘‘in x minutes’’ where x is the
FORCE_KILL_TIMEOUT value.

SEND_KILL_WARNING (0 or 1)

The option is only relevant if FORCE_KILL_TIMEOUT is set to a non-zero value. Setting
SEND_KILL_WARNING=0 causes the IMAP server not to send the usual warning due
to use of FORCE_KILL_TIMEOUT. The default is 1, meaning to send a warning when
FORCE_KILL_TIMEOUT is to be applied.

See also the related option KILL_WARNING_TEXT.

SESSION_LIFETIME (integer)

This option specifies the a length of time, in seconds, after which the IMAP server will
terminate an existing IMAP session. That is, when the IMAP server receives a command
from the IMAP client, if the client session has existed longer than the specified number
of seconds, the IMAP server will terminate that session. This option should be used if a
site wants to control the resources used by IMAP users. This option may not be popular
with users, but can be useful at sites that do not want to allow individual users to keep
IMAP connections constantly open (perhaps blocking use of IMAP by other users). The
default is 0, which means there is no limit.

13–11

POP and IMAP Mailbox Servers
Configuring a Mailbox Server

TIMEOUT (integer)

This integer specifies how long (in seconds) the client is allowed to sit idle (i.e., not conduct
any transactions with the server) before the server will close the connection. The default
is 1800 seconds.

UPDATE_LOGIN_TIME (0 or 1) (OpenVMS legacy mailbox server only)

On OpenVMS, if this option is set to 0, PMDF will not update the SYSUAF last non-
interactive login time field upon successful IMAP logins. The default is 1, meaning that
PMDF will update the SYSUAF last non-interactive login time field.

13.2.3.2.2 POP3 Server Configuration Options

The legacy mailbox POP server has its own configuration file, while the PMDF Mes-
sageStore mailbox POP server has a separate configuration file shared with the PMDF
MessageStore mailbox IMAP server. The legacy mailbox POP server’s configuration op-
tions are stored in a file located via the PMDF_POP3_CONFIG_FILE logical name (Open-
VMS) or PMDF tailor file option (UNIX) or NT Registry entry (NT); by default, the legacy
mailbox IMAP server configuration file is pop3d.cnf located in the PMDF table direc-
tory. The PMDF MessageStore mailbox POP server’s configuration options are stored in
a file located via the PMDF_IMAPPOP_CONFIG_FILE logical name (OpenVMS) or PMDF
tailor file option (UNIX) or NT Registry entry (NT); by default, the PMDF MessageStore
mailbox IMAP and POP server configuration file is imappop.cnf located in the PMDF
table directory. For either POP server, the configuration file is optional; if it does not
exist reasonable default values will be used.

In either case, the POP server option file follows the format of PMDF option files;
see, for instance, Section 7.2 for a description of this format.

Note that any changes to a POP server configuration file will not take effect until
the POP server is restarted via the OpenVMS command

$ PMDF RESTART/CLUSTER POP

or the UNIX command

pmdf restart pop

or the NT command

C:\> pmdf restart dispatcher

DEBUG (0 or 1)

When this option is set to 1, per thread debugging output will be written to
pop3d_thread.log files for the legacy mailbox server or pop3s_thread.log files for
the PMDF MessageStore mailbox server; these files will be located in the PMDF log
directory. The debugging output includes all dialog between the server and the client,
therefore this should only be used when debugging is needed. Performance of the server
will suffer when this is enabled. Be sure to put this in the appropriate POP3 server
configuration file, pop3d.cnf file for the legacy mailbox server or the imappop.cnf file
for the PMDF MessageStore server, if you want to enable debugging for the POP3 server,
not in the Dispatcher configuration file, which enables entirely different debugging! The
default is 0.

13–12

POP and IMAP Mailbox Servers
Configuring a Mailbox Server

DEBUG_USER_username (0 or 1)

When this option is set to 1, per thread debugging output will be written to files in
the PMDF log directory named pop3d_thread.log for the legacy mailbox server or
pop3s_thread.log for the PMDF MessageStore mailbox server; such files will show
each transaction involving user user. The debugging output includes all dialog between
the server and the user’s client, therefore this should only be used when debugging is
needed. Performance of the server will suffer when this is enabled. Be sure to put
this in the appropriate POP3 server configuration file, pop3d.cnf for the legacy mailbox
server or imappop.cnf for the PMDF MessageStore mailbox server, if you want to enable
debugging for the POP3 server, not in the Dispatcher configuration file, which enables
entirely different debugging! The default is 0.

DISABLE_UIDL(0 or 1)

When this option is set to 1, the POP3 server will not honor the UIDL command. The
default is 0. This option is used for the MessageStore POP server. The legacy POP server
uses the option NO_UIDL.

FUDGE_SIZE (integer) (OpenVMS only)

On OpenVMS, when this option is set to a non-zero value, the POP3 server will not read
the entire message to determine its size in bytes, instead it will multiply the number of
records with this number to get an approximate size of the message. Then the value is
returned in the LIST and STAT commands, this makes the POP3 server respond faster
when there are a lot of messages in the NEWMAIL folder. This option is only used with the
VMS MAIL message store. If the message is actually retrieved with the RETR command,
then the actual message size is used in future responses. The default is 0. Recommended
non-zero values range from 80 to 256. 80 is assuming each record is about 80 characters
long, 256 is the maximum record size.

LOGGING (0, 1, or 2)

When this option is set to 1, user login/logout events will be logged to a PMDF log
file. By default, such connection log records are written to the PMDF mail log file
mail.log_current in the PMDF log directory, but if the SEPARATE_CONNECTION_LOG
PMDF option has been set then they will instead be written to the PMDF connection log
file, connection.log_current. Connection activity is logged with both a time stamp
and client host information when each connection is opened, closed, etc. When this option
is set to 2, only login authentication failures (A records) will be logged to the PMDF log
file. The default is 0, meaning that no such logging is performed. The types of etnry
records written are:

Entry Description

A Authentication attempt failed

O Login phase completed (either successful login or aborted connection)

C Connection closed cleanly

X Connection aborted (by either end)†

†Some IMAP/POP clients close the connection without sending a LOGOUT/QUIT command, so an
‘‘X’’ entry can happen in normal operation with such clients.

MAX_MESSAGES (integer)

The MAX_MESSAGES option can be used to limit how many messages are visible to the
user. If MAX_MESSAGE=n is set, then the server will only ever show the first n messages
to the client; if the user has more than n messages stored, they will only be informed of

13–13

POP and IMAP Mailbox Servers
Configuring a Mailbox Server

those first n, and not even be aware that there are more messages. Thus note that users
would not like this effect if they are ‘‘leaving mail on server’’.

MIN_LOGIN_INTERVAL (integer)

This option limits how often POP3 logins are allowed. If MIN_LOGIN_INTERVAL is set
to a positive integer value, then a user can not make another POP3 login to the PMDF
MessageStore or to the PMDF popstore (or on OpenVMS, to the VMS MAIL message
store) within the number of seconds specified. For VMS MAIL message store POP3
users, as opposed to PMDF MessageStore or PMDF popstore POP3 users, note that
there are additional aspects involved with use of this option. (1) For the VMS MAIL
message store, this feature depends on the legacy mailbox POP3 server updating the
non-interactive login time in the SYSUAF file (which is behavior that is disabled if you
set UPDATE_LOGIN_TIME=0 in the legacy mailbox server POP3 server configuration
file, pop3d.cnf). (2) For the VMS MAIL message store, since the POP3 server is not the
only entity which can update the non-interactive login time, in some instances, the user
could be denied POP3 login if some other network/batch login event has just occurred.
This option does not apply to POP3 users accessing the native mailbox on UNIX.

Note that some POP3 clients can be designed in such a way that repeated logins within
a short interval arise in their normal use: for instance, Netscape can login just to check
whether a user has new mail, and then login again if the user chooses to get messages.
Thus using the MIN_LOGIN_INTERVAL option to impose a restriction on how often POP3
users can login can inconvenience users of such clients.

MOVE_READ_MAIL (OpenVMS legacy mailbox server only)

When this option is set to 1, the legacy mailbox POP3 server on OpenVMS will move
messages read but not deleted to the MAIL folder. The default is 0, meaning to leave
them in the NEWMAIL folder. However, if the option is not explicitly set, the PMDF
POP server will also check whether the MULTINET_POP3_FLAGS logical exists and is set
to 2 and if so, will move messages read but not deleted to the MAIL folder.

NO_UIDL (0 or 1)

When this option is set to 1, the POP3 server will not honor the UIDL command. The
default is 0. This option is used for the legacy POP server. The MessageStore POP server
uses the option DISABLE_UIDL.

OVER_QUOTA_MSG_FILE (string)

This option specifies the name of a file containing customized PMDF popstore over quota
warning message text. This is relevant if the PMDF popstore option QUOTA_WARNING
is set to a non-zero value. See the PMDF MessageStore & popstore Manager’s Guide for
details.

TIMEOUT (integer)

This integer specifies how long (in seconds) the client is allowed to sit idle (i.e., not conduct
any transactions with the server) before the server will close the connection. The default
is 1800 seconds.

UPDATE_LOGIN_TIME (0 or 1) (OpenVMS legacy mailbox server only)

On OpenVMS, if this option is set to 0, the legacy mailbox POP3 server will not update
the SYSUAF last non-interactive login time field upon successful POP logins. The default
is 1, meaning that the legacy mailbox POP3 server will update the SYSUAF last non-
interactive login time field.

13–14

POP and IMAP Mailbox Servers
Configuring a Mailbox Server

13.2.3.3 The PMDF_SYSTEM_FLAGS Logical and DECnet Style Addresses on
OpenVMS

On OpenVMS, the following logical name affects legacy mailbox server behavior.

PMDF_SYSTEM_FLAGS (OpenVMS only)

This option is similar to the MAIL$SYSTEM_FLAGS logical name, but currently only bit
0 is used by the mail servers. If bit 0 is set (i.e., the value of PMDF_SYSTEM_FLAGS is
1), then the node is treated as part of a homogeneous cluster. This is only of impact
when a mail message to be read lacks an RFC 822 header. In this case the VMS
MAIL From: and To: addresses are converted from the DECnet format node::user
to user%node@servernode if bit 0 is clear, or to user@servernode if bit 0 is set.

If PMDF_SYSTEM_FLAGS is not set, then the value of MAIL$SYSTEM_FLAGS is used. If
MAIL$SYSTEM_FLAGS is not defined either, then the node is not treated as part of a
homogeneous cluster, and the address would appear as user%node@servernode.

This logical name should be entered in the SYSTEM logical name table as an EXECUTIVE
mode logical.

13.2.4 Registering the Services on UNIX

On UNIX, you can want to edit your /etc/services, (or Yellow Pages, NetInfo,
etc., equivalent), to register the POP3 and IMAP services; e.g.,

pop3 110/tcp
imap 143/tcp

13.2.5 Placeholder Message in the BSD Mailbox on UNIX

In order to support required IMAP4 features and desired POP3 features, the legacy
mailbox IMAP and POP servers can create a special placeholder message as the first
message in the mailbox. By default, the text of this placeholder message is:

This message contains information needed by the POP and IMAP servers to
operate correctly. Please ignore this message.

If you want to customize the text of this placeholder message, you can create a file
/pmdf/table/ignore-msg.txt containing your desired, site-customized text; the text
of the file will be used in place of the default text.

13–15

POP and IMAP Mailbox Servers
Starting and Stopping a Mailbox Server

13.3 Starting and Stopping a Mailbox Server

POP3 and IMAP servers are controlled and started by the PMDF Service Dispatcher;
as described in Section 13.2.2 above, in order to use POP3 and IMAP servers, the Service
Dispatcher must first be configured to handle these services.

13.3.1 Starting a Mailbox Server

To start the POP3 and/or IMAP servers, you must have the Service Dispatcher start
the service.

If you are already running the Service Dispatcher, then restart it so that it sees the
configuration change with the OpenVMS command

$ PMDF RESTART DISPATCHER

or the UNIX command

pmdf restart dispatcher

or the NT command

C:\> pmdf restart dispatcher

If you were not previously running the Service Dispatcher, start it with the OpenVMS
command

$ PMDF STARTUP DISPATCHER

or the UNIX command

pmdf startup dispatcher

or the NT command

C:\> pmdf startup dispatcher

VMS
On OpenVMS, if you want the IMAP or POP3 servers to start during system startup,

then you must execute the PMDF STARTUP DISPATCHER command in your system
startup procedure after your network software has started and after pmdf_startup.com
has been run.

UNIX

On UNIX, the PMDF installation procedure ensures that the Service Dispatcher is
started automatically during system startup, therefore starting up the POP and IMAP
servers, if the Service Dispatcher is configured to handle these services.

13–16

POP and IMAP Mailbox Servers
Starting and Stopping a Mailbox Server

13.3.2 Stopping a Mailbox Server

On OpenVMS and UNIX, you can shut down individual servers. To shut down a
server, issue the OpenVMS command

$ PMDF SHUTDOWN server

or the UNIX command

pmdf shutdown server

with pop3 (to shut down both legacy mailbox and PMDF MessageStore mailbox POP
servers), pop_server (to shut down only the PMDF MessageStore mailbox POP server),
imap (to shut down both legacty mailbox and PMDF MessageStore mailbox IMAP
servers), or imap_server (to shut down only the PMDF MessageStore mailbox IMAP
server), as appropriate, as the server parameter. This will cause such servers on your
node to exit after the currently open connections are closed.

On NT, to shut down a server you must shut down the Dispatcher itself, e.g.,

C:\> pmdf shutdown dispatcher

or edit the Dispatcher configuration file to remove the service definition in question and
then restart the Dispatcher.

VMS
On OpenVMS, to shutdown servers on certain nodes, use the /NODE qualifier. To

shutdown servers on the entire cluster, use the /CLUSTER qualifier.

Shutting down the Service Dispatcher itself with the OpenVMS command

$ PMDF SHUTDOWN DISPATCHER

or the UNIX command

pmdf shutdown dispatcher

or the NT command

C:\> pmdf shutdown dispatcher

will also cause the POP3 and IMAP servers to shut down, as well as shutting down any
other services handled by the Service Dispatcher; see Chapter 11 for details.

13.3.3 Restarting a Mailbox Server

To cause an already running server to restart, use the OpenVMS command

$ PMDF RESTART server

or the UNIX command

13–17

POP and IMAP Mailbox Servers
Starting and Stopping a Mailbox Server

pmdf restart server

Restarting will cause all servers on this node to exit when their currently open
connections are closed. New servers will be started by the PMDF Service Dispatcher.
Note that such a command will not restart a server if it has already exited.

On NT, you must restart the Dispatcher in order to restart its services such as POP3
and IMAP; use the command

C:\> pmdf restart dispatcher

13.4 Location of User BSD Mailboxes on UNIX

On UNIX, if a user has a PMDF profile database entry specifying that their mail
is delivered to a non-default location (or if there is a default profile database entry that
applies to that user), then the legacy mailbox POP and IMAP servers will also look at
that non-default location for the mailbox to serve out. See Section 17.3.2 for a discussion
of the profile database.

13.5 User Login Checks for the VMS MAIL Mailbox (OpenVMS)

On OpenVMS, the following SYSUAF checks are performed by the legacy mailbox
servers when a user logs in via a remote client.

Note that these only apply if the user’s password is being stored in the VMS SYSUAF
file. If the PMDF_TABLE:SECURITY.CNF file is configured such that the authentication
source being used is something other than SYSTEM (for example, PASSDB or LDAP),
then none of these actions are taken.

However, if the VMS SYSUAF file is the authentication source, the following checks
are made:

• The primary password is checked. Currently, the secondary password, if any, is not
checked. (The concept of a secondary password is not supported by the POP or IMAP
protocols.)

• Account expiration time. Users can not log into mail servers if their account has
expired.

• The DISACNT, AUTOLOGIN, PWD_EXPIRED 5 bits in the flags field. The user
can not log into the mail server if any of the above bits are set. The DISACNT flag
corresponds to the AUTHORIZE utility’s DISUSER flag.

5 loginout.exe only sets the PWD_EXPIRED bit if the DISFORCE_PWD_CHANGE flag is set at the time that a user
with an expired password logs in. Since the DISFORCE_PWD_CHANGE flag is, by default, not set on accounts, usually
the PWD_EXPIRED bit is not set, even if the user’s password has expired.

13–18

POP and IMAP Mailbox Servers
User Login Checks for the VMS MAIL Mailbox (OpenVMS)

• The CAPTIVE bit is no longer checked thereby allowing access to CAPTIVE and
RESTRICTED accounts. You can deny such accounts access by setting one of the
above SYSUAF flags, or, if that is not sufficient, use an ACL with the pop3d.exe,
and imapd.exe images and grant the appropriate rightslist identifier to the users in
accord with your policy. Any user who does not have EXECUTE access to the image
will be denied access.

If LOGGING is set to 1 in the pop3d.cnf or imapd.cnf file, then login failures
are logged in a PMDF log file: the PMDF_TABLE:mail.log_current file or the
PMDF_TABLE:connection.log_current file, depending on the setting of the PMDF
option SEPARATE_CONNECTION_LOG. A login failure OPCOM message is sent to the
SECURITY operator on a VMS 5.x system; a NETWORK LOGFAIL audit event is logged
on an OpenVMS I64, or OpenVMS 6.1 (VAX) or OpenVMS 6.2 (Alpha) or later system.

If the user fails to log in due to an incorrect password, the number of login failures
in the SYSUAF is incremented for the user. Furthermore, if the number of login failures
exceeds the SYSGEN parameter LGI_BRK_LIM (default 5) and LGI_BRK_DISUSER is
set, then the user account is disabled. A login breakin OPCOM message is sent to the
SECURITY operator on a VMS 5.x system; a NETWORK BREAKIN audit event (instead
of a LOGFAIL event) is logged on an OpenVMS I64, or OpenVMS 6.1 (VAX) or OpenVMS
6.2 (Alpha) or later system after LGI_BRK_LIM is reached.

When a login is successful, the last successful non-interactive login time in the
SYSUAF is also updated. A successful NETWORK LOGIN audit event is logged in
the system security audit log on an OpenVMS I64, or OpenVMS 6.1 (VAX) or OpenVMS
6.2 (Alpha) or later system.

13.6 Authentication and the Password Database

The PMDF security configuration controls among other things the authentication
source used by the PMDF POP and IMAP servers; see the discussion in Chapter 14 on
how you can customize this for your site.

Typically, however, users accessing the VMS MAIL message store (OpenVMS) or
native Berkeley message store (UNIX) would authenticate against the system password
file—except that the system password file on OpenVMS or UNIX can not store certain
password forms such as that required for CRAM-MD5 authentication (from IMAP or
POP clients) or APOP authentication (from POP clients). Thus in order to perform such
authentication from clients, another authentication source must also be in use. That
additional authentication source can be the PMDF password database.

When using the PMDF password database as the source of authentication informa-
tion, note that it can contain several entries, one for each allowed service value. The sort
of connection (for instance, whether POP or IMAP) will control which service entry is
preferentially checked. Queries by the POP server will first check the user’s POP service
entry, but if such an entry does not exist will fall through to the the user’s DEFAULT
service entry. Queries by the IMAP server will first check the user’s IMAP service entry,
but if such an entry does not exist will fall through to the DEFAULT service entry.

13–19

POP and IMAP Mailbox Servers
Authentication and the Password Database

The use of service specific password database entries is not typical; typically, users
would each simply have one entry, a DEFAULT service entry, used whenever the
PMDF password database is queried. But if users do want to use service specific
password database entries, while the above description of service specific probes can
sound complicated, the goal is simply to query the ‘‘natural’’ password entry for each
case.

So typically, before a POP mail client accessing a native OpenVMS or UNIX message
store can use the APOP command to authenticate himself, or before an IMAP or POP
mail client accessing a native OpenVMS or UNIX message store can use CRAM-MD5
authentication, the user himself (or the system manager on his behalf) must set the user’s
password (for the DEFAULT service) in the PMDF password database. See Section 14.7
for additional discussion.

Note that users accessing the PMDF MessageStore or PMDF popstore normally
authenticate against a PMDF user profile, which is suitable for use for all such forms of
authentication. Thus such users normally need not have any PMDF password database
entry.

13.7 Mailbox Server Connection Logging

When the LOGGING option is enabled in the IMAP server or POP server configura-
tion file, connection log entries will be generated by that server in the PMDF log file—or
if the SEPARATE_CONNECTION_LOG PMDF option has been set, see Section 7.3.6, then
instead in the PMDF connection log file. Such entries can include detail about SASL
errors, details which are not revealed over the wire, such as the distinction between a
non-existent user and a bad password.

See Section 31.1.2 for a discussion of the format of such PMDF log file or connection
log file entries. In particular, the server entries will be of one of the sorts listed in
Table 13–2. Note that every connection gets an ‘‘O’’ entry and either a ‘‘C’’ entry or an
‘‘X’’ entry. Any number of ‘‘A’’ entire entries (including none) can be generated by a single
IMAP/POP session.

Table 13–2 IMAP and POP Server Log Entry Codes

Entry Description

A Authentication attempt failed

O Login phase completed (either successful login or aborted connection)

C Connection closed cleanly

X Connection aborted (by either end)†

†Some IMAP/POP clients close the connection without sending a LOGOUT/QUIT command, so an
‘‘X’’ entry can happen in normal operation with such clients.

13–20

Volume II

The PMDF System Manager’s Guide is in four volumes. Volume I comprises
Chapter 1 through Chapter 13. Volume II comprises Chapter 14 through Chapter 28.
Volume III comprises Chapter 29 through Chapter 34.

PMDF software products are marketed directly to end users in North America, and
either directly or through distributors in other parts of the world depending upon the
location of the end user. Contact Process Software for ordering information, to include
referral to an authorized distributor where applicable:

Process Software, LLC
959 Concord Street
Framingham, MA 01701 USA
+1 508 879 6994
+1 508 879 0042 (FAX)
sales@process.com

14Connection Authentication, SASL, and Password
Management

This chapter discusses connection authentication and password source control,
including SASL support, the POPPASSD server (supporting the ad-hoc password
changing mechanism used by, for instance, Eudora), and the PMDF password database.

PMDF’s authentication control facilities include:

• Support for SASL (Simple Authentication and Security Layer—see RFC 22221)—a
means for controlling the mechanisms by which POP, IMAP or SMTP clients identify
themselves to the respective server. PMDF’s support for SMTP SASL use complies
with RFC 2554 (ESMTP AUTH).

• Support for various authentication sources (password sources), regardless of whether
the client supports or uses SASL.

• Support for automatically transitioning users between different authentication
sources and mechanisms.

• Support for translating between ‘‘external usernames’’ (what the user types into their
client as the username) and ‘‘internal usernames’’ (the name of the underlying account
on the PMDF system), as well as support for virtual domains.

• Support for fetching auxiliary properties during authentication.

These facilities are controlled by the PMDF security configuration file, discussed
below in Section 14.2, by special entries in the PORT_ACCESS mapping table, discussed
below in Section 14.3, and by TCP/IP channel configuration choices (in the case of SASL
use over SMTP), discussed below in Section 14.4.

14.1 Background Concepts and Terminology

An authentication mechanism is a particular method for a client to prove its
identity to a server. APOP, PLAIN, CRAM-MD5, and DIGEST-MD52 are examples of
authentication mechanisms.

An authentication verifier (e.g., password) is stored on the server and contains
information used to verify a user’s identity. The format of the authentication verifier can
restrict which mechanisms can be used. The term authentication verifier is preferred in
place of password, since while passwords are the most common instance of authentication
verifiers, an authentication verifier could also be something like a certificate in an LDAP

1 A copy of RFC 2222 can be found in the directory pmdf_root:[doc.rfc] (OpenVMS) or /pmdf/doc/rfc/
(UNIX) or C:\pmdf\doc\rfc \ (NT).

2 Mechanism names are as defined by SASL (RFC 2222), which is the IETF (Internet Engineering Task Force—the Internet
standards body) specification for adding authentication to protocols such as IMAP and POP. For discussions of particular
mechanisms, see for instance RFC 2195 documenting CRAM-MD5, RFC 1939 documenting APOP, and RFC 2617 defining
HTTP-digest authentication from which DIGEST-MD5 is derived.

14–1

Connection Authentication, SASL, and Password Management
Background Concepts and Terminology

directory or the like; usually, however, one can think ‘‘password’’ wherever one sees
‘‘authentication verifier’’.

An authentication source is a file, database, interface to an LDAP directory, etc.,
accessible to the server wherein are stored authentication verifiers for users. The system
password file, PMDF user profile passwords (for PMDF MessageStore or PMDF popstore
accounts),3 and the PMDF password database4 are examples of authentication sources.

A security rule set is a set of rules determining which authentication mechanisms
and sources are permitted or used by the server. In PMDF the PORT_ACCESS mapping
is used to determine the security rule set to apply to an incoming connection, based on
IP addresses and ports.

A user domain is an independent set of users known to the server. This is useful,
for example, if a server wants to support multiple sets of users possibly with overlapping
user names. In PMDF the PORT_ACCESS mapping is used to determine the user
domain for each incoming connection, based on IP addresses and ports. Only the PMDF
MessageStore authentication source (also used for PMDF popstore) supports multiple
user domains; for all other sources, or if no user domain is explicitly specified in the
PORT_ACCESS mapping, the default user domain is assumed.

SASL (Simple Authentication and Security Layer)5 is a way to add different
authentication mechanisms to Internet protocols such as POP, IMAP, and SMTP. When
the connection is opened, the POP, IMAP, or SMTP client can authenticate itself to the
respective server.

14.2 The PMDF Security Configuration file

The PMDF security configuration file controls a number of aspects of authentication
of incoming connections by servers such as the PMDF POP, IMAP, or SMTP servers,
including what authentication source (password source) a server checks, what authenti-
cation mechanism (password verification mechanism) is used to check the authentication
verifier (password), when SASL is being used what SASL mechanisms are available, and
whether to automatically transition users from one authentication source or mechanism
to another.

The security configuration file also controls some aspects of authentication for
outgoing connections by clients such as the TCP/IP SMTP channel client, such as
specifying usernames and passwords for authenticating to a remote server, and what
SASL mechanisms to use.

Currently supported authentication sources include the system password file, the
PMDF password database, PMDF user profiles (profiles for PMDF MessageStore and
PMDF popstore users), LDAP or X.500 directories, authentication via a remote POP
server, and site-supplied routines for password checking. For instance, PMDF can be
configured so that when a POP user connects they must issue their system password, or

3 See the PMDF popstore & MessageStore Manager’s Guide.
4 See, for instance, Section 14.7.
5 For a full description of SASL, see RFC 2222, a copy of which can be found in the RFC subdirectory in the PMDF tree.

14–2

Connection Authentication, SASL, and Password Management
The PMDF Security Configuration file

must issue their PMDF popstore password, or must issue their PMDF password database
password.

Currently supported SASL authentication mechanisms include plaintext, APOP,
CRAM-MD5, DIGEST-MD5, and anonymous access. For instance, PMDF can be
configured to allow APOP authentication by POP clients, or can be configured to allow
only CRAM-MD5 authentication by POP clients.

Different sorts of authentication control can be used for different sorts of connections;
for instance, a site might want to use different authentication sources or SASL
mechanisms for ‘‘internal’’ vs. ‘‘external’’ connections; see Section 14.3 below.

A general overview of the PMDF security configuration file, including specifying
for which sorts of connections SASL authentication services are offered, can be found in
Section 14.2.2; further details on authentication services such as the list of predefined au-
thentication sources and how to define additional sources can be found in Section 14.2.3;
a list of the predefined authentication mechanisms can be found in Section 14.2.4.

14.2.1 Location of the PMDF Security Configuration File

The PMDF security configuration file is located via the PMDF_SECURITY_CONFIG_FILE
logical (OpenVMS) or PMDF tailor file option (UNIX), or Registry entry (NT) and hence
is usually the file security.cnf located in the PMDF table directory.

If no security configuration file exists, reasonable defaults are assumed by PMDF.
A sample security configuration file corresponding to those internal defaults is shipped
with PMDF as the file security.cnf-sample in the PMDF table directory.

To override PMDF’s internal defaults, or specify additional, site-specific settings,
create a security.cnf file (more specifically, create the file which is pointed to by
PMDF_SECURITY_CONFIG_FILE), and then update any compiled PMDF configuration
and restart the PMDF Dispatcher as discussed in Section 14.2.9.

14.2.2 Format of the PMDF Security Configuration File

The format of the PMDF security configuration file is similar to that of the PMDF
Service Dispatcher configuration file or the PMDF Job Controller configuration file. That
is, the PMDF security configuration file generally contains lines of the form

option=value

in accordance with the format of PMDF option files.

In addition to such option settings, the file can contain a line consisting of a section
and value enclosed in square brackets of the form

14–3

Connection Authentication, SASL, and Password Management
The PMDF Security Configuration file

[AUTH_SOURCE=auth-source-name]

or

[RULESET=security-rules-set-name]

or

[USERNAME_TRANSLATE=translation-type-name]

or

[PROP_SOURCE=auxiliary-property-name]
or

[CLIENT_AUTH=auth-name]

An AUTH_SOURCE section defines an authentication source and sets options for
that source. It is not necessary to include an AUTH_SOURCE section for predefined
authentication sources, unless a site wants to set special options for that source or unless
the source is one such as LDAP which has special required options. If a site wants to
provide their own authentication sources, an AUTH_SOURCE section defining that source
is required.

A RULESET section sets options applying only to the specified sorts of connections.
The value of security-rules-set-name is either DEFAULT, or a security rule set
selected via the PORT_ACCESS mapping; see Section 14.3. Note that the vertical bar
character, |, is not permitted in a security-rules-set-name.

If a site, via the PORT_ACCESS mapping, sorts connections into security rule sets
other than the default rule set, DEFAULT, then the site’s security configuration file should
have a RULESET section for each such security rule set, describing the authentication
rules to use for connections falling into that security rule set.

A USERNAME_TRANSLATE section defines a username translation function. It is
not necessary to include a USERNAME_TRANSLATE section for a predefined username
translation function. If a site wants to provide their own username translation
function, then a USERNAME_TRANSLATE section defining that function is required. See
Section 14.2.5 below.

A PROP_SOURCE section defines an authentication plug-in, referred to as an auxiliary
properties module, that can fetch per-user attribute values, ‘‘auxiliary properties’’, during
the user authentication process; this tends to be of interest to improve efficiency by
getting such attributes directly from the authentication source. See Section 14.2.6 below.

A CLIENT_AUTH section sets options for use by the SMTP client when authenticating
to a remote SMTP server. The value of auth-name is either DEFAULT or a name
selected via the client_auth channel keyword. If a site, via the client_auth keyword,
uses more than one set of client authentication information, then the site’s security
configuration file should have a CLIENT_AUTH section for each such set.

The following general options can be specified in the PMDF security configuration
file.

14–4

Connection Authentication, SASL, and Password Management
The PMDF Security Configuration file

AUTH_METHOD (1 or 2)

This option controls PMDF’s behavior when authenticating usernames and passwords
against the list of authentication sources and mechanisms specified in an ENABLE option.
The default value is 1, which causes PMDF to check each source/mechanism pair from
left to right, stopping as soon as it gets a definitive answer, either pass or fail. A value
of 2 causes PMDF to keep checking authentication sources until it gets a pass result, or
until all sources are exhausted. Specifically, this option changes PMDF’s behavior when
getting a fail result: the default behavior is to stop, while a value of 2 causes PMDF to
keep going.

AUXPROP_ENABLE (comma-separated list of auxiliary-property-modules)

This option, when set in a RULESET section, specifies a list of auxiliary property modules
to utilize to set auxiliary properties during authentication. Certain auxiliary properties
are available from some authentication sources. Or additional auxiliary properties can be
made available by site-supplied auxiliary property modules defined via PROP_SOURCE
sections.

BASEDN (distinguished-name)

This option must be used in an [AUTH_SOURCE=LDAP] authentication source definition
section to specify the point of the Directory Information Tree to which to bind.

ENABLE (comma-separated list of source/mechanism pairs)

This option specifies a comma separated list of mechanisms to enable. Each item includes
the source name, a slash character, /, and a mechanism name. The source name should
either be one of the predefined authentication source names (ANONYMOUS, LDAP, LOGIN,
MSGSTORE, PASSDB, POPPROXY, or SYSTEM) or a site-supplied authentication source,
as described in Section 14.2.3. The possible mechanism values will vary according to
the particular authentication source; for instance, among the predefined authentication
sources, the ANONYMOUS source supports only the ANONYMOUS mechanism; the LDAP
source supports the PLAIN and CRAM-MD5 mechanisms; the POPPROXY and SYSTEM
sources support only the PLAIN mechanism; while the PASSDB and MSGSTORE sources
support any of APOP, CRAM-MD5, DIGEST-MD5, or PLAIN. (For further details on these
predefined authentication mechanisms, see Section 14.2.4.) Site-supplied authentication
sources can have their own list of supported mechanisms. The asterisk character *, can
be used to refer to all mechanisms supported by that authentication source. For instance,

ENABLE=SYSTEM/PLAIN,MSGSTORE/*

If the list of source/mechanism pairs includes more than one source supporting a
particular mechanism, then the order of the source/mechanism pairs in the list is
significant. When verifying with a particular mechanism, the first source (reading from
left to right) that supports that mechanism will be checked first for an entry; if no entry
is found, then the next source (reading from left to right) that supports that mechanism
will be checked for an entry, etc. By default, the verification process is halted as soon
as one of the authentication sources provides a definitive answer: PASS or FAIL. This
behavior can be modified.

If the AUTH_METHOD option is specified with a value of 2, PMDF will continue checking
sources until it gets a PASS result (or until all sources are exhausted). That is, a FAIL
result will no longer cause PMDF to stop checking.

FUNCTION (entry-point)
IMAGE (logical-pointing-to-shared-image (OpenVMS) or shared-image-name (UNIX) or
dynamic-link-library (NT))

In an AUTH_SOURCE authentication source definition section defining a site supplied
authentication source, the IMAGE option specifies the shared image to use and the

14–5

Connection Authentication, SASL, and Password Management
The PMDF Security Configuration file

FUNCTION option specifies the entry point. These options are mandatory for site defined
authentication source definition sections.

In a USERNAME_TRANSLATE section defining a site-supplied translation function to be
applied to usernames prior to authentication, the IMAGE option specifies the shared image
to use and the FUNCTION option specifies the entry point. The IMAGE option is mandatory
for site defined username translation functions. The FUNCTION option can be omitted if
the entry-point is called sasl_canonuser_init.

In a PROP_SOURCE section defining a site-supplied authentication auxiliary properties
module, the IMAGE option specifies the shared image to use and the FUNCTION option
specifies the entry point. The IMAGE option is mandatory for site defined authentication
auxiliary property modules. The FUNCTION option can be omitted if the entry-point is
called sasl_auxprop_init.

On OpenVMS, the value of the IMAGE option must be a system, executive mode logical
name that translates to the name of the shared image; on UNIX, the value of the IMAGE
option must be the name of the shared image file; on NT, the value of the IMAGE option
must be the name of a dynamic link library (DLL).

LDAP_ATTRIBUTE (attribute-name)

This option can be used in an [AUTH_SOURCE=LDAP] authentication source definition
section to specify the name of the attribute to use. The default if this option is not
specified is ‘‘uid’’. If the LDAP server that you are using is Active Directory, this option
should be specified with a value of ‘‘sAMAccountName’’.

LDAP_CACERTFILE (file-name)

This option can be used in an [AUTH_SOURCE=LDAP] authentication source definition
section to specify the name of the file containing the Certificate Authority (CA) certificate
that should be used. This option is optional. The default if this option is not specified is
to look for the default CA certificate file pmdf_table:ldap-cacert.pem.

LDAP_SEARCHACCT_DN (distinguished-name)
LDAP_SEARCHACCT_PASSWORD (password)

By default, PMDF does an anonymous bind to the LDAP server in order to search it for
the username to authenticate. Some LDAP servers, such as Active Directory, do not allow
anonymous binds. Use these two options to specify a distinguished name and password
to use for that binding process. Only used in an [AUTH_SOURCE=LDAP] authentication
source definition section.

LDAP_TLS_MODE (1 or 2)

This option can be used in an [AUTH_SOURCE=LDAP] authentication source definition
section to specify whether to use TLS. A value of 1 tells PMDF to try to use TLS, but
continue without it if TLS is not available. A value of 2 tells PMDF to require TLS. The
default is to not use TLS.

LDAP_VERSION (2 or 3)

This option can be used in an [AUTH_SOURCE=LDAP] authentication source definition
section to specify the type of LDAP server in use, v2 or v3, and hence the type of query
to perform.

MAIL_DOMAIN (domain-name)

When the LOCALMAIL auxiliary properties module is in effect (explicitly, or implicitly
because the PASSDB or SYSTEM authentication source is used), then the auxiliary property
SASL_AUX_MAILADDR is normally set to the authenticating username plus the official

14–6

Connection Authentication, SASL, and Password Management
The PMDF Security Configuration file

local host name (PMDF local channel official host name). This option can be used to
specify an alternate domain name to use in this auxiliary property.

MECHANISMS (comma separated list of mechanisms)

This option, when used in a CLIENT_AUTH section, specifies which SASL mechansims
to use when an SMTP client is authenticating to a remote SMTP server. The possible
mechanisms values are: PLAIN, LOGIN, CRAM-MD5, and DIGEST-MD5. If this option is
not specified, all mechanisms are tried.

PASSWORD (string)

This option, when used in a CLIENT_AUTH section, specifies the password to use when
an SMTP client is authenticating to a remote SMTP server. This option is required in a
CLIENT_AUTH section.

RESTRICT (string)

This option can be used as, for instance, RESTRICT=PLAIN:40 to require a key with 40
significant bits be used for encryption before the PLAIN mechanism is allowed.

SERVER (host-name or ip-number)

This option is used in an [AUTH_SOURCE=LDAP] or [AUTH_SOURCE=POPPROXY] section
to specify the LDAP server or POP server, respectively, to which to connect for
authentication. The syntax is

SERVER=server-host-name:port

or

SERVER=server-host-name

where the port number if omitted will be assumed to be the standard port number (389
for LDAP, or 110 for POP).

For POPPROXY, there can be up to three POP servers specified, separated by commas.

TLS_MODE (0 or 1)

This option can be used in an [AUTH_SOURCE=POPPROXY] authentication source defini-
tion section to specify whether to use TLS. A value of 1 tells PMDF to try to use TLS.
The default is to not use TLS.

TRANSLATE (translation-type-name)

This option can be used in a RULESET section to specify a function to be appled to
usernames before authentication; that is, the username provided by the user attempting
to authenticate will be transformed as specified by the function and PMDF will use that
transformed username when attempting the authentication. The translation type name
must either be one of the predefined translation functions, DEFAULT, ASCII-NOCASE, or
IDENTITY, or must specify a translation type name defined in a USERNAME_TRANSLATE
section.

USER (username)

This option, when used in an [AUTH_SOURCE=ANONYMOUS] authentication source
section, determines the specific username under which anonymous authentication can be
performed. When this option is used in a CLIENT_AUTH section, it specifies the remote
username to use when an SMTP client is authenticating to a remote SMTP server. This
option is required in a CLIENT_AUTH section.

14–7

Connection Authentication, SASL, and Password Management
The PMDF Security Configuration file

The following additional transition-related options can also be specified in the PMDF
security configuration file.

TRANSITION_ADD (comma-separated list of source/mechanism pairs)

This specifies a list of mechanisms to add when a transition occurs.

TRANSITION_CRITERIA (CLIENT, CHANGE, PLAIN)

This specifies the criteria used to transition users. CHANGE will only transition on
password change. CLIENT will transition if the client attempts to use a mechanism
for which they don’t have a proper entry. Note that in such a case, where the client
does not actually have a password entry for the desired mechanism, the server will ask
the client to authenticate themselves using a plaintext password (authenticating against
the configured authentication source) and the server will then automatically create the
desired mechanism entry in that authentication source using the same password value.
PLAIN will transition whenever the client uses a plaintext password. The default is
TRANSITION_CRITERIA=CHANGE.

TRANSITION_DELETE (comma-separated list of source/mechanism pairs)

This specifies a list of mechanisms to delete when a transition occurs. Not all au-
thentication sources support this. This option will not take effect unless a TRANSI-
TION_RETAIN_USERS option is present.

TRANSITION_DISABLE (comma-separated list of source/mechanism pairs)

This specifies a list of mechanisms to disable when a transition occurs. Not all au-
thentication sources support this. This option will not take effect unless a TRANSI-
TION_RETAIN_USERS option is present.

TRANSITION_FROM (comma-separated list of source/mechanism pairs)

This specifies a list of authentication sources to check when transitioning, in addition
to those listed in the ENABLE configuration item. Normally, a user must use one
of the source/mechanisms enabled via the ENABLE option in order to connect at all.
With the TRANSITION_FROM option, PMDF can be configured to allow one-time-only
connection using some other source/mechanisms in order to perform the transition to
one of the supported (enabled) source/mechanisms. For instance, when a site is setting
up new PMDF MessageStore accounts, one might want to configure IMAP and POP
service to require authentication using a user’s PMDF user profile password (i.e., PMDF
MessageStore password). However, if the first time the user connects they do not yet
have a PMDF user profile password set, then allow them to connect using their system
password, which will automatically become their initial PMDF MessageStore password.
This would correspond to:

[RULESET=IMAP-RULES]
ENABLE=MSGSTORE/*
TRANSITION_CRITERIA=CLIENT
TRANSITION_FROM=SYSTEM/PLAIN
TRANSITION_ADD=MSGSTORE/APOP
!
[RULESET=POP-RULES]
ENABLE=MSGSTORE/*
TRANSITION_CRITERIA=CLIENT
TRANSITION_FROM=SYSTEM/PLAIN
TRANSITION_ADD=MSGSTORE/APOP

assuming that a PORT_ACCESS mapping is in use that sorts IMAP and POP connections
into their own rulesets.

14–8

Connection Authentication, SASL, and Password Management
The PMDF Security Configuration file

TRANSITION_RETAIN_USERS (comma-separated list of user usernames)

This specifies a list of users who are exempt from the TRANSITION_DISABLE and
TRANSITION_DELETE options. This option must be set—even if only to an empty value—
in order for the TRANSITION_DISABLE and TRANSITION_DELETE options to take effect.
That is, TRANSITION_RETAIN_USERS= is fine.

14.2.3 Authentication Sources

An authentication source specifies where (and in some cases how) authentication
information is stored. A particular sort of authentication source can support one or
more sorts of authentication mechanisms, compatible with the underlying storage of
the authentication information; that is, some authentication sources will support only
one sort of authentication mechanism, whereas other sources can be able to support
additional sorts of authentication mechanisms. For instance, a system password file can
only support the PLAIN (plaintext) authentication mechanism. Authentication sources
can also support custom configuration options.

Authentication sources are configured via a block of the form

[AUTH_SOURCE=auth-source-name]
...

in the security configuration file. It is not necessary to include an AUTH_SOURCE
block for predefined authentication sources, unless setting special options for that source
or unless the source is one such as LDAP which has special required options. An
AUTH_SOURCE block must, however, be used when defining a site specific authentication
source, as discussed below in Section 14.2.3.2.

14.2.3.1 Predefined Authentication Sources

The following authentication source names are reserved:

ANONYMOUS

This is used for anonymous access. If you want to specify a username for anonymous
users, you can set the USER option to the desired user name in the [AUTH_SOURCE=ANONYMOUS]
authentication source definition block; e.g.,

[AUTH_SOURCE=ANONYMOUS]
USER=username

LDAP

The LDAP source is used when authentication verifiers are stored in an LDAPv2 or
LDAPv3 or X.500 directory accessed via an LDAPv2 or LDAPv3 server. Currently, the
LDAP source only supports the PLAIN mechanism (plaintext passwords) and the CRAM-
MD5 mechanism. Note that this authentication source requires setting two options to
site-specific values, so in order to use it, you must define it in an [AUTH_SOURCE=LDAP]
section as illustrated below.

14–9

Connection Authentication, SASL, and Password Management
The PMDF Security Configuration file

[AUTH_SOURCE=LDAP]
SERVER=ldap-server-host-name:port
BASEDN=distinguished-name

or

[AUTH_SOURCE=LDAP]
SERVER=ldap-server-host-name
BASEDN=distinguished-name

If the port is omitted from the SERVER option, then the standard LDAP port (port 389)
is assumed.

When looking for an authentication verifier in an LDAP directory, PMDF searches
by default for a uid attribute matching the username which the user typed. If
the LDAP_ATTRIBUTE option is specified, then that attribute is used for searching
instead of uid. To do this search, by default an anonymous bind is done. If the
LDAP_SEARCHACCT_DN and LDAP_SEARCHACCT_PASSWORD options are specified, then
the bind is done using the specified distinguished name and password instead.

Note that if the LDAP server is Active Directory then you should specify the LDAP_ATTRIBUTE
option as ‘‘sAMAccountName’’, and you should provide values for both LDAP_SEARCHACCT_DN
and LDAP_SEARCHACCT_PASSWORD options. For example:

[AUTH_SOURCE=LDAP]
SERVER=ldap-server-host-name
BASEDN=distinguished-name
LDAP_ATTRIBUTE=sAMAccountName
LDAP_SEARCHACCT_DN=distinguished-name
LDAP_SEARCHACCT_PASSWORD=password

After doing the search, PMDF then does a bind against the LDAP server with the
resulting DN and the user-supplied password. The option LDAP_VERSION controls
whether an LDAPv2 or LDAPv3 query is made. The default, if this option is not specified,
is LDAP_VERSION=3, causing PMDF to perform a v3 query. If querying an LDAPv2
directory, then LDAP_VERSION=2 must be set; this causes PMDF to perform a v2 query
(which is less efficient than a v3 query).

Sites using this source should make sure for performance reasons that the uid attribute
(or alternate attribute specified by the LDAP_ATTRIBUTE option) is indexed on the LDAP
server. Also note that this source is not currently suitable for high volume use, as in
this implementation each authentication opens a separate connection to the LDAP server.
High volume sites should instead use the MSGSTORE authentication source and arrange
to keep it synchronized with their LDAP server.

PMDF has the ability to access LDAP servers using TLS authentication. Note that sites
wanting to use LDAP over TLS must make sure that their LDAP server is set up to do
TLS. In order to enable TLS, specify the PMDF_TLS_MODE option as 1 (to try TLS) or 2 (to
require TLS). You may need to have the Certificate Authority (CA) certificate to be used
by LDAP on your PMDF system. If so, by default the CA certificate should be placed
in the file pmdf_table:ldap-cacert.pem. If you wish to use a different file, you may
specify it using the LDAP_CACERTFILE option. For example, to use TLS:

14–10

Connection Authentication, SASL, and Password Management
The PMDF Security Configuration file

[AUTH_SOURCE=LDAP]
SERVER=ldap-server-host-name
BASEDN=distinguished-name
LDAP_TLS_MODE=1
LDAP_CACERTFILE=ca-cert-file-name

LOGIN

The LOGIN source is used to provide the non-standard LOGIN mechanism. (The LOGIN
mechanism is similar to PLAIN and offers no additional functionality, but is nevertheless
used by some popular clients.) As implemented in PMDF, the LOGIN authentication
source provides the LOGIN mechanism as a shell on top of the PLAIN mechanism from
other sources. You must have at least one PLAIN mechanism enabled in order to use
the LOGIN authentication source. For instance:

ENABLE=SYSTEM/*,LOGIN/*

or equivalently:

ENABLE=SYSTEM/PLAIN,LOGIN/LOGIN

MSGSTORE

This is the set of user authentication profiles used by the PMDF MessageStore and
PMDF popstore. This authentication source currently supports the CRAM-MD5, DIGEST-
MD5, POP and PLAIN mechanisms. (Note that it always stores the password in a format
suitable for use by APOP.) Initial user entries in this authentication source must be
generated using PMDF MessageStore or PMDF popstore management utilities; see the
PMDF popstore & MessageStore Manager’s Guide.

PASSDB

Initial user entries in this authentication source must be generated using the pmdf
password utility. It currently supports the CRAM-MD5, DIGEST-MD5, APOP, and PLAIN
mechanisms.

POPPROXY

This source is used to authenticate against a POP server. When used with automatic
transitioning options, this source can be used to migrate passwords from a POP server to
a new source, even if the exact storage of the passwords on the POP server is unknown.
Such password transitioning is generally done in conjunction with migration of messages
from a POP server to a new message store, such as the PMDF MessageStore, though note
that such message migration is an entirely separate process from the password migration.
See the discussion of the pmdf movein utility in the PMDF popstore & MessageStore
Manager’s Guide for a discussion of message migration.

This source only supports the PLAIN mechanism.

In order to use the POPPROXY source, you must set the SERVER option to tell PMDF
the host name of the POP server against which to authenticate, and optionally the port
number; if the port number is omitted, then the standard POP port of 110 is assumed.
Up to three servers may be specified, separated by commas.

To use TLS on the connection to the POP server, specify the TLS_MODE option. A value
of 1 will turn on TLS. Note that in order to use TLS, you must specify a port which is
dedicated to TLS (the standard port is 995). POPPROXY does not support issuing an
STLS command to the standard POP port.

Some examples:

14–11

Connection Authentication, SASL, and Password Management
The PMDF Security Configuration file

[AUTH_SOURCE=POPPROXY]
SERVER=pop.example.com

or

[AUTH_SOURCE=POPPROXY]
SERVER=pop.example.com:995, pop2.example.com:995
TLS_MODE=1

SYSTEM

This is the system password file, that is, the SYSUAF file on OpenVMS, or usually
/etc/passwd or /etc/shadow on UNIX. This authentication source only supports the
PLAIN mechanism. Initial user entries in this authentication source must be generated
using system utilities.

On OpenVMS, there is support for the PWDMIX SYSUAF flag, however the following
special characters are not allowed in the password:

• whitespace

• open parenthesis (

• close parenthesis)

• open brace {

• percent sign %

• asterisk *

• double quote "

• backslash \

14.2.3.2 Site Specific Authentication Sources

You can define your own password/authentication source by specifying a shared
image to call. To add an authentication source called auth-source-name where auth-

source-name can be an arbitrary alphanumeric string other than those reserved above,
include a block defining the new authentication source (after all global options) of the
following form. On OpenVMS:

[AUTH_SOURCE=auth-source-name]
IMAGE=logical-pointing-to-shared-image
FUNCTION=function-entry-point
...

On UNIX:

[AUTH_SOURCE=auth-source-name]
IMAGE=shared-image-name
FUNCTION=function-entry-point
...

On NT:

14–12

Connection Authentication, SASL, and Password Management
The PMDF Security Configuration file

[AUTH_SOURCE=auth-source-name]
IMAGE=dll-name
FUNCTION=function-entry-point
...

The IMAGE option specifies the shared image to use and the FUNCTION option specifies
the entry point. Note that on OpenVMS, the IMAGE value must be a system, executive
mode logical name translating to the actual shared image; on UNIX, the IMAGE value
must be the actual shared image file name; on NT, the IMAGE value must be the name of a
dynamic link library (DLL). These options are mandatory for site defined authentication
sources. Additional configuration options specific to that authentication source can also
be included.

The PMDF authentication services API can be used to add authentication sources;
contact Process Software for details.

14.2.4 Authentication Mechanisms

An authentication mechanism specifies how authentication is performed; that is,
how the authenticating password is passed back and forth. Supported authentication
mechanisms include:

ANONYMOUS

This permits anonymous access.

APOP

This is a mechanism which can only be used with the POP3 protocol. If set for some
other sort of service such as IMAP, it has no effect (is ignored). It supplies the user a
challenge and performs a one-way function on the challenge and the user’s password.
This means that the password is never sent over the wire, but what is sent over the wire
can be used to test guesses. It also requires that the password be stored in such a way
that if someone gains privileged access to the server and is capable of reverse engineering
PMDF’s storage mechanism, then they can recover all user passwords.

CRAM-MD5

This is similar to APOP, but is suitable for use with other protocols besides POP3. This
is marginally safer than APOP as it permits an authentication verifier storage format
such that someone who gains privileged access to the server and is capable of reverse
engineering PMDF’s storage mechanism only gains the ability to use the CRAM-MD5
mechanism to impersonate any user.

DIGEST-MD5

The DIGEST-MD5 mechanism is based upon the HTTP-digest authentication defined in
RFC 2617.

LOGIN

LOGIN is a non-standard mechanism, similar to PLAIN, and offering no additional func-
tionality. But some clients, such as Microsoft Exchange, have nevertheless implemented
it. Among the distributed PMDF authentication sources, only the LOGIN source supports
the LOGIN mechanism.

14–13

Connection Authentication, SASL, and Password Management
The PMDF Security Configuration file

PLAIN

This passes the user’s plaintext password over the network, where it is susceptible to
eavesdropping. Unfortunately, most clients require support for plaintext passwords. This
is also the only current mechanism which can be used with system password files. When
this mechanism is enabled for POP and IMAP connections, it also enables the plaintext
login commands in POP and IMAP.

14.2.5 Username Translation Functions

PMDF supports translating between ‘‘external usernames’’ (what the user types into
their client as the username) and ‘‘internal usernames’’ (e.g., the name of a PMDF
MessageStore or PMDF popstore account). This can, for instance, be used as part of
support for ‘‘virtual domains’’: hosting multiple pseudodomain names on a single system.

A RULESET security ruleset definition section can include an option:

TRANSLATE=name

where name would be defined with a USERNAME_TRANSLATE section of the form:

[USERNAME_TRANSLATE=name]
IMAGE=unix-path-or-openvms-logical-or-nt-dll
FUNCTION=entry-point

The FUNCTION option can be omitted if the entry-point is called sasl_canonuser_init.
Contact Process Software for information on writing site-supplied username translation
functions.

The following pre-defined username translations are provided:

DEFAULT

Splits the username at a percent character, %, or at sign character, @, and treats the right-
hand side as a user/virtual domain. This is the default behavior. The user/virtual domain
is used, for example, when authenticating against popstore accounts to correspond to the
popstore user domain. This value is not supported when authenticating against system
accounts.

ASCII-NOCASE

Same as DEFAULT, but converts ASCII characters on the left-hand side to lower case.

IDENTITY

This passes the username through without any translation.

14–14

Connection Authentication, SASL, and Password Management
The PMDF Security Configuration file

14.2.6 Auxiliary Properties

PMDF supports fetching ‘‘auxiliary properties’’, that is, per-user attributes, during
the user authentication process since under some circumstances this can be the most
efficient approach. A primary use for this facility is to associate an e-mail address with
an authenticated user during SMTP AUTH processing.

A SASL authentication source can provide values for attributes, or a separate
auxiliary properties module can provide values for attributes.

A RULESET security ruleset definition can include:

AUXPROP_ENABLE=auxprop-module-name,...

or

AUXPROP_ENABLE=+auxprop-module-name,...

An auxprop-module-name would be defined in a PROP_SOURCE section of the form

[PROP_SOURCE=auxprop-module-name]
IMAGE=unix-path-or-openvms-logical-or-nt-dll
FUNCTION=entry-point

The FUNCTION option can be omitted if the entry point is called sasl_auxprop_init.
Contact Process Software for information on the API for writing site-supplied auxiliary
property modules; note that the API is currently subject to change.

Normally, the auxiliary properties modules are called in order to fill in any attributes
they support which haven’t already been filled in automatically by an authentication
source. An initial plus character, +, as the first character of the AUXPROP_ENABLE option
value causes an auxiliary properties module to override values for properties from a
previous auxiliary properties module or authentication source.

The supplied pre-defined auxiliary properties modules are:

MSGSTORE

Determine the e-mail address if a PMDF user profile (PMDF MessageStore or PMDF
popstore profile) for the user exists and has a store type of popstore or msgstore.

PASSWD (UNIX only)

Look up attributes via the getpwnam API.

LOCALMAIL

Determine the local e-mail address for a user by looking up the local channel official host
name and glueing that onto the user name.

However, if the ruleset being applied has the MAIL_DOMAIN option set to a different
domain, then that other domain will instead be used to glue onto the user name. Thus if

MAIL_DOMAIN=domain

is set, this means that if user chris authenticates using that security ruleset, then his
email address is chris@domain rather than chris@local-channel-domain. As this

14–15

Connection Authentication, SASL, and Password Management
The PMDF Security Configuration file

is implemented by the LOCALMAIL auxiliary properties module, it doesn’t override the
behavior of the MSGSTORE auxiliary properties module.

DEFAULT

This is the default, and is equivalent on UNIX to having

AUXPROP_ENABLE=MSGSTORE,PASSWD,LOCALMAIL

or on OpenVMS or NT systems to having

AUXPROP_ENABLE=MSGSTORE,LOCALMAIL

set in the ruleset being applied.

Note that an initial plus character, +, has no effect in front of DEFAULT.

Note that these modules are designed to do nothing if the caller didn’t ask for
the appropriate properties. Currently, the auxiliary property of main interest is an
‘‘authenticated’’ e-mail address; for instance, the PMDF SMTP server will ask for the
‘‘SASL_AUX_MAILADDR’’ property (used if the authrewrite keyword is present on the
incoming TCP/IP channel). And the MSGSTORE and LOCALMAIL auxiliary properties
modules supply such a property.

A PROP_SOURCE section need not be present in the security configuration file for
the above pre-defined auxiliary properties module, unless it is desired to modify some
portion of the modules usual operation. But site-supplied auxiliary property modules
must be established via a PROP_SOURCE definition.

When the MSGSTORE authentication source is used, its auxiliary properties
behavior is automatically that of the MSGSTORE auxiliary properties module. When
the PASSDB or SYSTEM authentication sources are used, their auxiliary properties
behavior is automatically that of the LOCALMAIL auxiliary properties module.

14.2.7 Transitioning Between Authentication Sources

Among other things, the PMDF security configuration can be used to cause users’
authentication verifiers (passwords)—for instance, the password used when ‘‘logging in’’
during a POP or IMAP connection, or used for authentication between a SASL-enabled
client and a SASL-enabled server—to be migrated from one authentication source to
another. This is particularly likely to be relevant when users are being automatically
migrated from one message store to another—say from the legacy (native) message store
to the PMDF MessageStore or to the PMDF popstore. But it also has other applications:
for instance, a SASL-enabled client can tell the server to change the storage of the
user’s password from one mechanism to another; or a site can choose to migrate users’
authentication verifiers from a source on the PMDF system (whether system password
file, PMDF password database, or PMDF user profiles for PMDF MessageStore and
PMDF popstore users) to an external server, such as a RADIUS server.

14–16

Connection Authentication, SASL, and Password Management
The PMDF Security Configuration file

Such transitioning is controlled via the various TRANSITION_* PMDF security con-
figuration file options, described individually in Section 14.2.2 above. As transitioning
involves additional considerations beyond the usual security configuration file consider-
ations, this section presents an additional brief description of transitioning and the use
of the TRANSITION_* options in combination.

The TRANSITION_CRITERIA option specifies if and when to transition users’ au-
thentication verifiers. The TRANSITION_ADD and TRANSITION_DELETE options control
what storage mechanisms to add and delete when transitioning is performed. TRAN-
SITION_DELETE actually deletes that mechanism’s storage of the authentication ver-
ifier (password); for instance, if one is transitioning away from the PMDF password
database, the PMDF password database entry for that mechanism for the user’s au-
thentication verifier is actually removed from the database. The TRANSITION_DISABLE
option is less drastic than TRANSITION_DELETE: it marks that password as not usable,
but does not actually delete the password. For instance, when the system password
file is used, TRANSITION_DISABLE on OpenVMS marks the account as DISUSERed. In
other words, TRANSITION_DELETE is not normally reversible, other than by manually
reentering the password entry back in, whereas TRANSITION_DISABLE is more easily
reversible. The TRANSITION_RETAIN_USERS option specifies particular users, typically
users such as root or SYSTEM, who are exempt from the TRANSITION_DISABLE and
TRANSITION_DELETE options. This would typically be used when you want to force mi-
gration of authentication verifiers for normal users, but not for the special privileged
accounts. Finally, the TRANSITION_FROM option specifies a list of additional authentica-
tion sources to check when transitioning.

14.2.8 Sample Security Configuration Files

Several sample security configuration files are presented, both basic examples
immediately below and more sophisticated examples in the following subsections.

Note: These examples are for the legacy IMAP server.

Example 14–1 shows a security configuration file corresponding to the implicit
security configuration used if no security file exists.

Example 14–1 Implicit Default Security Configuration

[RULESET=DEFAULT]
ENABLE=MSGSTORE/*,PASSDB/*,SYSTEM/*

Example 14–2 shows allowing anonymous IMAP access by anyone to the ftp account.
It assumes a PORT_ACCESS mapping sorting IMAP connections into their own IMAP-
RULES ruleset is in place, along the lines of:

PORT_ACCESS

TCP|*|143|*|* $YIMAP-RULES

14–17

Connection Authentication, SASL, and Password Management
The PMDF Security Configuration file

Example 14–2 Security Configuration Allowing Anonymous IMAP Access to the ftp
Account

[RULESET=DEFAULT]
ENABLE=MSGSTORE/*,PASSDB/*,SYSTEM/*
!
[AUTH_SOURCE=ANONYMOUS]
USER=ftp
!
[RULESET=IMAP-RULES]
ENABLE=MSGSTORE/CRAM-MD5,MSGSTORE/PLAIN,SYSTEM/PLAIN,ANONYMOUS/*

To set controls for any POPPASSD servers (see Section 14.6), one would define
a [RULESET=POPPASSD-RULES] section and a PORT_ACCESS mapping assigning
POPPASSD connections to the POPPASSD-RULES security rule set; for instance, if the
only POPPASSD server listens on port 106, then the PMDF mapping file would need to
include something like:

PORT_ACCESS

TCP|*|106|*|* $YPOPPASSD-RULES

Then a security configuration file setting specific controls for POPPASSD connections—
namely restricting use of POPPASSD to PMDF MessageStore users, PMDF popstore
users or to login users who store their POP password in the PMDF password database
(and disabling use of POPPASSD to check the system password file)—could be as shown
in Example 14–3.

Example 14–3 Security Configuration with POPPASSD Controls

[RULESET=DEFAULT]
ENABLE=MSGSTORE/*,PASSDB/*,SYSTEM/*
!
[RULESET=POPPASSD-RULES]
ENABLE=MSGSTORE/*,PASSDB/*

14.2.8.1 Sample Security Configuration Files Using Alternate Authentication Sources

Example 14–4 shows adding a Kerberos V4 shared library.

Example 14–4 Security Configuration Using a Kerberos V4 Shared Library on UNIX

[AUTH_SOURCE=KERBEROS]
IMAGE=/usr/local/lib/krb4sasl.so
FUNCTION=krb4sasl_init
SRVTAB=/etc/srvtab
!
[RULESET=DEFAULT]
ENABLE=KERBEROS/*,MSGSTORE/*,PASSDB/*,SYSTEM/*

14–18

Connection Authentication, SASL, and Password Management
The PMDF Security Configuration file

Example 14–5 shows a security configuration file for looking up authentication
verifiers in an LDAP directory. See the additional discussion of [AUTH_SOURCE=LDAP]
in Section 14.2.3.

Example 14–5 Security Configuration for LDAP Authentication

[RULESET=DEFAULT]
ENABLE=LDAP/*
!
[AUTH_SOURCE=LDAP]
SERVER=elvira.example.com
BASEDN=o="Example Software",st=Massachusetts,c=us

If the LDAP directory does not support CRAM-MD5, or if a site is using {CRYPT}
passwords on the LDAP server, then the mechanisms offered should be restricted to
PLAIN, as shown in Example 14–6.

Example 14–6 Security Configuration for LDAP Authentication without CRAM-MD5

[RULESET=DEFAULT]
ENABLE=LDAP/PLAIN
!
[AUTH_SOURCE=LDAP]
SERVER=elvira.example.com
BASEDN=o="Example Software",st=Massachusetts,c=us

14.2.8.2 Sample Security Configuration Files for Transitioning Between
Authentication Sources

The examples in this section assume that a PORT_ACCESS mapping sorting
connections into their own IMAP and POP rulesets is in place, along the lines of:

PORT_ACCESS

TCP|*|110|*|* $YPOP
TCP|*|143|*|* $YIMAP

Example 14–7 shows moving POP users from the system password file to PMDF
user profile passwords (PMDF MessageStore and PMDF popstore profile passwords);
hence this is the sort of security configuration a site might use when POP users are
being transitioned from use of the legacy mailbox (i.e., BSD mailbox on UNIX or VMS
MAIL mailbox on OpenVMS) to use of the PMDF popstore mailbox. Example 14–8 shows
disallowing use of plaintext passwords; only one time use of plaintext password is allowed
as the passwords are migrated to CRAM-MD5 storage. Example 14–9 similarly shows
disallowing use of either plaintext or APOP, other than as a one time transitional usage,
as passwords are migrated to CRAM-MD5 storage.

14–19

Connection Authentication, SASL, and Password Management
The PMDF Security Configuration file

Example 14–7 Security Configuration when Migrating POP Users to the PMDF popstore

[RULESET=DEFAULT]
ENABLE=PASSDB/CRAM-MD5,PASSDB/PLAIN,SYSTEM/PLAIN
TRANSITION_CRITERIA=CLIENT
!
[RULESET=IMAP]
ENABLE=MSGSTORE/CRAM-MD5,MSGSTORE/PLAIN,PASSDB/CRAM-MD5,PASSDB/PLAIN,SYSTEM/PLAIN
!
[RULESET=POP]
ENABLE=MSGSTORE/*,SYSTEM/*
TRANSITION_CRITERIA=PLAIN
TRANSITION_ADD=MSGSTORE/PLAIN
TRANSITION_DISABLE=SYSTEM/PLAIN
TRANSITION_FROM=SYSTEM
TRANSITION_RETAIN_USERS=admin1,admin2

Example 14–8 Security Configuration Disallowing plaintext Passwords, except for Transitioning
to CRAM-MD5

[RULESET=DEFAULT]
ENABLE=PASSDB/CRAM-MD5
TRANSITION_CRITERIA=CLIENT
TRANSITION_FROM=PASSDB/*,SYSTEM/*
TRANSITION_ADD=PASSDB/CRAM-MD5
!
[RULESET=POP]
ENABLE=MSGSTORE/CRAM-MD5,MSGSTORE/APOP,PASSDB/CRAM-MD5,PASSDB/APOP
!
[RULESET=IMAP]
ENABLE=MSGSTORE/CRAM-MD5,PASSDB/CRAM-MD5

Example 14–9 Security Configuration Disallowing plaintext and APOP

[RULESET=DEFAULT]
ENABLE=PASSDB/CRAM-MD5
TRANSITION_CRITERIA=CLIENT
TRANSITION_ADD=PASSDB/CRAM-MD5
TRANSITION_DELETE=PASSDB/PLAIN
TRANSITION_FROM=PASSDB/*,SYSTEM/*,MSGSTORE/*
!
! Disable use of the APOP mechanism for the PMDF password database
!
[AUTH_SOURCE=PASSDB]
PASS_FORMAT=CRAM-MD5
!
[RULESET=POP]
ENABLE=MSGSTORE/CRAM-MD5,PASSDB/CRAM-MD5
TRANSITION_FROM=MSGSTORE/*,PASSDB/*,SYSTEM/*
!
[RULESET=IMAP]
ENABLE=MSGSTORE/CRAM-MD5,PASSDB/CRAM-MD5

14–20

Connection Authentication, SASL, and Password Management
The PMDF Security Configuration file

14.2.9 Updates to the Security Configuration

The security configuration file is part of a compiled PMDF configuration. If you are
using a compiled PMDF configuration, you will need to recompile and reinstall it after
making changes to the security configuration file.

After changes to the security configuration file, (and recompiling, if using a compiled
configuration), the PMDF Dispatcher should be restarted with the pmdf restart
dispatcher command.

14.3 The PORT_ACCESS Mapping: Security Rule Sets and User
Domains

The PORT_ACCESS mapping can be used to cause PMDF to classify incoming
connections into different security rule sets and into different user domains.

Security rule sets provide a way of having connection based security differentiation.
For instance, a site might want to use different security mechanisms for connections
from ‘‘internal’’ vs. ‘‘external’’ sources.

A site using the PMDF popstore, (which supports multiple user domains —multiple
sets of users with possibly overlapping user names), might also want to authenticate
(independent of authentication mechanism) against different sets of user profiles,
for instance, ‘‘student’’ profiles vs. ‘‘faculty’’ profiles, depending upon the incoming
connection; such sets of user profiles are known as user domains.

For background information on the PMDF mapping file, see Chapter 5; for an
introduction to the PORT_ACCESS mapping in particular, see Section 11.5.

The format of a PORT_ACCESS entry specifying a security rule set is:

PORT_ACCESS

... $Ysecurity-rules-set-name

and the format of a PORT_ACCESS entry specifying both a security rule set and a user
domain is:

PORT_ACCESS

... $Ysecurity-rules-set-name|user-domain

For instance, Example 14–10 shows a sample PORT_ACCESS mapping that assigns
incoming connections according to server port number to security rule sets named POP-
RULES, and IMAP-RULES. Example 14–11 shows a sample PORT_ACCESS mapping
that assigns incoming connections from IP addresses in the 192.160.253.* subnet to
an INTERNAL security rule set, while assigning all other incoming connections to an
EXTERNAL security rule set.

14–21

Connection Authentication, SASL, and Password Management
The PORT_ACCESS Mapping: Security Rule Sets and User Domains

Example 14–12 shows a sample PORT_ACCESS mapping that sorts incoming
connections into two user domains, VIP and LABRAT, and into INTERNAL and
EXTERNAL security rule sets. This server is assumed to have two IP addresses (via
multi-homing or two interface cards), 192.160.253.60 and 192.160.253.61, and selects
the user domain based on that. The PORT_ACCESS mapping entries shown specify that
users in the VIP user domain are allowed to connect to any port (send or read mail) from
external systems, whereas users in the LABRAT user domain, while they can connect to
the SMTP port to send mail from external systems, are not allowed to connect to POP or
IMAP servers to read mail from external systems.

Example 14–10 PORT_ACCESS Mapping for Security Rule Set Based on Server Port
Number

PORT_ACCESS

TCP|*|110|*|* $YPOP-RULES
TCP|*|143|*|* $YIMAP-RULES

Example 14–11 PORT_ACCESS Mapping for Security Rule Set Based on Source IP
Address

PORT_ACCESS

TCP|*|*|$(192.160.253.0/24)|* $YINTERNAL
TCP|*|*|*|* $YEXTERNAL

Example 14–12 PORT_ACCESS Mapping for Distinguishing User Groups

PORT_ACCESS

TCP|192.160.253.60|*|$(192.160.253.0/24)|* $YINTERNAL|VIP
TCP|192.160.253.60|*|*|* $YEXTERNAL|VIP
TCP|192.160.253.61|*|$(192.160.253.0/24)|* $YINTERNAL|LABRAT
TCP|192.160.253.61|25|*|* $YEXTERNAL|LABRAT
TCP|*|*|*|* $N

Note that the PORT_ACCESS mapping table, being part of the PMDF mapping
file, is part of a compiled PMDF configuration. If you are using a compiled PMDF
configuration, you will need to recompile and reinstall it after making changes to the
PORT_ACCESS mapping table. Also, after changes to the PORT_ACCESS mapping
table the PMDF Dispatcher should be restarted with the pmdf restart dispatcher
command.

14–22

Connection Authentication, SASL, and Password Management
SASL Configuration for TCP/IP Channels

14.4 SASL Configuration for TCP/IP Channels

Submission of SMTP messages is normally unauthenticated—the SMTP client
performs no authentication of who it ‘‘really’’ is and merely submits a message. (See
RFC 821.) SASL and specifically the AUTH SMTP extension (see RFC 2222) provides a
protocol by which an SMTP client can authenticate itself to the server.

14.4.1 SMTP Server

SMTP server support for SASL can be controlled by various channel keywords, as
described in Section 2.3.4.43 and Section 2.3.4.46. The default is that the SMTP server
does not advertise nor support SASL use, nosaslserver.

Note that the authentication source and mechanisms supported for SASL use by the
SMTP server are controlled by the PMDF security configuration file, as discussed above
in Section 14.2.

One use of SASL in the SMTP server is to allow authenticated clients to perform
message submissions that would be disallowed to unauthenticated clients. For instance,
a site that generally blocks SMTP relaying through their SMTP server, but wants to
allow such SMTP relaying for specific users who will authenticate themselves using
SASL, might use channel definitions along the lines of:

tcp_local smtp mx single_sys maysaslserver saslswitchchannel tcp_auth
TCP-DAEMON

tcp_auth smtp mx single_sys mustsaslserver
TCP-AUTH

with an ORIG_SEND_ACCESS mapping table along the lines of:

ORIG_SEND_ACCESS

tcp_local|*|tcp_local|* $NSMTP$ relaying$ not$ permitted

Here the tcp_local channel is assumed to be the ‘‘external’’ TCP/IP channel. An
attempt to submit without authentication a message that would go straight back out the
tcp_local channel will be rejected due to the ORIG_SEND_ACCESS entry shown. But
if a connection from an external system performs SASL authentication, the connection
is switched to the tcp_auth channel. The tcp_auth channel will not allow messages
submission unless the remote connecting client successfully authenticates itself. For
connections that do authenticate, the messages will be accepted on the tcp_auth
channel, and can be relayed out via the tcp_local channel, should that be the
appropriate destination channel.

A similar example would be for a site that also allows relaying by ‘‘internal’’ clients
or systems, using switchchannel and rewrite rules to associate and switch ‘‘internal’’
connections – connections from .example.com subdomains or IP addresses in the 1.2.3.0
subnet – to their tcp_internal channel. Such a site might use rewrite rules:

.example.com $U%$H$D@TCP-INTERNAL
[1.2.3.] $U%[1.2.3.$L]@TCP-INTERNALER

and channel definitions along the lines of

14–23

Connection Authentication, SASL, and Password Management
SASL Configuration for TCP/IP Channels

tcp_local smtp mx single_sys maysaslserver saslswitchchannel tcp_auth \
switchchannel
TCP-DAEMON

tcp_internal smtp mx single_sys maysaslserver allowswitchchannel
TCP-INTERNAL

tcp_auth smtp mx single_sys mustsaslserver noswitchchannel
TCP-AUTH

with an ORIG_SEND_ACCESS mapping table along the lines of:

ORIG_SEND_ACCESS

tcp_local|*|tcp_local|* $NSMTP$ relaying$ not$ permitted

Connections from ‘‘internal’’ systems will be switched to the tcp_internal channel.
That channel will permit SASL use (though clients need not bother to use SASL).
Connections from external systems that use SASL to authenticate will be switched to
tcp_auth. Since the tcp_internal and tcp_auth channels can send out via tcp_local
(are not blocked by ORIG_SEND_ACCESS), then messages from internal users or from
external users who use SASL authentication will be permitted to be submitted to the
Internet. But all other attempted messages submissions from external systems, to
attempted Internet destinations, will be rejected due to the ORIG_SEND_ACCESS entry.

TCP/IP channels can also be configured to place the SASL authenticated address in
the headers; see Section 2.3.4.44 and Section 16.1.3.

Note that if you are using a compiled PMDF configuration, you will need to recompile
and reinstall it after making changes to TCP/IP channels in the PMDF configuration file.
Also, after changes to TCP/IP channel definitions, the PMDF SMTP server should be
restarted with the command pmdf restart smtp (UNIX or OpenVMS) or pmdf restart
dispatcher (Windows).

14.4.2 SMTP Client

PMDF has the ability to configure the TCP/IP channel client to use SASL via the
SMTP AUTH command when sending mail out from the PMDF MTA to a remote MTA.
This is primarily needed by home users who are running PMDF on their home systems
and have an ISP that requires a username and password to be able to send out mail
through the ISP’s MTA.

The username and password to use for authentication is configured in a CLIENT_AUTH
section, as discussed in Section 14.2. An example CLIENT_AUTH section for remote sys-
tem ’alpha’ is as follows:

[CLIENT_AUTH=alpha]
USER=alpha-username
PASSWORD=alpha-password

The TCP/IP channel also needs to be configured to enable client-side SASL. This is
done with one of the following channel keywords: maysaslclient, mustsaslclient,
maysasl, or mustsasl. For details see Section 2.3.4.43.

14–24

Connection Authentication, SASL, and Password Management
SASL Configuration for TCP/IP Channels

By default, the [CLIENT_AUTH=default] section is used to get the username
and password. To use a different CLIENT_AUTH section, specify its name using the
client_auth channel keyword.

This example channel definition is used to send mail out to a system called ’alpha’
on the SMTP submission port (587) using SASL and TLS.

tcp_alpha smtp mx port 587 daemon router maysaslclient allowswitchchannel \
maytls client_auth alpha

alpha.example.edu
TCP-ALPHA

14.5 Recording of SASL Use in Received: Headers and PMDF Log
Entries

When an SMTP message is received with SASL, the Received: header PMDF
constructs will include the words ‘‘with ESMTPA’’ (if received with SASL only) or
‘‘with ESMTPSA’’ (if received with TLS and SASL) rather than the usual ‘‘with SMTP’’
(received without extended SMTP), ‘‘with ESMTP’’ (received with extended SMTP), or
‘‘with ESMTPS’’ (received with TLS but not SASL).

If the logging channel keyword is enabled, then messages received or sent with
SASL used will show an ‘‘A’’ (authentication) character in addition to the usual ‘‘E’’ or
‘‘D’’ character in the mail.log* file entries. If the LOG_USERNAME PMDF option is also
set, see Section 7.3.6, then the username field of the mail.log* entries will show the
username that authenticated, prefixed with the asterisk, *, character.

14.6 The POPPASSD Server

The POPPASSD server is used to support changing authentication verifiers (pass-
words) from POP clients, using the ad-hoc password changing mechanism used by, for
instance, Eudora. Note that the POPPASSD protocol involves sending both old and new
password ‘‘in the clear’’; sites should consider this when deciding whether they want to
provide this service.

The source of the authentication verifier to be changed—whether the system
password file, PMDF user profile password (PMDF MessageStore or PMDF popstore
password), or PMDF password database, or some site defined source—can be controlled
via the PMDF security configuration; see Section 14.2. For instance, with the implicit
security rules used by PMDF if not explicit security configuration file exists, the
POPPASSD server will attempt to change the password stored in a user’s PMDF user
profile, PMDF password database, and the system password file. The POPPASSD server
will change each occurrence of the user’s password, if the password is stored in more
than one location (for instance, stored in both the PMDF password database and the
system password file). The POPPASSD server will modify only password entries only for
those users with existing entries; it will not create a new entry for a user who did not
previously have an entry.

14–25

Connection Authentication, SASL, and Password Management
The POPPASSD Server

When changing a user’s password entry in the PMDF password database, the
POPPASSD server will preferentially change the user’s SERVICE=POP entry (if one
exists); if no POP-service-specific entry is present, then the POPPASSD server will
instead change the user’s SERVICE=DEFAULT entry.

14.6.1 Configuring the POPPASSD Server

The PMDF mailbox servers configuration utility will ask if you want to run a
POPPASSD server; you should use that utility to generate the appropriate PMDF Service
Dispatcher definition; see the appropriate edition of the PMDF Installation Guide for
details on using the configuration utility. Samples of the sort of service definition that
would be created by that utility are shown in Example 14–13 and Example 14–14.

Example 14–13 Sample POPPASSD Service Definition for the Dispatcher on
OpenVMS

!
! POP3 password daemon for Eudora
!
[SERVICE=POPPASSD]
PORT=106
IMAGE=PMDF_EXE:POPPASSD.EXE
LOGFILE=PMDF_LOG:POPPASSD.LOG
MIN_PROCS=1
MAX_PROCS=2
MIN_CONNS=2
MAX_CONNS=5

Example 14–14 Sample POPPASSD Service Definition for the Dispatcher on UNIX

!
! POP3 password daemon for Eudora
!
[SERVICE=POPPASSD]
PORT=106
IMAGE=/pmdf/bin/poppassd
LOGFILE=/pmdf/log/poppassd.log
MIN_PROCS=1
MAX_PROCS=2
MIN_CONNS=2
MAX_CONNS=5
USER=root

Once such a service definition has been added to the Dispatcher configuration file,
you must restart the PMDF Service Dispatcher so that it will start the new service, or
start the Dispatcher if it was not running previously; see Chapter 11 for details.

14–26

Connection Authentication, SASL, and Password Management
The POPPASSD Server

14.7 The PMDF Password Database

The PMDF password database stores, as the name suggests, passwords. Note that
APOP and CRAM-MD5 passwords cannot be stored in the system password file; such
passwords must be stored in a particular format which the system password file does
not support. Therefore, in order to support use of the POP protocol’s APOP command or
AUTH command with CRAM-MD5, or the IMAP protocol’s AUTHENTICATE command
with CRAM-MD5, the user must have a password entry stored in an authentication
source other than (or in addition to) the system password file. The PMDF password
database can be that additional authentication source.

Note that in general, whether the PMDF password database is consulted at all
for authentication is controlled by the PMDF security configuration, as described in
Section 14.2. That is, a connection comes in (POP, IMAP, mailbox filtering, or, if SMTP
SASL use is enabled, SMTP) and is mapped to a security rule set; the security rule
set in the PMDF security configuration then controls where and how authentication is
performed for that connection.

For instance, the DEFAULT security rule set in PMDF’s implicit security configura-
tion (which applies if no security configuration file exists) checks first for a PMDF user
profile password (PMDF MessageStore or PMDF popstore password), next for a PMDF
password database entry, and finally falls through to checking for a system password
entry.

Thus for instance, for a POP or IMAP connection handled by the DEFAULT security
rule set, if a user attempts to authenticate using the APOP or CRAM-MD5 mechanism,
that user must either be a PMDF MessageStore or PMDF popstore user (in which case
their PMDF MessageStore or PMDF popstore password is normally1 sufficient for remote
authentication), or if they are a legacy message store (VMS MAIL on OpenVMS, or
Berkeley mailbox on UNIX) user then they must have a PMDF password database entry
in addition to their system password file entry.

For mailbox filter connections handled by the DEFAULT security rule set of PMDF’s
implicit security configuration, authentication will be performed preferentially against
the PMDF user profile (PMDF MessageStore or PMDF popstore user profile), if the user
has a user profile entry, if not then against the PMDF password database, if the user has
an entry in it, and finally, only if the user has neither sort of entry, against the system
password file.

Consider a typical configuration in which SMTP connections are handled by the
DEFAULT security rule set of PMDF’s implicit security configuration. In this case for
an SMTP connection that attempts to authenticate with the ESMTP AUTH command, if
CRAM-MD5 authentication is attempted then the user must have a PMDF user profile
entry or a PMDF password database entry. If PLAIN or LOGIN authentication is
attempted, then the password is checked first against the user’s PMDF user profile entry,
if one exists, next against the PMDF password database, and finally, only if the user has
neither sort of entry, against the system password file.

1 The PMDF MessageStore and PMDF popstore, however, each have a PWD_ELSEWHERE flag to say that its passwords
are stored elsewhere; if this is set, even a PMDF MessageStore or PMDF popstore user might use a PMDF password
database entry.

14–27

Connection Authentication, SASL, and Password Management
The PMDF Password Database

14.7.1 Location of the PMDF Password Database

The PMDF password database is pointed to by the PMDF_PASSWORD_DATABASE
logical name (OpenVMS) or PMDF tailor file option (UNIX) or Registry entry (NT), and
hence is usually the file password.auth in the PMDF table directory.

14.7.2 Entries in the PMDF Password Database

The PMDF password database is normally created and modified using the pmdf
password utility. With this utility the PMDF postmaster can set entries for users. Or
users can set and change their own passwords.

Section 14.7 above discusses whether and when the PMDF password database will
actually be used as the source of authentication information. When the PMDF password
database is used as the source of authentication information, then an additional issue
can arise, namely which of a user’s possibly multiple entries will be checked for the
authentication. That is, a user can have multiple entries in the PMDF password
database, one for each allowed service value. The sort of connection (assuming that
the PMDF password database is even checked) will control which service entry is
preferentially checked. Note that the sort of service entry checked has nothing to do
with the PMDF security configuration (which instead controlled whether or not the PMDF
password database was queried at all); the sort of service entry checked when the PMDF
password database is queried has entirely to do with which component of PMDF is doing
the querying (what sort of connection this regards).

Queries by the POP server will first check a user’s POP service entry, but if such an
entry does not exist will fall through to the user’s DEFAULT service entry. Queries by
the IMAP server will first check a user’s IMAP service entry, but if such an entry does
not exist will fall through to the user’s DEFAULT service entry.

Queries for mailbox filtering will check which channel a user matches. For a user
matching the msgstore channel, the mailbox filter query will preferentially use the user’s
service=IMAP entry, but if such an entry does not exist will fall through to the user’s
service=DEFAULT entry. For a user matching the popstore channel, the mailbox filter
query will preferentially use the user’s POP service entry, but if such an entry does not
exist will fall through to the user’s DEFAULT service entry. For a user matching the
local channel, the mailbox filter query will use the user’s DEFAULT service entry.

Most sites and users will not want to use service specific password database entries.
Then each user has one entry, their DEFAULT service entry, used whenever the PMDF
password database is queried.

But for sites and users who do want to use service specific password database entries,
while the above description of service specific probes can sound complicated, the goal is
simply to query the ‘‘natural’’ password entry for each case.

14–28

15PMDF-TLS: Transport Layer Security

Note: PMDF-TLS is a separately licensed layered product built on top of PMDF.

PMDF-TLS implements the TLS protocol (Transport Layer Security; see RFC 2246)
for PMDF’s servers and clients. Transport Layer Security is currently supported for:

• SMTP (server and client),

• IMAP,

• POP3, and

• HTTP.

PMDF-TLS provides for a secure data stream between the client and the server so
that users can ensure that the data that is exchanged between their system and a remote
system using TLS will be protected from others on the network.

Note that TLS is backwards compatible with SSL (Secure Sockets Layer) and PMDF-
TLS is fully compatible with SSL-enabled clients. Because TLS includes all necessary
SSL functionality, this document will refer to TLS exclusively.

15.1 Overview of Operation

There are two modes of operation that PMDF-TLS supports:

1. Connecting to a TLS-enabled port where TLS negotiation happens immediately once
the TCP connection has been established; and

2. Connecting to a ‘‘regular’’ port and then issuing a STARTTLS command1 to begin
TLS negotiation.

The only difference between these two modes is when the TLS negotiation happens. In
both cases, once the TLS negotiation is complete, all subsequent data sent across the
TCP connection will be secure.

Connecting to a special port number is currently the more commonly used way
to connect to a TLS-enabled server, but connecting to a regular port and issuing a
STARTTLS command is expected to become the preferred technique. SMTP, IMAP, and
POP3 all have established ports for use with TLS (port numbers 465, 993, and 995,
respectively). When a client connects to one of these special ports (as configured in the
Dispatcher configuration file), PMDF-TLS will immediately begin TLS negotiation. Once
the negotiation is complete, the connection will be given to the service as usual.

1 RFC 2487 defines the STARTTLS command for SMTP; RFC 2595 defines the STARTTLS command for IMAP and POP.

15–1

PMDF-TLS: Transport Layer Security
Overview of Operation

In the case that a STARTTLS command is used, the TCP connection is established on
the usual port number (or an alternate port number if configured in the Dispatcher) and
given to the service normally. For instance, if TLS is available to the client in an SMTP
session, the server will advertise STARTTLS as one of its available SMTP extensions;
the client will then issue the STARTTLS command, the server will acknowledge receipt
of the SMTP command and instruct the client to begin TLS negotiation. Again, once the
negotiation is complete, the connection continues normally.

15.2 Configuration

Configuration of TLS consists of two parts: setting up the certificate that will be
used by PMDF-TLS, and enabling TLS functionality in the various PMDF servers.

15.2.1 Certificate Setup

Note: See the Glossary for definitions of unfamiliar terms.

PMDF-TLS requires a TLS certificate in order to accept TLS connections. This
certificate is presented to the client during the negotiation of a TLS connection and
is used to determine the secret private key that will be used to encrypt the connection
between the server and the client.

Certificates can be requested from a Certificate Authority such as such as Thawte
Consulting, Verisign, Inc., or a free certificate from Let’s Encrypt.

It is possible to use self-signed certificates, but most clients and servers will no longer
allow self-signed certificates, so they are not going to be covered here. If you want to
create a self-signed certificate, the openssl utility on an OpenVMS or Linux system can
be used to generate them.

15.2.1.1 Getting a Certificate Authority to Sign Your Certificate

Once you have your certificate request completed, you then need to have it signed
by the Certificate Authority of your choice. Some sites can choose to have their
requests signed by an in-house Authority, but many will choose to go to an independent
Certificate Authority, such as Thawte Consulting (http://www.thawte.com/) or Verisign,
Inc., (http://www.verisign.com/).

Both of these Authorities will provide complete information on what is needed to
complete your certificate request. For PMDF usage, tell the signing Authority that you
want a ‘‘web server’’ or ‘‘server’’ sort of certificate.

When you have finished the process of getting a signed certificate from a Certificate
Authority, you’ll have a new file that starts with

15–2

PMDF-TLS: Transport Layer Security
Configuration

-----BEGIN CERTIFICATE-----

You should place this signed certificate file on your system as server-pub.pem in the
PMDF table directory.

15.2.1.2 Chained Certificates

PMDF supports chained TLS certificates. In order to use these, concatenate all of the
certificates into the server-pub.pem file in the PMDF table directory. The local server
certificate should be first, followed by one or more intermediary certificates, and finally
the root certificate. Make sure all of the separators (i.e. "—–BEGIN CERTIFICATE—-")
remain intact.

15.2.2 Enabling TLS Functionality in PMDF

In order to start using PMDF-TLS in conjunction with PMDF’s servers, you must
have your private key and public certificate ready and in place; these are normally
obtained as described above in Section 15.2.1. Specifically, you must have the following
files in the PMDF table directory:

• server-priv.pem (this file must be protected against world access; in addition, on
UNIX it must be owned by the pmdf user), and

• server-pub.pem.

The server-pub.pem file should preferentially be a signed certificate returned by a
well-recognized Certificate Authority in response to your certificate request, as described
in Section 15.2.1.1 above.

PMDF’s TLS-related services are either enabled by use of alternate port numbers
or by turning on the STARTTLS functionality. The use of alternate port numbers is
discussed further in Section 15.2.2.1 below. Configuring whether and when to use
or allow the STARTTLS command in the PMDF SMTP server is discussed further in
Section 15.2.2.2 below. PMDF’s SASL use can also be combined with TLS use, as
discussed in Section 15.2.2.3 below.

Note: As soon as the PMDF-TLS license is enabled, PMDF assumes that you want to use
TLS. TLS is automatically initialized. This means, for example, that the STARTTLS
functionality is automatically turned on for IMAP and POP server use on the standard
port numbers.

15–3

PMDF-TLS: Transport Layer Security
Configuration

15.2.2.1 Dispatcher-related Configuration for Alternate Port Numbers

If you have not already configured the Dispatcher, you must do so; see the appropriate
edition of the PMDF Installation Guide. Once the Dispatcher is configured, you will have
services defined in sections that look something like:

[SERVICE=SMTP]
PORT=25
...

To enable TLS for such a Dispatcher service, you simply add a TLS_PORT option to the
configuration for that service. For example, to add TLS support on port 465 for SMTP
(the established port for SMTP TLS use), you’d use:

[SERVICE=SMTP]
PORT=25
TLS_PORT=465
...

You can similarly add TLS support for POP3, IMAP, and HTTP by adding similar
lines, e.g.,

[SERVICE=POP3]
PORT=110
TLS_PORT=995
...
!
[SERVICE=IMAP]
PORT=143
TLS_PORT=993
...
!
[SERVICE=HTTP]
PORT=7633
TLS_PORT=443
...

Note that to use TLS for HTTP, the user must specify https:// in their browser
when pointing to the PMDF web interface.

If you want to use multiple certificates, or if you want to specify use of a certificate
stored in files with names other than the default server-pub.pem and server-
priv.pem names, then you can set one or more instances of the TLS_CERTIFICATE
Dispatcher option to specify your certificate(s). Up to five TLS_CERTIFICATE lines can
be specified; each should specify a pair of files comprising a particular certificate.

Once the Dispatcher configuration modifications are complete, you must restart the
Dispatcher (if it is currently running) or start it (if it is not currently running) so that the
new Dispatcher configuration with the new port numbers takes effect; see Section 11.4.

15–4

PMDF-TLS: Transport Layer Security
Configuration

15.2.2.2 TCP/IP Channel Configuration for TLS Use

PMDF supports a number of keywords on the TCP/IP channels to control whether
TLS functionality is desired or required. The functions of these keywords are summarized
in Table 15–1; see also Section 2.3.4.45 and Section 2.3.4.46.

Table 15–1 PMDF-TLS Channel Block keywords

Keyword Usage

notls The combination of notlsserver and
notlsclient; this is the default

maytls The combination of maytlsserver and
maytlsclient

musttls The combination of musttlsserver and
musttlsclient

notlsserver Do not offer the STARTTLS extension and do not
accept a STARTTLS command from a remote client

maytlsserver Offer and accept STARTTLS (if not already TLS-
enabled)

musttlsserver Offer and require STARTTLS (if not already TLS-
enabled); if TLS has not been negotiated, refuse to
accept any mail during this session with a ‘‘530’’ error

notlsclient Do not attempt to use STARTTLS even if offered by a
remote SMTP server

maytlsclient If STARTTLS is offered by a remote SMTP server,
attempt to use TLS

musttlsclient Use STARTTLS if offered by a remote SMTP server,
but if not available, this message delivery will be
aborted

tlsswitchchannel channelname If TLS is used, switch to the channel specified as the
channelname parameter to this keyword

nomsexchange Advertise (and accept) standard TLS commands; this
is the default

msexchange Advertise (and accept) broken TLS commands as
used by, for instance, MS Exchange

Enabling (or requiring) the use of TLS can be of interest on dedicated channels
intended for communicating sensitive information with companion systems that also
support TLS.

Enabling the use of TLS for the SMTP server can also be of particular interest when
SMTP SASL use has been enabled. Since with SMTP SASL use, a remote client will
be sending a password over the network, then, especially if the PLAIN authentication
mechanism is used (password sent ‘‘in the clear’’), it can be particularly desirable to use
TLS so that the entire transaction, including the password, is encrypted.

Use of the tlsswitchchannel keyword can be of interest for logging purposes,
so that PMDF log entries show the message as coming in via a special channel. Use
of the tlsswitchchannel keyword can also be of interest if it is desired to route
messages submitted using TLS differently (using source channel specific rewrite rules)
than messages submitted without TLS.

15–5

PMDF-TLS: Transport Layer Security
Configuration

15.2.2.3 TLS Use and SASL

There is some added support for TLS in SASL. Using SASL, you can restrict
which password methods are available based on the strength (or existence) of the
encryption being used. This is controlled via the RESTRICT option in the PMDF security
configuration file; see Section 14.2.2 for details. See also Example 15–5 below for an
example of use of this option.

15.2.2.4 Sample TLS Configuration

A sample configuration of enabling TLS use in PMDF will be presented for a sample
PMDF-TLS site domain.com. The significant features of this sample configuration are
as follows.

1. The Dispatcher will be configured to automatically use TLS when connections come
in on alternate, established ports for TLS use for SMTP, POP, and IMAP connections.

2. Incoming SMTP, POP, and IMAP connections will be categorized according as to
whether the connection is coming from an ‘‘internal’’ source or an ‘‘external’’ source,
where ‘‘internal’’ sources are assumed to be those in the 1.2.3.0 subnet.

3. POP and IMAP client connections from ‘‘external’’ sources will not be allowed to
authenticate using the PLAIN or LOGIN mechanisms (which both involve sending
the password ‘‘in the clear’’ over the network) unless at least 40 bits of TLS
encryption are used by the client. That is, POP and IMAP clients connecting from
‘‘external’’ sources must either authenticate using the SASL CRAM-MD5 mechanism
(or APOP in the case of POP), which involves encryption in the actual authentication
mechanism, or must use (at least 40 bits of) TLS encryption for the overall transaction
in order to use the PLAIN or LOGIN mechanisms for authentication.

4. TLS and SASL will be offered to incoming SMTP connections for clients that want to
negotiate their use. ‘‘External’’ clients can not submit SMTP messages for relaying
unless they use SASL to authenticate themselves. Further, when performing SASL
authentication from ‘‘external’’ clients, PLAIN or LOGIN authentication (either of
which involve sending the password ‘‘in the clear’’ over the network) will not be
allowed unless at least 40 bits worth of TLS encryption are in use. That is, permitted
SMTP message traffic will include:

• Any messages submitted from ‘‘internal’’ clients.

• Any messages submitted from ‘‘external’’ clients destined for ‘‘internal’’ recipients.

• Any messages submitted from ‘‘external’’ clients that use SASL to authenticate
themselves and TLS to encrypt that authentication (as well as the data transfer);
this includes cases where the SASL authentication itself is performed using what
is normally an ‘‘in the clear’’ mechanism such as PLAIN or LOGIN since TLS is
being used to encrypt the overall message transaction.

• Any messages submitted from ‘‘external’’ clients that use SASL to authenticate
themselves using the CRAM-MD5 SASL mechanism.

15–6

PMDF-TLS: Transport Layer Security
Configuration

In order to automatically allow TLS use when connecting to a TLS established
alternate port, item (1) above, the Dispatcher configuration file includes TLS_PORT
option settings as shown in Example 15–1 (OpenVMS) or Example 15–2 (UNIX) or
Example 15–3 (Windows). Note that the samples shown are merely excerpts; a typical
site is likely to have (and want) several additional services defined and several additonal
options set within the individual service definitions.

Example 15–1 Excerpt of a Sample dispatcher.cnf File for TLS Ports on
OpenVMS

!
! Global defaults
!
MIN_PROCS=1
MAX_PROCS=5
MIN_CONNS=3
MAX_CONNS=10
MAX_SHUTDOWN=2
MAX_LIFE_TIME=86400
MAX_LIFE_CONNS=300
MAX_IDLE_TIME=600
!
! multithreaded SMTP server
!
[SERVICE=SMTP]
PORT=25
TLS_PORT=465
IMAGE=PMDF_EXE:TCP_SMTP_SERVER.EXE
LOGFILE=PMDF_LOG:TCP_SMTP_SERVER.LOG
!
! POP3 server
!
[SERVICE=POP3]
PORT=110
TLS_PORT=995
IMAGE=PMDF_EXE:POP3D.EXE
LOGFILE=PMDF_LOG:POP3D.LOG
!
! IMAP server
!
[SERVICE=IMAP]
PORT=143
TLS_PORT=993
IMAGE=PMDF_EXE:IMAPD.EXE
LOGFILE=PMDF_LOG:IMAPD.LOG

15–7

PMDF-TLS: Transport Layer Security
Configuration

Example 15–2 Excerpt of a Sample dispatcher.cnf File for TLS Ports on UNIX

!
! Global defaults
!
MIN_PROCS=1
MAX_PROCS=5
MIN_CONNS=3
MAX_CONNS=10
MAX_SHUTDOWN=2
MAX_LIFE_TIME=86400
MAX_LIFE_CONNS=300
MAX_IDLE_TIME=600
!
! multithreaded SMTP server
!
[SERVICE=SMTP]
PORT=25
TLS_PORT=465
IMAGE=/pmdf/bin/tcp_smtp_server
LOGFILE=/pmdf/log/tcp_smtp_server.log
!
! POP3 server
!
[SERVICE=POP3]
PORT=110
TLS_PORT=995
IMAGE=/pmdf/bin/pop3d
LOGFILE=/pmdf/log/pop3d.log
!
! IMAP server
!
[SERVICE=IMAP]
PORT=143
TLS_PORT=993
IMAGE=/pmdf/bin/imapd
LOGFILE=/pmdf/log/imapd.log

In order to categorize incoming SMTP, POP, and IMAP connections into those
from ‘‘internal’’ sources (assumed to be any in the 1.2.3.0 subnet) and those from
‘‘external’’ sources, a PORT_ACCESS mapping table is used as shown in Example 15–4;
see Section 11.5 for general background on the PORT_ACCESS mapping table and
Section 14.3 for more details on categorizing incoming connections in particular.

In order to enforce that connections from ‘‘external’’ sources that perform authentica-
tion must either use an encrypted mechanism (e.g., CRAM-MD5) for that authentication,
or if using one of the PLAIN or LOGIN mechanisms must be securing the entire transac-
tion using TLS with at least 40 bits of encryption, item (3) and part of item (4) above, a
PMDF security configuration file as in Example 15–5 is used. Note that this security con-
figuration file uses different security rulesets for ‘‘internal’’ and ‘‘external’’ connections,
as selected by the PORT_ACCESS mapping shown in Example 15–4 above.

15–8

PMDF-TLS: Transport Layer Security
Configuration

Example 15–3 Excerpt of a Sample dispatcher.cnf File for TLS Ports on NT

!
! Global defaults
!
MIN_PROCS=1
MAX_PROCS=5
MIN_CONNS=3
MAX_CONNS=10
MAX_SHUTDOWN=2
MAX_LIFE_TIME=86400
MAX_LIFE_CONNS=300
MAX_IDLE_TIME=600
!
! multithreaded SMTP server
!
[SERVICE=SMTP]
PORT=25
TLS_PORT=465
IMAGE=C:\pmdf\bin\tcp_smtp_server
LOGFILE=C:\pmdf\log\tcp_smtp_server.log
!
! POP3 server
!
[SERVICE=POP3]
PORT=110
TLS_PORT=995
IMAGE=C:\pmdf\bin\pop3d
LOGFILE=C:\pmdf\log\pop3d.log
!
! IMAP server
!
[SERVICE=IMAP]
PORT=143
TLS_PORT=993
IMAGE=C:\pmdf\bin\imapd
LOGFILE=C:\pmdf\log\imapd.log

Example 15–4 Sample PORT_ACCESS Mapping Categorizing Incoming Connections

PORT_ACCESS

! Connections from the 1.2.3.0 subnet will be considered internal
!
TCP|*|*|$(1.2.3.0/24)|* $YINTERNAL

!
! Block all access to the PMDF HTTP server from external sources
!
TCP|7633|*|* $N

!
! All other connections will be considered external
!
TCP|*|*|*|* $YEXTERNAL

In order to restrict SMTP relaying from ‘‘external’’ sources unless they authenticate
themselves using SASL, a TCP/IP channel configuration similar to that shown in

15–9

PMDF-TLS: Transport Layer Security
Configuration

Example 15–5 Sample security.cnf File for Enforcing TLS Use with PLAIN and
LOGIN Mechanisms for External Connections

[RULESET=DEFAULT]
ENABLE=MSGSTORE/*,PASSDB/*,SYSTEM/*
!
[RULESET=INTERNAL]
ENABLE=MSGSTORE/*,PASSDB/*,SYSTEM/*,LOGIN/LOGIN
!
[RULESET=EXTERNAL]
ENABLE=MSGSTORE/*,PASSDB/*,SYSTEM/*,LOGIN/LOGIN
RESTRICT=PLAIN:40,LOGIN:40

Section 14.4 will be used. However, the configuration will be further tuned to allow
TLS use for incoming connections. The TLS use is expected to be particularly relevant
for connections from ‘‘external’’ sources since, due to the PORT_ACCESS mapping and
PMDF security configuration file described above, ‘‘external’’ clients that want to SASL
authenticate themselves using either of the PLAIN or LOGIN mechanisms can only do
so if they also use TLS. Appropriate rewrite rules in the PMDF configuration file could
be along the lines of:

.domain.com $U%$H$D@TCP-INTERNAL
[1.2.3.] $U%[1.2.3.$L]@TCP-INTERNALER

with channel definitions along the lines of

tcp_local smtp mx single_sys maytls \
maysaslserver saslswitchchannel tcp_auth switchchannel

TCP-DAEMON

tcp_internal smtp mx single_sys maytls \
maysaslserver allowswitchchannel routelocal

TCP-INTERNAL

tcp_auth smtp mx single_sys maytlsserver \
mustsaslserver noswitchchannel

TCP-AUTH

and with an ORIG_SEND_ACCESS mapping table along the lines of:

ORIG_SEND_ACCESS

tcp_local|*|tcp_local|* $NSMTP$ relaying$ not$ permitted

15.3 Recording of TLS Use in Received: Headers and PMDF Log
Entries

When a message is received with TLS, the Received: header PMDF constructs will
include the words ‘‘with ESMTPS’’ (if received with TLS only) or ‘‘with ESMTPSA’’ (if
received with TLS and SASL) rather than the usual ‘‘with SMTP’’ (received without
extended SMTP), ‘‘with ESMTP’’ (received with extended SMTP), or ‘‘with ESMTPA’’
(received with SASL but not TLS).

15–10

PMDF-TLS: Transport Layer Security
Recording of TLS Use in Received: Headers and PMDF Log Entries

If the logging channel keyword is enabled, then messages received or sent with TLS
used will show an ‘‘S’’ (security) character in addition to the usual ‘‘E’’ or ‘‘D’’ character.

15–11

16Mail Filtering and Access Control

A common goal is to outright reject messages from (or to) certain users at the system
level, or to institute more complex restrictions of message traffic between certain users,
or to allow users to set up filters on their own incoming messages (including rejecting
messages based on contents of the message headers). This chapter will discuss some
of PMDF’s facilities in these areas, including: system level mapping tables such as
SEND_ACCESS, FROM_ACCESS, and MAIL_ACCESS that permit both simple and
sophisticated restrictions of message traffic based on source and destination and envelope
From: and To: addresses—see Section 16.1; user level (and system level) message
filtering using Sieve, including sophisticated filtering based on message headers.

Related topics discussed elsewhere in this manual include: system level blocking of
connections from (or to) particular systems—see the discussion of the PORT_ACCESS
mapping table in Section 11.5; using different authentication mechanisms for different
sorts of connections – see Chapter 14; and techniques falling under the general category
of protecting against denial of service attacks—see Section 28.4.5.3.

Use of mapping tables such as SEND_ACCESS, MAIL_ACCESS, FROM_ACCESS,
etc., is an efficient approach when ‘‘envelope level’’ controls are desired—see Section 16.1.
When users want to implement their own personalized controls, or when header-based
filtering is desired, the more general mail filtering approach using Sieve is likely
appropriate—see Section 16.2.

16.1 Address-based Access Control Mappings

There are several mapping tables that can be used to control who can or can not
send mail, receive mail, or both. For general information on the format and usage of
the PMDF mapping file, see Chapter 5. The SEND_ACCESS, ORIG_SEND_ACCESS,
MAIL_ACCESS, ORIG_MAIL_ACCESS, and FROM_ACCESS mappings are described
below. The nature of these mappings is very general and allows per channel granularity.

In the case of messages that come in channels where the underlying network
connection is handled via the PMDF Dispatcher, including the PMDF multithreaded TCP
SMTP channels, and the Lotus Notes channels, there is a related mapping table, PORT_
ACCESS, which can be used to block incoming connections based on IP number; see
Section 21.2.1. Although the PORT_ACCESS mapping table does not allow for the fine
level of granularity of the SEND_ACCESS and related mapping tables and applies only
to certain channels, it is more efficient for what it does do, since it rejects a disallowed
hosts’ connection attempt at the TCP level, before the channel dialogue has even begun.

The MAIL_ACCESS and ORIG_MAIL_ACCESS mappings are the most general, hav-
ing available not only the address and channel information available to SEND_ACCESS
and ORIG_SEND_ACCESS, but also any information that would be available via the
PORT_ACCESS mapping table, including IP address and port number information.

16–1

Mail Filtering and Access Control
Address-based Access Control Mappings

16.1.1 The SEND_ACCESS and ORIG_SEND_ACCESS Mappings

The SEND_ACCESS and ORIG_SEND_ACCESS mapping tables can be used to
control who can or can not send mail, receive mail, or both. The access checks have
available by default:

• a message’s envelope From: address

• a message’s envelope To: address

• what channel the message came in on

• what channel the message would attempt to go out on

If the ACCESS_ORCPT option is specified as 1 in the PMDF option file, then a fifth piece
of information is added to the probe: the original recipient information (the value of the
ORCPT option in the SMTP protocol exchange).

Note that when the To: addresses are irrelevant and only the From: address matters,
then use of the FROM_ACCESS mapping table, described below in Section 16.1.3, can
be more convenient and efficient.

If a SEND_ACCESS or ORIG_SEND_ACCESS mapping table exists, then for each
recipient of every message passing through PMDF, PMDF will probe the table by default
with a probe string of the form (note the use of the vertical bar character, |):

src-channel|from-address|dst-channel|to-address

If the ACCESS_ORCPT option is set to 1, then the probe string form is:

src-channel|from-address|dst-channel|to-address|orcpt-address

where

• src-channel is the channel originating the message (i.e., queueing the message);

• from-address is the address of the message’s originator;

• dst-channel is the channel to which the message will be queued;

• to-address is the address to which the message is addressed;

• orcpt-address is the original recipient address (ORCPT).

The use of an asterisk in any of these fields causes that field to match any channel or
address, as appropriate.

The addresses here are envelope addresses, that is, envelope From: address and
envelope To: address. In the case of SEND_ACCESS, the envelope To: address is checked
after rewriting, alias expansion, etc., have been performed; in the case of ORIG_SEND_
ACCESS the originally specified envelope To: address is checked after rewriting, but
before alias expansion.

16–2

Mail Filtering and Access Control
Address-based Access Control Mappings

If the probe string matches a pattern (i.e., the left hand side of an entry in the table),
then the resulting output of the mapping is checked. If the output contains the flags $Y
or $y, then the enqueue for that particular To: address is permitted. If the mapping
output contains any of the flags $N, $n, $F, or $f, then the enqueue to that particular
address is rejected. In the case of a rejection, optional rejection text can be supplied in
the mapping output. This string will be included in the rejection error PMDF issues.1 If
no string is output (other than the $N, $n, $F, or $f flag), then default rejection text will
be used. See Table 16–1 for descriptions of additional flags.

In the following example, note that mail sent from OpenVMS user agents such
as VMS MAIL, PMDF MAIL, etc., or from UNIX user agents such as mail, Pine, etc.,
originates from the local, l, channel and messages to the Internet go out a TCP/IP channel
of some sort. Now, suppose that local users, with the exception of the postmaster, are
not allowed to send mail to the Internet but can receive mail from there. Then the
SEND_ACCESS mapping table shown in Example 16–1 is one possible way to enforce
this restriction. In that example, the local host name is assumed to be example.com. In
the channel name ‘‘tcp_*’’, a wild card is used so as to match any possible TCP/IP channel
name (e.g., tcp_local, tcp_gateway, etc.). In the rejection message, dollar signs are used
to quote spaces in the message. Without those dollar signs, the rejection would be ended
prematurely and only read ‘‘Internet’’ instead of ‘‘Internet postings are not permitted’’.
Note that this example ignores other possible sources of ‘‘local’’ postings such as from PC
based mail systems or POP or IMAP clients.

Example 16–1 Restricting Internet Mail Access

SEND_ACCESS

|postmaster@example.com||* $Y
||*|postmaster@example.com $Y
l|*@example.com|tcp_*|* $NInternet$ postings$ are$ not$ permitted

Table 16–1 Access Mapping Flags®

Flag Description

$B Redirect the message to the bitbucket

$H Hold the message as a .HELD file

$Y Allow access

Flags with arguments, in argument reading order†

$Jaddress Replace original envelope From: address with specified address§

$Kaddress Replace original Sender: address with specified address§

$Iuser|identifier Check specified user for specified identifier (OpenVMS) or groupid (UNIX)

§Available for FROM_ACCESS table only

†To use multiple flags with arguments, separate the arguments with the vertical bar character, |,
placing the arguments in the order listed in this table.

1 Note that it is up to whatever is attempting to send the message whether the PMDF rejection error text is actually
presented to the user who attempted to send the message. In particular, in the case when SEND_ACCESS is used to
reject an incoming SMTP message, PMDF merely issues an SMTP rejection code including the optional rejection text; it is
up to the sending SMTP client to use that information to construct a bounce message to send back to the original sender.

16–3

Mail Filtering and Access Control
Address-based Access Control Mappings

Table 16–1 (Cont.) Access Mapping Flags®

Flag Description

Flags with arguments, in argument reading order†

$<string Send string as an OPCOM broadcast (OpenVMS) or to syslog (UNIX)
or to the event log (NT) if probe matches‡

$>string Send string as an OPCOM broadcast (OpenVMS) or to syslog (UNIX)
or to the event log (NT) if access is rejected ‡

$Ddelay Delay response for an interval of delay hundredths of seconds; a
positive value causes the delay to be imposed on each command in the
transaction; a negative value causes the delay to be imposed only on the
address handover (SMTP MAIL FROM: command for the FROM_ACCESS
table; SMTP RCPT TO: command for the other tables)

$Ttag Prefix with tag tag

$Aheader Add the header line header to the message

$Xerror-code Issue the specified error-code extended SMTP error code if rejecting
the message

$Nstring Reject access with the optional error text string

$Fstring Synonym for $Nstring, i.e., reject access with the optional error text
string

†To use multiple flags with arguments, separate the arguments with the vertical bar character, |,
placing the arguments in the order listed in this table.

‡It is a good idea to use the $D flag when dealing with problem senders, to prevent a denial of
service attack. In particular, it is a good idea to use $D in any $> entry or $< entry rejecting access.

16.1.2 The MAIL_ACCESS and ORIG_MAIL_ACCESS Mappings

The MAIL_ACCESS mapping table is a superset of the SEND_ACCESS and PORT_
ACCESS mapping tables; that is, it combines both the channel and address information
of SEND_ACCESS, with the IP address and port number information of PORT_ACCESS.
Similarly, the ORIG_MAIL_ACCESS mapping table is a superset of the ORIG_SEND_
ACCESS and PORT_ACCESS mapping tables. The format for the probe string for MAIL_
ACCESS is

port_access-probe-info|app-info|submit-type|send_access-probe-info

and similarly the format for the probe string for ORIG_MAIL_ACCESS is

port_access-probe-info|app-info|submit-type|orig_send_access-probe-info

Here port_access-probe-info consists of all the information usually included in a
PORT_ACCESS mapping table probe in the case of incoming SMTP messages, or will be
blank otherwise, and app-info will usually be SMTP in the case of messages submitted
via SMTP, and blank otherwise. submit-type can be one of MAIL, SEND, SAML, or
SOML, corresponding to how the message was submitted into PMDF. Normally the value
is MAIL, meaning it was submitted as a message; SEND, SAML, or SOML can occur
in the case of broadcast requests (or combined broadcast/message requests) submitted

16–4

Mail Filtering and Access Control
Address-based Access Control Mappings

to the SMTP server. And for the MAIL_ACCESS mapping, send_access-probe-

info consists of all the information usually included in a SEND_ACCESS mapping
table probe. Similarly for the ORIG_MAIL_ACCESS mapping, orig_send_access-
probe-info consists of all the information usually included in an ORIG_SEND_ACCESS
mapping table probe.

Having the incoming TCP/IP connection information available in the same mapping
table as the channel and address information makes it more convenient to impose certain
sorts of controls, such as enforcing what envelope From: addresses are allowed to appear
in messages from particular IP addresses. This can be desirable to limit cases of e-mail
forgery, or to encourage users to configure their POP and IMAP clients’ From: address
appropriately. For instance, a site that wants to allow the envelope From: address
vip@ourcorp.com to appear only on messages coming from the IP address 1.2.3.1 and
1.2.3.2, and to ensure that the envelope From: addresses on messages from any systems
in the 1.2.0.0 subnet are from ourcorp.com, might use a MAIL_ACCESS mapping table
along the lines shown in Example 16–2.

Example 16–2 Enforcing Use of Proper Source Addresses

MAIL_ACCESS

! Entries for vip’s two systems
!
TCP|*|25|1.2.3.1|*|SMTP|MAIL|tcp_*|vip@ourcorp.com|*|* $Y
TCP|*|25|1.2.3.2|*|SMTP|MAIL|tcp_*|vip@ourcorp.com|*|* $Y

!
! Disallow attempts to use vip’s From: address from other systems
!
TCP|*|25|*|*|SMTP|MAIL|tcp_*|vip@ourcorp.com|*|* \

$N500$ Not$ authorized$ to$ use$ this$ From:$ address
!
! Allow sending from within our subnet with ourcorp.com From: addresses
!
TCP|*|25|1.2.*.*|*|SMTP|MAIL|tcp_*|*@ourcorp.com|*|* $Y

!
! Allow notifications through
!
TCP|*|25|1.2.*.*|*|SMTP|MAIL|tcp_*||*|* $Y

!
! Block sending from within our subnet with non-ourcorp.com addresses
!
TCP|*|25|1.2.*.*|*|SMTP|MAIL|tcp_*|*|*|* \

$NOnly$ ourcorp.com$ From:$ addresses$ authorized

16–5

Mail Filtering and Access Control
Address-based Access Control Mappings

16.1.3 The FROM_ACCESS Mapping Table

The FROM_ACCESS mapping table can be used to control who can send mail, or to
override purported From: addresses with authenticated addresses, or both.

The input probe string to the FROM_ACCESS mapping table is similar to that for
a MAIL_ACCESS mapping table, minus the destination channel and address, and with
the addition of authenticated sender information, if available. Thus if a FROM_ACCESS
mapping table exists, then for each attempted message submission PMDF will probe the
table with a probe string of the form (note the use of the vertical bar character, |)

port_access-probe-info|app-info|submit-type|src-channel|from-address|auth-from

Here port_access-probe-info consists of all the information usually included in a
PORT_ACCESS mapping table probe in the case of incoming SMTP messages, or will be
blank otherwise, and app-info will usually be SMTP in the case of messages submitted
via SMTP, and blank otherwise. Note that if you are using TLS, that app-info contains
the TLS information, for example SMTP/TLS-168-DES-CBC3-SHA, so we recommend you
use SMTP*.

submit-type can be one of MAIL, SEND, SAML, or SOML, corresponding to how
the message was submitted into PMDF. Normally the value is MAIL, meaning it was
submitted as a message; SEND, SAML, or SOML can occur in the case of broadcast
requests (or combined broadcast/message requests) submitted to the SMTP server. src-
channel is the channel originating the message (i.e., queueing the message); from-
address is the address of the message’s purported originator; and auth-from is
the authenticated originator address, if such information is available, or blank if no
authenticated information is available.

If the probe string matches a pattern (i.e., the left hand side of an entry in the table),
then the resulting output of the mapping is checked. If the output contains the flags $Y
or $y, then the enqueue for that particular To: address is permitted. If the mapping
output contains any of the flags $N, $n, $F, or $f, then the enqueue to that particular
address is rejected. In the case of a rejection, optional rejection text can be supplied in
the mapping output. This string will be included in the rejection error PMDF issues.2 If
no string is output (other than the $N, $n, $F, or $f flag), then default rejection text will
be used. See Table 16–1 for descriptions of additional flags.

Besides determining whether to allow a message to be submitted based on the
originator, FROM_ACCESS can also be used to alter the envelope From: address via the
$J flag, or to modify the effect of the authrewrite channel keyword (adding a Sender:
header address on an accepted message) via the $K flag. For instance, this mapping table
can be used to cause the original envelope From: address to simply be replaced by the
authenticated address:

2 Note that it is up to whatever is attempting to send the message whether the PMDF rejection error text is actually
presented to the user who attempted to send the message. In particular, in the case when FROM_ACCESS is used to
reject an incoming SMTP message, PMDF merely issues an SMTP rejection code including the optional rejection text; it is
up to the sending SMTP client to use that information to construct a bounce message to send back to the original sender.

16–6

Mail Filtering and Access Control
Address-based Access Control Mappings

FROM_ACCESS

|SMTP|*|tcp_local|*| $Y
|SMTP|*|tcp_local|*|* YJ$4

When using the FROM_ACCESS mapping table to modify the effect on having au-
threwrite set to a nonzero value on some source channel, it is not necessary to use
FROM_ACCESS if the authenticated address is going to be used verbatim. For instance,
with authrewrite 2 set on the tcp_local channel, the following FROM_ACCESS map-
ping table would not be necessary:

FROM_ACCESS

|SMTP|*|tcp_local|*| $Y
|SMTP|*|tcp_local|*|* YK$4

as authrewrite alone is sufficient to get this effect (adding the authenticated address
verbatim). However, the real purpose of FROM_ACCESS is to permit more complex
and subtle alterations. For instance, perhaps you want to force on a Sender: header
only in cases where the authenticated address differs from the envelope From: address,
with subaddresses not being considered to constitute a difference, as illustrated in the
following table:

FROM_ACCESS

! If no authenticated address is available, do nothing
|SMTP|*|tcp_local|*| $Y

! If authenticated address matches envelope From:, do nothing
|SMTP|*|tcp_local|*|$3* $Y

! If authenticated address matches envelope From: sans subaddress, do nothing
|SMTP|*|tcp_local|*+*@*|$3*@$5* $Y

! Fall though to...
! ...authenticated address present, but didn’t match, so force Sender: header
|SMTP|*|tcp_local|*|* YASender:$ $4

16.1.4 When Access Controls are Applied

PMDF checks access control mappings as early as possible. Exactly when this
happens depends upon the e-mail protocol in use—when the information that must be
checked becomes available. But for instance in the case of the SMTP protocol, where
addresses are presented in the initial part of the attempted message handover, well before
the message data itself would be handed over, note that a FROM_ACCESS rejection will
occur in response to the MAIL FROM: command, before the sending side ever gets to
send the recipient information let alone the message data, while a SEND_ACCESS or
MAIL_ACCESS sort of rejection will occur in response to the RCPT TO: command, before
the sending side ever gets to send the message data. If an SMTP message is rejected,
PMDF never even accepts or sees the message data, thus minimizing the overhead of
performing such rejections.

If multiple access control mapping tables exist, PMDF will check them all; that is, a
FROM_ACCESS, a SEND_ACCESS mapping table, an ORIG_SEND_ACCESS mappings
table, a MAIL_ACCESS mapping table, and an ORIG_MAIL_ACCESS mapping table can
all be in effect.

16–7

Mail Filtering and Access Control
Address-based Access Control Mappings

16.1.5 Testing Access Control Mappings

The PMDF TEST/REWRITE (OpenVMS) or pmdf test -rewrite (UNIX and
NT) utility, particularly with the /FROM, /SOURCE_CHANNEL, and /DESTINATION_
CHANNEL (OpenVMS) or -from, -source_channel, and -destination_channel
(UNIX and NT) qualifiers, can be useful in testing access control mappings. For instance,
a SEND_ACCESS mapping table of

SEND_ACCESS

tcp_local|friendly@somewhere.com|l|AdamUser@example.com $Y
tcp_local|unwelcome@elsewhere.com|l|AdamUser@example.com NGo away!

can be probed as follows:

$ PMDF TEST/REWRITE/FROM="friendly@somewhere.com" -
_$ /SOURCE=tcp_local/DESTINATION=l AdamUser@example.com
...

Submitted address list:
l
AdamUser (EXAMPLE.COM) *NOTIFY FAILURES* *NOTIFY DELAYS*

Submitted notifications list:

$ PMDF TEST/REWRITE/FROM="unwelcome@elsewhere.com" -
_$ /SOURCE=tcp_local/DESTINATION=l AdamUser@example.com
...

Submitted address list:
Address list error -- Go away!: AdamUser@example.com

Submitted notifications list:

16.1.6 SMTP Relay Blocking

One application of access control mappings is to prevent people from relaying SMTP
mail through your PMDF system; for instance, to prevent people from using your PMDF
system to relay junk mail to hundreds or thousands of Internet mail boxes.

By default PMDF does not prevent SMTP relaying activity: for starters, SMTP
relaying is not necessarily a bad thing. Sites should only block such activity if it is
causing them difficulty. Morever, note that local users using POP or IMAP depend upon
PMDF to act as an SMTP relay. Blocking unauthorized relaying while allowing it for
legitimate local users requires configuring PMDF to know how to distinguish between
the two classes of users. Configuring PMDF to make this distinction is the topic of the
next section.

16–8

Mail Filtering and Access Control
Address-based Access Control Mappings

16.1.6.1 Differentiating Between Internal and External Mail

In order to block mail relaying activities, you must first be able to differentiate
between ‘‘internal’’ mail originated at your site and ‘‘external’’ mail originated out on the
Internet and passing through your system back out to the Internet. The former class
of mail you want to permit; the latter class you want to block. This differentiation is
achieved using the switchchannel keyword on your inbound SMTP channel, usually
the tcp_local channel.

The switchchannel keyword works by causing the PMDF SMTP server to look at
the actual IP address associated with the incoming SMTP connection. PMDF uses that
IP address, in conjunction with your rewrite rules, to differentiate between an SMTP
connection originated within your domain and a connection from outside of your domain.
This information can then be used to segregate the message traffic between internal and
external traffic.3

Let’s now actually change your PMDF configuration so that you can differentiate
between your internal and external message traffic. This is done by editing your PMDF
configuration file, pmdf.cnf, located in the PMDF table directory.

1. In your configuration file, locate your local channel; this is the l (lowercase L) channel
on OpenVMS or UNIX, or the msgstore channel on NT. It is usually preceded by the
first blank line to appear in the configuration file. Immediately before the local
channel, add the following defaults channel:

defaults noswitchchannel

So that the configuration file appears something like

! final rewrite rules

defaults noswitchchannel

! Local channel
l ...

If you already have a defaults channel at this point in your configuration file, then
simply add the noswitchchannel keyword to it.

2. Next, modify your incoming TCP/IP channel to specify the switchchannel and
remotehost keywords, e.g.,

tcp_local smtp single_sys mx switchchannel remotehost
TCP-DAEMON

3 Since the source IP address is used, it is important that your network router connecting your local network to the Internet
be configured to prevent ‘‘IP spoofing’’. Contact your router vendor for assistance if you are unsure of how to configure
your router.

16–9

Mail Filtering and Access Control
Address-based Access Control Mappings

3. Then, after your incoming TCP/IP channel definition, add a similar new channel but
with a different name, e.g.:)

tcp_auth smtp single_sys mx allowswitchchannel routelocal
TCP-INTERNAL

The routelocal channel keyword is used to cause short-circuited rewriting of source
routed addresses through this channel, thereby blocking possible attempts to relay by
means of looping through internal SMTP hosts via explicitly source routed addresses.

4. Finally, add rewrite rules to route hosts and IP addresses in your domain to the
tcp_internal channel. For instance, if your domain name is example.com and your
domain’s IP numbers are in the [a.b.subnet] range, then add to the top of your
configuration file the rewrite rules

.example.com $U%$H$D@TCP-INTERNAL
[a.b.] $U%[a.b.$L]@TCP-INTERNALER

With the above configuration changes, SMTP mail generated within your domain
will come in via the tcp_internal channel. All other SMTP mail will come in via the tcp_
local channel. You can therefore distinguish between internal and external mail based
upon which channel it comes in on.

How does the above work? The key is the switchchannel keyword. In Step 2 above,
that keyword is applied to the tcp_local channel. When a message comes in your SMTP
server, that keyword causes the server to look at the source IP address associated with
the incoming connection. The server attempts a reverse-pointing envelope rewrite of the
literal IP address of the incoming connection, looking for an associated channel. If that
rewrite matches a local host of yours, then the rewrite rules added in Step 4 cause the
address to rewrite to the tcp_internal channel added in Step 3. Since the tcp_internal
channel is marked with the allowswitchchannel keyword, the message is ‘‘switched’’
to the tcp_internal channel and comes in on that channel. If the message comes in from
an external source, the IP address will not correspond to an internal source. In that case
the reverse-pointing envelope rewrite will either rewrite to the tcp_local channel or to
some other channel. However, it will not rewrite to the tcp_internal channel and since all
other channels were marked noswitchchannel in Step 1, the message will not ‘‘switch’’
to another channel and will remain with the tcp_local channel.

Note: Note that any mapping table or conversion file entries which use the string ‘‘tcp_local’’
can need to be changed to either ‘‘tcp_*’’ or ‘‘tcp_internal’’ depending upon the usage.

16.1.6.2 Differentiating Authenticated Users’ Mail

Sometimes administratively ‘‘local’’ users of IMAP and POP clients can want to
submit their messages when they aren’t physically local (aren’t physically on your
network). Though such message submissions come in from an external IP address—
for instance, arbitrary Internet Service Providers—if your users use mail clients
that can perform SASL authentication, then their authenticated connections can be
distinguished from arbitrary other external connections. The authenticated submissions
you can then permit, while denying non-authenticated relay submission attempts.

16–10

Mail Filtering and Access Control
Address-based Access Control Mappings

Differentiating between authenticated and non-authenticated connections is achieved
using the saslswitchchannel keyword on your inbound SMTP channel, usually the
tcp_local channel.

The saslswitchchannel keyword takes an argument specifying the channel to
switch to; if an SMTP sender succeeds in authenticating, then their submitted messages
are considered to come in the specified switched to channel.

We will now continue the example of the previous section, adding in distinguishing
authenticated submissions.

5. In your configuration file, add a new TCP/IP channel definition with a distinct name,
e.g.:

tcp_auth smtp single_sys mx mustsaslserver noswitchchannel
TCP-AUTH

This channel should not allow regular channel switching (that is, it should have
noswitchchannel on it either explicitly or implied by a prior defaults line). This
channel should have mustsaslserver on it.

6. Modify your tcp_local channel by adding maysaslserver and saslswitchchannel
tcp_auth to it. So your tcp_local channel definition should now appear along the
lines of:

tcp_local smtp mx single_sys maysaslserver saslswitchchannel tcp_auth \
switchchannel

TCP-DAEMON

With this configuration, SMTP mail sent by users who can authenticate with a local
password will now come in the tcp_auth channel. Unauthenticated SMTP mail sent from
internal hosts will still come in tcp_internal. All other SMTP mail will come in tcp_local.

16.1.6.3 Preventing Mail Relaying

Now to the point of this example: preventing unauthorized people from relaying
SMTP mail through your system. First, keep in mind that you want to allow local users
to relay SMTP mail. For instance, POP and IMAP users rely upon using PMDF to
send their mail. Note that local users can either be physically local, in which case their
messages come in from an internal IP address, or can be physically remote but able to
authenticate themselves as ‘‘local’’ users. It’s random people out on the Internet who you
want to prevent from using you as a relay. With the configuration from Section 16.1.6.1
and Section 16.1.6.2, you can differentiate between these classes of users and block the
correct class. Specifically, you want to block mail from coming in your tcp_local channel
and going back out that same channel. To that end, an ORIG_SEND_ACCESS mapping
table is used.

16–11

Mail Filtering and Access Control
Address-based Access Control Mappings

An ORIG_SEND_ACCESS mapping table can be used to block traffic based upon
the source and destination channel. In this case, traffic from and back to the tcp_local
channel is to be blocked. This is realized with the following ORIG_SEND_ACCESS
mapping table:

ORIG_SEND_ACCESS

tcp_local|*|tcp_local|* $NRelaying$ not$ permitted

In the above, the entry states that messages cannot come in the tcp_local channel and go
right back out it. That is, this entry disallows external mail from coming in your SMTP
server and being relayed right back out to the Internet.

An ORIG_SEND_ACCESS mapping table is used rather than a SEND_ACCESS
mapping table, so that the blocking will not apply to addresses that originally match the
l (lowercase ‘‘L’’) channel (but which can expand via an alias or mailing list definition
back to an ‘‘external’’ address). With a SEND_ACCESS mapping table one would have
to go to extra lengths to allow outsiders to send to mailing lists that expand back out to
‘‘external’’ users, or to send to users who forward their messages back out to ‘‘external’’
addresses.

16.1.6.4 Allowing localhost Submissions to the SMTP Port

This section discusses a further refinement of the SMTP relay blocking approach
described above.

Some sites can want to disallow submissions to the SMTP port from clients running
on the system itself; for instance, if no legitimate applications are expected to attempt
this, then blocking such submissions closes one avenue by which users can spoof (forge)
e-mail.

Other sites, however, can have legitimate applications that perform message
submission by making a TCP/IP connection to the SMTP port of their own system. For
instance, some third party mailing list expansion applications (though not PMDF’s own
mailing list expansion) operate in this way.

Further, to simplify their configuration such applications can connect using a
loopback name or address, such as LOCALHOST or [127.0.0.1], rather than using the
system’s domain name. Depending on the underlying TCP/IP package, this can result
in the incoming connection also appearing to come ‘‘from’’ LOCALHOST or [127.0.0.1],
rather than coming from the system’s specific domain name or IP address.

Using merely the internal vs external differentiation as shown above in Section 16.1.6.1
would result in treating SMTP submissions from clients on the host system itself as com-
ing in the tcp_local channel. Thus if tcp_local to tcp_local message traffic is prevented, as
discussed in Section 16.1.6.3, then any users or applications attempting to submit mes-
sages in such a way would not be allowed to submit messages to external addressees.

If you want to treat such submissions as ‘‘internal’’ submissions, for instance, in order
to allow third party mailing list applications to operate even if SMTP relay blocking has
been implemented, then an additional configuration step should be performed.

16–12

Mail Filtering and Access Control
Address-based Access Control Mappings

To the very top of the PMDF configuration file, add rewrite rules for the local host
name (or LOCALHOST or [127.0.0.1], depending on from where the underlying TCP/IP
package ‘‘sees’’ the connection as having originated) of the following form:

localhostname $U%localhostname@TCP-INTERNALER
[localhostipnumber] $U%localhostname@TCP-INTERNALER
LOCALHOST $U%localhostname@TCP-INTERNALER
[127.0.0.1] $U%localhostname@TCP-INTERNALER

where localhostname is the official host name on the L channel. The $E and $R control
sequences on these rewrite rules, which limit their effect to envelope From: address
rewriting, mean that normal rewriting will still apply to addresses addressed to the local
system. Yet switchchannel rewriting will use these rules also, and hence will see
message submissions from the system to its own SMTP port as ‘‘internal’’ submissions.

Warning: It is not recommended to add this rewrite rule for LOCALHOST unless you absolutely
require it, as it opens up your PMDF implementation to abuse by spammers who can
easily set up their DNS entries to say that their name is "localhost". If at all possible,
do rewriting based solely on IP addresses rather than DNS names, as IP addresses are
much harder to forge.

16.1.7 Efficiently Handling Large Numbers of Access Entries

Sites that use very large numbers of entries in mapping tables should consider
organizing their mapping tables to have a few general wildcarded entries that call out
to the general database for the specific lookups. It is much more efficient to have a few
mapping table entries calling out to the general database for specific lookups than to
have huge numbers of entries directly in the mapping table.

One case in particular is that some sites like to have per user controls on who can
send and receive Internet e-mail. Such controls are conveniently implemented using
an access mapping table such as ORIG_SEND_ACCESS. For such uses, efficiency and
performance can be greatly improved by storing the bulk of the specific information (e.g.,
specific addresses) in the general database with mapping table entries structured to call
out appropriately to the general database.

For instance, consider a mapping table:

ORIG_SEND_ACCESS

16–13

Mail Filtering and Access Control
Address-based Access Control Mappings

! Users allowed to send to Internet
!
|adam@domain.com||tcp_local $Y
|betty@domain.com||tcp_local $Y

! ...etc...
!
! Users not allowed to send to Internet
!
|norman@domain.com||tcp_local $NInternet$ access$ not$ permitted
|opal@domain.com||tcp_local $NInternet$ access$ not$ permitted

! ...etc...
!
! Users allowed to receive from the Internet
!
tcp_*|*|*|adam@domain.com $Y
tcp_*|*|*|betty@domain.com $Y

! ...etc...
!
! Users not allowed to receive from the Internet
!
tcp_*|*|*|norman@domain.com $NInternet$ e-mail$ not$ accepted
tcp_*|*|*|opal@domain.com $NInternet$ e-mail$ not$ accepted

! ...etc...

Rather than using such a mapping table with each user individually entered into the
table, a more efficient setup (much more efficient if hundreds or thousands of user entries
are involved) would be as follows. Use general database entries of, say:

SEND|adam@domain.com $Y
SEND|betty@domain.com $Y
! ...etc...
SEND|norman@domain.com $NInternet$ access$ not$ permitted
SEND|opal@domain.com $NInternet$ access$ not$ permitted
! ...etc...
RECV|adam@domain.com $Y
RECV|betty@domain.com $Y
! ...etc...
RECV|norman@domain.com $NInternet$ e-mail$ not$ accepted
RECV|opal@domain.com $NInternet$ e-mail$ not$ accepted

with an ORIG_SEND_ACCESS mapping table of:

ORIG_SEND_ACCESS

! Check if may send to Internet
!
||*|tcp_local C{SEND|$1}$E

!
! Check if may receive from Internet
!
tcp_*|*|*|* C{RECV|$3}$E

Here the use of the arbitrary strings ‘‘SEND | ’’ and ‘‘RECV | ’’ in the general database
left hand sides (and hence in the general database probes generated by the mapping
table) provides a way to distinguish between the two sorts of probes being made. The
wrapping of the general database probes with the $C and $E flags, as shown, is typical
of mapping table callouts to the general database; see Section 5.3.2.8 for an additional

16–14

Mail Filtering and Access Control
Address-based Access Control Mappings

discussion. For a discussion of the general database itself – where it is located and how
to build it—see Section 2.2.6.5.

The above example showed a case of simple mapping table probes getting checked
against general database entries. Mapping tables with much more complex probes can
also benefit from use of the general database.

16.1.8 DNS_VERIFY

DNS_VERIFY can be used to validate domain names or IP addresses via DNS. For
example, it can be used to verify that an entry in DNS exists for the domain used in the
SMTP MAIL FROM: command, or to look up an IP address in the blackhole lists supplied
by such services as MAPS and ORBS. The message can be rejected or accepted based on
the presence or absence of a corresponding DNS record, or a new header can be added
to the message to indicate the problem.

Note: Performing DNS checks may result in the rejection of some valid messages. For instance,
this could include mail from legitimate sites that simply have not yet registered their
domain name, or during periods of bad information in DNS.

Please be aware that doing DNS lookups is contrary to the spirit of being generous in
what you accept, as expressed in RFC 1123, Requirements for Internet Hosts. However,
some sites may desire to perform such checks in cases where junk e-mail (SPAM) is, for
example, being sent with forged e-mail addresses from non-existent domains.

If DNS or connections to the sites being used for DNS verification become unavailable
then mail delivery will be impacted. Use of DNS_VERIFY can impact performance as well
as result in unreliable mail reception due to the dependency on multiple DNS lookups
for every incoming SMTP connection.

Caution: Mail addressed to postmaster must never be rejected. Violation of this rule is sufficient
cause for your domain to be disconnected from the Internet.

DNS_VERIFY is supplied as a sharable image on VMS (PMDF_EXE:DNS_VERIFY.EXE),
as a sharable object library on UNIX (/pmdf/lib/dns_verify), and as a DLL on NT
(C:\pmdf\bin\dns_verify.dll). It can be used from any of the mapping tables de-
scribed in this chapter, using the routine callout described in Section 2.2.6.7, Customer-
supplied Routine Substitutions, $[...].

On VMS, make sure that the PMDF_DNS_VERIFY logical name is set. For PMDF
V6.2 and later, this logical is defined in PMDF_STARTUP.COM. If you are running PMDF
V6.1 or earlier, add the following line to your PMDF_COM:PMDF_SITE_STARTUP.COM
command procedure (create it if necessary):

$ DEFINE/SYSTEM/EXEC PMDF_DNS_VERIFY PMDF_EXE:DNS_VERIFY.EXE

DNS_VERIFY has 4 routines that can be called:

• dns_verify

• dns_verify_domain

• dns_verify_domain_port

16–15

Mail Filtering and Access Control
Address-based Access Control Mappings

• dns_verify_domain_warn

These are each described in the sections below.

Note that your mapping tables with DNS_VERIFY callouts can be tested by using
the pmdf test -mapping utility (pmdf test/mapping on VMS).

16.1.8.1 dns_verify Routine

The dns_verify routine is the most general of the routines. It simply does a lookup
in DNS of the domain name that you specify, which could be the domain from the SMTP
MAIL FROM: command, or could be the domain name corresponding to the IP address in
a blackhole list such as blackholes.mail-abuse.org. Any mapping table action can
be taken if the domain exists or does not exist in DNS.

Note that when doing the DNS lookup, dns_verify looks for both an A DNS record
and an MX DNS record.

The dns_verify routine performs the same type of action as the mailfromdnsver-
ify channel keyword. Using DNS_VERIFY allows you more control over which connec-
tions trigger the DNS lookups.

The dns_verify routine’s argument is four strings separated by ‘‘ | ’’, as follows:

domainname[|success[|failure[|unknown]]]

• domainname is the name to look up in DNS.

• The success string is optional. If specified, it is the mapping table string to return
if domainname is found in DNS. If not specified, the default is ‘‘$Y’’, to accept the
message.

• The failure string is optional. If specified, it is the mapping table string to return
if domainname is not found in DNS. If not specified, the default is ‘‘$N’’, to reject the
message.

• The unknown string is optional. If specified, it is the mapping table string to return if
there was a temporary DNS failure during lookup. If not specified, and the success
string was specified, that string is used. If neither are specified, the default is ‘‘$Y’’.

Note that in the mapping table, the $’s need to be doubled. For example, to specify
‘‘$Y’’, you need to put in ‘‘$$Y’’.

An alternative separator can be used instead of ‘‘ | ’’. To specify an alternative
separator, specify it as the first character of the routine’s argument. For example, to
specify ‘‘+’’ as the separator, use the following syntax:

+domainname+success+failure+unknown

The success, failure, and unknown strings can contain the following format
characters:

%a If successful, the primary name for domainname. If there was no A record, but there was
an MX record, this contains the domainname from the first MX record received from DNS.

%e If not successful, the error message associated with the lookup.

16–16

Mail Filtering and Access Control
Address-based Access Control Mappings

%n If successful, the IP address found from the DNS lookup. If there was no A record, but
there was an MX record, this contains the IP address corresponding to the first MX record
received from DNS.

The following example shows a simple SEND_ACCESS mapping table entry on VMS
to verify that the sender’s hostname is in DNS:

SEND_ACCESS

tcp_|*@*|*|* \
C[pmdf_dns_verify,dns_verify,$3|$$Y|$$NInvalid$ host:$ $$3$-$ %e]$E

The following example shows a PORT_ACCESS mapping table entry on UNIX to
check the IP address of the system sending the message:

PORT_ACCESS

TCP|*|25|*|* \
C[/pmdf/lib/dns_verify,dns_verify,\
$1|$$Y|$$N500$ Message$ refused$ from$ $$1$ -$ %e]$E

16.1.8.2 dns_verify_domain and dns_verify_domain_port Routines

The dns_verify_domain and dns_verify_domain_port routines are used to
query the specified blackhole list and return pre-defined success, failure, and unknown
messages. The same operation can be performed using the dns_verify routine, but
with more complicated setup.

The dns_verify_domain_port routine is used in the PORT_ACCESS mapping
table. The dns_verify_domain routine is used in the MAIL_ACCESS, SEND_ACCESS,
and similar mapping tables.

The dns_verify_domain and dns_verify_domain_port routines perform the
same type of action as the DNS_VERIFY_DOMAIN dispatcher option. Using DNS_VERIFY
allows you more control over which connections trigger the DNS lookups.

The dns_verify_domain and dns_verify_domain_port routines’ argument is
three strings separated by ‘‘,’’, as follows:

ip-address,domainname[,text-string]

• ip-address is the IP address that you want to check against the blackhole list.

• domainname is the name of the blackhole list to check against, for example,
blackholes.mail-abuse.org.

• text-string is optional. If specified, it is the text to return if no TXT record is
available. If not specified, the default is ‘‘No Error Text Available’’.

dns_verify_domain and dns_verify_domain_port check the given list for
the IP address. For example, if ip-address is 127.0.0.2, and domainname is
bl.spamcop.net, dns_verify_domain and dns_verify_domain_port looks up the
following name: 2.0.0.127.bl.spamcop.net. They first first look up the TXT record for that
name, and if it is not available, they look up the A record.

16–17

Mail Filtering and Access Control
Address-based Access Control Mappings

The following examples show the use of these routines on VMS:

MAIL_ACCESS

TCP|*|25|*|*|*|*|tcp_local|*|*|* \
C[pmdf_dns_verify,dns_verify_domain,$1,bl.spamcop.net]$E

PORT_ACCESS

TCP|*|25|*|* \
C[pmdf_dns_verify,dns_verify_domain_port,$1,bl.spamcop.net]$E

The approximate equivalent of the previous MAIL_ACCESS example using the
dns_verify routine would be:

MAIL_ACCESS

TCP|*|25|*.*.*.*|*|*|*|tcp_local|*|*|* \
C[pmdf_dns_verify,dns_verify,+$4.$3.$2.$1.bl.spamcop.net+\
$$N$$X5.7.1|Blocked$ -$ see$ http://spamcop.net/bl.shtml?$$1.$$2.$$3.$$4+$$Y]$E

16.1.8.3 dns_verify_domain_warn Routine

The dns_verify_domain_warn routine performs the same DNS lookup as the
dns_verify_domain and dns_verify_domain_port routines, but instead of rejecting
the message if the DNS entry exists, it adds a new header line to the message. The
dns_verify_domain_warn routine can be used in any of the ACCESS mapping tables.

The dns_verify_domain_warn routine’s argument is four strings separated by ‘‘,’’,
as follows:

ip-address,domainname[,text-string[,header]]

• ip-address, domainname, and text-string are the same as for dns_verify_domain
and dns_verify_domain_port.

• header is optional. If specified, it is a string containing the header name, and other
optional text, to include before the TXT record string or text-string value. The
header name must be one that PMDF recognizes. The default is ‘‘X-Dispatcher: ’’.

The following example shows an ORIG_MAIL_ACCESS mapping table entry on NT
to query spamcop.net:

ORIG_MAIL_ACCESS

TCP|*|25|*|*|*|*|*|*|*|* \
C[C:\pmdf\bin\dns_verify.dll,dns_verify_domain_warn,$1,\
bl.spamcop.net,spamcop.net:$ entry$ found$ for$ $$1,\
X-Dispatcher:$ SPAMfilter$ (spamcop.net):$]$E

For a source IP address of 127.0.0.2, this example would return

YAX-Dispatcher: SPAMfilter (spamcop.net): Blocked - see http://spamcop.net/bl.shtml?127.0.0.2

This is then added as a header to the message. To act upon this, create a system-
wide, channel or user filter file containing a SIEVE command similar to:

if header :contains "X-Dispatcher" "SPAMfilter" { discard; }

16–18

Mail Filtering and Access Control
Address-based Access Control Mappings

16.1.9 SPF (Sender Policy Framework) and SRS (Sender Rewriting
Scheme)

Note: SPF and SRS are not available for PMDF on Windows.

IMPORTANT: For OpenVMS sites running MultiNet, the ECO UCX_LIBRARY_EMULATION-
090_A052 or later is required for SPF/SRS to function. For sites running TCPware, the
ECO DRIVERS_V582P020 or later is required. For sites running TCP/IP Services, you
need version 5.3 or later.

Sender Policy Framework (SPF) can be used to combat the problem of sender address
forgery. It is a method of using special DNS records to say which systems are allowed
to send mail for a given domain. PMDF’s SPF implemention can be used to check the
IP address of the system that PMDF is receiving a message from, against the domain
name in the SMTP MAIL FROM: address to make sure the message is coming from an
authorized sending system. The message can be accepted, rejected, or marked based on
the results of the SPF checks.

Sender Rewriting Scheme (SRS) is an adjunct to SPF that is used by mail forwarders.
SPF breaks mail forwarding because it rejects the forwarder as an unauthorized sender
of the mail. If the forwarder uses SRS to rewrite the MAIL FROM: address, this problem
is avoided.

For more information about SPF and SRS, see http://www.openspf.org/.

Using SPF/SRS is similar to DNS_VERIFY in that both are used to combat the
problem of forged sender e-mail addresses. The same drawbacks and warnings apply
(see Section 16.1.8).

As with DNS_VERIFY, SPF and SRS are supplied as a sharable images on OpenVMS
(PMDF_EXE:LIBSPFSHR.EXE and PMDF_EXE:LIBSRS2SHR.EXE), and as sharable object
libraries on Unix (/pmdf/lib/libspf.so and /pmdf/lib/libsrs2.so).

SPF can be called from the FROM_ACCESS, ORIG_MAIL_ACCESS, or MAIL_ACCESS
mapping table. However, we recommend using the FROM_ACCESS mapping table for
greatest efficiency since it is called only once, after the MAIL FROM: SMTP command
instead of after every RCPT TO: SMTP command.

SRS is called from the REVERSE mapping table to encode the MAIL FROM: address
when mail is forwarded. A different SRS routine is called from the FORWARD mapping
table to decode RCPT TO: addresses when needed, as for example when an error response
is sent back to an MAIL FROM: address that has been SRS-encoded. SPF and SRS are
invoked using the routine callout described in Section 2.2.6.7, Customer-supplied Routine
Substitutions, $[...].

Note that internal or trusted systems (such as mail gateways) should be excluded
from SPF checks and SRS encoding by adding mapping table entries before the SPF or
SRS entries in the mapping tables.

16–19

Mail Filtering and Access Control
Address-based Access Control Mappings

On Unix platforms, the symbols PMDF_SPF_LIBRARY and PMDF_SRS_LIBRARY
are defined in /etc/pmdf_tailor to point to the SPF and SRS sharable object libraries,
respectively. Similarly, on OpenVMS, the logical names PMDF_SPF_LIBRARY and
PMDF_SRS_LIBRARY are defined in PMDF_STARTUP.COM to point to the sharable im-
ages. We also recommend that you install the SPF and SRS sharable images for efficiency.
The following commands to do this may be put in your PMDF_COM:PMDF_SITE_STARTUP.COM
file:

$ INSTALL ADD PMDF_SPF_LIBRARY/OPEN/HEAD/SHARE
$ INSTALL ADD PMDF_SRS_LIBRARY/OPEN/HEAD/SHARE

16.1.9.1 Configuring SPF

LIBSPFSHR has three routines that can be called:

• spf_lookup

• spf_lookup_reject_fail

• spf_lookup_reject_softfail

These are each described in the sections below.

Note that your mapping tables with SPF callouts can be tested by using the pmdf
test -mapping utility (pmdf test/mapping on OpenVMS).

16.1.9.1.1 spf_lookup Routine

This routine does the SPF lookup and adds a Received-SPF: header upon successful
completion, or a header of your choice upon error (such as if there are no SPF records).

The spf_lookup routine has four arguments, separated by commas. The callout
would look like this:

$[PMDF_SPF_LIBRARY,spf_lookup,sending-ip,from-address,domain-name,header]$

The parameters are as follows:

• sending-ip is the sending IP address

• from-address is the MAIL FROM: address

• domain-name is the domain name to display in the Received-SPF: headers; this
is expected to be the name of the local system that is doing the SPF lookup

• header is the type of header to add upon error

The following example adds a Received-SPF: header, or in the case where there is
no SPF record, a X-PMDF-SPF: header:

FROM_ACCESS

TCP|*|25|*|*|SMTP*|*|tcp_*|*|* C[PMDF_SPF_LIBRARY,\
spf_lookup,$1,$6,example.com,X-PMDF-SPF]$E

Example Received-SPF: and X-PMDF-SPF: headers would be:

16–20

Mail Filtering and Access Control
Address-based Access Control Mappings

Received-SPF: pass (example.com: domain of remotesys.com designates 10.0.0.1
as permitted sender) client-ip=192.168.0.1; envelope-from=joe@remotesys.com;

X-PMDF-SPF: (recv=mail.example.com, send-ip=10.0.0.2) Could not find a
valid SPF record

16.1.9.1.2 spf_lookup_reject_fail and spf_lookup_reject_softfail Routines

Both of these routines do the SPF lookup and then reject the message if it gets a fail
result. The spf_lookup_reject_softfail also rejects the message if it gets a softfail
result. They both add a Received-SPF: header upon successful completion.

These routines have four arguments, separated by commas. The callouts would look
like this (for example on Unix):

$[/pmdf/lib/libspf.so,spf_lookup_reject_fail,sending-ip,from-address,domain-name,header]$
$[/pmdf/lib/libspf.so,spf_lookup_reject_softfail,sending-ip,from-address,domain-name,text]$

The parameters are as follows:

• sending-ip is the sending IP address

• from-address is the MAIL FROM: address

• domain-name is the domain name to display in the Received-SPF: headers; this
is expected to be the name of the local system that is doing the SPF lookup

• text is the rejection text to use

The following example rejects mail that fails the SPF lookup:

FROM_ACCESS

TCP|*|25|*|*|SMTP*|*|tcp_*|*|* C[/pmdf/lib/libspf.so,\
spf_lookup_reject_softfail,$1,$6,example.com,Rejected$ by$ SPF$ lookup]$E

16.1.9.2 Configuring SRS

To configure PMDF to use SRS, changes are required to the PMDF option file
pmdf_table:option.dat, configuration file pmdf_table:pmdf.cnf, and mapping file
pmdf_table:mappings.

16.1.9.2.1 Option File Changes

Two options need to be added to the PMDF option file: REVERSE_ENVELOPE, and
USE_REVERSE_DATABASE.

The REVERSE_ENVELOPE option needs to be set to 1 to tell PMDF to apply the
REVERSE mapping table to envelope from addresses (by default the REVERSE
mapping table is only applied to header addresses). The USE_REVERSE_DATABASE option
should be set to a value of 266. This value turns on address reversal processing (the
REVERSE mapping table in this case), as well as specifying that the destination channel
be prepended to the address when probing the REVERSE mapping table.

REVERSE_ENVELOPE=1
USE_REVERSE_DATABASE=266

16–21

Mail Filtering and Access Control
Address-based Access Control Mappings

16.1.9.2.2 Configuration File Changes

By default, the REVERSE mapping table is checked for every destination channel.
For SRS, normally you’d only want to encode the envelope from address for messages
that are being forwarded to the internet, for example, being sent out the tcp_local
channel.

To avoid unnecessary processing, the checking of the REVERSE mapping table can
be restricted to when tcp_local is the destination channel. This is done by using the
noreverse and reverse channel keywords in the pmdf.cnf file.

Place the noreverse channel keyword on the defaults line in pmdf.cnf to turn
off checking of the REVERSE mapping table by default. To turn the checking on for
the tcp_local channel, add the reverse channel keyword to the tcp_local channel
definition. If there are any other channels you use that you wish to use SRS on, put the
reverse channel keyword on those channel definitions as well.

16.1.9.2.3 Mapping File Changes

The SRS library has two routines that can be called:

• pmdf_srs_forward

• pmdf_srs_reverse

The pmdf_srs_forward routine is called from the REVERSE mapping table to
encode the envelope from address. The pmdf_srs_reverse routine is called from the
FORWARD mapping table to decode any SRS-encoded envelope to addresses. These
routines are further described in the sections below.

Note: Notice that the name of the routine is opposite from the name of the mapping table that
it is used in.

Note that your mapping tables with SRS callouts can be tested by using the pmdf
test -mapping utility (pmdf test/mapping on OpenVMS).

16.1.9.2.3.1 pmdf_srs_forward Routine And The REVERSE Mapping Table

The pmdf_srs_forward routine takes an address and encodes it as defined by the
SRS rules. It returns the SRS-encoded address.

This routine has three arguments, separated by commas. The callout would look
like this:

$[PMDF_SRS_LIBRARY,pmdf_srs_forward,from-address,secret,domain-name]$

The parameters are as follows:

1. from-address is the MAIL FROM: address to encode.

2. secret is a secret word you must specify for use by the encoding process.

3. domain-name is the local domain to use.

16–22

Mail Filtering and Access Control
Address-based Access Control Mappings

When adding the pmdf_srs_foward callout to the REVERSE mapping table, you
must specify the $:E flag on the entry. The option.dat option REVERSE_ENVELOPE (as
described above) causes PMDF to apply the REVERSE mapping table to the envelope
from address as well as to header addresses. However, SRS should be applied only

to the envelope address and not to header addresses. Specifying the $:E flag on your
REVERSE mapping table entry achieves this.

For best efficiency, SRS should only be applied to messages going out via the tcp_local
channel (or other external channel). The option.dat option USE_REVERSE_DATABASE
(as described above) specified with a value of 266 causes PMDF to prepend the destination
channel to the address when the REVERSE mapping table is probed. To apply the
mapping table entry to only tcp_local, specify "tcp_local | " at the front of your reverse
mapping table entries.

Note: Note that if you are already using the REVERSE mapping table for something else, this
setting of USE_REVERSE_DATABASE causes the destination channel to be prepended
for all REVERSE mapping table entries.

Also, SRS should only be applied to messages that are being forwarded, and not to
locally-generated messages. To do this, add additional entries to the REVERSE mapping
table that exempts messages that have a local envelope from address.

The following example encodes mail being forwarded by example.com:

REVERSE

tcp_local|*@*example.com $N
tcp_local|*@* $:E$[PMDF_SRS_LIBRARY,\
pmdf_srs_forward,$0@$1,mysecret,example.com]$E

16.1.9.2.3.2 pmdf_srs_reverse Routine And The FORWARD Mapping Table

The pmdf_srs_reverse routine takes an SRS-encoded address and decodes it back
into the original address.

This routine has three arguments, separated by commas. The callout would look
like this:

$[PMDF_SRS_LIBRARY,pmdf_srs_reverse,to-address,secret,domain-name]$

The parameters are as follows:

1. to-address the SRS-encoded RCPT TO: address to decode.

2. secret is the secret word that was used during the encoding process.

3. domain-name is the local domain that was used during the encoding process.

Adding a callout to the pmdf_srs_reverse routine from the FORWARD mapping
table is required to decode any SRS-encoded envelope to addresses. For example, to
handle responses to mail that you sent with an SRS-encoded envelope from address.
Note that when you add the callout, you must also specify the $D flag on the entry, to
tell PMDF to send the resulting address back through the rewrite process. This is so the
mail can be forwarded on successfully to the real original sender.

Since SRS decoding should only be applied to SRS-encoded addresses, you can select
for this by checking for addresses that have two equal signs in the username part.

16–23

Mail Filtering and Access Control
Address-based Access Control Mappings

The following example decodes SRS-encoded addresses received by example.com:

FORWARD

==*@example.com $[PMDF_SRS_LIBRARY,\
pmdf_srs_reverse,$0=$1=$2@example.com,mysecret,example.com]$D

16.1.9.2.4 The Secret Word

The secret word specified in the mapping table callouts is used by the SRS encoding
and decoding to make sure that the SRS-encoded address is not forged. You do not have
to change your secret word at all, but if you wish to do so, the decoding routine needs to
know all of the secret words ever used so that it can properly decode messages that were
encoded using a previous secret word.

The SRS decoding routine will check for the file pmdf_table:srs_secret.dat for
a list of previous secret words. Whenever you change your secret word, add the old secret
word to this file (one word per line).

16.2 Mailbox Filters

Individual users can use personal PMDF mailbox filters to prevent delivery of
unwanted mail messages to their mailboxes, or to define vacation notices. Or the PMDF
manager can create channel level filters or a system wide filter.

Mailbox filters are text files containing commands in the SIEVE language (see
Section 16.2.7). Mailbox filter files may be created by hand using any text editor. PMDF
also supplies a web-based interface for creating mailbox filters, see Section 16.2.6. System
managers can customize this web interface as described in 16.2.6.

Through the web-based interface, users can construct and manage the screening
rules applied by their personal mailbox filters and configure their vacation notices, or
the PMDF manager can construct an manage the screening rules for channel level
filters or a system wide filter. Personal mailbox filters are supported for use with the l
(lowercase ‘‘L’’), msgstore, and popstore channels. Channel level filters are supported for
all channels.

The web-based interface allows you to set up eight distinct filters: four to identify
messages to always keep, the "Accept filters"; four to identify messages to always throw
away, the "Discard filters". The Accept and Discard filters operate on envelope and
header source addresses, header destination addresses, and phrases or words appearing
in the Subject: header line or body of the message. The eight filters are thus known by
the names Accept From, Accept To, Accept Subject, Accept Body, Discard From,
Discard To, Discard Subject, and Discard Body.

The web-based interface also allows users to set up vacation notices. See Sec-
tion 16.2.8. Note that if you set up a vacation notice for a channel level filter or the
system filter, it will just be ignored.

Users’ personal mailbox filters are applied first. If a personal mailbox filter explicitly
accepts or rejects a message, then filter processing for that message copy finishes. But if
the recipient user had no mailbox filter—or if the user’s mailbox filter did not explicitly
apply to the message in question—PMDF next applies the channel level filter. If the

16–24

Mail Filtering and Access Control
Mailbox Filters

channel level filter explicitly accepts or rejects a message, then filter processing for that
message finishes. Otherwise, PMDF next applies the system filter file, if there is one.

By default, each user has no mailbox filter. When a user uses the web-based
interface, and mailbox filtering is enabled for the channel which delivers mail to their
mailbox, a mailbox filter is created for them. Each mailbox filter is stored in a disk
file, the location of which is controlled with the filter channel keyword as described in
Section 16.2.1.

Channel filters are not present by default. If channel level filtering is enabled for a
channel, then the PMDF manager can create a channel level filter using the web-based
interface, by authenticating as the ‘‘address’’ @channel-host-name where channel-

host-name is the official host name of the channel in question, and providing the
password for the PMDF server account.

The PMDF manager can create a system level filter using the web-based interface
by authenticating as the ‘‘address’’ @—that is, specifying the single character @ as the
‘‘address’’—and providing the password for the PMDF server account.

16.2.1 The filter Channel Keyword

The filter channel keyword enables message filtering on the channels to which it
is applied. The keyword has one required parameter which specifies the path to the filter
files associated with each envelope recipient who receives mail via the channel.

The syntax for the filter channel keyword is

filter URL-pattern

where URL-pattern is a URL which, after processing special substitution sequences,
yields the path to the filter file for a given recipient address.

URL-pattern can contain special substitution sequences which, when encountered,
are replaced with strings derived from the recipient address,

local-part@host.domain

in question. These substitution sequences are given in Table 16–2.

Table 16–2 filter Channel Keyword Substitution Strings

Sequence Substitution string

$$ Substitute in the $ character

$A,$a Substitute in the address, local-part@host.domain

$D,$d Substitute in host.domain

$H,$h Substitute in host

$L,$l Substitute in local-part

$S,$s Substitute in subaddress or folder name. Used for fileinto channel keyword only.

16–25

Mail Filtering and Access Control
Mailbox Filters

Table 16–2 (Cont.) filter Channel Keyword Substitution Strings

Sequence Substitution string

$U,$u Substitute in local-part less any underscore or tilde prefixes and less any
subaddress postfix

$~ Substitute in the file path for the home directory associated with the local part of the
address

The filter channel keyword can be used to specify filters for the l (lowercase ‘‘L’’),
msgstore, and popstore channels. Suggested usages of the filter channel keyword are
given in Section 16.2.1.1 and Section 16.2.1.2.

16.2.1.1 Keyword Usage with the Local Channel

For the local channel, the suggested usage on OpenVMS systems is

filter file:///$~PMDF_MAILBOX_FILTER.

This will place the mailbox filter file in each user’s login directory. The name of the filter
file will be PMDF_MAILBOX_FILTER.; and the file will be owned by the user.

On UNIX platforms, the suggested usage is

filter file:///pmdf/user/l/$u.filter

This places the users’ mailbox filter files in the PMDF user profile area, /pmdf/user/,
under the l (lowercase L for "l"ocal channel) subdirectory. The mailbox filter files will be
owed by the user pmdf.

Note: Make sure that the /pmdf/user/l directory is owned by the user pmdf.

16.2.1.2 Keyword Usage with the msgstore and popstore Channels

For a msgstore or popstore channel, use

filter popstore:$U

No other usage with msgstore or popstore channels is supported. The PMDF Message-
Store and PMDF popstore will place each mailbox filter file in the same directory as the
associated user’s PMDF profile file. When a PMDF MessageStore or PMDF popstore
user account is deleted, any associated mailbox filter file will be deleted. Likewise, when
a PMDF MessageStore or PMDF popstore account is renamed, any associated filter file
will be renamed.

The PMDF MessageStore considers subaddresses (see Section 3.1.1.6) to indicate
folders for delivery purposes. For msgstore channels that have mailbox filtering enabled,
use of the Sieve fileinto operator can be enabled via use of the fileinto channel
keyword on the channel. The usual usage is:

16–26

Mail Filtering and Access Control
Mailbox Filters

fileinto $U+$S@$D

so that a msgstore channel with mailbox filtering with fileinto enabled would look
something like:

msgstore filter popstore:$U fileinto $U+$S@$D
messagestore-domain-name

16.2.2 Channel Level Filter Files

The destinationfilter channel keyword (synonymous with the obsolete chan-
nelfilter keyword) enables message filtering on the destination channels to which it
is applied. The sourcefilter channel keyword enables message filtering on the source
channels to which it is applied. These keywords each have one required parameter which
specifies the path to the corresponding channel filter file associated with the channel.

The syntax for the destinationfilter channel keyword is

destinationfilter URL-pattern

and similarly the syntax for the sourcefilter channel keyword is

sourcefilter URL-pattern

where URL-pattern is a URL specifying the path to the filter file for the channel in
question. For instance, suggested usage on OpenVMS is

destinationfilter file:///PMDF_TABLE:channel-name.filter

or on UNIX or NT

destinationfilter file:///pmdf/table/channel-name.filter

where channel-name is the name of the channel, e.g., l, tcp_local, ln_local, etc.

Channel filter files must be world-readable. Note that a channel filter file will be
owned by the PMDF server account—usually PMDF on OpenVMS, or pmdf on UNIX.

Important Note: The web-based interface (see Section 16.2.6 creates only destination filters
(destinationfilter keyword). You cannot use the web interface to create source filters
(sourcefilter keyword).

16.2.3 The System Wide Filter File

On OpenVMS, the system wide filter file is

PMDF_TABLE:pmdf.filter

On UNIX, the system wide filter file is

16–27

Mail Filtering and Access Control
Mailbox Filters

/pmdf/table/pmdf.filter

On NT, the system wide filter file is

C:\pmdf\table\pmdf.filter

The system wide filter file must be world readable. It is used automatically, if it
exists.

When using a compiled configuration, the system wide filter file is incorporated into
the compiled configuration.

16.2.4 Mailbox Filter Authentication

When a user creates or modifies their personal mailbox filter, the user must
authenticate himself.

When the PMDF manager creates or modifies a channel level filter or the system
wide filter, the manager must authenticate with the PMDF server account4 password and
as the ‘‘address’’ @channel-host-name where channel-host-name is the official host
name of the channel in question for a channel level filter, or as the ‘‘address’’ @ for the
system filter file. For instance, on a system with official local host name example.com,
the PMDF manager would authenticate using the ‘‘address’’ @example.com—the @
character followed by the host name with no username—for a channel level filter, or
would authenticate using the ‘‘address’’ @—the at sign character alone, with no username
or host name—for a system level filter.

The PMDF security configuration controls just what source of authentication
material this authentication will be performed against, e.g., PMDF user profile password
(PMDF popstore or PMDF MessageStore user profile), PMDF password database
password, system password file password, etc.; see Section 14.2. For mailbox filter
connections handled by the DEFAULT security rule set of PMDF’s implicit security
configuration, authentication will be performed preferentially against the PMDF user
profile, if the user has a PMDF user profile entry, if not then against the PMDF password
database, if the user has an entry in it, and finally, only if the user has neither sort of
entry, against the system password file.

In the particular case when authentication is performed against the PMDF password
database, note that PMDF will check just which channel a user matches in order
to decide which of the user’s (possible multiple) PMDF password database entries to
compare against. For a user matching a msgstore channel, the mailbox filter query
will preferentially use the user’s /SERVICE=IMAP entry, but if such an entry does not
exist will fall through to the user’s /SERVICE=DEFAULT entry. For a user matching a
popstore channel, the mailbox filter query will preferentially use the user’s POP service-
specific entry in the password database, but if such an entry does not exist will fall
through to the user’s DEFAULT entry in the password database. For a user matching
the local channel, the mailbox filter query will use the user’s DEFAULT entry. See
Section 14.7 for an additional discussion of the PMDF password database.

4 The PMDF server account is usually PMDF on OpenVMS, or pmdf on UNIX; on NT use Administrator.

16–28

Mail Filtering and Access Control
Mailbox Filters

16.2.5 Routing Discarded Messages Out the FILTER_DISCARD
Channel

By default, messages discarded via a mailbox filter are immediately discarded
(deleted) from the system. However, when users are first setting up mailbox filters
(and perhaps making mistakes), or for debugging purposes, it can be useful to have the
deletion operation delayed for a period.

To have mailbox filter discarded messages temporarily retained on the PMDF system
for later deletion, first add a FILTER_DISCARD channel to your PMDF configuration,
e.g.:

filter_discard notices 7
FILTER-DISCARD

with the notices channel keyword specifying the length of time (normally number
of days) to retain the messages before deleting them. Then set the option FILTER_
DISCARD=2 or FILTER_DISCARD=3 in the PMDF option file; see Section 7.3.3.

Messages in the FILTER_DISCARD queue area should be considered to be in an
extension of users’ personal wastebasket folders. As such, note that warning messages
are never sent for messages in the FILTER_DISCARD queue area, nor are such messages
returned to their senders when a bounce or return is requested. Rather, the only action
taken for such messages is to eventually silently delete them, either when the final
notices value expires, or if a manual bounce is requested using a utility such as pmdf
return.

16.2.6 Web Interface

The following section documents the web-based interface for maintaining per-user,
per-channel, or system-wide mailbox filters. Use of this facility requires both TCP/IP
support and a web client. Moreover, the PMDF HTTP server must be configured to serve
out this interface; see Section 16.2.6.1 for details.

The web interface is intended for use by individual users who have their mail
delivered to them via one of the l (lowercase ‘‘L’’), msgstore, or popstore channels, or
by the PMDF manager for managing channel level filters or the system filter file. When
users attempt to use the interface, they must supply their e-mail address and their
password in order to access their mailbox filter. Typically, a l (lowercase ‘‘L’’) channel
user will provide their login password, a msgstore channel user will provide their IMAP
password, while a user whose mail is delivered by a popstore channel would provide
their POP password. This behavior is controlled through the PMDF authentication
services interface as described in Chapter 14. The PMDF manager must supply the
‘‘address’’ @channel-host-name for a channel level filter, where channel-host-name

is the official host name of the channel in question, or the single character @ for the
system filter file, and the password for the PMDF server account.

16–29

Mail Filtering and Access Control
Mailbox Filters

Note: For channels, the web interface creates only destination filters (see Section 16.2.2,
destinationfilter keyword). You cannot use the web interface to create channel
level source filters (sourcefilter keyword).

To connect to the interface with your web browser, open the URL

http://host:7633/mailbox_filters/

In place of host, use the actual IP host name of the system running the PMDF HTTP
server. If you chose to run the PMDF HTTP server on a port other than port 7633, then
specify that port number in place of 7633 in the above URL.

Once connected to the introductory web page, links to help and various mailbox
filtering activities can be followed. A sample of the introductory web page and a few of
the other default, Process Software supplied web pages can be found in the appropriate
edition of the PMDF User’s Guide.

16.2.6.1 Configuring the HTTP Server to Serve Out the Web Interface

If you have not already configured the PMDF Dispatcher, then do so now. See the
Chapter on configuring the PMDF Dispatcher in the appropriate edition of the PMDF
Installation Guide for directions on configuring the Dispatcher. As part of configuring
the Dispatcher, the HTTP server is configured.

Configuring the HTTP server to serve out the web based interface is simply a matter
of ensuring that the HTTP server’s configuration file contains a proper mailbox filter
path definition. The current version of the Dispatcher configuration utility generates an
appropriate definition automatically; but if you have an older configuration generated in
PMDF V5.1, you can need to add the definition manually and then restart the HTTP
server. The http.cnf file in the PMDF table directory needs to include the lines

[PATH=/mailbox_filters/]
GET=PMDF_MAILBOX_FILTERS_CGI
POST=PMDF_MAILBOX_FILTERS_CGI

If these lines were not previously present, after adding them restart the HTTP server
with the OpenVMS command

$ PMDF RESTART HTTP

or the UNIX command

pmdf restart http

Or on NT restart the entire Dispatcher with the command

C:\> pmdf restart dispatcher

16–30

Mail Filtering and Access Control
Mailbox Filters

16.2.6.2 The Mailbox Filters Option File

An option file can be used to adjust various options for the web interface. On
OpenVMS, the option file is

PMDF_TABLE:mailbox_filters_option.

On UNIX systems, it is the file

/pmdf/table/mailbox_filters_option

On NT systems, it is typically the file

C:\pmdf\table\mailbox_filters_option

Available options are:

AUTHENTICATION_ERROR (file-name)

Name of a formatting file in the pmdf_root:[www.mailbox_filters] (OpenVMS)
or /pmdf/www/mailbox_filters/ (UNIX) or C:\pmdf\www\mailbox_filters\ (NT)
directory to use for authentication errors. The default is

AUTHENTICATION_ERROR=auth_error.txt

DEFAULT_HOST (host-name)

Name of a host to append to a supplied username which lacks an ‘‘@’’. By default, the
local host name is used.

GENERAL_ERROR (file-name)

Name of a formatting file in the pmdf_root:[www.mailbox_filters] (OpenVMS) or
/pmdf/www/mailbox_filters/ (UNIX) or C:\pmdf\www\mailbox_filters\ direc-
tory to use for general errors which occur when either (1) no error_format file can be
discerned from the HTTP command, or (2) when the HTTP command has not yet been
processed. The default is

GENERAL_ERROR=error.txt

16.2.7 SIEVE

PMDF mailbox filters implement the SIEVE RFC (3028), plus the vacation draft
(DRAFT-SHOWALTER-SIEVE-VACATION-04.TXT), and a couple of other extensions.

RFC 3028 and the vacation draft are available in the PMDF RFC directory, if you
chose to install them. The PMDF RFC directory is PMDF_ROOT:[DOC.RFC] on VMS,
/pmdf/doc/rfc on UNIX, and C:\pmdf\doc\rfc on NT.

16.2.7.1 Standard SIEVE Commands

The SIEVE commands are standardized in RFC 3028. This section gives a summary
of the SIEVE commands, including any related PMDF-specific information. Refer to RFC
3028 for more information about the SIEVE commands.

Note that for list types, such as the list of strings to search for in a header, there is
a limit on the number of entries that can be in a single list. This limit is specified by the
MAX_LIST_SIZE option (see Section 7.3.3).

16–31

Mail Filtering and Access Control
Mailbox Filters

16.2.7.1.1 Comments

PMDF supports the two comment delimiters defined in RFC 3028.

The first kind are hash comments, these begin with the hash sign (#). These
comments usually start at the beginning of the line. They always cause the rest of
the line to be considered a comment.

The second kind are bracketed comments. They begin with the two-character string
"/*" and end with the two-character string "*/".

16.2.7.1.2 Control structures

if <test1: test> <block1: block>
elsif <test2: test> <block2: block>
else <block3: block>

Standard ’if ’ control structure similar to other languages.

require <capabilities: string-list>

Some commands in the filter file are optional or are extensions to RFC 3028. If any of
these are used, they must be specified in a require command at the beginning of the file.
The capabilities that PMDF supports are: envelope, fileinto, reject, vacation.

stop

Ends all processing of the filter file.

16.2.7.1.3 Common arguments

ADDRESS-PART: ":localpart" / ":domain" / ":all"

ADDRESS-PART is used in comparisons against addresses to indicate which parts of the
address to look at. :localpart refers to the left side of the @, :domain refers to the
right side of the @, and :all refers to the entire address. The default is :all.

COMPARATOR: ":comparator" <comparator-name: string>

COMPARATOR indicates what kind of character comparison to do. The possible values for
comparator-name are: i;octet for case-sensitive matching, and i;ascii-casemap
for case-insensitive matching. The default is i;ascii-casemap.

MATCH-TYPE: ":is" / ":contains" / ":matches"

MATCH-TYPE indicates what kind of comparison to do for tests that compare one string
to another. The :is match-type requires an exact string match. The :contains match-
type requires a substring match. The :matches match-type is for wildcard matching.
Using :matches enables the wildcard characters ‘‘*’’ (0 or more characters) and ‘‘?’’
(single character). The default is :is.

16.2.7.1.4 Test commands

address [ADDRESS-PART] [COMPARATOR] [MATCH-TYPE] <header-names: string-
list> <key-list: string-list>

The address test returns true if any header in the header-names list contains any key
in the key-list in the specified part of the address, doing the comparison as indicated
by the comparator and match keywords. Similar to the header test, but only applies to
headers with addresses as values.

allof <tests: test-list>

The allof test performs a logical AND on the tests supplied to it.

16–32

Mail Filtering and Access Control
Mailbox Filters

anyof <tests: test-list>

The anyof test performs a logical OR on the tests supplied to it.

envelope [ADDRESS-PART] [COMPARATOR] [MATCH-TYPE] <envelope-part: string-
list> <key-list: string-list>

The envelope test returns true if any of the envelope headers in the envelope-part
list contains any key in the key-list in the specified part of the address, doing the
comparison as indicated by the comparator and match keywords. The possible values for
envelope-part are ‘‘to’’ and ‘‘from’’.

exists <header-names: string-list>

The exists test returns true if all of the headers in the header-names list exist within
the message.

false

The false test always evaluates to false.

header [COMPARATOR] [MATCH-TYPE] <header-names: string-list> <key-list: string-
list>

The header test returns true if any header in the header-names list contains any
key in the key-list, doing the comparison as indicated by the comparator and match
keywords.

not <test>

Evaluates the specified test, and reverses the result.

size <":over" / ":under"> <limit: number>

The size test compares the size of the message to the specified limit. If :over is
specified, it returns true if the size is larger than the limit. If :under is specified, it
returns true if the size is smaller than the limit. It never returns true if the size is
equal to the limit.

true

The true test always evaluates to true.

16.2.7.1.5 Action commands

discard

Throws the message away. If the FILTER_DISCARD option (see Section 7.3.3) is set to 2
or 3, the message is placed on the filter_discard channel, othewise it is immediately
deleted by the bitbucket channel.

fileinto <folder: string>

Supported for MessageStore only. Delivers the message to the specified folder instead of
the INBOX. The maximum number of fileinto commands allowed is specified by the
MAX_FILEINTOS option (see Section 7.3.3). The fileinto channel keyword must be
specified on the channel (see Section 16.2.1.2).

keep

This is the default action. Delivers the message to the INBOX.

redirect <address-list: string-list>

Forwards the message to all of the addresses listed in address-list. Put each address
in double quotes and separate them with commas. The maximum number of redirect
commands allowed is specified by the MAX_FORWARDS option (see Section 7.3.3).

16–33

Mail Filtering and Access Control
Mailbox Filters

The addresses in address-list may contain any of the substitution strings listed
in Table 16–2.

reject <reason: string>

Rejects the message and sends a rejection notice back to the sender containing the
reason for the rejection.

16.2.7.2 The SIEVE Vacation Command

The SIEVE vacation command is described in DRAFT-SHOWALTER-SIEVE-VACATION-
04.TXT and summarized here.

The syntax for the vacation command is:

require "vacation";
vacation [":days" number] [":addresses" string-list] [":subject" string]

[":mime"] <reason: string>;

The optional :days parameter is used to specify the period in which addresses are
kept and are not responded to. The valid range is 1 to 30 days. The default is 7.

Only messages that are addressed directly to the user are responded to with a
vacation notice. The optional :addresses parameter is used to allow the user to specify
other addresses that PMDF should consider to belong to the user.

The optional :subject parameter is used to specify the subject of the vacation notice
message. If it is not specified, the subject is Re: followed by the original message’s
subject.

The optional :mime parameter is for advanced users only. It tells PMDF that the
reason argument text is formatted as a valid MIME part, including the MIME headers.

The reason argument is the text of the vacation notice. Formatting using multiple
lines, blank lines, and tab characters is supported.

The vacation command is only supported in users’ personal filter files. For more
information on vacation notices, see Section 16.2.8.

16.2.7.3 PMDF SIEVE Extensions

PMDF also implements the following commands, which are not standard. They are
listed here using the format used in RFC 3028, and using keywords (such as COMPARATOR)
defined in RFC 3028.

body [:contains] [COMPARATOR] <key-list: string-list>

The body test searches the body of the message for strings in key-list. The body test
is case-insensitive by default. COMPARATOR can be specified to make it case-sensitive.

debug <message: string>

The debug command prints out the message in the currently active debug log file.

hold

The hold command causes PMDF to hold the message as a .HELD file. The hold
command is allowed in the system filter file and channel level filters only.

16–34

Mail Filtering and Access Control
Mailbox Filters

16.2.7.4 Example Filter File

The following is a simple example of a filter file:

require ["fileinto","vacation"];
if body :contains "free stuff"

{ discard; }
elsif address :localpart "to" "info-pmdf"

{ fileinto "info-pmdf"; }
else

{ vacation :days 5 :subject "I’m on vacation" "see you next week"; }

16.2.8 Vacation Notices

Users can establish a vacation notice using the vacation SIEVE command (see
Section 16.2.7.2) or using the web-based interface (see Section 16.2.6). A vacation notice
sends an automatic reply to mail messages received by the user. See the appropriate
edition of the PMDF User’s Guide for more information.

Note that the vacation SIEVE command is only supported for users’ personal
mailbox filters. If it appears in a channel filter or system filter file, it will not cause
a syntax error, but no vacation notices will be sent out.

Vacation notices are always sent to the envelope From: address. Vacation notices
are never sent to mailing lists or other addresses which are most likely from automated
mailers (see vacation exceptions option file, Section 16.2.8.1).

The vacation notice itself is formatted as a multipart/report message, where the
report type is delivery-status. The text of the notice (the reason argument to the
vacation command) is included in the first part of the multipart message.

PMDF keeps track of all of the addresses which have been responded to, per vacation
message, in the vacation notice history file. This file is in the same directory as the
mailbox filter file. Its name is the name of the filter file with -vnhf appended to it. This
is a text file, but it should not be edited by users or system managers.

Note: For OpenVMS systems, make sure that the directories containing the mailbox filter files
(typically the users’ home directories) do NOT have a version limit of 1. The vacation
notice history file requires the ability to have at least 2 versions.

16.2.8.1 Vacation Exceptions Option File

As required by the SIEVE vacation command draft document (DRAFT-SHOWALTER-
SIEVE-VACATION-04.TXT), PMDF has a list of addresses that vacation notices are not
sent to (because they are most likely from automated mailers). PMDF also has a list of
headers that indicate a mailing list, since vacation notices must not be sent to mailing
lists. These lists of addresses and headers are specified in the vacation exceptions option
file, vacation_exceptions.opt, located in the PMDF table directory. PMDF supplies
a default list during installation. System managers may edit this file to add new headers
and addresses, or remove ones already there. Note that this file is replaced upon instal-
lation (except on VMS), so any changes must be saved by the system manager so they
are not lost.

16–35

Mail Filtering and Access Control
Mailbox Filters

The vacation exceptions file contains a list of headers and optional values. Note that
only headers recognized by PMDF are supported in the file; all others are ignored. Any
of the header lines described in this manual may be specified, plus any of the header
lines standardized in RFC 822, RFC 987, RFC 1049, RFC 1421, RFC 1422, RFC 1423,
RFC 1424, RFC 2156, and RFC 2045.

When PMDF is about to send a vacation notice in response to a mail message, it
searches the mail message first for each header in the file. If any of the headers is
present with the specified value, the vacation notice is not sent.

A header can be included with no value (make sure to include the colon ‘‘:’’ after the
header name), indicating that the header’s presence alone is sufficient to suppress the
vacation notice. Wildcards are supported in the value part (‘‘*’’ and ‘‘?’’), but not in the
header name. Use the backslash character (‘‘\ ’’) to quote the wildcards.

16.2.9 Checking Your Changes

Important: After you have made changes to any mailbox filter file, it is important to verify that it
is working correctly, especially if it was edited manually. If the filter file is not working,
for example if it has a syntax error, mail delivery could be interrupted.

The syntax of filter files can be partially verified using the following command:

pmdf test -rewrite -filter mailbox (UNIX and NT)

or

$ pmdf test/rewrite/filter mailbox (VMS)

This command only checks some elements of the filter file. The best way to check a
filter file is to send mail through it.

Note that the web-based interface always generates syntactically valid filter files.

16–36

17The UNIX Local Channel

The local channel is used to deliver messages to addresses on the local host. On
UNIX, the local channel is the l (lowercase L) channel.

When using a mail user agent on the local system to send mail (to anywhere),
/pmdf/bin/sendmail is invoked as the replacement for sendmail to queue the
messages to the appropriate queues, and then the channel programs for those queues will
process the messages. Such local mail user agents can include mail, mailx, mailtool,
Pine, etc.—any mail user agent that normally invokes sendmail.

The pmdf configuration utility always generates a local channel.

17.1 /pmdf/bin/sendmail

/pmdf/bin/sendmail is designed for compatibility with mail user agent applica-
tions. However, it is not intended to be 100% compatible with sendmail when it comes to
command line options for use by human users in submitting messages or management
activities. PMDF’s design has some fundamental differences from sendmail’s design;
PMDF as a whole provides a safer implementation of all sendmail’s functionality, plus
a great many additional capabilities. Not all sendmail command line options make
sense for PMDF’s sendmail replacement; the underlying functionality can be provided by
PMDF in a way other than sendmail options.

Instead, for submitting messages from the command shell, see the pmdf send utility,
described in the UNIX Edition of the PMDF User’s Guide. For checking on the PMDF
queues, see the pmdf qm utility described in Section 30.2.2. For listing currently executing
PMDF processes, see the pmdf process utility described in Chapter 30. Or for other
management activities such as testing address rewriting, see additional PMDF utilities
described in Chapter 30.

The command line options recognized by PMDF’s sendmail replacement are shown
in Table 17–1.

Table 17–1 /pmdf/bin/sendmail options

Option Usage

-help Help; gives list of options supported
-h Synonym for -help
-t Use headers for envelope addresses
-odq Enqueue only, with priority set to nonurgent
-oee No error status returned to shell

17–1

The UNIX Local Channel
/pmdf/bin/sendmail

Table 17–1 (Cont.) /pmdf/bin/sendmail options

Option Usage

-fuser Set From: username to user. In general, must be root, or in the
pmdf_world group, to set user to other than one’s own username, though
users in the pmdf_world_username group are also allowed to specify -
f=username.

-bs SMTP dialog to stdin/stdout — all other options ignored
-oi Line containing single dot (.) does not terminate message
-i Synonym for -oi
-ruser Synonym for -fuser
-- Any command line arguments after this option are ignored

The following are always set when sending a message

-oem Mail error message back to user
-om The sender address will not be stricken, if present, from the recipient list during

alias expansion
-m Synonym for -om
-odb Background delivery (asynchronous)

The following are ignored without error messages

-v Set verbose mode
-oo Old header format (with spaces instead of commas between addresses)
-odi Interactive delivery

The following are not applicable, and generate an error

-bd Start SMTP server
-bm Deliver mail
-bp Print mail queue information
-bt Test configuration

In addition, any other options not specified here are not supported and are ignored with
an error message.

When submitting to the local channel, i.e., invoking /pmdf/bin/sendmail, users
can set the PMDF_FROM environment variable to specify their From: address. PMDF will
insert a Sender: header line with the authenticated address if it is different than the
From: address.

17.2 Case Sensitivity of User Accounts

By default, PMDF preserves the case of addresses as originally presented to PMDF.
Since UNIX accounts are case-sensitive, it is important that the mailbox of an address
be in the correct case when delivering to a UNIX account. Sites with a consistent
account name convention—all accounts being lowercase for instance—can want to use
case insensitive matching when delivering to local mailboxes.

17–2

The UNIX Local Channel
Case Sensitivity of User Accounts

PMDF rewrite rules can be used to forcibly control the case of addresses going to the
local channel (or any other channel), for instance, to force all local mailboxes to lowercase;
see Section 2.2.5.4.

If the case of the user accounts is not regular, an alternate approach is to use PMDF
aliases to achieve case insensitive matching. Note that PMDF alias matching is case-
insensitive, but the case of the expanded alias is preserved. Thus for instance the use of
an alias

adam: AdAm

would mean that messages to any of ‘‘adam’’, ‘‘Adam’’, ‘‘ADAM’’, ‘‘aDAm’’, etc., would be
delivered to the account ‘‘AdAm’’.

17.3 Local Delivery on UNIX Systems

Message files queued to the l channel are delivered to local users by the local channel
program l_master.

When l_master runs, it checks to see whether the recipient of the message has a
.forward file in their home directory and, if so, re-enqueues the message to all recipient
entries specified in that file.

For a user who does not have .forward file or who has a .forward specifying
‘‘normal’’ delivery, PMDF will next check if there is an entry applying to that user in the
PMDF user profile database and if there is, deliver accordingly. The user profile database
delivery specification, if there is one, is executed just as if it were an entry in the user’s
.forward file.

For users who need ‘‘privileged’’ forwarding, see also pipe channels, as documented
in Section 26.5.

If no forwarding has been established for the user via one of the above mechanisms,
then the l channel simply delivers to the user’s directory under /var/mail. (In
particular, note that a default entry in the PMDF profile database can be a convenient
way to specify that by default deliveries should be made to an alternate location.)

17.3.1 The .forward File

The format for the .forward file is one or more lines, each line containing one or
more comma-separated recipient entries. A recipient entry can take the following forms.
When executing certain actions of a user’s .forward actions, the l channel becomes that
user, referred to below as current-user.

• user@domain requeues a copy of the message to the specified address. In the special
case of current-user@official-local-host-name where current-user is the
user on whose behalf the .forward file is being processed and where official-

local-host-name is the official host name defined on the l channel definition, the

17–3

The UNIX Local Channel
Local Delivery on UNIX Systems

message is just delivered ‘‘normally’’ (in addition to any other forwarding specified
by other entries).

• \current-user or current-user delivers a copy ‘‘normally’’ (in addition to any
other forwarding specified by other entries), where current-user must be the user
on whose behalf the .forward file is being processed.

• /directory/path/filename appends a copy of the message to the specified file
(which must be writeable by current-user, the user on whose behalf the .forward
file is being processed).

• +/directory/path/filename appends a copy of the message to the specified file
(which must be writeable by current-user, the user on whose behalf the .forward
is being processed) using digest-like boundary markers between the messages.

• |command where command is a shell command will execute that command as
current-user, the user whose .forward file is being processed, with standard
input coming from the message being delivered.

• |command args where command args is a shell command with arguments will
execute that command as current-user, the user on whose behalf the .forward
is being processed, with standard input coming from the message being delivered.

• A line beginning with a # or ! character is considered to be a comment line.

Example 17–1 shows a sample .forward file for a user jdoe who wants one copy of
his messages delivered normally, one copy sent to another of his accounts, one copy sent
to his pager, one copy filed in the file thismonthsmailarchive, and also wants to pipe
the message through the procmail utility.

Example 17–1 Sample .forward File for User jdoe

\jdoe, John.Doe@system2.example.com, John.Doe@pager.example.com
/usr/users/jdoe/thismonthsmailarchive
"|/usr/bin/procmail jdoe"

The RECIPIENT environment variable is available for use in .forward files; it
specifies the envelope recipient of the message.

17.3.2 The PMDF User Profile Database

The PMDF user profile database mechanism provides a way for PMDF system
managers to provide default .forward file functionality for users; for instance, to specify
that local users’ messages should be delivered, in lieu of more specific instructions in
users’ own .forward files, to DEC MailWorks. It also provides a convenient way for
users to make their own selection of any delivery format choices authorized by the PMDF
system manager.

17–4

The UNIX Local Channel
Local Delivery on UNIX Systems

The PMDF system manager defines PMDF user profile database methods, as
described below in Section 17.3.2.1, corresponding to .forward file style entries. Then
a user can modify his or her own PMDF user profile database entry, selecting a delivery
format by keyword, rather than having to correctly add an actual, possibly complicated,
delivery mechanism command to his or her .forward file.

When executing a delivery command corresponding to a user’s entry in the PMDF
user profile database, PMDF becomes that user.

17.3.2.1 Configuring the PMDF User Profile Database Methods

The PMDF system manager defines delivery methods in the user profile database by
first creating a PMDF profile database using a command such as

su pmdf -c "pmdf crdb /dev/null PMDF_USER_PROFILE_DATABASE"

and then using the pmdf profile utility’s set method command. The username of the
user on whose behalf the command is executed will be substituted where the string %s
is located. The substitution strings %+, meaning the username plus subaddress (portion
after a plus character), and %d, meaning the user’s default directory, are also available.

For example:

pmdf profile
profile> set method BSD "/var/spool/mail/%s"
profile> set method DMW "|/usr/bin/inetgrecv %s"
profile> set method MIME "+/var/spool/mail/%s"
profile> show method -all
Method BSD is defined as: /var/spool/mail/%s
Method DMW is defined as: |/usr/bin/inetgrecv %s
Method MIME is defined as: +/var/spool/mail/%s
profile> exit

More details on the pmdf profile utility can be found in Section 30.2.1.

17.3.2.2 Adding User Entries to the PMDF User Profile Database

Once delivery methods have been defined, the PMDF system manager (user root or
pmdf) can use the pmdf profile utility’s set delivery command to set a particular
user’s delivery format to be one of the defined methods with the privileged -user
qualifier, or set a default delivery format for users who do not set their own delivery
format with the privileged -default qualifier.

For example, if the PMDF system manager has configured methods BSD and DMW,
then the commands:

pmdf profile set delivery BSD -user=root
pmdf profile set delivery DMW -default

would direct that messages to root be delivered in normal UNIX mailbox format, but
that all other messages delivered by the local channel be delivered by default using the
DMW method.

17–5

The UNIX Local Channel
Local Delivery on UNIX Systems

Users can also set their own delivery format to be one of the methods defined by the
PMDF system manager. For example, a user who wants to receive their messages in
DEC MailWorks and whose PMDF system manager has configured DMW as the name of
such a delivery method could use the command:

% pmdf profile set delivery DMW

17.3.3 The Option File

An option file can be used to control various characteristics of the local channel.
This local channel option file must be stored in the PMDF table directory and named
l_option, i.e., /pmdf/table/l_option.

17.3.4 Format of the Option File

Option files consist of several lines. Each line contains the setting for one option.
An option setting has the form:

option=value

value can be either a string or an integer, depending on the option’s requirements. If
the option accepts an integer value a base can be specified using notation of the form
b%v, where b is the base expressed in base 10 and v is the actual value expressed in
base b.

17.3.5 Contents of the Option File

The available options are:

FORCE_CONTENT_LENGTH (0 or 1)

If FORCE_CONTENT_LENGTH=1, then PMDF adds a Content-length: header line to
messages delivered to the L channel, and causes the channel not to use the >From syntax
when From is at the beginning of the line. This makes local UNIX mail compatible with
Sun’s newer mail tools, but potentially incompatible with other UNIX mail tools.

FORWARD_FORMAT (string)

This option specifies where to find users’ .forward files. The string %u means to
substitute in each user’s username; the string %h means to substitute in each user’s home
directory. The default behavior, if this option is not explicitly specified, corresponds to:

FORWARD_FORMAT=%h/.forward

REPEAT_COUNT (integer)
SLEEP_TIME (integer)

In case the user’s new mail file is locked by another process when PMDF tries to deliver
the new mail, these options provide a way to control the number and frequency of retries
the local channel program should attempt. If the file can not be opened after the number

17–6

The UNIX Local Channel
Local Delivery on UNIX Systems

of retries specified, the messages will remain in the local queue and the next run of the
local channel will attempt to deliver the new messages again.

The REPEAT_COUNT option controls how many times the channel programs will attempt
to open the mail file before giving up. REPEAT_COUNT defaults to 30.

The SLEEP_TIME option controls how long in seconds the channel program waits between
attempts. SLEEP_TIME defaults to 2 (two seconds between retries).

SHELL_TIMEOUT (integer)

The SHELL_TIMEOUT option can be used to control how long in seconds the channel will
wait for a user’s shell command in a .forward file to complete. Upon such time outs,
the message will be returned back to the original sender with an error message along
the lines of ‘‘Timeout waiting for ...’s shell command ... to complete’’. The default value
is 600 (corresponding to 10 minutes).

SHELL_TMPDIR (directory-specification)

The SHELL_TMPDIR option can be used to control where the local channel creates its
temporary files when delivering to a shell command. By default, such temporary files
are created in users’ home directories. Via this option the PMDF manager can instead
choose to have the temporary files created in some other directory; e.g.:

SHELL_TMPDIR=/tmp

17–7

18The Local, DECnet MAIL, and General MAIL_ Channels
(OpenVMS)

The local channel is used to deliver messages to addresses on the local host. On
OpenVMS, the local channel is the l (lowercase L) channel. On OpenVMS systems,
this channel interfaces to the standard VMS MAIL utility. The local channel is also
used on OpenVMS to interface PMDF to PSIMail. The conversion of PSIMail addresses
to RFC 822 addresses is described in the following sections.

On OpenVMS systems, DECnet MAIL-11 channels, d and d_, are used to deliver
messages via VMS MAIL to remote hosts using the MAIL-11 protocol. These channels
differ from the local channel only in that, for messages queued to the channels, the host
name in envelope To: addresses is significant. The local channel program is also used
to service DECnet MAIL-11 channels.

MAIL_ channels are used on OpenVMS systems to provide specialized interfaces to
other foreign mail transports that attach to VMS MAIL.

Many of the details of the operation of the local channel are described in Chapter 19
and in the PMDF User’s Guide, OpenVMS Edition. In particular, the PMDF User’s Guide,
OpenVMS Edition describes those aspects of PMDF that are visible through the VMS
MAIL user interface.

The automatic configuration generator always generates a local channel and, if
needed, a d channel.

18.1 Handling VMS DECnet MAIL and PSIMail Addresses

Messages delivered to PMDF by VMS MAIL can come from the local system or can
have originated on a remote system connected via either DECnet MAIL-11 or PSIMail.
In the latter case, the message’s return address will probably not conform to RFC 822
addressing conventions in which case PMDF must translate the address to legal RFC 822
address. PMDF uses a mapping scheme to convert VMS MAIL addresses into acceptable
RFC 822 addresses and vice versa.

This mapping scheme is necessarily rather complex. There are four individual
conversions that must be performed. These are described in detail in the following
subsections.

18–1

The Local, DECnet MAIL, and General MAIL_ Channels (OpenVMS)
Handling VMS DECnet MAIL and PSIMail Addresses

18.1.1 Conversion of VMS To: addresses to PMDF Format

The first step in converting a VMS To: style addess to PMDF’s format is to remove
the foreign protocol ‘‘wrapper’’ from addresses of the form IN%"address" and then apply
the translations of Table 18–1. The foreign protocol wrapper is usually, but not always,
IN%" ".

Table 18–1 Foreign Protocol Address Mapping

Sequence Is translated to

’ " (double quote)
\ ’ ’ (single quote)
\d " (double quote)
\s ’ (single quote)
\D " (double quote)
\S ’ (single quote)
\ \ \ (backslash)

These translations are necessary in order to allow users to specify double quotes inside
an address even though they are not normally allowed inside a VMS MAIL address.
Preferred usage when entering addresses manually is to substitute single quotes for
double quotes and \’ for single quotes. For example:

IN%"’tony li’@hmc.edu" maps to "tony li"@hmc.edu
IN%"\’tonyli\’@hmc.edu" maps to ’tonyli’@hmc.edu

The next step is to apply any protocol-address-specific mapping that has been
supplied. PMDF checks the mapping file to see if a mapping table named PROTOCOL-
TO-PMDF exists. If this table exists, it is applied separately to each address inside of
the foreign protocol wrapper. Specifically, a probe string of the form (note the use of the
vertical bar character, |)

channelname|protocolname|address

is built. Here channelname is the name of the PMDF channel associated with the
incoming mail. This will be d if network mail is being received and a d channel exists;
otherwise it will be l. protocolname is the name of the foreign protocol used including
the percent sign; this is usually, but not always, IN%. And address is simply the address
being converted.

If a mapping entry matches the probe string, the result of the application of the
mapping replaces the original addresses. If no entry matches the address is not changed
in any way.

The availability of the actual protocol name used makes it possible for PMDF to
handle multiple protocol names and associate different syntax rules with each one. (Of
course, this is only possible if the necessary syntax modifications can be expressed in
the mapping table.) For example, suppose you want to define a new foreign protocol
REVERSE% that accepts addresses of the form user@domain, but the elements in domain
are reversed. That is, instead of writing IN%"user@ymir.example.com" you would
write IN%"user@com.example.ymir". The following mapping would accomplish this
for all domain specifications of six parts or less:

18–2

The Local, DECnet MAIL, and General MAIL_ Channels (OpenVMS)
Handling VMS DECnet MAIL and PSIMail Addresses

PROTOCOL-TO-PMDF

|REVERSE$%|%@%*.*.*.*.*.* $1$2@$9.$8.$7.$6.$5.$3$4
|REVERSE$%|%@%*.*.*.*.* $1$2@$8.$7.$6.$5.$3$4
|REVERSE$%|%@%*.*.*.* $1$2@$7.$6.$5.$3$4
|REVERSE$%|%@%*.*.* $1$2@$6.$5.$3$4
|REVERSE$%|%@%*.* $1$2@$5.$3$4
|REVERSE$%|%@%* $1$2@$3$4

This more complex iterative mapping will reverse domain specifications containing
eight or fewer parts:

PROTOCOL-TO-PMDF

|REVERSE$%|%@%*.* $R{REVERSE}$1$2|$5.|$3$4
|REVERSE$%|%@%* $1$2@$3$4
{REVERSE}*|*|%*.%* $R{REVERSE}$0|$1$4$5.|$2$3
{REVERSE}*|*|* $0@$1$2

It would also be necessary to define a logical name for the new REVERSE% protocol:

$ DEFINE/SYSTEM/EXEC MAIL$PROTOCOL_REVERSE PMDF_SHARE_LIBRARY

The final step in converting a VMS To: address to PMDF’s format is to convert
DECnet-style addresses into RFC 822 addresses. Specifically, addresses of the form
IN%system::user are converted into RFC 822 addresses of the form USER@SYSTEM.
Multiple routing systems can be specified; the result will be a ‘‘percent-style’’ address, e.g.,
IN%sys1::sys2::user will be converted to USER%SYS2@SYS1. The forced conversion
of such addresses to upper case is performed by VMS MAIL and is unavoidable. Double
quotes can be used to eliminate the conversion to upper case; they also make it possible
to specify more than one address inside a single foreign protocol wrapper.

18.1.2 Conversion of VMS From: Addresses to PMDF Format

If the From: address is an address of the form IN%"address", the IN%" " wrapper is
removed and the same translations described in the previous section, Section 18.1.1, are
performed. PMDF handles this case by effectively reversing any transformations applied
to the address to make it palatable to VMS MAIL. The result should be the original
address PMDF started out with. Note that this special case does arise in practice when
incoming PMDF messages are forwarded through VMS MAIL back out to PMDF.

If the address is not something PMDF recognizes as one of its own, the first step in
the rewriting process is to attempt to use any special mapping that has been supplied.
PMDF checks the mapping file to see if a mapping table named VMSMAIL-TO-PMDF
exists. If this table exists it is applied to each address. Specifically, a probe string of the
form

channelname|address

is constructed. Here channelname is the name of the PMDF channel associated with the
incoming mail. This will be d if network mail is being received and a d channel exists;
otherwise it will be ‘‘l’’. address is simply the address being converted.

18–3

The Local, DECnet MAIL, and General MAIL_ Channels (OpenVMS)
Handling VMS DECnet MAIL and PSIMail Addresses

If no entry in the mapping table matches the probe string, the conversion process
continues as if no mapping table was given; the address is not changed. If an entry
does match, the result of the application of the mapping replaces the original addresses.
This resultant address can either be a VMS MAIL address or a RFC 822 address. The
mapping template should specify a $< metacharacter if it produces a VMS MAIL address
and $> metacharacter if it produces a RFC 822 address. No further conversion will be
done if $> is specified.

The following example shows a very simple mapping that converts PSIMail addresses
into (possibly legal) domain addresses:

VMSMAIL-TO-PMDF

|PSI$%1:: $1@one.psi.company.com$>
|PSI$%2:: $1@two.psi.company.com$>
|PSI$%::* $2@$1.psi.company.com$>

Now, if the conversion process has resulted in a VMS MAIL address at this point
(which includes addresses generated by DECnet MAIL, PSIMail, or various other mail
systems), it is converted into RFC 822 quoted string format and the local host name is
appended to the address. DECnet addresses are handled in a special manner — double
colons are converted into percent signs and the halves of the address are swapped. The
special case of a foreign protocol address that does not require RFC 822 quoting is handled
by doubling the percent signs in the address (effectively quoting them). For example:

IN%"dan@sc.cs.cmu.edu" maps to dan@sc.cs.cmu.edu
IN%"’test 1’@tester" maps to "test 1"@tester
NED maps to ned@local-host
A::B::C::D maps to d%c%b%a@local-host
PSI%1002::TEST maps to "PSI%1002::TEST"@local-host
DSIN%48374334343 maps to DSIN%%48374334343@local-host

18.1.3 Conversion of PMDF From:, To:, and Cc: Addresses to VMS
Format

First, the useresent channel keyword, if used on the local channel, controls
whether or not PMDF preferentially uses any Resent- headers in its construction of
headers to pass to VMS MAIL. Next, PMDF checks for the existence of a PMDF-TO-
VMSMAIL table in the mapping file. If this table exists, each address is converted into a
probe string of the form

channelname|address

where channelname is the name of the channel performing the operation and address

is the address being processed. Since this operation is normally done when PMDF is
delivering messages to VMS MAIL, the channel name should be the name of the channel
actually delivering the message.

If no mapping entry matches the probe string, the address is not changed. However,
if an entry does match, the result of the mapping replaces the address. The result can
either be a VMS MAIL address or a RFC 822 address. The mapping template should

18–4

The Local, DECnet MAIL, and General MAIL_ Channels (OpenVMS)
Handling VMS DECnet MAIL and PSIMail Addresses

specify a $< metacharacter if it produces a RFC 822 address and $> metacharacter if it
produces a VMS MAIL address. No further conversion will be done if $> is specified.

If the conversion process has resulted in a RFC 822 address, at this point, the process
proceeds to convert the address into a format acceptable to VMS MAIL. This operation
is almost the inverse of conversion described in Section 18.1.1, Conversion of VMS To:
addresses to PMDF Format. The ‘‘\d’’ and ‘‘\s’’ forms are substituted, respectively, for
double and single quotes. An IN%" " wrapper is added to each address.

A couple of additional operations are also performed in an attempt to make up for
limitations of VMS MAIL. VMS MAIL makes some attempt to add DECnet routing
information to the lines it processes. Specifically, the name of the local DECnet node
is prepended to some addresses. This information is added because without it addresses
transferred to remote nodes via MAIL-11 are not repliable (the operation is actually
performed by the remote node using its own name for the originating node).

However, the processing done by VMS MAIL is incomplete. First, if multiple
addresses appear on the VMS MAIL From: line, only the first address has DECnet
routing information added to it. Second, the VMS MAIL To: and cc: lines are also
used for replies in some cases. In particular, the Pathworks MAIL application provides a
REPLY-TO-ALL function that attempts to send to all addresses on the VMS MAIL From:,
To: and cc: lines. Unfortunately VMS MAIL fails to prepend correct node information
to To: and cc: line addresses.

PMDF attempts to correct these problems if requested to do so. The daemon channel
keyword is used to activate this feature — if this keyword is present the argument given
to it is interpreted as a DECnet node name (the double colons can be included if desired;
they will be added automatically if they are not specified as part of the node name). This
node name information is prepended to the second and subsequent addresses appearing
on the VMS MAIL From: line. This node information is appended to every address that
appears on the To: and cc: lines.

If the special argument SYS$NODE is given to the daemon keyword the SYS$NODE
logical is translated and the result is used as the prepended node name. This can be
useful in heterogeneous cluster environments with complex queue setups where the
DECnet node name associated with a channel can not be known before the delivery
job starts running in a specific queue.

This sort of daemon keyword can be used on any channel associated with VMS MAIL:
local l, DECnet MAIL-11 d, d_, and MAIL mail_ channels are all affected. Usually this
feature is used with d and d_ channels; it can occasionally be useful on the l channel,
but a price is incurred in terms of unnecessarily complex addresses in this case. Note
that the daemon keyword controls additional functionality when used in conjunction with
mail_ channels; see the Section 18.1.4 for additional details.

18–5

The Local, DECnet MAIL, and General MAIL_ Channels (OpenVMS)
Handling VMS DECnet MAIL and PSIMail Addresses

18.1.4 Conversion of PMDF Envelope To: Addresses to VMS Format

This is by far the most complex case. The actual conversion performed is channel-
specific.

• If the PMDF component doing the conversion is associated with the local, l, channel
the local host part of the address ‘‘@local-host’’ is removed and then the inverse of
the conversion described in Section 18.1.2 is performed. There are three additional
twists, however.

First of all, addresses of the form A%B are converted to the form B::A and
addresses of the form A!B are converted to A::B. Double %s are converted to a
single percent and the ordering is left unchanged. This is done so that literal percent
signs can be specified in an unquoted address. However, if the mailbox is quoted, the
string is ‘‘dequoted’’ according to the rules of RFC 822 and the result is used without
further translation. These extra twists provide support for complex DECnet MAIL
routing. For example:

NED@local-host maps to NED
NED%YELLOW@local-host maps to YELLOW::NED
NED%YELLOW.RED@local-host maps to YELLOW.RED::NED
"YELLOW::NED"@local-host maps to YELLOW::NED
"A::B::C::D"@local-host maps to A::B::C::D
D%C%B%A@local-host maps to A::B::C::D
G%F.E%D.C%B.A@local-host maps to B.A::D.C::F.E::G
"PSI%1002::TEST"@local-host maps to PSI%1002::TEST
A!B@local-host maps to A::B
B!C%A maps to A::B::C
C%A!B maps to A!B::C
DSIN%%3784374343434 maps to DSIN%3784374343434

• If the address is associated with the DECnet MAIL-11 channel d or d_ the same
operations are performed except that no ‘‘@local-host’’ part is removed and at
signs are handled just like percent signs. For example:

NED@node maps to NODE::NED
NED%YELLOW@node maps to NODE::YELLOW::NED
NED%YELLOW.RED@node maps to NODE::YELLOW.RED::NED
D%C%B%A@node maps to NODE::A::B::C::D
G%F.E%D.C%B.A@node maps to NODE::B.A::D.C::F.E::G
"PSI%1002::TEST"@node maps to NODE::PSI%1002::TEST
DSIN%%3743743@node maps to NODE::DSIN%3743743

• If the address is associated with a mail_xxx channel, the address is converted in
the same way as it would be for a DECnet MAIL-11 channel, but in addition the
address is prefixed with the string ‘‘xxx%’’. This mechanism, along with channel
table rewriting, can be used to make the rewrite rules for PSImail addresses much
simpler.

18–6

The Local, DECnet MAIL, and General MAIL_ Channels (OpenVMS)
Handling VMS DECnet MAIL and PSIMail Addresses

• A completely different strategy is used if the daemon keyword is specified in the
definition of a mail_ channel. If daemon is specified, the official host name associated
with the channel is used as a prefix and the address is enclosed in double quotes and
used as a suffix. Note that the argument to the daemon keyword is significant; see
Section 18.1.2 for details.

For example, suppose the daemon keyword is applied to the mail_psi channel
whose official hostname is PSI%xyz::IN%. The address user@x.y would then be
converted to PSI%xyz::IN%"user@x.y". This mechanism makes it possible for
PMDF to send messages to another PMDF system via any mechanism supplied by
VMS MAIL.

• There’s one final feature available — if the channel is marked with the 733 keyword
all system names are truncated at the first period that appears in their names.
This makes it possible to eliminate lots of channel specific rewrite rules in some
configurations. For example, if the d channel was marked as a 733 channel, the
addresses shown in the second bulleted item above would be converted as follows:

NED@node maps to NODE::NED
NED%YELLOW@node maps to NODE::YELLOW::NED
NED%YELLOW.RED@node maps to NODE::YELLOW::NED
D%C%B%A@node maps to NODE::A::B::C::D
G%F.E%D.C%B.A@node maps to NODE::B::D::F::G

18.2 Accessing Remote OpenVMS DECnet MAIL and PSIMail
Systems

To provide access to remote DECnet MAIL and PSIMail via the local channel,
versions of PMDF prior to version 3.2 used rewrite rules of the form

red.okstate.edu U%RED@yellow.okstate.edu
green.okstate.edu PSI$%101202::$U@yellow.okstate.edu
blue.okstate.edu U%BLUE@yellow.okstate.edu
slate.okstate.edu U%GRAY@yellow.okstate.edu

or of the form

red.okstate.edu RED::$U@yellow.okstate.edu
green.okstate.edu PSI$%101202::$U@yellow.okstate.edu
blue.okstate.edu BLUE::$U@yellow.okstate.edu
slate.okstate.edu GRAY::$U@yellow.okstate.edu

Here RED and BLUE are remote DECnet systems, GREEN is a remote PSIMail system,
GRAY is a remote DECnet system whose domain name (slate.okstate.edu) differs from its
DECnet node name, and YELLOW is the local host. This mechanism is still available in
order to preserve compatability with earlier versions.

The problem with this scheme is that while these rewrite rules provide full access
to the remote systems, they also rewrite addresses in message headers, resulting in
undesirable header address formats.

18–7

The Local, DECnet MAIL, and General MAIL_ Channels (OpenVMS)
Accessing Remote OpenVMS DECnet MAIL and PSIMail Systems

Enhanced rewriting facilities introduced with PMDF V3.2 make it possible to
avoid this problem and still provide the necessary access to remote systems. This is
accomplished as follows:

1. Use the rewriting rules only to canonicalize addresses, that is, the rewrite rules
convert all possible incoming addresses into the proper domain format addresses
that should appear in the message headers.

2. Use the DECnet MAIL-11 channel (d channel) to provide access to remote DECnet
systems. Use special MAIL channels to provide access to PSIMail.

3. Use appropriate channels in conjunction with channel-level translation operations
(in the channel block) to map domain address back into DECnet MAIL or PSIMail
addresses. If possible mark the channel with the 733 keyword and use domain
names whose leftmost section (the part before the first period) corresponds to the
DECnet MAIL or PSIMail system name in order to lessen the number of channel-
level translation operations that are needed.

For example, the rewrite rules shown above could be implemented in PMDF with
the following rewrite rules and channel blocks:

red.okstate.edu $U@RED.OKSTATE.EDU
red $U@RED.OKSTATE.EDU
green.okstate.edu $U@GREEN.OKSTATE.EDU
green $U@GREEN.OKSTATE.EDU
blue.okstate.edu $U@BLUE.OKSTATE.EDU
blue $U@BLUE.OKSTATE.EDU
slate.okstate.edu $U@SLATE.OKSTATE.EDU
slate $U@SLATE.OKSTATE.EDU
gray $U@SLATE.OKSTATE.EDU

...

d
DECNET-MAIL
RED.OKSTATE.EDU RED
BLUE.OKSTATE.EDU BLUE
SLATE.OKSTATE.EDU GRAY

mail_psi
PSI-MAIL
GREEN.OKSTATE.EDU 101202

Or, using the 733 keyword to simplify things somewhat:

red.okstate.edu $U%RED.OKSTATE.EDU@DECNET-MAIL
red $U%RED.OKSTATE.EDU@DECNET-MAIL
green.okstate.edu $U@GREEN.OKSTATE.EDU
green $U@GREEN.OKSTATE.EDU
blue.okstate.edu $U%BLUE.OKSTATE.EDU@DECNET-MAIL
blue $U%BLUE.OKSTATE.EDU@DECNET-MAIL
slate.okstate.edu $U@SLATE.OKSTATE.EDU
slate $U@SLATE.OKSTATE.EDU
gray $U@SLATE.OKSTATE.EDU

...

d 733
DECNET-MAIL
SLATE.OKSTATE.EDU GRAY

18–8

The Local, DECnet MAIL, and General MAIL_ Channels (OpenVMS)
Accessing Remote OpenVMS DECnet MAIL and PSIMail Systems

mail_psi
PSI-MAIL
GREEN.OKSTATE.EDU 101202

18.3 File Attachments and Pathworks MAIL for PCs

Pathworks MAIL for PCs can generate file attachments. However, the format used is
completely nonstandard and specific to Pathworks MAIL for PCs. Only one attachment
is supported by Pathworks.

18.3.1 Pathworks Mail to MIME

Note: The following discussion applies only to OpenVMS systems. This functionality is not
supported on UNIX platforms.

PMDF provides facilities to convert such attachments into MIME body parts.
However, these facilities need some sort of flag so they know what messages need to
be processed. Unfortunately no convenient flag (e.g., a distinguishing header line) is
provided by Pathworks MAIL itself, so a flag had to be chosen that could be associated
with incoming Pathworks MAIL messages.

The flag PMDF has chosen is a special ‘‘X-Mailer:’’ header line. The contents of this
header line must be either ‘‘Pathworks MAIL V4.0’’ or ‘‘Pathworks MAIL V4.1’’. Header
lines of this sort tell PMDF that it is faced with a message that can contain one or more
file attachments. PMDF can then be told to scan this message and convert it into MIME
format.

The most convenient way to add this header line to messages coming from Pathworks
MAIL for PCs is to define the PMDF_HEADER logical appropriately. This can be done
automatically in the context of the Pathworks MAIL server process by adding the
following definition either to the appropriate user LOGIN.COM files or to the system-wide
SYLOGIN.COM file (if everyone uses the same version of Pathworks MAIL):

$ if f$mode() .eqs. "NETWORK" then -
if f$locate("PCSA$MAIL",f$logical("SYS$NET")) .lt. -

f$length(f$logical("SYS$NET")) then -
define pmdf_header "X-Mailer: Pathworks Mail V4.1"

This definition is conditionalized so it only applies to Pathworks MAIL servers. Any
messages sent to PMDF will then have the appropriate ‘‘X-Mailer:’’ header.

It is also necessary to instruct PMDF to convert these messages to MIME format.
This is done by adding a special channel to your configuration to associate with incoming
Pathworks MAIL and then adding instructions to request MIME conversions for this
channel to your mapping file.

18–9

The Local, DECnet MAIL, and General MAIL_ Channels (OpenVMS)
File Attachments and Pathworks MAIL for PCs

The special channel block for incoming Pathworks MAIL should look like this:

d_pathworks
PATHWORKS-MAIL

The channel block is all that’s needed; this channel is only used as a placeholder and
needs no rewrite rules.

The next step is to add appropriate instructions to the CHARSET-CONVERSION table
in your mapping file to activate MIME format conversion. A single entry of the form

CHARSET-CONVERSION

IN-CHAN=d_pathworks;OUT-CHAN=*;CONVERT Yes

will activate the conversion procedure for all messages entering PMDF via the Pathworks
MAIL channel. The CHARSET-CONVERSION mapping is described in Chapter 6.

18.3.2 MIME to Pathworks Mail

When sending mail to Pathworks Mail users, it is possible to have PMDF write the
message using Pathworks’ own attachment format. Remember only one attachment is
supported by Pathworks Mail, other attachments in the same message will not be visible
when viewing Pathworks Mail.

The only step is to add appropriate instructions to the CHARSET-CONVERSION table
in your mapping file to activate conversion. A single entry of the form

CHARSET-CONVERSION

IN-CHAN=*;OUT-CHAN=l;CONVERT Pathworks

will activate the conversion procedure for all messages entering the local channel. The
Pathworks attachment format is used under the MIME structure, so the message is still
in proper MIME format for the local users not using Pathworks Mail.

18–10

19The PMDF User Interface on OpenVMS

Much of the information provided in this chapter is intended to supplement that
found in the first two chapters of the OpenVMS edition of the PMDF User’s Guide.

User interaction with PMDF takes place via any of several interfaces including:
PMDF MAIL, PMDF Pine, VMS MAIL, DECwindows MAIL, Pathworks MAIL, Gold-
Mail, and MINT. If PMDF-MR is available, then users can also utilize ALL-IN-1 IOS,
MailWorks clients (A1MAIL) and other MAILbus (Message Router) agents available from
Hewlett-Packard Company. In addition, programs which utilize the callable interface to
VMS MAIL should work with PMDF. Users do not directly interact with PMDF and, for
the most part, should be unaware of PMDF’s existence.

If the optional PMDF-MR product has been installed, ALL-IN-1 IOS and MailWorks
users can direct messages through PMDF by specifying the name of the PMDF Message
Router mailbox, usually ‘‘PMDF’’, as a route in the address.

The standard capabilities of ALL-IN-1 IOS and MailWorks are supported by PMDF-
MR, including multiple attachments, non-textual bodyparts, and delivery and read
receipt notification. In addition, PMDF-MR can be configured to perform automatic
conversion of WPS-Plus and DX format messages to standard ASCII text.

19.1 Sending Mail with VMS MAIL

This section provides additional information which supplements that found in the
section ‘‘Sending mail with VMS MAIL’’ in the first chapter of the PMDF User’s Guide.

In VMS MAIL, whenever a message is sent with the IN% protocol prefix in its
address, VMS MAIL activates PMDF’s MAIL-11 foreign protocol interface to hand over
the message to PMDF. PMDF receives the message and places the message in the proper
PMDF channel queue for disposition.

19.1.1 Using a Prefix Other than IN%

PMDF supports the use of protocol name prefixes other than IN%. In fact, PMDF
supports the use of more than one prefix at a time.

The prefix or prefixes that activate PMDF are controlled by logical names of the
form MAIL$PROTOCOL_x, where x is the prefix name. All such logical names should
translate to the same string to which MAIL$PROTOCOL_IN translates:

$ DEFINE/SYSTEM/EXEC MAIL$PROTOCOL_FOO ’F$TRNLNM("MAIL$PROTOCOL_IN")’

19–1

The PMDF User Interface on OpenVMS
Sending Mail with VMS MAIL

The installation procedure for PMDF only defines the system-wide logical name
MAIL$PROTOCOL_IN. Additional logical names can be defined as needed but this
definition should not be removed; it should be possible to use the standard IN% protocol
name at every site running PMDF.

PMDF must choose a specific protocol name prefix to place in From: addresses.
This prefix is controlled by the logical name PMDF_PROTOCOL. Since actual delivery
of messages to VMS MAIL is done using system batch jobs, the only sensible place to
define this logical name is in the system logical name table.

For example, the following definition would tell PMDF to use the BITNET% prefix
in its From: addresses instead of IN%:

$ DEFINE/SYSTEM PMDF_PROTOCOL "BITNET%"

When defined, the translation value of the PMDF_PROTOCOL logical must be termi-
nated by a percent sign, %. The PMDF_PROTOCOL logical name is not defined by
default. In the absence of a definition PMDF uses the standard IN% protocol name.

Note: If PMDF_PROTOCOL is defined to be ‘‘FOO%’’ a corresponding MAIL$PROTOCOL_FOO
logical must be defined or messages will not be repliable. In general it is not a good idea to
use a protocol name other than IN%. The use of IN% represents a standard of sorts; lots
of sites support it. You can think you have a better choice, but remember that choosing
a different name can lead to considerable confusion in the long run.

19.1.2 Displaying a Welcome Message When PMDF is used

Under some circumstances it can be useful to have PMDF display a welcoming
message when a user invokes PMDF via PMDF MAIL or VMS MAIL. Such messages can
contain information about the status of the mail system, such as ‘‘Our network is down
until tomorrow’’, ‘‘The name of system A has been changed to B’’, ‘‘System A is being
upgraded and won’t be reachable until next week’’, and so forth.

When PMDF is activated by PMDF or VMS MAIL through the use of a PMDF
address (i.e., an address that activates the PMDFSHR image), it attempts to translate
the logical name PMDF_WELCOME. If this logical name is not defined (which is normally
the case) PMDF will not display anything. If this logical name does translate to some
equivalence string, PMDF first checks to see if the first character is an underscore. A
leading underscore instructs PMDF to display a welcome message before each and every
message is sent. If the underscore is not present the welcome message is only displayed
initially; subsequent displays are suppressed unless the value of the logical name changes
in some way. The leading underscore, if present, is removed.

PMDF then checks to see if the next character in the string is an at sign. If it is,
the remainder of the string is treated as a file name; PMDF opens the file and copies
it to the user’s terminal. No special privileges are used to open the file; PMDF will not
display anything if the file cannot be opened. This makes it possible to use ACLs to
protect the file so that only a subset of the user community will see the message. If the
next character of the string is not an at sign, PMDF simply displays the string on the
user’s terminal.

19–2

The PMDF User Interface on OpenVMS
Sending Mail with VMS MAIL

No special privileges beyond those the user normally has are used for any of these
operations. The logical name can be defined in the process, job, group or system logical
name tables and the mode of the logical name is not relevant.

19.1.3 Sending Binary Files with SEND/FOREIGN

PMDF supports the SEND/FOREIGN facility of VMS MAIL. A command of the form

MAIL> SEND/FOREIGN file-spec

will send the file file-spec in foreign format. The file parameter file-spec is
required. Note that this command is not documented in the VMS MAIL documentation.

PMDF detects the /FOREIGN format request and acts accordingly — the file is read
using block mode I/O and encoded in a printable form for transmission. The resulting
message preserves all file attributes and can be used to send any kind of OpenVMS file,
including indexed files, without losing any information.

Upon reception of such messages, PMDF will detect the use of foreign encoding and
will undo the encoding used prior to delivering the message to VMS MAIL in foreign
format. The resulting message cannot be read in VMS MAIL (unless the file sent was a
DDIF, DTIF, or DOTS file); it must be extracted with the VMS MAIL EXTRACT command
to a file before it can be used. A DDIF, DTIF, or DOTS file will be displayed to the
maximum extent possible — DECwindows MAIL will use the CDA viewer to display
the document while regular VMS MAIL will only display the text components of the file
content.

There is no place to store additional header information for such messages, so
PMDF delivers the headers for these messages in a separate message after the foreign
format message. This delivery mechanism can be disabled with the noforeign channel
keyword; the foreign channel keyword is the default.

19.1.4 Header Lines in Messages

PMDF uses two sources of information to construct message headers for messages it
receives from VMS MAIL. The first is VMS MAIL itself, which provides a To:, From:, Cc:,
and Subject: line, and a list of addressees. The second source of information consists of
logical names which you can define yourself. The following logical names can be defined
to create header lines:

� PMDF_COMMENTS (*) � PMDF_READ_RECEIPT_TO

� PMDF_DELIVERY_RECEIPT_TO � PMDF_REFERENCES (*)

� PMDF_ERRORS_TO (*) � PMDF_REPLY_TO (*)

� PMDF_FROM � PMDF_RESENT_FROM

� PMDF_HEADER � PMDF_RESENT_REPLY_TO

19–3

The PMDF User Interface on OpenVMS
Sending Mail with VMS MAIL

� PMDF_HEADER_n � PMDF_SENSITIVITY (*)

� PMDF_IMPORTANCE (*) � PMDF_TIMEZONE

� PMDF_KEYWORDS (*) � PMDF_WARNINGS_TO (*)

� PMDF_ORGANIZATION (*) � PMDF_X_FAX_DEFAULTS (*)

� PMDF_PRIORITY (*) � PMDF_X_PS_QUALIFIERS (*)

The logical names marked with an asterisk, *, are described in the PMDF User’s Guide;
the remaining logicals and associated header lines are described below.

The PMDF_TIMEZONE logical name is set by the system manager in the system
logical name table to translate to the system’s local timezone; users can only override this
setting if no system PMDF_TIMEZONE logical is set. None of the other logical names
are set by default, and even if they are, users can define their own overriding values to
customize the headers attached to the messages they send.

When changing the value of the PMDF_TIMEZONE logical, note that this logical is
normally defined at system startup by the SYS$STARTUP:pmdf_startup.com procedure
created when PMDF was installed; see the OpenVMS edition of the PMDF Installation
Guide.

After changing the value of the PMDF_TIMEZONE logical, the Dispatcher should
be restarted so that services under the Dispatcher will be made aware of the change and
properly use the new value.

Note: If the PMDF_TIMEZONE logical does not exist (for example if you choose to deassign
it in pmdf_com:pmdf_site_startup.com), then PMDF looks for the following system
logicals to determine the local time zone. First it looks for SYS$LOCALTIME, then if that
is not defined, it looks for SYS$TIMEZONE_DIFFERENTIAL and SYS$TIMEZONE_
NAME.

19.1.4.1 Cc: Header Lines

Cc: header lines are produced in outgoing mail when a recipient address is passed
to PMDF by VMS MAIL and the address can be matched with the text that appears on
the VMS MAIL Cc: line. The addresses on the VMS MAIL Cc: line itself cannot be used
directly; they are not suitable for use on a RFC 822 Cc: line and are used to construct
an X-VMS-Cc: line instead.

VMS MAIL provides no indication of where the envelope addresses it passes to PMDF
came from (To: line, Cc: line, or both). PMDF tries to match the address with the contents
of the X-VMS-To: and X-VMS-Cc: lines, but this attempt is necessarily imperfect and
can fail. If it does fail and PMDF cannot localize an address it will be placed on the To:
line by default. The result is that addresses that originated on the VMS MAIL Cc: line
can end up on the outgoing message’s To: header.

19–4

The PMDF User Interface on OpenVMS
Sending Mail with VMS MAIL

19.1.4.2 Content-transfer-encoding: Header Lines

PMDF will insert a Content-transfer-encoding: header that describes the encoding
applied to the data in outgoing messages. This is normally 7BIT for messages containing
only 7 bit text data and 8BIT for messages containing 8 bit text data. Messages sent with
SEND/FOREIGN will normally be encoded using the MIME-compliant BASE64 encoding
and will be labelled accordingly. The Content-transfer-encoding: header is defined by
MIME (RFCs 2045-2049); it is not part of RFC 822.

19.1.4.3 Content-type: Header Lines

PMDF will insert a Content-type: header into outgoing messages that describes
the type of data being sent. Most messages sent from VMS MAIL will be labelled as
‘‘text/plain’’ along with whatever character set is specified by the charset7 or charset8
channel keywords on the local channel. Files sent with SEND/FOREIGN will be labelled
as ‘‘application/vms-rms’’ if no special RMS semantics are attached. Currently the only
RMS semantics that are recognized are DDIF, DOTS, and DTIF; these are labelled as
‘‘application/ddif’’, ‘‘application/dots’’, and ‘‘application/dtif’’ respectively. In any of these
cases the Content-type: header will also contain a VMS-FDL parameter containing an
FDL description of the file.

When a message labelled as ‘‘application/vms-rms’’ or any of the special semantic tags
is received by VMS MAIL the encoding will be reversed and the stored FDL information
will be applied to the message as it is delivered. The result will be a foreign format
message whose file attributes and contents are preserved.

19.1.4.4 Delivery-receipt-to: Header Lines

The use and construction of Delivery-receipt-to: headers is discussed in Section 19.3.

19.1.4.5 Disposition-notification-to: Header Lines

The use and construction of Disposition-notification-to: headers is discussed in
Section 19.3.

19.1.4.6 From: and Sender: Header Lines

The From: header is constructed by translating the logical name PMDF_FROM. If
it is defined, its equivalence string is used as the From: address for the message and the
authenticated address of the person sending the message is placed on a Sender: line in
the message header.

If the PMDF_FROM line does not translate to anything (by default it will not), the
address of the person sending the message is used as the From: address and no Sender:
line is inserted in the message header.

19–5

The PMDF User Interface on OpenVMS
Sending Mail with VMS MAIL

The setting of PMDF_FROM is ignored when messages pass through VMS MAIL
because of automatic forwarding. Addresses specified by the PMDF_FROM logical
undergo normal PMDF address rewriting; they are not exempt from rewrite processing.

If PMDF_FROM translates to a string beginning with and ending in a question mark
‘‘?’’, PMDF will take the enclosed string and prompt the user with it. Whatever the user
types will be placed on the From: header line. This prompt will appear after any message
has been entered.

Prompting is only possible in regular command-oriented VMS MAIL; it cannot be
done in DECwindows MAIL. PMDF checks to make sure that prompting is possible and
will ignore any requests for prompts in environments that don’t support it.

19.1.4.7 Read-receipt-to: Header Lines

The use and construction of Read-receipt-to: headers is discussed in Section 19.3.

19.1.4.8 Resent-date: Header Lines

A Resent-date: line is created when a message being delivered by PMDF to VMS
MAIL is forwarded back to PMDF by some type of VMS MAIL forwarding (usually a SET
FORWARD to an IN% address). Such a message already has a Date: header, so PMDF
adds a Resent-date: instead. The format of a Resent-date: header is the same as a Date:
header. If both a Date: and Resent-date: header are already present no time stamp
information is added apart from the Received: line (multiple Resent-date: headers are
not legal RFC 822 syntax).

19.1.4.9 Resent-from: Header Lines

Resent-from: headers and the associated PMDF_RESENT_FROM logical are han-
dled in the same way as From: and PMDF_FROM, with the exception that forwarding
does not affect these headers in the same way that it affects From: headers.

19.1.4.10 Resent-reply-to: Header Lines

Resent-reply-to: headers and the associated PMDF_RESENT_REPLY_TO logical are
handled in the same way as Reply-to: and PMDF_REPLY_TO, with the exception that
forwarding does not affect these headers in the same way that it affects Reply-to: headers.

19–6

The PMDF User Interface on OpenVMS
Sending Mail with VMS MAIL

19.1.4.11 Resent-to: Header Lines

A Resent-to: line is created when a message being delivered by PMDF to VMS
MAIL is forwarded back to PMDF by some type of VMS MAIL forwarding (usually a
SET FORWARD to an IN% address) and the message already has a To: header. In this
case the text that would normally be placed on the To: header is placed on the Resent-to:
header line instead.

No logical name is provided to set this header.

19.1.4.12 Subject: Header Lines

The Subject: header line is obtained directly from VMS MAIL (which has either
constructed it itself or gotten it from the user).

19.1.4.13 To: Header Lines

To: header lines are produced in outgoing mail when a recipient address is passed
to PMDF by VMS MAIL and the address can be matched with the text that appears
on the VMS MAIL To: line. The addresses on the VMS MAIL To: line itself cannot be
used directly; they are not suitable for use on the To: line and are used to construct an
X-VMS-To: line instead.

VMS MAIL provides no indication of where the envelope addresses it passes to PMDF
came from (To: line, Cc: line, or both). PMDF tries to match the address with the contents
of the X-VMS-To: and X-VMS-Cc: lines, but this can fail. If it does fail PMDF places the
address on the To: line by default. The result is that addresses that originated on the
VMS MAIL Cc: line can end up on the outgoing message’s To: header.

19.1.4.14 X-Envelope-to: Header Lines

The X-Envelope-to: header line contains a duplicate of the address that appears
in the message envelope. This header line is used by PMDF to reconstruct envelope
addresses that have been damaged by various transport mechanisms (notably BITNET
and NJE, which truncate envelope addresses to eight characters). The X-Envelope-to:
line for a particular copy of a message contains only the address that that particular
copy is being sent to; it does not contain all the addresses on the To: line (except in the
simplest case where only a single copy of the message is needed).

The X-Envelope-to: line is not user-settable. Its presence or absence in a particular
copy of a message is controlled by the x_env_to, single, and nox_env_to keywords
on the corresponding channel; see Section 2.3.4.61.

X-Envelope-to: lines are unique among header lines in that they are completely
replaced each time a message is enqueued by PMDF. (Most other header lines are
cumulative.) An X-Envelope-to: header line only reflects the most recent envelope
destination in the case of forwarding. The diagnostic usefulness of an X-Envelope-to:
header line has been almost entirely superseded by the use of ‘‘received for’’ clauses

19–7

The PMDF User Interface on OpenVMS
Sending Mail with VMS MAIL

in Received: header lines and NOTARY notification messages including final-recipient
information.

Note: X-Envelope-to: header lines are an extension to RFC 822.

19.1.4.15 X-VMS-Cc: Header Lines

VMS MAIL’s Cc: line (which is not in RFC 822 format) is placed on the X-VMS-Cc:
line of the message header. See Section 19.1.4.1.

Note: X-VMS-Cc: header lines are an extension to RFC 822.

19.1.4.16 X-VMS-To: Header Lines

VMS MAIL’s To: line (which is not in RFC 822 format) is placed on the X-VMS-To:
line of the message header. See Section 19.1.4.13.

Note: X-VMS-To: header lines are an extension to RFC 822.

19.1.5 Message Headers on Forwarded Messages

Messages sent via a SET FORWARD to PMDF are for the most part handled in the
same way as messages sent to PMDF directly. An exceptional case arises, however, when
PMDF delivers a message to a local VMS MAIL address that is in turn forwarded back
to PMDF via a SET FORWARD directive. PMDF detects this case and handles it as a
special type of forwarding. In particular:

1. The message RFC 822 header already attached to the message is kept as message
header and modified. In contrast, manually forwarded messages receive two headers
— the original header, which becomes part of the body of the message, and a new
header which is added as the message is forwarded. This handling applies regardless
of how PMDF has been configured to handle message headers during local delivery
(that is, the headerbottom and headeromit channel keywords have no effect on
forwarding).

2. Since such messages always have a Date: header already attached, a Resent-Date:
header is added instead of a Date: header. No time stamp header is added if the
message had both a Date: and a Resent-Date: header already. (Note that a Received:
header is always added and this header does provide some time stamp information.)

3. A From: header is only attached if the message does not have one already. Resent-
from: headers are never added.

4. A Resent-To: is added if a To: header is already present; a To: header is added if no
To: header is present in the original message.

19–8

The PMDF User Interface on OpenVMS
Sending Mail with VMS MAIL

5. Although the code to add user-specified headers is executed, it has no effect since this
type of forwarding is handled at a system level; it is not handled under the control
of the user’s account. System-wide settings of user-specified headers will be applied,
however.

19.1.6 Temporary File Storage

Both PMDF and VMS MAIL use a number of temporary files to construct messages.
These files are normally created in the SYS$SCRATCH directory. This applies to all
VMS MAIL variants including PMDF MAIL, VMS MAIL, and DECwindows MAIL, but
is especially important when using callable MAIL. Callable MAIL will fail under some
circumstances if SYS$SCRATCH is not defined. (Specifically, callable MAIL will fail if
the message is written one record at a time; this operation requires an intermediate file
for storage.)

VMS MAIL creates named temporary files in whatever directory SYS$SCRATCH
points to. These files generally have a .tmp extension and the word mail somewhere in
the name. PMDF creates unnamed temporary files on the device SYS$SCRATCH that
are not entered into any directory. Note that in either case the files are owned by the user
creating them and the user must have the necessary quotas to create the file or files. No
special PMDF or VMS MAIL privileges are employed to access files in SYS$SCRATCH.

PMDF can be directed to use an alternate scratch area by defining the PMDF_
SCRATCH logical name. If PMDF_SCRATCH is defined PMDF will create its unnamed
temporary files there. This applies to all of PMDF, not just the parts that run
under VMS MAIL. If PMDF_SCRATCH is undefined or unusable PMDF will then try
SYS$SCRATCH, and if SYS$SCRATCH is undefined or unusable the device associated
with the current default directory will be used. If this device does not exist or is unusable
PMDF will try to use SYS$LOGIN.

VMS MAIL does not use PMDF_SCRATCH for its temporary files under any
circumstances, of course.

19.1.7 DECwindows MAIL and Account Quotas

DECwindows MAIL consumes large amounts of various quotas. PMDF also
consumes some resources above and beyond those used by regular VMS MAIL. The result
is that low account quotas can cause the combination of PMDF and DECwindows MAIL
to fail. In particular, a FILLM quota of at least 200 is needed for proper operation under
OpenVMS V5.3 or later. An ENQLM of at least 400 is strongly recommended as well.

19–9

The PMDF User Interface on OpenVMS
Sending Mail with VMS MAIL

19.1.8 Handling VMS MAIL Errors

VMS MAIL and PMDF must cooperate closely in their handling of errors detected
during message interchange. PMDF is careful to inform VMS MAIL about any errors
it detects while VMS MAIL is sending a message to PMDF. Conversely, PMDF tries to
handle the various error conditions that can arise while delivering a message to VMS
MAIL.

PMDF categorizes errors returned by VMS MAIL as either temporary or permanent.
A temporary error is something like ‘‘node down’’. Such a problem might be corrected in
the future. A permanent error is one like ‘‘no such user’’ which is unlikely to be rectified
in the future. PMDF treats the following errors as permanent errors:

NOSUCHNODE — Specified DECnet node does not exist
NOSUCHUSR — No such user exists
USERDSABL — Specified user cannot receive new mail
SYNTAX — Syntax error in username/node specification
TEXT — Error occurred during MAIL-11 message delivery.

All other errors are considered to be temporary.

In the case of a temporary error PMDF simply aborts its attempt to send the current
message. Periodic attempts will be made to send the message until the error condition
disappears and the message makes it through. (Note that if the error condition is never
remedied the message will eventually ‘‘expire’’ and will automatically be returned to the
sender.)

In the case of a permanent error, PMDF records both the bogus address and the
error it generated. PMDF then dispatches a notification of the error, along with a copy
of the message, to the sender. An additional copy of the error notice is mailed to the
local postmaster (usually, but not always, the system manager) by default. The sending
of failed mail notices to the local postmaster can be disabled by adding the nosendpost
keyword to the local channel block in the PMDF configuration file. Return of message
contents to the postmaster can be restricted by adding the postheadonly keyword to
the local channel.

19.1.9 Accepting MIME Headers from VMS MAIL 7.2 or Later

As of OpenVMS 7.2, VMS MAIL is capable of generating MIME headers. PMDF does
not normally expect to see MIME headers coming from VMS MAIL, and will normally
ignore such headers if they are present. The special logical PMDF_MAIL_MIME_
HEADERS can be used to instruct PMDF to read MIME headers from the top of the
message body coming from VMS MAIL. If PMDF_MAIL_MIME_HEADERS translates
to TRUE, then PMDF will properly interpret MIME headers on messages originating
from VMS MAIL.

PMDF_MAIL_MIME_HEADERS can be defined either system-wide, or by individual
users.

19–10

The PMDF User Interface on OpenVMS
Receiving Mail in VMS MAIL

19.2 Receiving Mail in VMS MAIL

RFC 822 specifies a large number of fields that can appear in the header of a
message. These include familiar things like ‘‘From:’’, ‘‘To:’’, ‘‘Subject:’’, and ‘‘Return-Path:’’
and obscure things like ‘‘Encrypted:’’, ‘‘Resent-Message-ID:’’, and ‘‘Resent-reply-to:’’.
Unfortunately, VMS MAIL only provides for ‘‘From:’’, ‘‘To:’’, ‘‘Cc:’’, and ‘‘Subj:’’ information
in its message headers. This leaves PMDF with two choices: either discard header lines
that do not correspond to VMS MAIL header lines, or insert them somewhere in the
body of the message. Neither choice is completely satisfactory — deleting header lines
causes the loss of valuable information but inserting header lines into the message text
interferes with the proper operation of VMS MAIL’s EXTRACT/NOHEADER command.
PMDF, unless configured otherwise by the system manager, uses the latter approach:
PMDF preserves additional header lines by merging them into the text of the message.

Now, the addresses which appear in the VMS MAIL From:, To:, and Cc: header lines
are not necessarily the same as those which appear in the original message’s header. The
reason for this is that RFC 822 headers can specify several different types of From:, To:,
and Cc: addresses. PMDF has to choose the addresses which best suit VMS MAIL’s usage
of the VMS MAIL From:, To:, and Cc: header lines. The selection criteria used by PMDF
are described below. Regardless of the addresses chosen, each address will be converted
from RFC 822 format to VMS MAIL format (e.g., IN%"address") before being given to
VMS MAIL. Doing this allows REPLY commands in VMS MAIL to work correctly. (Also,
‘‘reply-to-all’’ type commands such as those in the Pathworks MAIL programs, will work
correctly too.)

From:

PMDF tries to use the header line from the original message header that is most likely
to contain the address to which replies should be directed. Whether or not PMDF uses
any Resent- headers in this process is controlled by the useresent channel keyword.
If the local channel has useresent 2 or useresent 1, then the header lines that are
used, in order of decreasing precedence, are:†

1. Resent-Reply-To: (if present) 5. Resent-Sender: (if present)

2. Resent-From: (if present) 6. Sender: (if present)

3. Reply-To: (if present) 7. envelope return address (if non-empty)

4. From: (if present) 8. MISSING_ADDRESS PMDF option value†

If the local channel has useresent 0, the default, then the header lines that are used,
in order of decreasing precedence, are:

1. Reply-To: (if present) 3. Sender: (if present)

2. From: (if present) 4. envelope return address (if non-empty)

5. MISSING_ADDRESS PMDF option value†

To:

PMDF tries to use the header line from the original message header that is most likely
to indicate to whom this version of the message was sent. If the local channel has
useresent 2, then the fields that are used, in order of decreasing precedence, are:

† See Section 7.3.11 for a discussion of MISSING_ADDRESS.

19–11

The PMDF User Interface on OpenVMS
Receiving Mail in VMS MAIL

1. Resent-To: (if present) 2. To: (if present)

If the local channel has useresent 1 or useresent 0, the default, then the To: field is
used.

If neither a Resent-To: or To: header line is present, then the VMS MAIL To: line will
be left blank.

Cc:

PMDF tries to use the field from the message header that is most likely to indicate who
the most recent Cc: recipients of the message were. If the local channel has useresent
2, then the fields that are used, in order of decreasing precedence, are:

1. Resent-Cc: (if present) 2. Cc: (if present)

If the local channel has useresent 1 or useresent 0, then the Cc: field is used.

If neither a Resent-Cc: or Cc: header line is present, then the VMS MAIL Cc: line will
be left blank.

Subject:

The Subject: line for VMS MAIL is simply copied verbatim out of the original message
header. If no Subject: line is present, the VMS MAIL Subject: line is left blank.

19.3 Delivery and Read Receipts

PMDF provides support for delivery receipts (i.e, a confirmation message sent to
you when your message reaches the recipient’s mailbox) and limited support for read
receipts (i.e., a confirmation message sent to you when your message is actually read
by its recipient). Please note that most, if not all, mail user agents which support
read receipts allow the recipient to block them. This is typically the default; i.e., most
mail reading programs will not generate read receipts unless the reader of the message
expressly approves them. Many people feel that read receipts are an invasion of privacy
and should only be honored if the recipient chooses to do so.

Note that there are two separate issues concerning delivery and read receipts. First,
a mechanism must exist with which to request delivery or read receipts for any given
message. This support must exist on the system where the mail message originates.
PMDF supports the generation of delivery and read receipt requests. 1

Second, the support must exist at the receiving end to recognize and generate
delivery or read receipts. PMDF provides the necessary support to honor delivery receipts
(i.e., emit a confirmation message when a message with a delivery receipt request is
received). Many other mailers, notably ‘‘sendmail’’ based systems, also support delivery

1 While not the topic of this chapter, note that PMDF-LAN also support receipt requests.

19–12

The PMDF User Interface on OpenVMS
Delivery and Read Receipts

receipts. Not all mailers support them, however, so it is quite normal for receipt requests
to be ignored when sent to non-PMDF mailers (or PMDF versions prior to V4.0).

It is the responsibility of the mail user agent to which a message is delivered to
generate a read receipt when the recipient reads a message. This is not within PMDF’s
jurisdiction nor is it possible for PMDF to intervene. The best that PMDF can do is
to demote read receipt requests to delivery receipt requests when delivering mail to a
mail user agent, such as VMS MAIL, which PMDF knows cannot recognize, let alone act
upon, read receipt requests. PMDF will pass read receipt requests to Gold-Mail, which
is capable of acting upon read receipt requests by generating read receipts.

19.3.1 Requesting Delivery or Read Receipts

You can request a delivery receipt for a specific recipient listed in a single IN%
construct by including the string

(delivery-receipt)

in the construct adjacent to the address. (Strings enclosed in parentheses are RFC
822 comments and won’t otherwise affect the address.) For example, you might use an
address of the form

IN%"postmaster@ymir.claremont.edu (delivery-receipt)"

to request delivery confirmation on a message to postmaster@ymir.claremont.edu.

This string will, by default, cause a delivery receipt request to be inserted into
the message header of all copies of the message sent to recipients listed in that IN%
construct. Other recipients will not be affected. The exact form of the delivery receipt
request depends on the destination of the message. Delivery receipt requests appear
as a Delivery-receipt-to: header in messages PMDF delivers to VMS MAIL mailboxes.
Alternatively, PMDF can be configured to generate NOTARY (non-header) delivery
receipt requests rather than any header requesting a delivery receipt; see Section 19.3.2.

The string

(read-receipt)

requests a read receipt. It operates in a similar fashion to the delivery receipt mechanism
described above. PMDF will convert any read receipt requests it receives into delivery
receipt requests when it knows that the mail user agent to which the mail is being
delivered cannot honor a read receipt request (when delivering to VMS MAIL, for
example). Read receipt requests appear as a Disposition-notification-to: header in
messages PMDF delivers to VMS MAIL mailboxes.2

Note: The phrases delivery-receipt and read-receipt appearing within the parentheses
are actually configurable via settings in the PMDF option file. The system administrator
responsible for configuring PMDF determines the phrases used at a given site and can
elect to change them from the defaults described here.

2 The Disposition-notification-to: header is defined in RFC 2298. Versions of PMDF prior to PMDF V5.2 used a Read-
receipt-to: header.

19–13

The PMDF User Interface on OpenVMS
Delivery and Read Receipts

In the PMDF MAIL user agent, the /DELIVERY_RECEIPT and /READ_RECEIPT
qualifiers of the SEND, FORWARD, and REPLY commands provide an alternate way to
request receipts on a per-message basis.

Receipts are sent to the message originator by default. You can request that
receipts for messages you originate be sent to a different address by defining the PMDF_
DELIVERY_RECEIPT_TO logical to translate to the RFC 822 address to which you
prefer that delivery receipts be sent. If you define this logical, receipts will be requested
by default (no need to specify anything special in the address). You can then suppress
the generation of delivery receipt requests by adding a

(no-delivery-receipt)

comment in the IN% construct. Similarly, the PMDF_READ_RECEIPT_TO logical can
be used to specify the address to which read receipts should be sent. If set, it also causes
read receipt requests to be generated by default, and the comment

(no-read-receipt)

can be used to suppress the generation of read receipt requests.

Note: The use of the PMDF_DELIVERY_RECEIPT_TO and PMDF_READ_RECEIPT_TO
logicals is deprecated, since they unconditionally generate old style header receipt
requests, rather than the newer sorts of requests in use on the Internet. That is, PMDF_
DELIVERY_RECEIPT_TO unconditionally results in use of a Delivery-receipt-to: header,
rather than a non-header NOTARY delivery receipt requestion, while PMDF_READ_
RECEIPT_TO results in a Read-receipt-to: header, rather than the newer Disposition-
notification-to: header.

Warning: Be very circumspect in the use of the PMDF_DELIVERY_RECEIPT_TO and PMDF_
READ_RECEIPT_TO logicals. In general, you do not want to leave them constantly
defined (unless they are defined to be ‘‘<>’’. At issue here is the danger of accidentally
posting mail with an attached receipt request to a large mailing list. While many mailing
lists will properly block such requests, quite a few do not and instead pass the request
on to each and every list member. In such a case, as many as one receipt per list member
will be generated (some addressees can be using mailers which ignore receipt requests).
For a large mailing list with thousands of members, this means that your system can be
flooded with mail.

19.3.2 Delivery Receipt Mechanisms: Header vs. NOTARY

PMDF actually supports two separate and distinct delivery receipt request mech-
anisms: envelope level delivery receipt requests as defined by RFC’s 1891–1894 (often
referred to as NOTARY), and the ad-hoc header style delivery receipt requests that were
all that existed prior to NOTARY. (PMDF layered products such as PMDF-LAN also
support ‘‘foreign’’ delivery receipt mechanisms, if they exist, to the extent possible.)

Newer mailers can support the NOTARY delivery receipt mechanism; support for
the NOTARY mechanism can be expected to grow. Older mailers, however, such as older
sendmail implementations, can not yet support NOTARY and the only hope of getting
back delivery receipts from such mailers can be to send the delivery receipt requests in
the old header style.

19–14

The PMDF User Interface on OpenVMS
Delivery and Read Receipts

The channel keywords reportheader, reportnotary, reportboth, and report-
suppress) when used on the L channel control whether the delivery receipt requests
resulting from a (delivery-receipt) comment (or use of PMDF MAIL’s /DELIV-
ERY_RECEIPT qualifier) are header style requests, NOTARY style requests, or both,
or whether no receipt requests are generated at all. reportheader is the default. To
maximize the chances of receiving back requested delivery reports, whether the remote
receiving side supports the header style request mechanism or NOTARY, one can set
reportboth; however, note that if a message with both style requests is delivered via
a mailer (such as PMDF) that supports both styles, then two delivery reports can be
generated, one for each form of request.

19.4 Extensions to RFC 822

PMDF addresses can use certain non-standard, but sometimes useful, formats.
These formats are not part of RFC 822 and, as such, constitute non-standard extensions
to RFC 822. These extensions are:

• If an address does not contain an at sign, @, and hence does not contain the name
of a destination system, then the name of the local host is used for the destination
system.3 Note that the elimination of the at sign can in turn eliminate the need for
double quotes. For example, the address

IN%user

is interpreted as

IN%"USER@local-host"

where local-host is the local host name.4

As an example, try sending mail to yourself, and, when you receive the message, look
at the From: address. For instance, if the local host name is example.com and your
username is mrochek, then the address specification in%mrochek will be interpreted
as in%"MROCHEK@example.com".

Forms such as

IN%"user1, user2, user3"

are also allowed. (user1, user2, and user3 are not subject to separate logical name
translation in this case.) Such an address specification is equivalent to

IN%"user1@local-host, user2@local-host, user3@local-host"

3 If PMDF is being invoked locally, the name of the local host is the official host name associated with PMDF’s local channel
on that system. In the case of remote usage via MAIL-11 over DECnet, the local host name is the name of the remote
DECnet host using PMDF.

4 Note that these addresses are not exactly equivalent: VMS MAIL and DECwindows MAIL will translate user as a
logical name prior to passing it to PMDF. Adding double quotes will not prevent this translation from happening. The
@local-host clause blocks such translations; explicit specification of it can be needed for this reason.

19–15

The PMDF User Interface on OpenVMS
Extensions to RFC 822

• Source-routed addresses without surrounding angle brackets are accepted even
though RFC 822 does not formally allow such syntax. For example,

IN%"@cunyvm.cuny.edu:fresnel@kitvax"

is treated as

IN%"<@cunyvm.cuny.edu:fresnel@kitvax>"

• Personal names can contain periods and other punctuation characters without being
surrounded by double quotes, even though the quotes are called for by RFC 822. For
example,

IN%"Augustin J. Fresnel <fresnel@kitty.farm.org>"

is treated as

IN%"’Augustin J. Fresnel’ <fresnel@kitty.farm.org>"

• IBM NOTES format addresses are accepted. These are addresses of the form

IN%"user AT host"

and are converted to

IN%"user@host"

• Addresses of the form

IN%"user@host1@host2"

are converted to

IN%"user%host1@host2"

• Addresses of the form

IN%"@host:user"

are converted to

IN%"@host:user@localhost"

• So-called ‘‘DECnet-style’’ addresses are accepted and converted into RFC 822 format.
That is, addresses of the form

IN%system::user

are converted to

IN%"USER@SYSTEM"

Note the forced conversion to upper case. This conversion is done by VMS MAIL and
cannot be eliminated or undone. This address format is discouraged for this reason;
RFC 822 mandates preservation of case in the local part (the part to the left of the at
sign) of all addresses. In addition, system is translated as a logical name. Multiple
routing systems can be specified; e.g., an address such as

19–16

The PMDF User Interface on OpenVMS
Extensions to RFC 822

IN%system1::system2::system3::user

is converted to

IN%"USER%SYSTEM3%SYSTEM2@SYSTEM1"

Note: Surrounding double quotes can not be used with DECnet-style addresses. This
restriction is imposed by VMS MAIL, not PMDF.

In all cases PMDF reformats the addresses to comply with RFC 822, so no illegal
addresses are passed to other mail systems.

19.5 Obtaining Headers from Message Text

Some applications, especially those forwarding or replying using existing message
text, can provide additional message headers as plain text within the body of the message.
The special logical PMDF_RELAYING can be used to instruct PMDF to read additional
headers from the top of the message’s body.

PMDF_RELAYING is also used to construct an additional Received: header line.
The translation of PMDF_RELAYING is placed on the Received: line along with the
current date and time. The result should conform to RFC 822 conventions for Received:
lines; PMDF does not check to insure that this is the case, however.

The additional Received: header will not be generated if PMDF_RELAYING
translates to a single space character.

Nonprivileged use of PMDF_RELAYING presents a security hole — users could use
this mechanism to forge message headers. For this reason PMDF_RELAYING must be
defined as an executive mode logical in order to have any effect. This precludes its use by
nonprivileged users, yet makes it available to the system-level applications that might
actually need it.

Under no circumstances should PMDF_RELAYING be defined system-wide — it will
interfere with the use of PMDF by normal users.

19.6 The DELIVER Message Delivery System

The DELIVER facility permits users to perform automatic filtering on their incoming
messages based on the presence of arbitrary substrings in the From:, Subject:, or other
header lines, e.g., forward certain messages, direct certain messages to particular VMS
MAIL folders, direct certain messages straight to files, generate automatic replies,
execute a DCL command upon receipt of certain messages, etc.; a complete description
of the use of this facility can be found in the PMDF User’s Guide.

When PMDF is initially installed, the DELIVER facility is enabled: a user
triggers the DELIVER facility for mail handled by PMDF by creating an appropriate
mail.delivery file in their own default login directory. Any necessary processing is
performed by batch jobs; if a user does not specify a batch queue, then the default

19–17

The PMDF User Interface on OpenVMS
The DELIVER Message Delivery System

DELIVER batch queue specified during PMDF installation (pointed to by the DELIVER_
BATCH logical name) will be used. The system manager can unconditionally disable
the use of DELIVER via the PMDF option USE_MAIL_DELIVERY or can choose a
different name for DELIVER files via the PMDF option MAIL_DELIVERY_FILENAME;
see Section 7.2.

19–18

20DECnet Channels (OpenVMS and Tru64 UNIX)

Note: Presently, DECnet channels are only supported on OpenVMS systems.

PMDF includes an SMTP over DECnet channel which uses the standard SMTP
protocol to convey messages, over DECnet as a transport agent. On OpenVMS, PMDF
also includes two additional types of channels which use DECnet as a transport agent.
That is, these three types of channels are:

• SMTP over DECnet channels which use the SMTP protocol and task-to-task DEC-
NET;

• (OpenVMS only) PhoneNet over DECnet channels which use the PhoneNet protocol
and task-to-task DECnet; and

• (OpenVMS only) DECnet MAIL-11 channels which use the DECnet based MAIL-11
protocol.

VMS
The last of the three types of channels available on OpenVMS, DECnet MAIL-11

channels, is an obsolete type of channel provided for compatability with older versions of
PMDF and for communicating with other OpenVMS systems which do not have PMDF.
Whenever possible, either of the first two types of channels, which use direct DECnet
links to form a transport layer for SMTP or PhoneNet message transfers, should be used
instead.

Note that the terminology used here is a bit confusing. This is brought about from
the fact that DECnet is both a transport system and a mail system. SMTP over DECnet
channels, or alternatively on OpenVMS, PhoneNet over DECnet channels, are used to
link multiple systems running PMDF that happen to be attached to the same DECnet.
They are entirely distinct from the DECnet MAIL-11 channels. This document always
refers to DECnet’s own message delivery system as DECnet MAIL-11 and to DECnet’s
transport mechanism as simply DECnet.

20.1 SMTP Over DECnet Channels

SMTP over DECnet channels are used to link systems running PMDF that are also
connected via DECnet. These channels are comparable to the PhoneNet over DECnet
channels described in the following section; the difference is that these channels use
standardized SMTP protocols instead of the nonstandardized PhoneNet protocol. These
channels can be used to communicate with systems that can speak SMTP over DECnet,
notably other OpenVMS systems running PMDF.

SMTP over DECnet channels use unidirectional master and slave programs. The
master program runs when PMDF has outgoing messages to send. The slave program
runs in response to incoming DECnet requests.

20–1

DECnet Channels (OpenVMS and Tru64 UNIX)
SMTP Over DECnet Channels

On OpenVMS, DECnet SMTP channels can be generated by the automatic configu-
ration generator.

20.1.1 Setting Up the Channel

Both PMDF and DECnet must be installed on both systems before a SMTP over
DECnet channel can be set up. Once this is done, activating a SMTP over DECnet
channel between them is quite straightforward as below.

20.1.1.1 Installing PMDF as a Known Object

PMDF must be installed as a known DECnet object on each system which is going
to use a SMTP over DECnet channel.

First check what DECnet object numbers are currently in use and decide upon an
unused one to assign to PMDF. Object numbers from 128 to 255 are available for customer
use. The actual number used is irrelevant provided it is not used for any other purpose
and all systems agree on the same number. Use the NCL command

NCL> SHOW SESSION CONTROL APPLICATION * ALL CHARACTERISTICS

or the NCP command

NCP> LIST KNOWN OBJECTS

to get a list of currently defined objects and their associated object numbers. Then choose
an unused DECnet object number for PMDF’s use.

VMS
On OpenVMS, you will also need to know the username of the PMDF account (usually

just PMDF), to specify where pmdf_account is shown below. On a DECnet Phase IV
system, you will additionally need to know the account’s password, to specify where
pmdf_password is shown below. These must match the local PMDF account for proper
operation — if the username or password for the PMDF account is changed, the DECnet
database will have to be updated as well.

On a DECnet/OSI system, the DECnet object installation is performed using NCL.

VMS
On OpenVMS, use NCL as follows:

$ RUN SYS$SYSTEM:NCL
NCL> CREATE SESSION CONTROL APPLICATION PMDFSMTP

20–2

DECnet Channels (OpenVMS and Tru64 UNIX)
SMTP Over DECnet Channels

NCL> SET SESSION CONTROL APPLICATION PMDFSMTP -
ADDRESSES = {NAME = PMDFSMTP, NUMBER = xxx }, -
OUTGOING PROXY = FALSE, -
INCOMING PROXY = FALSE, -
NODE SYNONYM = TRUE, -
IMAGE NAME = PMDF_COM:dsmtp_slave.com, -
USER NAME = "pmdf_account"

ncl
ncl> create session control application pmdfsmtp
ncl> set session control application pmdfsmtp -

addresses = {name = pmdfsmtp, number = xxx }, -
outgoing proxy = false, -
incoming proxy = false, -
node synonym = true, -
image name = "/pmdf/bin/dsmtp_slave", -
user name = "pmdf"

Note the use of quotes to preserve lowercase, when case matters.

VMS
On a DECnet Phase IV OpenVMS system, the DECnet object installation is

performed using the Network Control Program (NCP), as follows:

$ RUN SYS$SYSTEM:NCP
NCP> DEFINE OBJECT PMDFSMTP -

NUMBER xxx -
FILE PMDF_COM:dsmtp_slave.com -
USER pmdf_account -
PASSWORD pmdf_password -
ACCOUNT SYSTEM -
PROXY NONE

NCP> SET OBJECT PMDFSMTP -
NUMBER xxx -
FILE PMDF_COM:dsmtp_slave.com -
USER pmdf_account -
PASSWORD pmdf_password -
ACCOUNT SYSTEM -
PROXY NONE

The first command defines the PMDF object in the permanent DECnet database and the
second defines the PMDF object in the volatile DECnet database.

You can have outgoing connections made by DSMTP channels identify themselves
with the DECnet cluster alias instead of using the specific DECnet node name they
happen to be running on. This is enabled by adding the NCL clause ‘‘OUTGOING ALIAS
= TRUE’’ or the NCP clause ‘‘ALIAS OUTGOING ENABLED’’ to the commands shown
above.

20–3

DECnet Channels (OpenVMS and Tru64 UNIX)
SMTP Over DECnet Channels

20.1.1.2 Adding the Channel to the Configuration File

The last step in setting up a SMTP over DECnet channel is to add the channels to
the appropriate configuration files.

Note: The PMDF configuration utility, PMDF CONFIGURE, can be used to configure your
system automatically with the appropriate DSMTP channels. When the PMDF configu-
ration utility is used, all of the necessary configuration steps except for those described
in Section 20.1.1.1 are done for you automatically. Consult the appropriate edition of the
PMDF Installation Guide for instructions on using the configuration utility.)

A typical channel table entry for an SMTP over DECnet channel is of the form shown
in Example 20–1; the corresponding rewrite rules are shown in Example 20–2.

Example 20–1 Sample SMTP Over DECnet Channel Block

dsmtp_local single_sys smtp
DSMTP-DAEMON
ditmelb.oz.au ditmb
praxa.com.au praxa

Note that while any channel name beginning with ‘‘dsmtp_’’ can be used with the
master program (i.e., to send mail via a SMTP over DECnet link), the only channel that
will be used with the slave program (i.e., to receive mail over a SMTP over DECnet link)
is dsmtp_local.

Example 20–2 Rewrite Rules for Example 20–1

praxa.com.au $u@praxa.com.au
ditmelb.oz.au $u@ditmelb.oz.au

Here access is provided to two systems, ditmelb.oz.au and praxa.com.au. Their
corresponding DECnet node names are ditmb and praxa. This format is analogous to
that used in setting up the DECnet MAIL channel (channel d). As many systems as
desired can be listed in the same channel block.

The daemon router keyword clause can be used to set up a point to point connection
to a gateway through a SMTP over DECnet connection. See the documentation on TCP/IP
gateway channels in Chapter 21 for additional information on how to set up a gateway
channel.

After the configuration files are set up the channel should be ready for use.

20–4

DECnet Channels (OpenVMS and Tru64 UNIX)
SMTP Over DECnet Channels

20.1.1.3 Channel Option File

While it is extremely rare that controlling SMTP characteristics of an SMTP over
DECnet channel is of interest, an option file can be used to control various such SMTP
characteristics. See the list of options in Section 21.1.2.2; most of those options (those
relating to the SMTP protocol itself, rather than specifically to TCP/IP transport issues)
can also be applied to SMTP over DECnet channels.

Such an option file must be named x_option where x is the name of the channel,
and stored in the PMDF table directory. Since the name of the channel is usually dsmtp_
local, the option file is usually PMDF_TABLE:dsmtp_local_option. .

20.1.2 Network Service Logs

Once a slave channel program is successfully started, it will log eny errors or debug-
ging output, to a normal PMDF channel log file, e.g., PMDF_LOG:dsmtp_local_slave.log
.

VMS
On OpenVMS, however, since slave operations are initiated by DECnet directly,

DECnet itself creates its own log files for slave operations. These log files appear in
the default directory of the account under which the DECnet PMDFSMTP object runs;
that account is normally the PMDF account hence normally the DECnet log files are in
PMDF_ROOT:[log] on OpenVMS, and have the name netserver.log. Note that unlike
other PMDF log files, these DECnet channel slave log files created directly by DECnet
are not named according to the channel that created them.

20.2 PhoneNet Over DECnet Channels (OpenVMS)

PhoneNet over DECnet channels can be used to link systems running PMDF that
are also connected via DECnet. The PhoneNet over DECnet channel software uses
PhoneNet’s phone protocol on top of transparent DECnet links. It is not compatible
with MAIL-11 (the protocol used by VMS MAIL to communicate with other VMS MAIL
systems on DECnet). PhoneNet over DECnet channel names always begin with dn_ in
the PMDF configuration file.

DECnet channels use bidirectional master and slave programs. The master program
runs when PMDF has outgoing messages to send. The slave program runs in response
to incoming DECnet task requests. As these channel programs are bidirectional, note
that both the master and slave programs can deliver messages in both directions; or in
other words, when the channel runs initiated in either the master or slave direction, it
also ‘‘polls’’ for messages travelling in the other direction.

PhoneNet over DECnet channels are generated by the PMDF configuration utility,
if any are needed.

20–5

DECnet Channels (OpenVMS and Tru64 UNIX)
PhoneNet Over DECnet Channels (OpenVMS)

20.2.1 Setting Up the Channel

Both PMDF and DECnet must be installed on both systems before a PhoneNet over
DECnet channel can be set up. Once this is done, activating a PhoneNet over DECnet
channel between them is quite straightforward as described in the following sections.

The PMDF configuration utility on OpenVMS, PMDF CONFIGURE, can be used to
automatically configure your system with the appropriate PhoneNet over DECnet (DN)
channels. When a PMDF configuration utility sets up these channels for you, you only
need to define the DECnet object as discussed in Section 20.2.1.1; you do not need to do
anything else. Process Software recommends that a PMDF configuration utility be used
to generate PhoneNet over DECnet channels. The configuration utility is documented in
the OpenVMS edition of the PMDF Installation Guide.

20.2.1.1 Installing PMDF as a Known Object

PMDF must be installed as a known DECnet object on each system which is going
to use a PhoneNet over DECnet channel. Run the Network Control Program (NCP) and
enter the following commands:

$ RUN SYS$SYSTEM:NCP
NCP> DEFINE OBJECT PMDF -

NUMBER xxx -

FILE PMDF_COM:dn_slave.com -
USER pmdf_account -
PASSWORD pmdf_password -
ACCOUNT SYSTEM -
PROXY NONE

NCP> SET OBJECT PMDF -
NUMBER xxx -
FILE PMDF_COM:dn_slave.com -
USER pmdf_account -
PASSWORD pmdf_password -
ACCOUNT SYSTEM -
PROXY NONE

The first command defines the PMDF object in the permanent DECnet database and the
second defines the PMDF object in the volatile DECnet database.

If you are using DECnet/OSI, the equivalent NCL commands are as follows:

$ RUN SYS$SYSTEM:NCL
NCL> CREATE SESSION CONTROL APPLICATION PMDF
NCL> SET SESSION CONTROL APPLICATION PMDF -

ADDRESSES = {NAME = PMDF, NUMBER = xxx }, -
OUTGOING PROXY = FALSE, -
INCOMING PROXY = FALSE, -
NODE SYNONYM = TRUE, -
IMAGE NAME = PMDF_COM:dn_slave.com, -
USER NAME = "pmdf_account"

20–6

DECnet Channels (OpenVMS and Tru64 UNIX)
PhoneNet Over DECnet Channels (OpenVMS)

xxx should be an unused DECnet object number. Object numbers from 128 to 255
are available for customer use. The actual number used is irrelevant provided it is not
used for any other purpose and all systems agree on the same number. Use the LIST
KNOWN OBJECTS command in NCP (SHOW SESSION CONTROL APPLICATION *
ALL CHARACTERISTICS in NCL) to get a list of currently defined objects and their
associated numbers.

pmdf_account should be the username associated with the PMDF account (usually
just PMDF) and pmdf_password should be the password for the PMDF account. These
must match the local PMDF account for proper operation — if the username or password
for the PMDF account is changed, the DECnet database will have to be updated as well.

You can have outgoing connections made by DN channels identify themselves with
the DECnet cluster alias instead of using the specific DECnet node name they happen to
be running on. This is enabled by adding the clause ‘‘ALIAS OUTGOING ENABLED’’ to
the NCP commands shown above. The NCL equivalent is ‘‘OUTGOING ALIAS = TRUE’’.

20.2.1.2 Adding the Channel to the Configuration File

The last step in setting up a PhoneNet over DECnet channel is to add the channels
to the appropriate configuration files. You do not need to do this if your PhoneNet over
DECnet channels were created with the configuration utility; see the recommendation in
Section 20.2.1.

PhoneNet over DECnet channel names have a rigid syntax; they are always of the
form ‘‘dn_remotenode’’, where remotenode is the name of the system to which the channel
connects. This means that a single channel has different names on each end; e.g., a
channel from DECnet node A to node B is called dn_b on node A and dn_a on node B.

A separate channel is required for each link to a remote system. Connection requests
from systems not in the channel table will be refused.

Finally, the rewrite rules in the configuration files should be edited to refer to the
new channels as appropriate. See the example below for additional information.

After the configuration files are set up, the channel should be ready for use.

20.2.2 Example Configuration

Suppose that two systems, ALPHA and BETA, are both running PMDF and are
attached to the same DECnet. ALPHA is registered as ALPHA.DOOF.COM in the
Internet world and is the server for the DOOF subdomain. ALPHA has a PhoneNet (dial-
up) link to CSNET and BETA has a PhoneNet (dial-up) link to BITNET. The BITNET
name for BETA is BETA.BITNET, although the Internet name BETA.DOOF.COM is also
supported.

20–7

DECnet Channels (OpenVMS and Tru64 UNIX)
PhoneNet Over DECnet Channels (OpenVMS)

The configuration should then route all BITNET traffic to BETA and all other
network traffic to ALPHA. A PhoneNet over DECnet channel will be used to transfer
mail from ALPHA to BETA. Possible configuration files for nodes ALPHA and BETA are
shown in Examples 20–3 and 20–4 below.

Example 20–3 PhoneNet Over DECnet Channel Configuration for Node ALPHA

! ALPHA.CNF - Configuration file for hypothetical node ALPHA
! Written by Ned Freed, 20-Jul-1986.
!
! Handle local systems routing first
!
ALPHA $U@ALPHA.DOOF.COM
ALPHA.DOOF.COM $U@ALPHA.DOOF.COM
BETA $U@BETA.BITNET
BETA.DOOF.COM $U@BETA.BITNET
BETA.BITNET $U@BETA.BITNET
!
! Force match on any other systems in .DOOF.COM,
! since this is the server for the subdomain. This
! prevents message loops on bad addresses.
!
.DOOF.COM $U@$H.DOOF.COM
!
! BITNET messages are routed to BETA
!
.BITNET $U%$H.BITNET@BETA.BITNET
!
! Other top level domains - only a few to give the flavor
!
.AR $U%$H$D@relay.cs.net
.ARPA $U%$H$D@relay.cs.net
.AT $U%$H$D@relay.cs.net
.AU $U%$H$D@relay.cs.net
.BE $U%$H$D@relay.cs.net

l
ALPHA.DOOF.COM

! PhoneNet (dial-up) channel for connecting with CSNET
p network
RELAY.CS.NET

! PhoneNet over DECnet channel for connecting with BETA
dn_beta network
BETA.BITNET

Example 20–4 PhoneNet Over DECnet Channel Configuration for Node BETA

Example 20–4 Cont’d on next page

20–8

DECnet Channels (OpenVMS and Tru64 UNIX)
PhoneNet Over DECnet Channels (OpenVMS)

Example 20–4 (Cont.) PhoneNet Over DECnet Channel Configuration for Node BETA

! BETA.CNF - Configuration file for hypothetical node BETA
! Written by Ned Freed, 20-Jul-1986.
!
! Handle local systems routing first
!
BETA $U@BETA.BITNET
BETA.DOOF.COM $U@BETA.BITNET
BETA.BITNET $U@BETA.BITNET
ALPHA $U@ALPHA.DOOF.COM
ALPHA.DOOF.COM $U@ALPHA.DOOF.COM
!
! BITNET messages are queued to the BITNET channel
!
.BITNET $U%$H.BITNET@RELAY.BITNET
!
! Other top level domains go to ALPHA - only a few shown
!
.AR $U%$H$D@ALPHA.DOOF.COM
.ARPA $U%$H$D@ALPHA.DOOF.COM
.AT $U%$H$D@ALPHA.DOOF.COM
.AU $U%$H$D@ALPHA.DOOF.COM
.BE $U%$H$D@ALPHA.DOOF.COM

l 822
BETA.BITNET

! PhoneNet (dial-up) channel for connecting with BITNET
p 733 network
RELAY.BITNET

! PhoneNet over DECnet channel for connecting with ALPHA
dn_alpha network
ALPHA.DOOF.COM

20.2.3 Network Service Logs

In addition to any normal PMDF slave log files that can be created for a PhoneNet
over DECnet channel, since slave operations are initiated by DECnet directly, DECnet
itself creates log files for slave operations. Such additional log files appear in the
default direction of the account under when the DECnet PMDF object runs; that
account is normally the PMDF account, hence normally the DECnet log files are in
PMDF_ROOT:[LOG] on OpenVMS, and have the name netserver.log. Note that unlike
normal PMDF log files, e.g., unlike any dn_remotenode_slave.log log files which can
also be created, the DECnet channel slave log files created directly by DECnet are not
named according to the channel that created them.

20–9

DECnet Channels (OpenVMS and Tru64 UNIX)
DECnet MAIL-11 Channels (OpenVMS)

20.3 DECnet MAIL-11 Channels (OpenVMS)

Versions of PMDF prior to version 3.2 used the local channel to deliver messages
across DECnet using VMS MAIL. While this can still be done, the use of channel DECnet
MAIL-11 channels (d or d_ channels) is preferred for this operation. These channels are
described more fully in Chapter 18; in particular, see Section 18.2

Note: PMDF also includes two true DECnet channels, which use direct DECnet links to form a
transport layer for PhoneNet or SMTP message transfers. DECnet channels are used to
link multiple systems running PMDF that happen to be attached to the same DECnet.
They are entirely distinct from DECnet MAIL-11 channels. The terminology is quite
confusing and is due to the fact that DECnet is both a transport mechanism and mail
system in its own right, yet the same name is used for both functions. This document
always refers to DECnet’s own message delivery system as DECnet MAIL-11 and to
DECnet’s transport mechanism as simply DECnet.

The automatic configuration generator generates a DECnet MAIL-11 channel if one
is needed.

20–10

21TCP/IP Channels

TCP/IP channels are used to link PMDF to TCP/IP based networks such as the
Internet. The TCP/IP channels all use the Simple Mail Transfer Protocol (SMTP),
including extensions such as those described in RFCs 1426, 1869, 1870, and 1891.1 The
description of this protocol and extensions to it can be found in files such as rfc1426.txt,
rfc1869.txt, rfc1870.txt, rfc2821.txt, and rfc2822.txt in the rfc subdirectory
of the PMDF documentation directory.

On UNIX and NT, PMDF’s multithreaded TCP SMTP channel uses the TCP/IP
network protocol stack supplied with the operating system.

On OpenVMS, PMDF supports the following TCP/IP packages:

• Hewlett-Packard TCP/IP Services [a.k.a. UCX]

• MultiNet (Process Software)

• TCPware (Process Software)

On OpenVMS, the multithreaded TCP SMTP channel uses DECthreads in order to
handle multiple, simultaneous SMTP sessions in a single process. 2 The multithreaded
TCP SMTP channel thus requires OpenVMS V6.1 or later, Pascal RTL V5.0-15 (VAX)
or V5.0-18 (Alpha) or V5.0-25 (I64) or later, and as the underlying TCP/IP package, any
one of MultiNet V3.5A or later with all UCXDRIVER patches (upgrading to the latest
MultiNet is recommended), Pathway V2.5.x with all patches (including C82195 as of this
printing) or later, TCPware V5.0 or later3, or TCP/IP Services for OpenVMS V4.0 or later
(with UCX V4.1 requiring upgrading to at least ECO 5). Contact Process Software or
your PMDF distributor if you have any questions regarding version compatibility with
these TCP/IP packages.

The multithreaded TCP SMTP channel includes a multithreaded SMTP server
which runs under the control of the PMDF Service Dispatcher. Outgoing SMTP mail
is processed by the multithreaded PMDF channel program (tcp_smtp_client), run as
needed under the control of master.com (OpenVMS) or the PMDF Job Controller (UNIX
and NT).

Configuration instructions are presented in this chapter for the multithreaded
TCP/IP channel.

1 Two additional SMTP channels, SMTP over task-to-task DECnet and ‘‘generic’’ SMTP channels, are presented in
Chapter 20 and Chapter 26.

2 The multithreaded TCP SMTP channel replaces PMDF single-threaded TCP/IP channels specific to the above TCP/IP
packages. For sites upgrading from older versions of PMDF, see the OpenVMS Edition of the PMDF Installation Guide

for instructions on switching to using the multithreaded TCP SMTP channel.
3 PMDF has been tested against TCPware versions through 5.5.

21–1

TCP/IP Channels

Section 21.3, towards the end of this chapter describes how to establish a ‘‘gateway’’
channel to route mail through another system, as for instance to a mailhub or firewall
system. Section 21.4, at the end of this chapter, describes performing ‘‘polling’’ with
TCP/IP channels, that is, requesting that a remote system attempt to deliver any stored
messages to your system; for instance, this can be particularly useful over ‘‘intermittent’’
sorts of TCP/IP links, such as dial-up connections.

21.1 Setting Up the Channel

Before configuring a TCP/IP channel, you must select a domain name (e.g.,
‘‘naples.example.com’’) for each of the machines which will run PMDF. Associated with
each domain name is an IP address (e.g., 192.168.1.1). If the implementation of TCP/IP
which you use supports domain literals and you want to configure PMDF to use domain
literal addressing (e.g., bob@[192.168.1.1]), then you will also want to have at hand
the IP addresses for each of the machines for which PMDF will be configured.

Note: The pmdf configuration utility will create TCP/IP channels for you. If you use this
utility to configure TCP/IP channels, then many configuration steps will have been
performed for you. On OpenVMS you must still be sure to disable the native SMTP server,
as described in Section 21.1.3. On all platforms, be sure to complete all the configuration
utility checklist steps, including configuring the PMDF Service Dispatcher. Process
Software strongly recommends that the configuration utility be used to configure TCP/IP
channels. Documentation on the configuration utility can be found in the appropriate
edition of the PMDF Installation Guide.

21.1.1 Configuring the TCP SMTP Channel

If you do not have a TCP/IP channel in your configuration you can create one by
adding a channel block to the PMDF configuration file that looks like this:

tcp_local single_sys smtp
TCP-DAEMON

The channel name must be tcp_local and the single_sys and smtp keywords are
required. The single_sys keyword tells PMDF that only a single system is allowed in
each message file since each message file will be associated with a single TCP connection.
The smtp keyword activates the SMTP parser routines.

Rewrite rules need to be added to the configuration file to map system or domain
names onto the tcp_local channel. If you used the PMDF configuration generator
and told it that you wanted TCP/IP support, it should have already produced applicable
rewrite rules. Note that since the single tcp_local channel can connect to many hosts,
the channel host name is the pseudonym TCP-DAEMON. Rewrite rules should rewrite to
the pseudonym, and not simply to the destination host. For example:

NODE.EXAMPLE.COM $U%$D@TCP-DAEMON

21–2

TCP/IP Channels
Setting Up the Channel

The multithreaded TCP SMTP channel supports domain literal addressing. Internet
Requirements (see RFC 1123) mandate that an Internet host be able to accept a domain
literal specifying its own IP address. You should add a rewrite rule to your configuration
file of the form

[1.2.3.4] $U@official-local-host-name

where 1.2.3.4 is your IP address and official-local-host-name is the official host
name on your local channel. If all other domain literals are to be targeted to the channel
a rewrite rule of the form

[] $U%[$L]@TCP-DAEMON

can also be appropriate.

If many systems accessible via TCP/IP are grouped in a couple of common domains,
the use of more general rewrite rules should be considered. For example, suppose that a
large number of systems in the .example.com domain are accessible via TCP/IP. Then
the rewrite rule

.EXAMPLE.COM $U%$H$D@TCP-DAEMON

would tell PMDF that any system in the .EXAMPLE.COM domain can be reached via
TCP/IP. Exceptions (e.g., systems in the .EXAMPLE.COM domain that are not reachable
via TCP/IP) can be handled by inserting additional more specific rewrite rules.

The only disadvantage to this scheme is that errors like sending to a nonexistent
system in the .EXAMPLE.COM domain will not be detected until PMDF actually attempts
to deliver the message to the nonexistent system.

21.1.2 TCP/IP Channel Option Files

An option file can be used to control various characteristics of TCP/IP channels.4

Such an option file must be named x_option where x is the name of the channel,
and stored in the PMDF table directory. Since the name of the channel is usually
tcp_local, the option file is usually PMDF_TABLE:tcp_local_option. on OpenVMS
or /pmdf/table/tcp_local_option on UNIX or C:\pmdf\table\tcp_local_option
on NT. Note that while master channel programs (the outgoing channel direction or SMTP
client) read their option file each time they run, the slave channel program (the SMTP
server) reads the option file only when it is first started, hence will not see changes until
restarted.5

4 Most of the options described actually relate to the SMTP protocol itself, rather than to the TCP/IP transport. As such,
other PMDF channels that use the SMTP protocol over other transports can have similar options.

5 Also note that for incoming messages, such TCP/IP channel options are actually options for the SMTP server itself;
in particular, the only channel options that matter for incoming messages are those for the SMTP server’s default
channel, not any channel options for possible other channels that can putatively handle the incoming message due to
a switchchannel channel keyword-based ‘‘switching’’.

21–3

TCP/IP Channels
Setting Up the Channel

21.1.2.1 Format of the Option File

Option files consist of several lines. Each line contains the setting for one option.
An option setting has the form:

option=value

value can be either a string or an integer, depending on the option’s requirements. If
the option accepts an integer value a base can be specified using notation of the form
b%v, where b is the base expressed in base 10 and v is the actual value expressed in
base b.

21.1.2.2 Available TCP/IP Channel Options

The available options are:

ALLOW_ETRNS_PER_SESSION (integer)

Set a limit on the number of ETRN commands accepted per connection. The default is 1.
See also Section 2.3.4.34 for a discussion of channel keywords affecting PMDF’s response
to ETRN commands.

ALLOW_REJECTIONS_BEFORE_DEFERRAL (integer)

Set a limit on the number of bad RCPT TO: addresses that are allowed during a single
connection. When this option is enabled, after the specified number of To: addresses
have been rejected, all subsequent recipients, good or bad, are rejected with a temporary
error.

ALLOW_RECIPIENTS_PER_TRANSACTION (integer)

Set a limit on the number of recipients allowed per message. The default is no limit.

ATTEMPT_TRANSACTIONS_PER_SESSION (integer)

Set a limit on the number of messages PMDF will attempt to transfer during any one
connection session. The default is no limit.

BANNER_ADDITION (string)

Add the specified string to the SMTP banner line. The vertical bar character is not
permitted in the string.

CHECK_SOURCE (0 or 1)

The PMDF SMTP server normally attempts to determine the name of the host from
which a connection has been received, as specified by the ident* channel keywords
discussed in Section 2.3.4.40. When the determined name does not match the name
presented by the remote SMTP client on the HELO/EHLO line, the CHECK_SOURCE option
controls whether the name found from a DNS lookup (or the IP domain literal, if DNS
lookups have been disabled such as with the identnonenumeric channel keyword) is
included in the constructed Received: header as a comment after the presented name.
A value of 1 (the default) enables the inclusion of the determined name when different
from the presented name; a value of 0 disables the inclusion of any such comment and
thus eliminates one of the more useful checks of message validity.

COMMAND_RECEIVE_TIME (integer)

This option specifies, in minutes, how long to wait to receive general SMTP commands,
(commands other than those with explicitly specified time out values set using other
specifically named options). The default value is 10.

21–4

TCP/IP Channels
Setting Up the Channel

COMMAND_TRANSMIT_TIME (integer)

This option specifies, in minutes, how long to spend transmitting general SMTP
commands, (commands other than those with explicitly specified time out values set
using other specifically named options). The default value is 10.

DATA_RECEIVE_TIME (integer)

This option specifies, in minutes, how long to wait to receive data during an SMTP
dialogue. The default is 5.

DATA_TRANSMIT_TIME (integer)

This option specifies, in minutes, how long to spend transmitting data during an SMTP
dialogue. The default is 10.

DISABLE_ADDRESS (0 or 1)

The PMDF SMTP server implements a private command XADR. This command returns
information about how an address is routed internally by PMDF as well as general
channel information. Releasing such information can consistute a breach of security for
some sites. Setting the DISABLE_ADDRESS option to 1 disables the XADR command. The
default is 0, which enables the XADR command.

DISABLE_CIRCUIT (0 or 1)

The PMDF SMTP server implements a private command XCIR. This command returns
PMDF circuit check information. Releasing such information can consistute a breach
of security for some sites. Setting the DISABLE_CIRCUIT option to 1 disables the
XCIR command; setting DISABLE_CIRCUIT to 0 enables the XCIR command. If
DISABLE_CIRCUIT is not explicitly set, then use of this XCIR command is controlled
by the DISABLE_GENERAL option setting.

DISABLE_EXPAND (0 or 1)

The SMTP EXPN command is used to expand mailing lists. Exposing the contents of
mailing lists to outside scrutiny can constitue a breach of security for some sites. The
DISABLE_EXPAND option, when set to 1, disables the EXPN command completely. The
default value is 0, which causes the EXPN command to work normally.

Note that mailing list expansion can also be blocked on a list-by-list basis with the
[EXPANDABLE] and [NONEXPANDABLE] named parameters.

DISABLE_GENERAL (0 or 1)

The PMDF SMTP server implements a private command XGEN. This command returns
status information about whether a compiled configuration and compiled character set
are in use. Releasing such information can constitute a breach of security for some sites.
Setting the DISABLE_GENERAL option to 1 disables the XGEN command. The default is
0, which enables the XGEN command.

DISABLE_STATUS (0 or 1)

The PMDF SMTP server implements a private command XSTA. This command returns
status information about the number of messages processed and currently in the PMDF
channel queues. Releasing such information can consistute a breach of security for some
sites. Settting the DISABLE_STATUS option to 1 disables the XSTA command. The default
is 0, which enables the XSTA command.

DOT_TRANSMIT_TIME (integer)

This option specifies, in minutes, how long to spend transmitting the dot (period)
terminating the data in an SMTP dialogue. The default is 10.

21–5

TCP/IP Channels
Setting Up the Channel

HIDE_VERIFY (0 or 1)

The SMTP VRFY command can be used to establish the legality of an address prior
to actually using it. Unfortunately this command has been abused by automated query
engines in some cases. The HIDE_VERIFY option, when set to 1, tells PMDF not to return
any useful information in the VRFY command result. The default value is 0, which causes
VRFY to act normally. See also the channel keywords controlling this behavior, described
in Section 2.3.4.36.

LOG_BANNER (0 or 1)

The LOG_BANNER option controls whether the remote SMTP server banner line is included
in mail.log* file entries when the logging channel keyword is enabled for the channel.
A value of 1 (the default) enables logging of the remote SMTP server banner line; a
value of 0 disables it. LOG_BANNER also affects whether a remote SMTP banner line, if
available, is included in bounce messages generated by the channel.

LOG_CONNECTION (integer)

The LOG_CONNECTION option controls whether or not connection information, e.g., the
domain name of the SMTP client sending the message, is saved in mail.log file entries
and the writing of connection records when the logging channel keyword is enabled
for the channel. This value is a decimal integer representing a bit-encoded integer, the
interpretation of which is given in the table below.

Bit Value Usage

0 1 When set, connection information is included in E and D log records.

1 2 When set, connection open/close/fail records are logged by message enqueue and
dequeue agents such as the SMTP and X.400 clients and servers.

2 4 When set, I records are logged recording ETRN events.

Bit 0 is the least significant bit.

This channel option defaults to the setting of the global PMDF option LOG_CONNECTION
as set in the PMDF option file; see Chapter 7. This channel option can be set explicitly
to override on a per-channel basis the behavior requested by the global option.

LOG_TRANSPORTINFO (0 or 1)

The LOG_TRANSPORTINFO controls whether or not transport information, such as the
sending and receiving side IP numbers and port numbers, are included in mail.log
file entries when the logging channel keyword is enabled for the channel. A value of
1 enables transport information logging. A value of 0 disables it. This channel option
defaults to the setting of the global PMDF option LOG_CONNECTION as set in the
PMDF option file; see Chapter 7. It can be set explicitly for a channel to control the
logging of transport information regardless of whether connection logging is enabled.
LOG_TRANSPORTINFO also affects whether transport information, if available, is included
in bounce messages generated by the channel.

LONG_LINE_MODE (0, 1, or 2)

This option specifies how PMDF should handle receiving lines that violate SMTP
maximum length standards. A value of 0 (the default) tells PMDF to truncate such
standards-violating long lines. A value of 1 tells PMDF to reject messages that contain
long lines. A value of 2 tells PMDF to wrap the long lines at 1000 characters.

21–6

TCP/IP Channels
Setting Up the Channel

MAIL_TRANSMIT_TIME (integer)

This option specifies, in minutes, how long to spend transmitting the SMTP command
MAIL FROM:. The default is 10.

MAX_CLIENT_THREADS (integer)

An integer number indicating the maximum number of simultaneous, outbound connec-
tions that the client channel program will allow. Note that multiple processes can be
used for outbound connections, depending on how you have channel processing queues
setup. This option controls the number of threads per process. The default value is 10.

MAX_MX_RECORDS (integer <= 32)

Specify the maximum number of MX records that PMDF should try using when
attempting to deliver a message. The maximum value is 32, which is also the default.

RCPT_TRANSMIT_TIME (integer)

This option specifies, in minutes, how long to spend transmitting the SMTP command
RCPT TO:. The default is 10.

STATUS_DATA_RECEIVE_TIME (integer)

This option specifies, in minutes, how long to wait to receive the SMTP response to
our sent data; i.e., how long to wait to receive a ‘‘250’’ (or other) response to the dot
terminating sent data. The default value is 10.

See also the STATUS_DATA_RECV_PER_ADDR_TIME, STATUS_DATA_RECV_PER_BLOCK_TIME,
and STATUS_DATA_RECV_PER_ADDR_PER_BLOCK_TIME options.

STATUS_DATA_RECV_PER_ADDR_TIME (floating point value)

This option specifies an adjustment factor for how long to wait to receive the SMTP
response to our sent data based on the number of addresses in the MAIL TO: command.
This value is multiplied by the number of addresses and added to the base wait time
(specified with the STATUS_DATA_RECEIVE_TIME option). The default is 0.083333.

STATUS_DATA_RECV_PER_BLOCK_TIME (floating point value)

This option specifies an adjustment factor for how long to wait to receive the SMTP
response to our sent data based on the number of blocks sent. This value is
multiplied by the number of blocks and added to the base wait time (specified with
the STATUS_DATA_RECEIVE_TIME option). The default is 0.001666.

STATUS_DATA_RECV_PER_ADDR_PER_BLOCK_TIME (floating point value)

This option specifies an adjustment factor for how long to wait to receive the SMTP
response to our sent data based on the number of addresses (in the MAIL TO: command)
per number of blocks sent. This value is multiplied by the number of addresses per
block and added to the base wait time (specified with the STATUS_DATA_RECEIVE_TIME
option). The default is 0.003333.

STATUS_MAIL_RECEIVE_TIME (integer)

This option specifies, in minutes, how long to wait to receive the SMTP response to a
sent MAIL FROM: command. The default is 10.

STATUS_RCPT_RECEIVE_TIME (integer)

This option specifies, in minutes, how long to wait to receive the SMTP response to a
sent RCPT TO: command. The default value is 10.

21–7

TCP/IP Channels
Setting Up the Channel

STATUS_RECEIVE_TIME (integer)

This option specifies, in minutes, how long to wait to receive the SMTP reply to general
SMTP commands, (replies other than those with explicitly specified time out values set
using other specifically named options). The default value is 10.

STATUS_TRANSMIT_TIME (integer)

This option specifies, in minutes, how long to spend transmitting the SMTP reply to an
SMTP command. The default value is 10.

TRACE_LEVEL (0 or 2)

This option controls whether TCP/IP level trace is included in debug log files. The default
value is 0, meaning that no TCP/IP packet traces are included; a value of 2 tells PMDF
to include TCP/IP packet traces in any debug log files and to include some additional
information, such as DNS lookup information, in addition to the basic TCP/IP packet
traces.

21.1.3 Replacing the Native SMTP Server with PMDF’s SMTP Server

On UNIX, the existing SMTP server should be replaced by PMDF’s SMTP server
during the installation of PMDF; see the appropriate edition of the PMDF Installation
Guide.

On NT, any existing SMTP server must be disabled, so that the PMDF SMTP server
can replace it. For instance, Windows 2000 Server and Advanced Server do have a native
SMTP server by default. See the appropriate edition of the PMDF Installation Guide for
more information.

On OpenVMS, your TCP/IP package’s native SMTP server must be replaced by
PMDF’s SMTP server. First the native SMTP server must be disabled, as described below,
then the PMDF Service Dispatcher must be configured to handle the SMTP service, as
described in Section 21.1.4, and then the Service Dispatcher must be restarted, or started
if it was not already running, to start up the new service.

Disabling the HP TCP/IP SMTP server, or a PMDF UTCP SMTP server

To disable the SMTP server native to HP TCP/IP Services, (also known as UCX), or
a previous PMDF UTCP channel, issue the commands:

$ UCX
UCX> DISABLE SERVICE SMTP
UCX> SET NOSERVICE SMTP
UCX> SET CONFIGURATION ENABLE NOSERVICE SMTP
UCX> EXIT

If your site was previously using the PMDF UCX_SMTPD dispatcher, you must also
delete that process; it will have a process name of ‘‘UCX/PMDF server’’. Also remove
any command from your system startup that starts up that process; e.g., remove any
commands such as

$ @PMDF_COM:start_ucx_smtpd.com

21–8

TCP/IP Channels
Setting Up the Channel

Disabling the TCPware SMTP server, or a PMDF PTCP SMTP server

To disable the SMTP server native to Process Software TCPware TCP/IP, or a
previous PMDF PTCP channel, issue the commands:

$ RUN TCPWARE:netcu
NETCU REMOVE SERVICE 25 TCP
NETCU EXIT

Or if you are running Process Software TCPware TCP/IP V5.3 (or higher), you can disable
the SMTP server using the interactive configuration tool,

$ @TCPWARE:CNFNET TCP

by answering NO to the question regarding using the SMTP server, along the lines of:

Do you want to use the SMTP Mail Transfer Agent?

Note that if you have also installed Process Software’s SMTP-VMS optional product,
you must disable it by issuing the following command:

$ RENAME TCPWARE:smtp_control.com -
_$ TCPWARE:smtp_control.com_disabled

Once you have disabled the SMTP server native to Process Software TCPware
TCP/IP, or a previous PMDF PTCP channel, TCPware should then be shutdown and
restarted with the commands:

$ @TCPWARE:shutnet.com
$ @TCPWARE:startnet.com

If you have TCPware installed in a cluster environment you must restart TCPware on
every node in the cluster to ensure that each node knows about the change.

Disabling the Multinet SMTP server, or a PMDF MTCP SMTP server

To disable the SMTP server native to Process Software’s MultiNet TCP/IP, issue the
following commands:

$ MULTINET CONFIGURE/SERVERS
SERVER-CONFIG> DISABLE SMTP
SERVER-CONFIG> RESTART
SERVER-CONFIG> EXIT

If you have MultiNet installed in a cluster environment you must restart MultiNet on
every node in the cluster to ensure that each node knows about the change.

21–9

TCP/IP Channels
Setting Up the Channel

21.1.4 Configuring the PMDF Service Dispatcher to Handle the
SMTP Service

The multithreaded TCP SMTP channel’s SMTP server is designed to be handled by
the PMDF Service Dispatcher. The Service Dispatcher creates and uses worker processes
that handle the SMTP service; see Chapter 11 for more details. In order to use the
multithreaded TCP SMTP channel, the Service Dispatcher must be configured to handle
the SMTP service, if it has not been so configured already. This configuration can be
achieved using the PMDF GUI configuration utility as described in the appropriate
edition of the PMDF Installation Guide, or by using the command line utility pmdf
configure dispatcher (OpenVMS and UNIX); if you have not already configured the
PMDF Dispatcher you should do so at this time.

21.2 Controlling the SMTP Server

The multithreaded TCP SMTP channels’ SMTP server is handled by the PMDF
Service Dispatcher. Each worker process the Service Dispatcher creates for the
multithreaded SMTP server can handle multiple, simultaneous connections, and the
Service Dispatcher can create multiple such worker processes. To start the SMTP server,
you must start the PMDF Service Dispatcher.

Note: Be certain to disable any other SMTP server, e.g., a native SMTP server shipped with a
TCP/IP package, as described above in Section 21.1.3 before asking the Service Dispatcher
to start the multithreaded SMTP server; the Service Dispatcher will not be able to start
the multithreaded SMTP server if another process has already bound to port 25.

The Service Dispatcher can be started with the command

pmdf startup dispatcher

If you modify your PMDF configuration or options that apply to the multithreaded
TCP SMTP server, you must restart the server so that the new configuration or options
will take effect. On OpenVMS and UNIX platforms, use the command

pmdf restart smtp

On NT platforms, you must restart the Dispatcher itself using the command

C:\> pmdf restart dispatcher

A new SMTP server process will be created, using the new configuration, and will process
subsequent incoming SMTP connections. The old TCP SMTP server process will finish
up any SMTP sessions it might have and exit when they are finished.

Note that you can stop the TCP SMTP server at any time. On OpenVMS and UNIX
platforms, use the command

pmdf shutdown smtp

which will shut down the server gracefully, allowing any outstanding connections to finish
up.

21–10

TCP/IP Channels
Controlling the SMTP Server

On NT, you must shut down the Dispatcher itself, or edit the Dispatcher configuration
removing the SMTP service and then restarting the Dispatcher.

21.2.1 SMTP Connection Control Mapping

The PMDF Service Dispatcher is able to selectively accept or reject incoming SMTP
connections based on IP address and port number. For instance, incoming connections
to the SMTP port(s) (normally port 25) can be blocked based on the sending system’s IP
number; see Section 11.5 for details.

21.3 Accessing Gateway Systems

A local TCP/IP network can include one or more systems that are equipped to relay
messages to machines not directly accessible on the local network. Such gateway systems
accept addresses that are not palatable to the network itself.

One solution to this problem is to use appropriate MX records and a name resolver.
However, this approach can be infeasible in some environments, so a different solution
can be needed.

There is an alternate approach, in which routing to TCP/IP gateways is done by
creating additional channels, one per gateway system, in the configuration file. The
name of these channels must always begin with tcp_ for the multithreaded TCP SMTP
channel. The channel blocks have the general form:

tcp_gateway smtp daemon router
gateway-system-name

or equivalently,

tcp_gateway smtp daemon gateway-system-name

arbitrary-placeholder-name

Rewrite rules must then be added to the configuration file to route the appropriate
addresses to the gateway. See, for instance, Example 2–3.

The daemon router keyword phrase tells the SMTP client program not to open
a connection directly to the first system named in the envelope address list, but to
instead open a connection to the official host for this channel, gateway-system-name.
Certain gateways can restrict the number of addresses that can appear in a single copy
of a message so it can be appropriate to add the single or single_sys keywords
to the channel block for some gateway channels. If the gateway can handle multiple
simultaneous connections, then use of the threaddepth keyword can be of interest to
cause outgoing connections to be split amongst multiple threads.

Once a channel block for a gateway is created the channel should be ready to use.

21–11

TCP/IP Channels
Triggering (on-demand) Message Transfer with Remote Systems

21.4 Triggering (on-demand) Message Transfer with Remote
Systems

In cases where the network connection between two systems is only available at
particular times—a ‘‘dial up’’ sort of connection for instance—there is an SMTP extension
whereby one system can inform another that it is ready to receive mail. This is
performed using the SMTP extension command ETRN, defined in RFC 1985: 6 the side
that desires to receive mail connects to the remote side’s SMTP server and issues the
command ETRN receivinghostname. If the remote side’s SMTP server supports the
ETRN command, it will then attempt delivery of any messages it has waiting to be sent
to receivinghostname.

The PMDF SMTP server supports ETRN. In particular, the PMDF SMTP server
interprets a received ETRN domainname command as a request to deliver all messages
to domainname, a received ETRN @domainname as a request to deliver all messages in
the domainname subnet, and a ETRN #channelname command as a request to run the
channel channelname. By default, the PMDF SMTP always responds to a remote site’s
ETRN requests; if you want to restrict this behavior, see Section 2.3.4.34.

And outgoing PMDF SMTP-based channels, such as TCP/IP channels, can be con-
figured to send an ETRN command at the beginning of an outgoing SMTP dialogue via
the sendetrn channel keyword; see Section 2.3.4.33. For instance, suppose a sys-
tem host1.example.com has a dial-up connection to a remote system intermit-
tent.some.where.com, where the intermittent.some.where.com system also sup-
ports ETRN. For a channel for connecting up to the remote side and sending ETRN, such
a site might use a channel definition along the lines of:

tcp_dialup smtp mx daemon intermittent.some.where.com \
periodic sendetrn host1.example.com
TCP-DIALUP

21.5 SASL Authentication for the TCP/IP Channel Client

PMDF has the ability to configure the TCP/IP channel client to use SASL via the
SMTP AUTH command when sending mail out from the PMDF MTA to a remote MTA.
This is primarily needed by home users who are running PMDF on their home systems
and have an ISP that requires a username and password to be able to send out mail
through the ISP’s MTA.

The username and password to use for authentication is configured in a section in
the security.cnf file called CLIENT_AUTH. For details see Section 14.2. An example
default CLIENT_AUTH section is as follows:

[CLIENT_AUTH=default]
USER=remote-username
PASSWORD=remote-password

6 If installing the RFCs was chosen as an option during the PMDF installation, you will have a copy of this RFC on your
system in the directory pmdf_root:[doc.rfc] (OpenVMS) or /pmdf/doc/rfc/ (UNIX).

21–12

TCP/IP Channels
SASL Authentication for the TCP/IP Channel Client

The TCP/IP channel also needs to be configured to enable client-side SASL. This is
done with one of the following channel keywords: maysaslclient, mustsaslclient,
maysasl, or mustsasl. For details see Section 2.3.4.43.

By default, the [CLIENT_AUTH=default] section in the security.cnf file is used
to get the username and password. To use a different CLIENT_AUTH section, specify its
name using the client_auth channel keyword.

This example channel definition is used to send mail out to a system called ’alpha’
on the SMTP submission port (587) using SASL and TLS.

tcp_alpha smtp mx port 587 daemon router maysaslclient allowswitchchannel \
maytls client_auth alpha

alpha.example.edu
TCP-ALPHA

21–13

22Message Manipulation Channels

This chapter describes how to use the conversion, script, and disclaimer
channels to modify messages as they pass through PMDF.

The conversion channel allows processing of message attachments and other body
parts using external, third-party programs and site-supplied procedures, such as virus
scanners. The execution of such procedures is controlled by the CONVERSIONS mapping
table and the conversions file. The conversion channel is discussed in Section 22.1.

The PMDF conversions file, discussed in Section 22.1.3, is used to specify the details
of conversion channel processing and to specify the details of some internal CHARSET-
CONVERSION table triggered conversions (see Chapter 6).

Note: If you use both a CONVERSIONS mapping table to invoke the conversion channel and
a CHARSET-CONVERSION mapping table to perform character set conversions (see
Chapter 6), the CONVERSIONS mapping table takes precedence. In this case, all
entries with RELABEL=1 in the conversions file are skipped. A conversions file entry
can be changed from being associated with the CHARSET-CONVERSION mapping table
to being associated with the CONVERSIONS mapping table by replacing the RELABEL=1
parameter with the COMMAND parameter. The command specified could be as simple as
copying the input file to the output file.

The script channel allows processing of messages in their entirety using external,
third-party programs and site-supplied procedures. The execution of such procedures is
controlled by the SCRIPT mapping table. The script channel is discussed in Section 22.2.

The disclaimer channel allows arbitrary text (usually in the form of a disclaimer)
to be added to messages. The addition of such text is controlled by the DISCLAIMER
mapping table. The disclaimer channel is discussed in Section 22.3.

22.1 Conversion Channel

The conversion channel performs arbitrary body part by body part processing on
messages flowing through PMDF. Any subset of PMDF traffic can be selected to pass
through the conversion channel and any set of programs or command procedures can be
used to perform conversion channel processing.

For instance, third party document convertors or virus scanning software may be
hooked in for automatic execution via the conversion channel. Or sites may develop
their own custom applications to hook in.

22–1

Message Manipulation Channels
Conversion Channel

22.1.1 Selecting Traffic for Conversion Processing

Although conversion channel processing is done using a regular PMDF channel
program, under normal circumstances this channel is never specified directly either in an
address or in a PMDF rewrite rule. PMDF controls access to the conversion channel
via the CONVERSIONS mapping table in the PMDF mappings file.

As PMDF processes each message it probes the CONVERSIONS mapping (if one is
present) with a string of the form

IN-CHAN=source-channel;OUT-CHAN=destination-channel;CONVERT

where source-channel is the source channel from which the message is coming and
destination-channel is the destination channel to which the message is heading.
If a match occurs the resulting string should be a comma-separated list of keywords.
Table 22–1 lists the available keywords.

Note: Make sure that there is no whitespace in the resulting string, for example around commas
or equal signs.

Table 22–1 CONVERSIONS Mapping Table Keywords

Keyword Action

Channel=channel Enables conversion channel processing using the conversion channel
named channel. Note that technically, the channel specified can be any
channel defined in pmdf.cnf.

No Disables conversion channel processing.

Yes Enables conversion channel processing.

A No is assumed if no match occurs.

If the CONVERSIONS mapping table enables the conversion channel, PMDF diverts
the message from its regular destination to the conversion channel. If the conversion
channel is not enabled, the message is queued to its regular destination channel.

For example, suppose messages require command channel processing if they come
from outside your organization and are destined for either local users or remote MAIL-11
(DECnet) users. The following mapping would then be appropriate:

CONVERSIONS

IN-CHAN=tcp_local;OUT-CHAN=l;CONVERT Yes
IN-CHAN=tcp_local;OUT-CHAN=d;CONVERT Yes
IN-CHAN=*;OUT-CHAN=*;CONVERT No

Note: The CONVERSIONS mapping table is not checked for messages which have already been
discarded, for example by a mailbox filter.

22–2

Message Manipulation Channels
Conversion Channel

22.1.2 Configuration

The first step is to add the conversion channel to the PMDF configuration file. The
entry should have the form:

conversion
CONVERSION-DAEMON

Rewrite rules can be added if desired to make it possible to queue mail explicitly to
the conversion channel. Something like

conversion $U%conversion.localhostname@CONVERSION-DAEMON
conversion.localhostname $U%conversion.localhostname@CONVERSION-DAEMON

where localhostname is the name of the local PMDF system, provides the necessary
functionality. Once this is done, addresses of the form

user%host@conversion.localhostname

are routed through the conversion channel regardless of what the CONVERSIONS
mapping says.

Additional conversion_* channels may be defined. For example:

conversion_2
CONVERSION2-DAEMON

These alternate conversion channels are generally selected using the CONVERSIONS
mapping table Channel keyword (see Table 22–1). If desired, you may also create
separate rewrite rules for each of these alternate conversion channels, similar to the
ones shown above.

Note: A channel named conversion must be defined to enable conversion channel processing.
This channel is used as the default conversion channel.

Note that the conversion channel and all conversion_* channels use a single
conversions file (see Section 22.1.3).

22.1.3 Conversion Control

The actual processing performed by the conversion channel is controlled by
rules specified in the PMDF conversions file. The conversions file is located via the
PMDF_CONVERSION_FILE logical name (OpenVMS), or PMDF tailor file option (UNIX), or
Registry entry (NT), and is usually the file pmdf_table:conversions. on OpenVMS,
or /pmdf/table/conversions on UNIX, or C:\pmdf\table\conversions on NT.

The PMDF conversion file is a text file containing entries in a format that is
modelled after MIME Content-Type: parameters. Each entry consists of one or
more lines grouped together; each line contains one or more name=value; parameter
clauses. Quoting rules conform to MIME conventions for Content-Type: header
line parameters. Every line except the last must end with a semicolon. Entries are

22–3

Message Manipulation Channels
Conversion Channel

terminated by either a line that does not end in a semicolon, one or more blank lines, or
both.

For example, the following entry (on OpenVMS) specifies that all message parts
should be run through a site-supplied virus checking command procedure:

in-channel=*; in-type=*; in-subtype=*;
parameter-symbol-0=NAME; parameter-copy-0=*;
dparameter-symbol-0=FILENAME; dparameter-copy-0=*;
message-header-file=2; original-header-file=1;
override-header-file=1; override-option-file=1;
command="@pmdf_com:check-virus.com/output=pmdf_log:check-virus.out"

22.1.3.1 Conversion Entry Scanning and Application

The conversion channel processes each message part by part. The header of each
part is read and its Content-Type: and other header information is extracted. The
entries in the conversion file are then scanned in order from first to last; any IN-
parameters present and the OUT-CHAN parameter, if present, are checked. If all of these
parameters match the corresponding information for the body part being processed, then
the conversion specified by the remainder of the parameters is performed. Note that an
entry must include an IN-TYPE clause in order to match. More specifically, the matching
checks:

• if the IN-CHAN and OUT-CHAN parameters match the channels through which the
message is passing; and

• if the PART-NUMBER matches the structured part number7 of the message part; and

• if all of the IN-PARAMETER-NAME, IN-PARAMETER-VALUE, IN-SUBTYPE, and IN-
TYPE, parameters match the Content-Type of the message; and

• if all of the IN-DISPOSITION, IN-DPARAMETER-NAME, and IN-DPARAMETER-VALUE
parameters match the Content-Disposition of the message; and

• if the IN-DESCRIPTION matches the Content-Description of the message; and

• if the IN-SUBJECT, IN-A1-TYPE, and IN-A1-FORMAT match the headers of the
immediately enclosing message message/rfc822 part.

Only if all specified parameters match is the entry considered to match. Scanning
terminates once a matching entry has been found or all entries have been exhausted.
If no entry matches, no conversion is performed.

If the matching entry specifies DELETE=1, then the message part is deleted.
Otherwise, the command specified by the COMMAND parameter is executed.

Once an entry with a COMMAND parameter has been selected the body part is
extracted to a file (on OpenVMS, in a manner specified by the FDL-OVERRIDE and
FDL-STRING parameters). The converter execution environment is prepared as specified
by the PARAMETER-SYMBOL-n and DPARAMETER-SYMBOL-n parameters, as well as all
of the OUT- parameters. The OUT-TYPE, OUT-SUBTYPE, OUT-DESCRIPTION, OUT-
DISPOSITION, and OUT-ENCODING parameters are used to specify the initial values for

7 The structured part number is the message part number as it would appear in PMDF MAIL.

22–4

Message Manipulation Channels
Conversion Channel

the corresponding DCL symbols (OpenVMS) or environment variables (UNIX and NT).
The OUT-PARAMETER-NAME-n, OUT-PARAMETER-VALUE-n, OUT-DPARAMETER-NAME-n,
and OUT-DPARAMETER-VALUE-n parameters are used to modify the Content-Type:
and Content-Disposition: headers, which are passed to the command in the
INPUT_HEADERS file.

Finally, a subprocess is created to run the command specified by the COMMAND
parameter. The command should perform the necessary conversion operation, reading
the file specified by the INPUT_FILE DCL symbol (OpenVMS) or environment variable
(UNIX and NT) and producing the file specified by the OUTPUT_FILE DCL symbol
(OpenVMS) or environment variable (UNIX and NT). The command may optionally
specify its own MIME headers in the file specified by the OUTPUT_HEADERS DCL symbol
(OpenVMS) or environment variable (UNIX and NT).

Note: The file specified by OUTPUT_FILE must be created by the command procedure
(OpenVMS) or script (Unix and Windows). If you do not wish to make any changes,
you must copy INPUT_FILE to OUTPUT_FILE. If you do not supply an OUTPUT_FILE
then the part will be deleted.

On OpenVMS, the command may optionally define job table logical names to pass
information back to the conversion channel.

On UNIX and NT, the command may optionally set options in the OUTPUT_OPTIONS
file to pass information back to the conversion channel.

Conversion operations are terminated and no conversion is performed if the spawned
command returns an error.

If the command succeeds, the output symbols (OpenVMS) or options (UNIX and
NT) are processed, the resulting output file is read as specified by OUTPUT_MODE,
and if the OVERRIDE-HEADER-FILE parameter was set to 1, the output header file
is read. A new body part containing the converted material and converted header is
constructed according to the specified output symbols OUTPUT_TYPE, OUTPUT_SUBTYPE,
OUTPUT_DESCRIPTION, OUTPUT_DISPOSITION, OUTPUT_ENCODING.

This process is repeated for each part of the message until all parts have been
processed.

22.1.3.2 Available Parameters

The rule parameters currently provided are shown in Table 22–2.

22–5

Message Manipulation Channels
Conversion Channel

Table 22–2 Available Conversion Parameters

Parameter Meaning

COMMAND Command to execute. This parameter is required; if no command is
specified, the entry is ignored. Note: On NT, if the command contains
a backslash, it must be escaped with another backslash. For example:
C:\ \PMDF\\TABLE\\TEST.BAT. 1

DELETE 0 or 1. If this flag is set, the message part is deleted. (If this is the only part in a
message, then a single empty text part is substituted.)

DPARAMETER-COPY-n A list of the Content-Disposition: parameters to copy from the input
body part’s Content-Disposition: parameter list to the output body part’s
Content-Disposition: parameter list; n = 0, 1, 2, Takes as argument
the name of the MIME parameter to copy, as matched by an IN-PARAMETER-
NAME-m clause. Wildcards may be used in the argument. In particular, an
argument of * means to copy all the original Content-Disposition:
parameters.

DPARAMETER-SYMBOL-
n

Content-disposition parameters to convert to environment variables
(DCL symbols on OpenVMS) if present; n = 0, 1, 2, Takes as argument the
name of the MIME parameter to convert, as matched by an IN-DPARAMETER-
NAME-m clause. Each DPARAMETER-SYMBOL-n is extracted from the
Content-Disposition: parameter list and placed in an environment
variable or DCL symbol of the same name prior to executing the command.

† FDL-OVERRIDE 0 or 1; if 1, the FDL information specified by the FDL-STRING entry parameter is
used unconditionally; if 0, the FDL-STRING entry parameter is overriden by an
FDL-STRING Content-Type: parameter.

† FDL-STRING OpenVMS FDL information used to construct the input file for the command.
Prior to executing the command, the body part is written into an RMS file
created using this FDL information. An FDL-STRING parameter overrides the
FDL-STRING entry parameter unless FDL-OVERRIDE is 1. Usage of this
parameter is restricted to OpenVMS systems.

IN-A1-FORMAT Input A1-Format from enclosing message/rfc822 part.

IN-A1-TYPE Input A1-Type from enclosing message/rfc822 part.

IN-CHAN Input channel to match (wildcards allowed). The actions specified by this entry
are only performed if the message is coming from the specified channel.

IN-CHANNEL Synonym for IN-CHAN.

IN-DESCRIPTION Input MIME Content-Description header.

IN-DISPOSITION Input MIME Content-Disposition header.

IN-DPARAMETER-
DEFAULT-n

Input MIME Content-Disposition parameter value default if parameter is
not present. This value is used as a default for the IN-DPARAMETER-VALUE-
n test when no such parameter is specified in the body part.

IN-DPARAMETER-NAME-
n

Input MIME Content-Disposition parameter name whose value is to be
checked; n = 0, 1, 2,

IN-DPARAMETER-
VALUE-n

Input MIME Content-Disposition parameter value that must match
corresponding IN-DPARAMETER-NAME (wildcards allowed). The actions
specified by this entry are only performed if this field matches the corresponding
parameter in the body part’s Content-Disposition: parameter list.

1Except see the RELABEL and SERVICE-COMMAND parameters, which cause entries to be ignored during
conversion channel processing, but do affect character set conversion.

†Supported only on OpenVMS; ignored on UNIX and NT.

22–6

Message Manipulation Channels
Conversion Channel

Table 22–2 (Cont.) Available Conversion Parameters

Parameter Meaning

IN-PARAMETER-
DEFAULT-n

Input MIME Content-Type parameter value default if parameter is not
present. This value is used as a default for the IN-PARAMETER-VALUE-n
test when no such parameter is specified in the body part.

IN-PARAMETER-NAME-n Input MIME Content-Type parameter name whose value is to be checked; n
= 0, 1, 2,

IN-PARAMETER-VALUE-n Input MIME Content-Type parameter value that must match corresponding
IN-PARAMETER-NAME (wildcards allowed). The actions specified by this entry
are only performed if this field matches the corresponding parameter in the body
part’s Content-Type: parameter list.

IN-SUBJECT Input Subject from enclosing message/rfc822 part.

IN-SUBTYPE Input MIME subtype to match for conversion (wildcards allowed). The actions
specified by this entry are only performed if this field matches the MIME subtype
of the body part.

IN-TYPE Input MIME type to match (wildcards allowed). The actions specified by this
entry are only performed if this field matches the MIME type of the body part.

MESSAGE-HEADER-FILE 0, 1, or 2. If set to 1, the original headers of the immediately enclosing message
part are written to the file represented by the MESSAGE_HEADERS symbol. If
set to 2, the original headers of the message as a whole (the outermost message
headers) are written to MESSAGE_HEADERS.

ORIGINAL-HEADER-FILE 0 or 1. If set to 1, the original headers of the enclosing part are written to the file
represented by the INPUT_HEADERS symbol.

OUT-A1-FORMAT Output A1-Format.

OUT-A1-TYPE Output A1-Type.

OUT-CHAN Output channel to match (wildcards allowed). The actions specified by this entry
are only performed if the message is destined for the specified channel.

OUT-CHANNEL Synonym for OUT-CHAN.

OUT-DESCRIPTION Output MIME Content-Description if it is different than the input MIME
Content-Description.

OUT-DISPOSITION Output MIME Content-Disposition if it is different than the input MIME
Content-Disposition

OUT-DPARAMETER-
NAME-n

Output MIME Content-Disposition parameter name; n = 0, 1, 2,

OUT-DPARAMETER-
VALUE-n

Output MIME Content-Disposition parameter value corresponding to
OUT-DPARAMETER-NAME-n.

OUT-MODE Mode in which to read the output file. This should be one of: BLOCK, RECORD,
RECORD-ATTRIBUTE, or TEXT.

OUT-ENCODING Encoding to apply to the output file.

OUT-PARAMETER-
NAME-n

Output MIME Content-Type parameter name; n = 0, 1, 2,

OUT-PARAMETER-
VALUE-n

Output MIME Content-Type parameter value corresponding to OUT-
PARAMETER-NAME-n.

OUT-SUBTYPE Output MIME type if it is different than the input MIME type.

OUT-TYPE Output MIME type if it is different than the input type.

22–7

Message Manipulation Channels
Conversion Channel

Table 22–2 (Cont.) Available Conversion Parameters

Parameter Meaning

OVERRIDE-HEADER-
FILE

0 or 1. If set, then MIME headers are read from the OUTPUT_HEADERS
symbol, overriding the original MIME headers in the enclosing part.

‡ OVERRIDE-OPTION-FILE 0 or 1. If set, then the conversion channel reads options from the OUTPUT_
OPTIONS symbol.

PARAMETER-COPY-n A list of the Content-Type: parameters to copy from the input body part’s
Content-Type: parameter list to the output body part’s Content-Type:
parameter list; n = 0, 1, 2, Takes as argument the name of the MIME
parameter to copy, as matched by an IN-PARAMETER-NAME-m clause.
Wildcards may be used in the argument. In particular, an argument of * means
to copy all the original Content-Type: parameters.

PARAMETER-SYMBOL-n Content-Type parameters to convert to environment variables (DCL symbols on
OpenVMS) if present; n = 0, 1, 2, Takes as argument the name of the MIME
parameter to convert, as matched by an IN-PARAMETER-NAME-m clause.
Each PARAMETER-SYMBOL-n is extracted from the Content-Type:
parameter list and placed in an environment variable or DCL symbol of the same
name prior to executing the command.

PART-NUMBER Dotted integers, e.g., a.b.c... The part number of the MIME body part.

RELABEL 0 or 1. This flag causes an entry to be ignored during conversion channel
processing. However, if this flag is 1, then MIME header relabelling is performed
during character set conversion.2

SERVICE-COMMAND The command to execute to perform service conversion. This flag causes
an entry to be ignored during conversion channel processing. SERVICE-
COMMAND entries are instead performed during character set conversion
processing.3

TAG Input tag, as set by a mailing list [CONVERSION_TAG] named parameter,
must match.

2See Section 6.3.2 for more information on character set conversion and using the RELABEL parameter.

3See Section 6.4 for more information on character set conversion and using the SERVICE-COMMAND parameter.

‡Available on UNIX and NT only

Parameters not listed in the preceeding table are ignored.

22.1.3.3 Conversion Entry Parameter Value Wildcard Matching

The values of conversion entry parameter values may be specified as literal strings,
or using wildcards as in PMDF mapping entry patterns. See Section 5.3.1 for a discussion
of available wildcards.

For instance,

in-dparameter-name-0=filename; in-dparameter-value-0=*.wpc;

would match any Content-disposition: header filename parameter that has a ‘‘.wpc’’
extension. Or

22–8

Message Manipulation Channels
Conversion Channel

in-dparameter-name-0=filename; in-dparameter-value-0=*.wp$[cd56]%;

would match any Content-disposition: header filename parameter that has a ‘‘.wpc’’,
‘‘.wpd’’, ‘‘.wp5’’, or ‘‘.wp6’’ extension.

22.1.3.4 Predefined Symbols or Environment Variables

Table 22–3 shows the basic set of DCL symbols (OpenVMS) or environment variables
(UNIX and NT) available for use by the conversion command.

Table 22–3 Symbols for Use by the Conversion Channel

Symbol Description

INPUT_ENCODING The encoding originally present on the body part.

INPUT_FILE The name of the file containing the original body part. The
command should read this file.

INPUT_HEADERS The name of the file containing the original headers for the
enclosing part. The command should read this file.

INPUT_TYPE The content type of the input message part.

INPUT_SUBTYPE The content subtype of the input message part.

INPUT_DESCRIPTION The content description of the input message part.

INPUT_DISPOSITION The content disposition of the input message part.

MESSAGE_HEADERS The name of the file containing the original headers for an
enclosing (outermost) message. The command should read
this file.

OUTPUT_FILE The name of the file where the command should store its output.
The command should create and write this file.

OUTPUT_HEADERS The name of the file where the command should store MIME
headers for an enclosing part. The command should create and
write this file. Note that the file should have a format of header line,
header line,..., blank line; be sure to include the final blank line.

† OUTPUT_OPTIONS The name of the file to which the command should write options
(such as status values).

†Available on UNIX and NT only

Additional symbols containing Content-Type: information can be created as they
are needed using the PARAMETER-SYMBOL-n facility.

Table 22–4 shows additional symbols (OpenVMS) or ‘‘override’’ options (UNIX and
NT) available for use by the conversion channel. The command procedure or script may
use these to pass information back to the conversion channel. To set these symbols on
OpenVMS, the command procedure should define corresponding logical names using the
DCL command DEFINE/JOB. To set these options on UNIX or NT, specify OVERRIDE-
OPTION-FILE=1 in the desired conversion entry and then have the script write the
desired options to the OUTPUT_OPTIONS file.

22–9

Message Manipulation Channels
Conversion Channel

Table 22–4 Symbols (OpenVMS) or Options (UNIX and NT) for Passing Information
Back to the Conversion Channel

Symbol or option Description

OUTPUT_TYPE The content type of the output message part.

OUTPUT_SUBTYPE The content subtype of the output message part.

OUTPUT_DESCRIPTION The content description of the output message part.

OUTPUT_DIAGNOSTIC Text to include in the error text returned to the message sender if a
message is forcibly bounced (via PMDF__FORCERETURN) by the
conversion channel.

OUTPUT_DISPOSITION The content disposition of the output message part.

OUTPUT_ENCODING The content transfer encoding to use on the output message part.

OUTPUT_MODE The mode with which the conversion channel should write the output
message part, hence the mode with which recipients should read the
output message part.

† STATUS The PMDF completion status for the script.

†Available on UNIX and NT only

22.1.3.5 Symbol Substitution in Conversion Entries

Certain values from the body part being processed may be substituted into a
conversion entry by enclosing a corresponding symbol name in single quotes. Table 22–5
shows the list of symbols that can be used.

Table 22–5 Conversion Symbols for Substitution

Symbol Description

A1-FORMAT The value of the A1-Format: header.

A1-FUNCTION The value of the A1-Function: header.

A1-TYPE The value of the A1-Type: header.

DESCRIPTION The value of the Content-Description: header.

DISPOSITION The primary value of the Content-Disposition: header (for
example attachment).

LANGUAGE The value of the Content-Language: header.

SUBJECT The subject of the message.

SUBTYPE The content subtype of the message part.

TAG The value of the input tag, as set by a mailing list [CONVERSION_
TAG] named parameter.

TYPE The content type of the message part.

In addition to the symbols listed in Table 22–5, any parameter from the Content-
Type: header (for example, name), or the Content-Disposition: header (for example,
filename) may be specified.

22–10

Message Manipulation Channels
Conversion Channel

Note: For the string value of the COMMAND parameter only, any of the symbols listed in
Table 22–3 may be substituted using the standard command line symbol substitution for
the given platform, i.e., preceding and following the variable’s name with an apostrophe
on OpenVMS, preceding the variable’s name with a dollar character on UNIX, or
preceding and following the variable’s name with a percent sign on NT.

For example, with a site-supplied command procedure pmdf_table:site.com that
attempts to perform various operations, one might use an entry along the lines of:

in-chan=tcp_local; out-chan=l; in-type=application; in-subtype=*;
out-type=’TYPE’; out-subtype=’SUBTYPE’;
command="@pmdf_table:site.com ’INPUT_FILE’ ’OUTPUT_FILE’ ’INPUT_TYPE’ ’INPUT_SUBTYPE’"

To obtain a literal single quote in a conversion entry, quote it with the backslash
character, \’. To obtain a literal backslash in a conversion entry, use two backslashes,
\\.

22.1.3.6 Calling Out to a Mapping Table from a Conversion Entry

The value for a conversion parameter may be obtained by calling out to a mapping
table. The syntax for calling out to a mapping table is

"’mapping-table-name:mapping-input’"

For instance, with a mapping table

X-ATT-NAMES

postscript PS.PS$Y
wordperfect5.1 WPC.WPC$Y
msword DOC.DOC$Y

then on OpenVMS a conversion entry such as the following results in substituting generic
file names in place of specific file names on attachments.

out-chan=tcp_local; in-type=application; in-subtype=*;
in-parameter-name-0=name; in-parameter-value-0=*:[*]*;
out-type=application; out-subtype=’SUBTYPE’;
out-parameter-name-0=name;
out-parameter-value-0="’X-ATT-NAMES:\\’SUBTYPE\\’’";
command="COPY ’INPUT_FILE’ ’OUTPUT_FILE’"

Or on UNIX, a conversion entry such as the following results in substituting generic file
names in place of specific file names on attachments.

out-chan=tcp_local; in-type=application; in-subtype=*;
in-parameter-name-0=name; in-parameter-value-0=/*/*;
out-type=application; out-subtype=’SUBTYPE’;
out-parameter-name-0=name;
out-parameter-value-0="’X-ATT-NAMES:\\’SUBTYPE\\’’";
command="cp $INPUT_FILE $OUTPUT_FILE"

22–11

Message Manipulation Channels
Conversion Channel

22.1.3.7 The Headers in an Enclosing Part or Message

When performing conversions on a message part, the conversion channel has
access to the headers in an enclosing part, an enclosing message/rfc822 part, or to
the outermost message headers if there is no enclosing message/rfc822 part.

For instance, the IN-A1-TYPE and IN-A1-FORMAT parameters can be used to check
the A1-Type and A1-Format headers of an enclosing part, and the OUT-A1-TYPE and
OUT-A1-FORMAT parameters can be used to set those enclosing headers. Or decisions
about interior message part processing can be made based upon the message’s outermost
headers.

More generally, if an entry is selected that has ORIGINAL-HEADER-FILE=1, then
the headers of that part are written to the file represented by the INPUT_HEADERS
symbol. If an entry is selected that has MESSAGE-HEADER-FILE=1, then all the original
headers of the enclosing message/rfc822 part are written to the file represented by
the MESSAGE_HEADERS symbol. Or if an entry is selected that has MESSAGE-HEADER-
FILE=2, then all the original headers of the outermost message are written to the file
represented by the MESSAGE_HEADERS symbol.

Note that the envelope From: information is included in the MESSAGE_HEADERS
file in the X-Envelope-From: header, and the envelope To: information is in the X-
Envelope-To: header. However, if you have specified the nox_env_to keyword on your
conversion channel definition, these headers will not be included.

If OVERRIDE-HEADER-FILE=1, then the conversion channel reads and uses as
the headers on that enclosing part the contents of the file represented by the OUT-
PUT_HEADERS symbol.

22.1.4 Command Completion Statuses

The command procedure or script specified in the conversions file entry should return
one of the following completion statuses. On OpenVMS, this is accomplished by exiting
from the command procedure with the desired status. On UNIX and Windows, this is
accomplished by setting the STATUS option in the OUTPUT_OPTIONS file. The script itself
should exit explicitly with a value of 0, otherwise the conversion channel will think that
the running of the script failed. Note that you must specify OVERRIDE-OPTION-FILE=1
in the conversion entry to enable the OUTPUT_OPTIONS file.

Table 22–6 shows the list of completion statuses that can be specified. The values for
these statuses are defined in pmdf_com:pmdf_err.h (OpenVMS), /pmdf/include/pmdf_err.h
(UNIX), or C:\pmdf\include\pmdf_err.h (NT).

Table 22–6 Completion Statuses

Status Description

1 Success. Continues processing the message.

22–12

Message Manipulation Channels
Conversion Channel

Table 22–6 (Cont.) Completion Statuses

Status Description

PMDF_ _FORCEBITBUCKETSends the entire message to the bitbucket channel. Similar to
PMDF__FORCEDISCARD, but always goes to the bitbucket
channel and never to the filter_discard channel.

PMDF_ _FORCEDELETE Deletes the current message part.

PMDF_ _FORCEDISCARD Deletes the entire message. Either goes to the bitbucket
channel or the filter_discard channel, depending on your
configuration.

PMDF_ _FORCEHOLD Holds the message as a .HELD file.

PMDF_ _FORCERETURN Bounces the message.

PMDF_ _NOCHANGE Tells the conversion channel that there were no changes made to
the current message part.

These statuses can be used, for example, to discontinue processing the message when
the command procedure or script determines that the message part contains objectionable
content.

The following sections provide more details about each of these options.

22.1.4.1 Bouncing Messages

The conversion command procedure or script may tell PMDF to return the message
to its sender, by using the PMDF__FORCERETURN completion status.

The command procedure or script may optionally use OUTPUT_DIAGNOSTIC to specify
a text string to be included in the bounce message returned to the message sender.

On UNIX and NT, the script should write a line in the OUTPUT_OPTIONS file like:

OUTPUT_DIAGNOSTIC=text-string

On OpenVMS, the command procedure should define a logical name in the job logical
name table like:

$ DEFINE/JOB OUTPUT_DIAGNOSTIC text-string

There are a couple of variations on the FORCERETURN behavior available.

A value of PMDF__FORCERETURN+1 causes PMDF to return not the original message
text, but the final message text including any modifications done by the command
procedure or script. The number of lines of the message returned is still controlled
by the LINES_TO_RETURN option.

A value of PMDF__FORCERETURN-1 causes PMDF to return the entire message,
including any modifications done by the command procedure or script.

22–13

Message Manipulation Channels
Conversion Channel

22.1.4.2 Deleting Messages

The conversion command procedure or script may tell PMDF to delete the entire
message, by using the PMDF__FORCEDISCARD or PMDF__FORCEBITBUCKET completion
status.

The PMDF__FORCEDISCARD status causes PMDF to perform the same actions as for
the Sieve discard command in mailbox filter files. For example, if the FILTER_DISCARD
option is set to 2 or 3 in the PMDF option file, the message will be routed to
the filter_discard channel (see Section 7.3.3), otherwise it will be routed to the
bitbucket channel, where it will be immediately deleted.

The PMDF__FORCEBITBUCKET status causes PMDF to delete the message by always
sending it to the bitbucket channel.

The command procedure or script may optionally use OUTPUT_DIAGNOSTIC to specify
a text string to appear in the MAIL.LOG_CURRENT file.

22.1.4.3 Deleting Message Parts

The conversion command procedure or script may tell PMDF to delete the current
message part, by using the PMDF__FORCEDELETE completion status.

This causes PMDF to perform the same action as for the DELETE=1 conversion
parameter clause, however that clause deletes the part unconditionally.

22.1.4.4 Holding Messages

The conversion command procedure or script may tell PMDF to hold the message,
by using the PMDF__FORCEHOLD completion status.

This causes PMDF to hold (sideline) the message as a .HELD file in the conversion
channel queue.

22.1.4.5 No Changes

The command procedure or script may tell the conversion channel that it made
no changes to the current message part by using the PMDF__NOCHANGE completion
status. If all message parts get the PMDF_ _NOCHANGE status, then the conversion
channel will forward the message on to the next channel unchanged (that is, the MIME
boundaries and headers will remain unchanged, and any encoded message parts will be
their original versions rather than the decoded and re-encoded versions). If any parts
return anything other than PMDF_ _NOCHANGE, then the message is processed by the
conversion channel as normal.

22–14

Message Manipulation Channels
Conversion Channel

22.1.5 An Example on OpenVMS

The following are examples of

• a CONVERSIONS mapping table in the mappings file,

• conversions file entries, and

• a command procedure for the conversion channel to run.

These examples are derived from PMDF_ROOT:[DOC.EXAMPLES]VIRUS_SCAN.DCL.

Example 22–1 Sample CONVERSIONS Mapping

!
! CONVERSIONS mapping table
! A Yes enables the conversion channel, a No disables it.
!
! This example enables the conversion channel for internet mail destined for
! local VMS MAIL and MessageStore users, and other internel network users.
!
CONVERSIONS

IN-CHAN=tcp_local;OUT-CHAN=l;CONVERT Yes
IN-CHAN=tcp_local;OUT-CHAN=msgstore;CONVERT Yes
IN-CHAN=tcp_local;OUT-CHAN=tcp_internal;CONVERT Yes
IN-CHAN=*;OUT-CHAN=*;CONVERT No

Example 22–2 Sample Conversion Rule

!
! Perform virus scanning action on all APPLICATION/* message parts.
!
in-channel=tcp_local; in-type=application; in-subtype=*;
parameter-symbol-0=NAME; parameter-copy-0=*;
dparameter-copy-0=*; message-header-file=2;
original-header-file=1; override-header-file=1;
command="@pmdf_com:virus-scan.com"

Example 22–3 Sample Conversion Command Procedure

Example 22–3 Cont’d on next page

22–15

Message Manipulation Channels
Conversion Channel

Example 22–3 (Cont.) Sample Conversion Command Procedure

$!-----
$! Main Processing
$!-----
$!
$! Generate unique filename
$ run PMDF_EXE:UNIQUE_ID
$ REFERENCE_ID = unique_id
$ RECORD_DIR = "put-the-path-to-the-record-dir-here"
$ RECORD_FILE = "’’RECORD_DIR’" + "’’REFERENCE_ID’"
$!
$! Run the virus scanner
$ call LAUNCH your-chosen-method
$!
$ if RED_FLAG .eq. 1
$ then
$! Virus detected, choose one of:
$!#!call SUBSTITUTE_PART ! Substitute a text part for the original
$!#!call FORCE_HOLD ! Force message to become .HELD
$!#!call FORCE_BOUNCE ! Force message to be bounced
$!#!call FORCE_DELETE ! Force offending part to be deleted
$!#!call FORCE_DISCARD ! Force the entire message to be deleted
$ else
$! No virus, just pass it on
$ copy ’INPUT_FILE’ ’OUTPUT_FILE’
$ endif
$!
$ EXIT
$!
$!-----
$! LAUNCH subroutine
$!
$! Usage: $ call LAUNCH METHOD_NAME
$! Returns: The symbol RED_FLAG with a value of either 0 or 1
$!-----
$!
$ LAUNCH: subroutine
$!
$ SCAN_METHOD = "’’P1’"
$ RED_FLAG == 0 ! Setup a global signalling flag
$!
$! VSWEEP virus scanner method
$ if SCAN_METHOD .eqs. "RUN_VSWEEP"
$ then
$ CONVERTER_COMMAND :== "command-to-invoke-VSWEEP-here"
$ CONVERTER_COMMAND ’INPUT_FILE’/ff/ns/il/output=’RECORD_FILE’.scan
$ if SWEEP$_STATUS .eqs. "SWEEP$_VIRUS" then RED_FLAG == 1
$ endif
$!
$! Template for other methods
$ if SCAN_METHOD .eqs. "RUN_METHOD_X"
$ then
$ CONVERTER_COMMAND :== "command-to-invoke-Method-X"

Example 22–3 Cont’d on next page

22–16

Message Manipulation Channels
Conversion Channel

Example 22–3 (Cont.) Sample Conversion Command Procedure

$ CONVERTER_COMMAND ’INPUT_FILE’/output=’RECORD_FILE’.scan
$ if METHOD_X_STATUS .eqs. "some-status-YY" then RED_FLAG == 1
$!
$ endif
$!
$ endsubroutine ! end of LAUNCH
$!
$!-----
$! Subroutines to set the completion status
$!-----
$!
$!--
$! Force the message to be held
$!--
$ FORCE_HOLD: subroutine
$!
$ exit %x0A9C86AA ! PMDF__FORCEHOLD from pmdf_com:pmdf_err.h
$!
$ endsubroutine
$!
$!--
$! Force the message part to be deleted
$!--
$!
$ FORCE_DELETE: subroutine
$!
$ exit %x0A9C8662 ! PMDF__FORCEDELETE from pmdf_com:pmdf_err.h
$!
$ endsubroutine
$!
$!--
$! Force the entire message to be deleted
$!--
$!
$ FORCE_DISCARD: subroutine
$!
$ exit %x0A9C86B3 ! PMDF__FORCEDISCARD from pmdf_com:pmdf_err.h
$!
$!--
$! Force a bounce.
$! parameter can be SWAP_PAYLOAD or SWAP_PAYLOAD_FULL
$!--
$!
$ FORCE_BOUNCE: subroutine
$!
$ if "’’P1’" .eqs. "SWAP_PAYLOAD_FULL"
$ then
$ exit %x0A9C8579 ! PMDF__FORCEBOUNCE - 1
$ else if "’’P1’" .eqs. "SWAP_PAYLOAD"
$ then
$ exit %x0A9C857B ! PMDF__FORCEBOUNCE + 1
$ else
$ exit %x0A9C857A ! PMDF__FORCEBOUNCE from pmdf_com:pmdf_err.h

Example 22–3 Cont’d on next page

22–17

Message Manipulation Channels
Conversion Channel

Example 22–3 (Cont.) Sample Conversion Command Procedure

$ endif
$ endif
$!
$ endsubroutine
$!
$!-----
$! Generate some text to substitute for the part before delivering it.
$!-----
$!
$ SUBSTITUTE_PART: subroutine
$!
$! Insert a note saying that there has been a substitution.
$ open/write q_fh ’OUTPUT_FILE
$ write q_fh ""
$ write q_fh " The original document has been removed from this message"
$ write q_fh " The document was removed because "
$ write q_fh " The name of the original document was ’’NAME’."
$ write q_fh ""
$ write q_fh " Enterprise Messaging Team"
$ write q_fh " Example.com Mail Services."
$ write q_fh ""
$ close q_fh
$!
$! Change the output mode to TEXT and the output encoding to NONE
$ define/job OUTPUT_MODE TEXT
$ define/job OUTPUT_ENCODING NONE
$!
$! Change the MIME information of this current message part to
$! TEXT/PLAIN and change the document name references.
$ open/write fh ’OUTPUT_HEADERS
$ write fh "Content-type: TEXT/PLAIN; NAME=Substitute.txt"
$ write fh "Content-description: Alert about possible virus"
$ write fh "Content-disposition: attachment; filename=Substitute.txt"
$ write fh "Content-transfer-encoding: 7bit "
$ write fh ""
$ close fh
$!
$ endsubroutine
$!

22.2 Script Channel

The script channel is similar to the conversion channel in that arbitrary
processing can be done on messages flowing through PMDF. The difference is that the
script channel passes the entire message to the command procedure or script, instead
of body part by body part. As with the conversion channel, any set of programs or
command procedures can be used to perform script channel processing. For instance,
third party virus or spam scanning software may be hooked in for automatic execution
via the script channel. Or sites may develop their own custom applications to hook in.

22–18

Message Manipulation Channels
Script Channel

22.2.1 Selecting Traffic for Processing

Although script channel processing is done using a regular PMDF channel program,
under normal circumstances this channel is never specified directly either in an address
or in a PMDF rewrite rule. PMDF controls access to the script channel via the SCRIPT
mapping table in the PMDF mappings file.

As PMDF processes each message it probes the SCRIPT mapping (if one is present)
with a string of the form

IN-CHAN=source-channel;OUT-CHAN=destination-channel;SCRIPT

where source-channel is the source channel from which the message is coming and
destination-channel is the destination channel to which the message is heading.
If a match occurs the resulting string should be a comma-separated list of keywords.
Table 22–7 lists the available keywords.

Note: Make sure that there is no whitespace in the resulting string, for example around commas
or equal signs.

Table 22–7 SCRIPT Mapping Table Keywords

Keyword Action

Channel=channel Enables script channel processing using the script channel named channel.
Note that technically, the channel specified can be any channel defined in
pmdf.cnf.

Maxblocks=n Checks the size of the message. If it is larger than n blocks, then script
channel processing is disabled, otherwise it is enabled.

Maxlines=n Checks the number of lines in the message. If it is greater than n, then
script channel processing is disabled, otherwise it is enabled.

No Disables script channel processing.

Yes Enables script channel processing.

A No is assumed if no match occurs.

If the SCRIPT mapping table enables the script channel, PMDF diverts the message
from its regular destination to the script channel. If the script channel is not enabled,
the message is queued to its regular destination channel.

For example, suppose messages require script processing if they come from outside
your organization and are destined for either local users or remote MAIL-11 (DECnet)
users. The following mapping would then be appropriate:

SCRIPT

IN-CHAN=tcp_local;OUT-CHAN=l;SCRIPT Yes
IN-CHAN=tcp_local;OUT-CHAN=d;SCRIPT Yes
IN-CHAN=*;OUT-CHAN=*;SCRIPT No

Note: The SCRIPT mapping table is not checked for messages which have already been
discarded, for example by a mailbox filter.

22–19

Message Manipulation Channels
Script Channel

22.2.2 Script Channel Definition and Rewrite Rules

The first step is to add the script channel to the PMDF configuration file. The
entry should have the form:

script
SCRIPT-DAEMON

Rewrite rules can be added if desired to make it possible to queue mail explicitly to
the script channel. Something like

script $U%script.localhostname@SCRIPT-DAEMON
script.localhostname $U%script.localhostname@SCRIPT-DAEMON

where localhostname is the name of the local PMDF system, provides the necessary
functionality. Once this is done, addresses of the form

user%host@script.localhostname

are routed through the script channel regardless of what the SCRIPT mapping says.

Additional script_* channels may be defined, for example to allow for different
command procedures or scripts to be run for different source or destination channels.
For example:

script_2
SCRIPT2-DAEMON

These alternate script channels are generally selected using the SCRIPT mapping
table Channel keyword (see Table 22–7). If desired, you may also create separate rewrite
rules for each of these alternate script channels, similar to the ones shown above.

Note: A channel named script must be defined to enable script channel processing. This
channel is used as the default script channel.

22.2.3 Script Channel Option File

The next step is to create a script channel option file. The name of the option file is
x_option where x is the name of the channel, hence usually script_option, and the
file should be placed in the PMDF table directory.

This file is used to tell the script channel what command to run, using the COMMAND
option. For example, to run a site-supplied virus checking command procedure on
OpenVMS:

COMMAND=@pmdf_com:check-virus.com/output=pmdf_log:check-virus.out

The default command run by the script channel if none is supplied in an option file
is @pmdf_com:script_command.com on OpenVMS, /pmdf/bin/script_script.sh
on UNIX, and C:\pmdf\exe\script_batch.bat on NT. Note that there is no default
version of this file supplied by PMDF.

22–20

Message Manipulation Channels
Script Channel

22.2.4 Input and Output Symbols

Table 22–8 lists the items which are defined by the script channel to pass
information to the script command. On OpenVMS, these are defined as DCL symbols
in the subprocess that runs the script command. On UNIX and NT, these are defined
as environment variables.

Table 22–8 Script Channel Input Symbols

Name Description

ENVELOPE_FROM The envelope From: address of the message.

ENVELOPE_TO_FILE The name of the file containing the envelope To: addresses of the
message. Multiple addresses are included in the file one per line.

INPUT_FILE The name of the file containing the original message, including both
headers and body. The command should read this file.

ORIG_ENV_TO_FILE The name of the file containing the original envelope To: addresses
of the message. Multiple addresses are included in the file one per
line.

OUTPUT_FILE The name of the file where the command should store its output.
The command should create this file and write to it the modified
version of the message, including both headers and body.

† OUTPUT_OPTIONS The name of the file to which the command should write options
(such as status values).

†Available on UNIX and NT only

Note: The envelope From and envelope To information is read-only. The command procedure
or script cannot modify them.

Table 22–9 lists the items which can be set by the script command to pass
information back to the script channel. On OpenVMS, the command procedure should
set them as logical names in the job logical name table, using the DCL command
DEFINE/JOB. On UNIX or NT, the script the script should write them as options in
the OUTPUT_OPTIONS file.

Table 22–9 Script Channel Output Symbols

Name Description

OUTPUT_DIAGNOSTIC Text to include in the error text returned to the message sender if
a message is forcibly bounced via the PMDF__FORCERETURN
completion status.

† STATUS The PMDF completion status for the script.

†Available on UNIX and NT only

22–21

Message Manipulation Channels
Script Channel

22.2.5 Command Completion Statuses

The command procedure or script specified in the script channel option file COMMAND
option should return one of the following completion statuses. On OpenVMS, this is
accomplished by exiting from the command procedure with the desired status. On UNIX
and NT, this is accomplished by setting the STATUS option in the OUTPUT_OPTIONS file.
The script itself should exit explicitly with a value of 0, otherwise the script channel
will think that the running of the script failed.

Table 22–10 shows the list of completion statuses that can be specified. The values for
these statuses are defined in pmdf_com:pmdf_err.h (OpenVMS), /pmdf/include/pmdf_err.h
(UNIX), or C:\pmdf\include\pmdf_err.h (NT).

Table 22–10 Completion Statuses

Status Description

1 Success. Continues processing the message.

PMDF_ _FORCEBITBUCKETSends the entire message to the bitbucket channel. Similar to
PMDF__FORCEDISCARD, but always goes to the bitbucket
channel and never to the filter_discard channel.

PMDF_ _FORCEDISCARD Deletes the entire message. Either goes to the bitbucket
channel or the filter_discard channel, depending on your
configuration.

PMDF_ _FORCEHOLD Holds the message as a .HELD file.

PMDF_ _FORCERETURN Bounces the message.

PMDF_ _NOCHANGE Tells the script channel that there were no changes made to the
message.

These statuses can be used, for example, to discontinue processing the message when
the command procedure or script determines that the message contains objectionable
content.

The following sections provide more details about each of these options.

22.2.5.1 Bouncing Messages

The script channel command procedure or script may tell PMDF to return the
message to its sender, by using the PMDF__FORCERETURN completion status.

The command procedure or script may optionally use OUTPUT_DIAGNOSTIC to specify
a text string to be included in the bounce message returned to the message sender.

On UNIX and NT, the script should write a line in the OUTPUT_OPTIONS file like:

OUTPUT_DIAGNOSTIC=text-string

On OpenVMS, the command procedure should define a logical name in the job logical
name table like:

$ DEFINE/JOB OUTPUT_DIAGNOSTIC text-string

22–22

Message Manipulation Channels
Script Channel

Note that using the base PMDF_ _FORCERETURN status value, only a sample of
the original message is included in the bounce message. The amount is controlled by
the LINES_TO_RETURN PMDF option (see Section 7.3.4). However, there are a couple of
variations on the FORCERETURN behavior available.

A value of PMDF__FORCERETURN+1 causes PMDF to return not the original message
text, but the final message text including any modifications done by the command
procedure or script. The number of lines of the message returned is still controlled
by the LINES_TO_RETURN option.

A value of PMDF__FORCERETURN-1 causes PMDF to return the entire message,
including any modifications done by the command procedure or script.

22.2.5.2 Deleting Messages

The script channel command procedure or script may tell PMDF to delete the
message, by using the PMDF__FORCEDISCARD or PMDF__FORCEBITBUCKET completion
status.

The PMDF__FORCEDISCARD status causes PMDF to perform the same actions as for
the Sieve discard command in mailbox filter files. For example, if the FILTER_DISCARD
option is set to 2 or 3 in the PMDF option file, the message will be routed to
the filter_discard channel (see Section 7.3.3), otherwise it will be routed to the
bitbucket channel, where it will be immediately deleted.

The PMDF__FORCEBITBUCKET status causes PMDF to delete the message by always
sending it to the bitbucket channel.

The command procedure or script may optionally use OUTPUT_DIAGNOSTIC to specify
a text string to appear in the MAIL.LOG_CURRENT file.

22.2.5.3 Holding Messages

The script channel command procedure or script may tell PMDF to hold the message,
by using the PMDF__FORCEHOLD completion status.

This causes PMDF to hold (sideline) the message as a .HELD file in the script channel
queue.

22.2.5.4 No Changes

If the command procedure or script returns PMDF_ _NOCHANGE, this lets the script
channel know that the command procedure made no changes to the message. The script
channel will forward the message on to the next channel completely unchanged.

22–23

Message Manipulation Channels
Script Channel

22.2.6 Using Multiple Script Channels

Multiple script channels can be configured. Separate script channels can be used to
run different command procedures or scripts.

First, multiple script channels must be defined in the PMDF configuration file. For
example:

script
SCRIPT-DAEMON

script_msgstore
SCRIPTMS-DAEMON

Note: Make sure you define a channel named exactly script.

Second, create channel option files for each of these channels, containing the
command to execute. Using the example script channels above (for UNIX), create a
/pmdf/table/script_option file for the script channel, containing for example:

COMMAND=/pmdf/tmp/script.sh

Then create a /pmdf/table/script_msgstore_option file for the script_msgstore
channel, containing for example:

COMMAND=/pmdf/tmp/script_msgstore.sh

Where script.sh and script_msgstore.sh are site-supplied scripts.

Third, add a SCRIPT mapping table, using the channel keyword, for example:

SCRIPT

IN-CHAN=tcp_*;OUT-CHAN=l;SCRIPT channel=script
IN-CHAN=tcp_*;OUT-CHAN=msgstore;SCRIPT channel=script_msgstore
IN-CHAN=*;OUT-CHAN=*;SCRIPT No

In this example, the script.sh script is run for messages destined for local UNIX
mail delivery, and the script_msgstore.sh script is run for messages destined for
MessageStore accounts.

22.3 Disclaimer Channel

The disclaimer channel is similar to the script and conversion channels in
that it is an intermediate channel which makes modifications to messages as they
pass through the channel on their way to their final destinations. In particular, the
disclaimer channel adds selected text (usually in the form of a disclaimer) to the top,
bottom, or headers of a message.

22–24

Message Manipulation Channels
Disclaimer Channel

22.3.1 Selecting Traffic for Processing

Although disclaimer channel processing is done using a regular PMDF channel
program, under normal circumstances this channel is never specified directly either in an
address or in a PMDF rewrite rule. PMDF controls access to the disclaimer channel
via the DISCLAIMER mapping table in the PMDF mappings file.

As PMDF processes each message it probes the DISCLAIMER mapping (if one is
present) with a string of the form

IN-CHAN=source-channel;OUT-CHAN=destination-channel;DISCLAIMER

where source-channel is the source channel from which the message is coming and
destination-channel is the destination channel to which the message is heading.
If a match occurs the resulting string should be a comma-separated list of keywords.
Table 22–11 lists the available keywords.

Note: Make sure that there is no whitespace in the resulting string, for example around commas
or equal signs.

Table 22–11 DISCLAIMER Mapping Table Keywords

Keyword Action

Channel=channel Enables disclaimer channel processing using the disclaimer channel
named channel.

No Disables disclaimer channel processing.

Yes Enables disclaimer channel processing.

A No is assumed if no match occurs.

If the DISCLAIMER mapping table enables the disclaimer channel, PMDF diverts the
message from its regular destination to the disclaimer channel. If the disclaimer channel
is not enabled, the message is queued to its regular destination channel.

For example, suppose your organization has mandated that all messages have
disclaimers added to them if they originate from inside your company and are destined
for the Internet. The following mapping would then be appropriate:

DISCLAIMER

IN-CHAN=l;OUT-CHAN=tcp_local;DISCLAIMER yes
IN-CHAN=tcp_internal;OUT-CHAN=tcp_local;DISCLAIMER yes
IN-CHAN=*;OUT-CHAN=*;DISCLAIMER no

If you want to have only a subset of your users use the disclaimer channel, or if you
want some users to use a different disclaimer channel than other users, you can redirect
people to a different incoming channel using the switchchannel channel keyword and
IP-address based rewrite rules. The DISCLAIMER mapping table can then be set up
to recognize those channels as the incoming channel and turn on or off the disclaimer
channel, or use an alternate disclaimer channel, as desired.

Note: The DISCLAIMER mapping table is not checked for messages which have already been
discarded, for example by a mailbox filter.

22–25

Message Manipulation Channels
Disclaimer Channel

22.3.2 Disclaimer Channel Definition and Rewrite Rules

The first step is to add the disclaimer channel to the PMDF configuration file. The
entry should have the form:

disclaimer
DISCLAIMER-DAEMON

Rewrite rules can be added if desired to make it possible to queue mail explicitly to
the disclaimer channel. Something like

disclaimer $U%disclaimer.localhostname@DISCLAIMER-DAEMON
disclaimer.localhostname $U%disclaimer.localhostname@DISCLAIMER-DAEMON

where localhostname is the name of the local PMDF system, provides the necessary
functionality. Once this is done, addresses of the form

user%host@disclaimer.localhostname

are routed through the disclaimer channel regardless of what the DISCLAIMER
mapping says.

Additional disclaimer_* channels may be defined, for example to allow for
different disclaimer text to be added to messages coming from different source channels
or headed for different destination channels. For example:

disclaimer_2
DISCLAIMER2-DAEMON

These alternate disclaimer channels are generally selected using the DISCLAIMER
mapping table Channel keyword (see Table 22–11). If desired, you may also create
separate rewrite rules for each of these alternate disclaimer channels, similar to the
ones shown above.

Note: A channel named disclaimer must be defined to enable disclaimer channel processing.
This channel is used as the default disclaimer channel.

22.3.3 Disclaimer Channel Option File

The next step is to create a disclaimer channel option file, if needed. The name
of the option file is x_option where x is the name of the channel, hence usually
disclaimer_option, and the file should be placed in the PMDF table directory.

The option file is used to tell the disclaimer channel what exact actions to perform
and where to get the text to add to messages. There are five different places where the
disclaimer channel can add text to a message:

• in the header using X-Disclaim headers

• to the top of plain text messages

• to the bottom of plain text messages

22–26

Message Manipulation Channels
Disclaimer Channel

• to the top of HTML text messages

• to the bottom of HTML text messages

Note that the option file is not required. If no option file exists, the default operation
is to append the text that is in the file disclaimer.txt in the PMDF table directory to
the bottom of both plain text and HTML text messages.

By using an option file, you can instruct the disclaimer channel to add text at any
combination of the above locations, using different files containing different text for each
one. For example, this lets you specify a plain text disclaimer to be added to plain text
messages, and text with HTML code to be added to HTML messages.

Similar to the conversion and script channels, you can define multiple dis-
claimer channels, and invoke different ones based on the DISCLAIMER mapping table.
Each disclaimer channel has a different option file, in which you can specify different
text. For example, you might want your sales department to have a different disclaimer
than the engineering department.

22.3.3.1 Format of the Option File

Option files consist of several lines. Each line contains the setting for one option.
An option setting has the form:

option=value

value can be either a string or an integer, depending on the option’s requirements.

22.3.3.2 Available Disclaimer Channel Options

The available options are:

DEFAULT_FILE (file-name)

The DEFAULT_FILE option specifies a different default file name or location for the default
file to use. This option is not required. If it is not specified, the default file used is
pmdf_table:disclaimer.txt.

HEADER (file-name or DEFAULT_FILE)

The HEADER option tells the disclaimer channel to add X-Disclaim headers to the
message containing the text in the file specified. The value may also be the keyword
DEFAULT_FILE, which indicates that the disclaimer channel should use the text in the
default file. If this option is not specified, no headers are added. If the text to be added
contains multiple lines, by default a single X-Disclaim header is added containing all
of the text, with continuation lines if necessary. The MULTIPLE_HEADERS option may be
specified with a value of 1 to indicate that instead multiple X-Disclaim headers should
be added, one for each line of text.

HTML_BOTTOM (file-name or DEFAULT_FILE)

The HTML_BOTTOM option tells the disclaimer channel to add the text in the file specified
to the bottom of text/html messages (or message parts of multipart messages). The
value may also be the keyword DEFAULT_FILE, which indicates that the disclaimer
channel should use the text in the default file. If this option is not specified, no text
is appended to text/html messages.

22–27

Message Manipulation Channels
Disclaimer Channel

HTML_TOP (file-name or DEFAULT_FILE)

The HTML_TOP option tells the disclaimer channel to add the text in the file specified to
the top of text/html messages (or message parts of multipart messages). The value
may also be the keyword DEFAULT_FILE, which indicates that the disclaimer channel
should use the text in the default file. If this option is not specified, no text is prepended
to text/html messages.

MULTIPLE_HEADERS (0 or 1)

The MULTIPLE_HEADERS option modifies the action of the disclaimer channel when
adding text to messages as X-Disclaim headers. The default value is 0, meaning that
only one X-Disclaim header is added to messages, containing the entire text, using
continuation lines if necessary. If the value is 1, and the text to be added spans multiple
lines, then multiple X-Disclaim headers are added, one for each line of text.

PLAIN_BOTTOM (file-name or DEFAULT_FILE)

The PLAIN_BOTTOM option tells the disclaimer channel to add the text in the file specified
to the bottom of text/plain messages (or message parts of multipart messages). The
value may also be the keyword DEFAULT_FILE, which indicates that the disclaimer
channel should use the text in the default file. If this option is not specified, no text
is appended to text/plain messages.

PLAIN_TOP (file-name or DEFAULT_FILE)

The PLAIN_TOP option tells the disclaimer channel to add the text in the file specified to
the top of text/plain messages (or message parts of multipart messages). The value
may also be the keyword DEFAULT_FILE, which indicates that the disclaimer channel
should use the text in the default file. If this option is not specified, no text is prepended
to text/plain messages.

22.3.3.3 Example Disclaimer Channel Option File

Here’s an example option file:

DEFAULT_FILE=/myfiles/disclaimer/default.txt
HEADER=/myfiles/disclaimer/header.txt
MULTIPLE_HEADERS=0
PLAIN_TOP=DEFAULT_FILE
HTML_TOP=DEFAULT_FILE
PLAIN_BOTTOM=/myfiles/disclaimer/plain/bottom.txt
HTML_BOTTOM=/myfiles/disclaimer/html/bottom.htm

22.3.4 Files Containing Disclaimer Text

You have to create the files containing your disclaimer text yourself. By default,
this would be the file pmdf_table:disclaimer.txt. You also have to create the files
pointed to by any options you specified in the options file.

For text to be added to the headers (specified by the HEADER option) we suggest that
it is short and confined to a single line. The total length must be no more than 1024
characters. It can have multiple lines, although that is not recommended. By default,
any line breaks are removed and the entire text is added as a single X-Disclaim header.
However, if you specify MULTIPLE_HEADERS=1 in the option file, each line is added as
a separate X-Disclaim header. Note that you do not need to specify the header label

22–28

Message Manipulation Channels
Disclaimer Channel

to use inside your disclaimer text. The header label X-Disclaim is always added by
PMDF.

The files for the plain and HTML top and bottom text can be any length and contain
any text you’d like. For example, the ones intended to be added to HTML messages can
contain HTML code such as links or images.

22.3.5 Message Integrity Issues

The disclaimer channel takes great pains to make sure that it does not modify
messages in such a way that it compromises the integrity of the message. For example,
it does not make any modifications to the bodies of any signed messages (which would
invalidate the signature), or reports such as NOTARY messages or NDNs (Non-Delivery
Notices).

For simple (non-multipart) messages, the disclaimer channel only adds disclaimers
to the bodies of text/plain and text/html messages. Messages of any other non-
multipart content-type are not modified.

For multipart messages, the disclaimer channel only looks at the following content-
types:

multipart/alternative
multipart/mixed
multipart/related
multipart/parallel

Within the multipart message, only parts that are text/plain or text/html are
modified. Only the first part of each type is modified.

For each text/plain or text/html part or entire message, additional checks are
made to make sure it is a part or message that should be modified. For example, this
ensures that PMDF does not modify attachments, such as files or images or binary
executables.

The disclaimer channel also makes sure that it does not add the disclaimers twice
by marking each message that it modifies with a X-Disclaim-Comment header.

22.4 Running More Than One Of These Channels

Since PMDF checks all of the CONVERSIONS, SCRIPT, and DISCLAIMER mapping
tables at the same time, it can happen that two or all three of the conversion, script,
and disclaimer channels are enabled. Since PMDF can queue a message to only
one of these channels, it chooses the channel whose mapping table appears first in the
mappings file.

Two or more of the conversion, script, and disclaimer channels can all be run,
one after the other, by setting up the channels’ mapping tables correctly.

22–29

Message Manipulation Channels
Running More Than One Of These Channels

For example, the following mapping tables cause the script channel to run first,
followed by the conversion channel.

SCRIPT

IN-CHAN=tcp_local;OUT-CHAN=l;SCRIPT Yes
IN-CHAN=tcp_local;OUT-CHAN=msgstore;SCRIPT Yes
IN-CHAN=*;OUT-CHAN=*;SCRIPT No

CONVERSIONS

IN-CHAN=script;OUT-CHAN=l;CONVERT Yes
IN-CHAN=script;OUT-CHAN=msgstore;CONVERT Yes
IN-CHAN=*;OUT-CHAN=*;CONVERT No

22–30

23BSMTP Channels: MTA to MTA Tunnelling

This chapter describes how to tunnel messages between two or more cooperating
PMDF systems using Batch SMTP (BSMTP). In addition, use of PMDF’s general conver-
sion facilities to provide services such as payload compression and digital signatures for
authentication and integrity is described.

Batch SMTP (BSMTP) is a batch-mode implementation of the SMTP protocol which
turns SMTP into a remote-submission protocol. For over a decade, batch SMTP was
used quite heavily as a message transfer protocol on the international BITNET network.
Cooperating PMDF sites can use BSMTP as an effective means of moving mail in bulk
between one another; for instance the exchange of company e-mail between two company
offices by means of the Internet.

With BSMTP, messages are bundled together on one PMDF system and then
periodically transmitted through arbitrary MTAs and networks to a remote PMDF
system. Upon receipt at the remote system, the bundle is unpacked and the individual
messages sent on to their recipients. With PMDF’s general conversion facilities,
arbitrary transformations can be performed on the bundles such as document conversion,
compression, addition of digital signatures for authentication and integrity, etc. This
chapter provides examples of compression using the Free Software Foundation’s GZIP
and GUNZIP utilities and authentication using Pretty Good Privacy, Inc.’s PGP® utility.1

23.1 Configuring the BSMTP Channels

Each of the PMDF systems which will be exchanging mail via BSMTP will need one
incoming BSMTP channel and an outgoing BSMTP channel for each of the remote PMDF
systems. The channel definitions should be along the lines of:

bsin_gateway smtp
bsin.host0

bsout_remote1 smtp master user bsmtp daemon host1

BSOUT-REMOTE1

bsout_remote2 smtp master user bsmtp daemon host2

BSOUT-REMOTE2

...

bsout_remoteN smtp master user bsmtp daemon hostN

BSOUT-REMOTEN

where host0 is the name of the local PMDF host, as used by the other remote PMDF
systems, and host1, host2, ..., hostN are the host names of the remote PMDF systems.

1 Use of PGP for commercial purposes requires a license from Pretty Good Privacy, Inc. Please contact Pretty Good Privacy,
Inc. for details and assistance in licensing PGP.

23–1

BSMTP Channels: MTA to MTA Tunnelling
Configuring the BSMTP Channels

The strings remote1, remote2, ... remoteN and REMOTE1, REMOTE2, ..., REMOTEN are
arbitrary and need just be distinct from one another.

With the above definitions, the channel bsout_ remote1 will bundle up its BSMTP
parcels and send them on to the fixed address bsmtp@host1. Likewise for the remaining
BSOUT channels.

The rewrite rules appear as

domain1 $U%$H@BSOUT-REMOTE1$Nbsout_remote1
.domain1 $U%$H$D@BSOUT-REMOTE1$Nbsout_remote1
domain2 $U%$H@BSOUT-REMOTE2$Nbsout_remote2
.domain2 $U%$H$D@BSOUT-REMOTE2$Nbsout_remote2
...
domainN $U%$H@BSOUT-REMOTEN$Nbsout_remoteN
.domainN $U%$H$D@BSOUT-REMOTEN$Nbsout_remoteN

where domain1, domain2, ... domainN are the domain names of the remote PMDF
systems.

Finally, add to the FORWARD mapping table the entry

FORWARD

bsmtp@host0 bsmtp@bsin.host0YD

where, again, host0 is the host name for the local PMDF system which will be used by
the BSOUT channels on the remote PMDF systems. That way, when they send BSMTP
parcels to bsmtp@host0, it will be forwarded on to the local bsin_gateway channel.2

For example, assume that the example.com domain will be exchanging BSMTP
traffic with the example.co.uk domain via the PMDF hosts hub.example.com and
athena.example.co.uk. Then hub.example.com would have the configuration

example.co.uk $U%$H@BSOUT-REMOTE1$Nbsout_remote1
.example.co.uk $U%$H$D@BSOUT-REMOTE1$Nbsout_remote1

...

bsin_gateway smtp
bsin.hub.example.com

bsout_remote1 smtp master user bsmtp daemon athena.example.co.uk
BSOUT-REMOTE1

and the FORWARD mapping table entry

FORWARD

bsmtp@hub.example.com bsmtp@bsin.hub.example.comYD

2 Any of several mechanisms might be used to accomplish this forwarding. The most efficient is the use of an alias when
host0 is the official local host name for the PMDF system. The least efficient is the FORWARD mapping table; which
method is best for a given site depends upon site-specific issues. Use of the FORWARD mapping table is presented here
because that method works in all cases.

23–2

BSMTP Channels: MTA to MTA Tunnelling
Configuring the BSMTP Channels

The system athena.example.co.uk would have the configuration

example.com $U%$H@BSOUT-REMOTE1$Nbsout_remote1
.example.com $U%$H$D@BSOUT-REMOTE1$Nbsout_remote1

...

bsin_gateway smtp
bsin.athena.example.co.uk

bsout_remote1 smtp master user bsmtp daemon hub.example.com
BSOUT-REMOTE1

and the FORWARD mapping table entry

FORWARD

bsmtp@athena.example.co.uk bsmtp@bsin.athena.example.co.ukYD

With the above configurations, when a user on hub.example.com sends mail
to user@example.co.uk, the message is routed to the bsout_remote1 channel.
That channel will package the message up into a BSMTP parcel and send that
parcel on to bsmtp@athena.example.co.uk. Owing to the $Nbsout_remote1 tag
in the example.co.uk rewrite rules, those rewrite rules will be ignored when the
bsout_remote1 channel enqueues the message. Instead, the normal rewrite rules for
example.co.uk will take effect and route the message containing the parcel out to the
WAN (e.g., the Internet).

Note that the outbound BSMTP channels can construct application/batch-smtp
message parts containing multiple messages. As such, sites may want to use the after
channel keyword on their BSOUT channels. So doing may prove advantageous for sites
who want to bundle their mail up into large parcels and send those parcels only once every
few minutes, hours, or days. Also, the ATTEMPT_TRANSACTIONS_PER_SESSION channel
option might be used with the BSOUT channels to prevent cases where, under heavy load,
a BSOUT channel just runs continuously bundling into a single parcel messages queuing
up to be sent out. This option puts an upper limit on the number of messages placed in
a single parcel and forces the channel to close a parcel, send it along, and start a new
parcel when there are lots of messages to bundle up.

23.2 Performing the Desired Message Transformation via Service
Conversions

PMDF’s service conversion facility, described in Section 6.4, may be used with
BSMTP channels to perform desired message transformations on incoming and outgoing
messages.

Usually outgoing BSMTP channels, BSOUT channels, are configured to perform one
sort of service conversion on the messages they emit, and incoming BSMTP channels,
BSIN channels, are configured to perform the inverse service conversion on messages they
receive. Thus when BSMTP channels are used, the PMDF mapping file would usually
contain a CHARSET-CONVERSION mapping such as:

23–3

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

CHARSET-CONVERSION

in-chan=bsout_*;out-chan=*;convert yes
in-chan=*;out-chan=bsin_*;convert yes

Note that the CHARSET-CONVERSION entries shown are such as to enable service
conversions for messages sent from BSOUT channels (such as messages transitting
through a BSOUT channel on their way out to an outgoing TCP/IP channel), as well
as for messages sent to a BSIN channel (such as messages transitting through a BSIN
channel on their way in from an incoming TCP/IP channel).

Once execution of service conversions has been enabled via a CHARSET-CONVERSION
mapping such as that shown above, the specific service conversions to be performed must
be configured in the PMDF conversions file. Section 23.2.2 provides examples of config-
uring specific service conversions on OpenVMS; Section 23.2.3 provides examples of con-
figuring specific service conversions on UNIX. Note that the sample command procedures
cited in the examples are available in the PMDF examples directory, PMDF_ROOT:[OLD-
doc.examples] (OpenVMS) or /pmdf/root/doc/examples/ (UNIX).

23.2.1 BSOUT Channel Option Files

An option file may be used to control characteristics of BSOUT channels. Such
an option file must be named x_option where x is the name of the channel, and
stored in the PMDF table directory. For instance, if a channel is named bsout_host1,
then its option file would be PMDF_TABLE:bsout_host1_option. on OpenVMS,
or /pmdf/table/bsout_host1_option on UNIX, or (drive possibly varying with
installation) C:\pmdf\table\bsout_host1_option on NT.

SMTP channel options, as described in Section 21.1.2, are available, but most are
not of interest in the context of a BSMTP channel. The one available option which is
likely to be of interest is:

ATTEMPT_TRANSACTIONS_PER_SESSION (integer)

Set a limit on the number of message files composed into one BSMTP message.

23.2.2 Examples on OpenVMS

The following subsections provide examples of using BSMTP channels on OpenVMS.

23–4

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

23.2.2.1 Configuring the BSMTP Channels to Compress Their Payloads on OpenVMS

Using PMDF’s general purpose, on-the-fly conversion facilities, BSMTP parcels can
be compressed on the sending system and then uncompressed on the receiving system.
This allows for faster transmission of the parcels through the network.

In the CHARSET-CONVERSION mapping table on each PMDF system, a simple entry
enabling conversions for the BSMTP channels must be made:

CHARSET-CONVERSION

in-chan=bsout_*;out-chan=*;convert yes
in-chan=*;out-chan=bsin_*;convert yes

In the PMDF conversions file on each system, conversion entries are added which
call out to the site-supplied command procedure, PMDF_COM:compress.com:

in-chan=bsout_*; part-number=1; in-type=*; in-subtype=*;
service-command="@PMDF_COM:COMPRESS.COM COMPRESS ’INPUT_FILE’ ’OUTPUT_FILE’"

out-chan=bsin_*; part-number=1; in-type=application;
in-subtype=compressed-bsmtp;
service-command="@PMDF_COM:COMPRESS.COM DECOMPRESS ’INPUT_FILE’ ’OUTPUT_FILE’"

The PMDF_COM:compress.com: command procedure is shown in Figure 23–1.

Figure 23–1 compress.com: Compress and decompress BSMTP payloads

$!
$! Compress/decompress a MIME message using GZIP & GUNZIP
$! P1 == "COMPRESS" | "DECOMPRESS"
$! P2 == File to compress or decompress
$! P3 == File containing the compressed or decompressed result
$!
$! Ensure that we have three command line arguments
$ IF P1 .EQS. "" THEN EXIT 229448 ! DCL-W-INSFPRM
$ IF P2 .EQS. "" THEN EXIT 229448
$ IF P3 .EQS. "" THEN EXIT 229448
$!
$! Used for temporary files
$ OUTFILE = F$ELEMENT(0,";",P3)
$!
$! Dispatch to the correct part of this command file
$ IF "DECOMPRESS" .EQS. F$EDIT(P1,"TRIM,UPCASE) THEN GOTO DECOMPRESS
$ IF "COMPRESS" .NES. F$EDIT(P1,"TRIM,UPCASE) THEN EXIT 229472 ! DCL-W-IVKEYW
$!
$ COMPRESS:
$ GZIP = "$PMDF_EXE:GZIP.EXE"
$ DEFINE/USER SYS$OUTPUT ’OUTFILE’-TMP
$ GZIP -C ’P2’
$ PMDF ENCODE/HEADER/TYPE=APPLICATION/SUBTYPE=COMPRESSED-BSMTP -

’OUTFILE’-TMP ’P3’
$ DELETE/NOLOG ’OUTFILE’-TMP;*
$ EXIT 1

Figure 23–1 Cont’d on next page

23–5

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

Figure 23–1 (Cont.) compress.com: Compress and decompress BSMTP payloads

$!
$ DECOMPRESS:
$ GUNZIP = "$PMDF_EXE:GUNZIP.EXE"
$ PMDF DECODE/HEADER ’P2’ ’OUTFILE’-TMP
$ DEFINE/USER SYS$OUTPUT ’P3’
$ GUNZIP -C ’OUTFILE-TMP’
$ DELETE/NOLOG ’OUTFILE’-TMP;*
$ EXIT 1

23.2.2.2 Configuring the BSMTP Channels to Provide Authentication Services on
OpenVMS

Using PMDF’s general purpose, on-the-fly conversion facilities, authentication and
integrity services may be tied in to the BSMTP channels. This is done through the
CHARSET-CONVERSION mapping table, the PMDF conversions file, and a site-supplied
command procedure to digitally sign payloads and verify the signature and integrity of
the data upon receipt.

In the CHARSET-CONVERSION mapping table on each PMDF system, a simple entry
enabling conversions for the BSMTP channels must be made:

CHARSET-CONVERSION

in-chan=bsout_*;out-chan=*;convert yes
in-chan=*;out-chan=bsin_*;convert yes

In the PMDF conversions file on each system, there must be conversion entries to
invoke the site-supplied command procedures:

in-chan=bsout_*; part-number=1; in-type=*; in-subtype=*;
service-command="@PMDF_COM:PGP_SIGN.COM ’INPUT_FILE’ ’OUTPUT_FILE’"

out-chan=bsin_*; part-number=1; in-type=multipart; in-subtype=signed;
service-command="@PMDF_COM:PGP_VERIFY.COM ’INPUT_FILE’ ’OUTPUT_FILE’"

These two command procedures are shown in Figures 23–2 and 23–3. They assume
that the PGP utility is the image D1:[pgp]pgp.exe. Note that the pgp_sign.com
procedure requires the pass phrase for the PMDF MTA’s private PGP key in order to
generate signatures. Edit the procedure to reflect the correct pass phrase and be sure to
protect the file from other users:

$ SET FILE/OWNER=[PMDF] PMDF_COM:PGP_SIGN.COM
$ SET PROTECTION=(S:RWED,O:RWED,G,W) PMDF_COM:PGP_SIGN.COM

Figure 23–2 pgp_sign.com: Digitally sign BSMTP payloads

$! P1 == Input file specification; message to sign
$! P2 == Output file specification; multipart/signed message
$! P3 == File specification for the file of envelope recipient addresses

Figure 23–2 Cont’d on next page

23–6

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

Figure 23–2 (Cont.) pgp_sign.com: Digitally sign BSMTP payloads

$!
$! Check that we have at least two command line parameters
$ IF P1 .EQS. "" THEN EXIT 229448 ! DCL-W_INSFPRM
$ IF P2 .EQS. "" THEN EXIT 229448
$!
$! Basic definitions
$ PGP = "$D1:[PGP]PGP.EXE"
$ PGPUSER = "PMDF MTA key"
$ PGPPATH = "PMDF_ROOT:[TABLE.PGP]"
$ PGPPASS = "Percy eats pealed banannas"
$ FILENAM = F$ELEMENT(0,";",P2)
$!
$! Error handling
$ ON ERROR THEN GOTO ERROR
$ ON SEVERE_ERROR THEN GOTO ERROR
$!
$! Generate the digital signature
$ PGP "-sab" "-u" "’’PGPUSER’" "-z" "’’PGPPASS’" ’P1’ "-o" ’FILENAM’-SIGN -

"+batchmode"
$!
$! Get a unique string to use in a MIME boundary marker
$ RUN PMDF_EXE:UNIQUE_ID.EXE
$ BOUNDARY = "’’unique_id’"
$!
$! Start the multipart message and the first message part
$ OPEN/WRITE/ERROR=ERROR OUTFILE ’P2’
$ WRT = "WRITE/ERROR=ERROR OUTFILE"
$ WRT "Content-type: multipart/signed; boundary=’’BOUNDARY’;"
$ WRT " micalg=pgp-md5; protocol=application/pgp-signature"
$ WRT ""
$ WRT "--’’BOUNDARY’"
$ CLOSE/ERROR=ERROR OUTFILE
$!
$! Start the second message part
$ OPEN/WRITE/ERROR=ERROR OUTFILE ’FILENAM’-MID
$ WRT "--’’BOUNDARY’"
$ WRT "Content-type: application/pgp-signature"
$ WRT ""
$ CLOSE/ERROR=ERROR OUTFILE
$!
$! And the end of the message
$ OPEN/WRITE/ERROR=ERROR OUTFILE ’FILENAM’-BOT
$ WRT "--’’BOUNDARY’--"
$ CLOSE/ERROR=ERROR OUTFILE
$!
$! Now glue all of the pieces together
$ CONVERT/APPEND ’P1’ ’P2’
$ CONVERT/APPEND ’FILENAM’-MID ’P2’
$ CONVERT/APPEND ’FILENAM’-SIGN ’P2’
$ CONVERT/APPEND ’FILENAM’-BOT ’P2’

Figure 23–2 Cont’d on next page

23–7

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

Figure 23–2 (Cont.) pgp_sign.com: Digitally sign BSMTP payloads

$!
$! Delete the temporary files
$ DELETE/NOLOG ’FILENAM’-MID;*,’FILENAM’-SIGN;*,’FILENAM’-BOT;*
$ EXIT 1
$!
$! We fall through to here when we have an error
$ ERROR:
$ SET NOON
$ IF F$TRNLNM("OUTFILE") .NES. "" THEN CLOSE OUTFILE
$ DELETE/NOLOG ’FILENAM’-*.*,’P2’
$ SET ON
$ EXIT 2

Figure 23–3 pgp_verify.com: Verify the integrity of a digitally signed BSMTP payload

$! P1 == Input file specification; multipart/signed message
$! P2 == Output file specification; message which was signed;
$! P3 == File specification for the file of envelope recipient addresses
$!
$! Check that we have at least two command line parameters
$ IF P1 .EQS. "" THEN EXIT 229448 ! DCL-W-INSFPRM
$ IF P2 .EQS. "" THEN EXIT 229448
$!
$! Basic definitions
$ PGP = "$D1:[PGP]PGP.EXE"
$ PGPPATH = "PMDF_ROOT:[TABLE.PGP]"
$ FILENAM = F$ELEMENT(0,";",P2)
$!
$! Error handling
$ ON ERROR THEN GOTO ERROR
$ ON SEVERE_ERROR THEN GOTO ERROR
$!
$! Reformat the input file to look like a PGP signature file
$ OPEN/READ/ERROR=ERROR INFILE ’P1’
$ OPEN/WRITE/ERROR=ERROR OUTFILE ’FILENAM’-SIGN
$ WRT = "WRITE/ERROR=ERROR OUTFILE"
$ STATE = 1
$ LOOP:
$ READ/ERROR=ERROR/END_OF_FILE=END_LOOP INFILE LINE
$ IF STATE .EQ. 1
$ THEN
$ IF F$EXTRACT(0,2,LINE) .EQS. "--"
$ THEN
$ STATE = 2
$ BOUNDARY = LINE
$ WRT "-----BEGIN PGP SIGNED MESSAGE-----"
$ WRT ""
$ ENDIF

Figure 23–3 Cont’d on next page

23–8

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

Figure 23–3 (Cont.) pgp_verify.com: Verify the integrity of a digitally signed BSMTP payload

$ ELSE
$ IF STATE .EQ. 2
$ THEN
$ IF BOUNDARY .NES. LINE
$ THEN
$ WRT LINE
$ ELSE
$ STATE = 3
$ ENDIF
$ ELSE
$ IF STATE .EQ. 3
$ THEN
$ IF LINE .EQS. ""
$ THEN
$ STATE = 4
$ WRT ""
$ ENDIF
$ ELSE
$ WRT LINE
$ ENDIF
$ ENDIF
$ ENDIF
$ GOTO LOOP
$!
$ END_LOOP:
$ CLOSE/ERROR=ERROR INFILE
$ CLOSE/ERROR=ERROR OUTFILE
$!
$! Now check the signature
$ DEFINE/USER SYS$OUTPUT ’FILENAM’-CHECK
$ PGP "-o" ’FILENAM’-OUT ’FILENAM’-SIGN "+batchmode"
$!
$! See what the results of the check were; build the X-Content-MIC-check: line
$ SEARCH/OUTPUT=’FILENAM’-MIC/EXACT ’FILENAM’-CHECK " signature from user "
$ IF $STATUS .EQ. 1
$ THEN
$ OPEN/READ/ERROR=ERROR INFILE ’FILENAM’-MIC
$ READ/ERROR=ERROR INFILE LINE
$ CLOSE/ERROR=ERROR INFILE
$ MIC_CHECK = "X-Content-MIC-check: "+LINE
$ ELSE
$ MIC_CHECK = "X-Content-MIC-check: Bad signature"
$ ENDIF
$ OPEN/WRITE/ERROR=ERROR OUTFILE ’P2’
$ WRITE/ERROR=ERROR OUTFILE MIC_CHECK
$ CLOSE/ERROR=ERROR OUTFILE
$!
$! Now assemble the result: the MIC check + signed data
$ CONVERT/APPEND ’FILENAM’-OUT ’P2’
$ DELETE/NOLOG ’FILENAM’-*.*
$ EXIT 1

Figure 23–3 Cont’d on next page

23–9

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

Figure 23–3 (Cont.) pgp_verify.com: Verify the integrity of a digitally signed BSMTP payload

$!
$! We fall through to here when there is an error
$ ERROR:
$ SET NOON
$ IF F$TRNLNM("INFILE") .NES. "" THEN CLOSE INFILE
$ IF F$TRNLNM("OUTFILE") .NES. "" THEN CLOSE OUTFILE
$ DELETE/NOLOG ’FILENAM’-*.*,’P2’
$ SET ON
$ EXIT 2

23.2.2.2.1 Using PGP with PMDF on OpenVMS

Note: Use of PGP for commercial purposes requires a license from Pretty Good Privacy, Inc.
Please contact Pretty Good Privacy, Inc. for details and assistance in licensing PGP.

Use of PGP requires installation of PGP as well as generation and exchange of
PGP public keys between the PMDF BSMTP systems which will be using PGP for
authentication. This section documents step-by-step how to generate and exchange PGP
keys. No attempt is here made to document PGP. Please refer to the documentation
supplied with PGP for information on those subjects.

1. Acquire copies of PGP and install it on the PMDF systems. The following URLs
might be helpful:

<http://www.pgp.com/>
<ftp://ftp.csn.net/mpj/getpgp.asc>
<http://world.std.com/~franl/pgp/where-to-get-pgp.html>

2. After installing PGP, create an MTA key for the PMDF system. Note that the name
for the key will be bsmtp@bsin.host0 where host0 is as in Section 23.1. The
important element here is that the remote BSMTP channel will send the message to
the address bsmtp@bsin.host0. The local PMDF system will receive that message
and, via the FORWARD mapping table, route it to the incoming BSMTP channel,
bsin_gateway, for the recipient bsmtp@bsin.host0. This recipient address is the
user id of the decryption key which will be used.

The PGP key rings need to be located somewhere; placing them in the directory
pmdf_root:[table.pgp] is as good as place as any. The easiest way to set this up
is as follows:

23–10

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

$ SET DEFAULT PMDF_ROOT:[TABLE]
$ CREATE/DIR/OWNER=[PMDF] [.PGP]
$ PGPPATH == "PMDF_ROOT:[TABLE.PGP]
$ PGP -kg
Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil’s Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software may be restricted by the U.S. government.
Current time: 1997/04/02 20:44 GMT
Pick your RSA key size:

1) 512 bits- Low commercial grade, fast but less secure
2) 768 bits- High commercial grade, medium speed, good security
3) 1024 bits- "Military" grade, slow, highest security

Choose 1, 2, or 3, or enter desired number of bits: 3
Generating an RSA key with a 1024-bit modulus.

You need a user ID for your public key. The desired form for this
user ID is your name, followed by your E-mail address enclosed in
<angle brackets>, if you have an E-mail address.
For example: John Q. Smith <12345.6789@compuserve.com>
Enter a user ID for your public key: PMDF MTA key <bsmtp@bsin.host0>

You need a pass phrase to protect your RSA secret key.
Your pass phrase can be any sentence or phrase and may have many
words, spaces, punctuation, or any other printable characters.

Enter pass phrase: secret
Enter same pass phrase again: secret
Note that key generation is a lengthy process.

We need to generate 736 random bits. This is done by measuring the
time intervals between your keystrokes. Please enter some random text
on your keyboard until you hear the beep:

0 * -Enough, thank you.
....********
Key generation completed.
$ DIRECTORY/PROTECTION/SIZE=ALL [.PGP]
Directory PMDF_ROOT:[TABLE.PGP]

PUBRING.BAK;1 1/16 (RWED,RWED,,)
PUBRING.PGP;1 1/16 (RWED,RWED,,)
RANDSEED.BIN;1 1/16 (RWED,RWED,,)
SECRING.PGP;1 2/16 (RWED,RWED,,)

Total of 4 files, 5/64 blocks.

The final directory command verifies that the correct three PGP files have been
created with appropriate rights.

3. You may want change the protections of the file pubring.pgp so that others can
read the public key:

$ SET PROTECTION=(W:RE) [.PGP]PUBRING.PGP

4. Now you need to sign your public key. This prevents someone else from modifying
the user id of the key.

23–11

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

$ PGP -ks "bsmtp@bsin.host0"
Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil’s Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software may be restricted by the U.S. government.
Current time: 1997/04/02 20:46 GMT

A secret key is required to make a signature.
You specified no user ID to select your secret key,
so the default user ID and key will be the most recently
added key on your secret keyring.

Looking for key for user ’bsmtp@bsin.host0’:

Key for user ID: PMDF MTA key <bsmtp@bsin.host0>
1024-bit key, Key ID BFFA43E9, created 1997/04/02

Key fingerprint = 2F 5C A1 0A 35 25 E1 23 ED AF 23 11 00 37 5A CD

READ CAREFULLY: Based on your own direct first-hand knowledge, are
you absolutely certain that you are prepared to solemnly certify that
the above public key actually belongs to the user specified by the
above user ID (y/N)? y

You need a pass phrase to unlock your RSA secret key.
Key for user ID "PMDF MTA key <bsmtp@bsin.host0>"

Enter pass phrase: secret
Pass phrase is good. Just a moment....
Key signature certificate added.

5. Repeat Steps (1)—(4) on the other PMDF systems.

6. Next, you need to exchange public keys between the PMDF systems. On a given
system, you may extract the public key as follows:

$ PGP -kxa "bsmtp@bsin.host0" extract
Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil’s Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software may be restricted by the U.S. government.
Current time: 1997/04/02 20:47 GMT

Extracting from key ring: ’/pmdf/table/.pgp/pubring.pgp’,
userid "bsmtp@bsin.host0".

Key for user ID: PMDF MTA key <bsmtp@bsin.host0>
1024-bit key, Key ID BFFA43E9, created 1997/04/02

Transport armor file: extract.asc
Key extracted to file ’extract.asc’.

The file extract.asc may then be transferred by FTP or e-mail to the other PMDF
system. If you’re exchanging keys with another server you control go on to the next
step. However, if you’re exchanging keys with a remote site, some care needs to be
taken to make sure the public keys are properly certified.

23–12

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

7. The best way to exchange keys is to first exchange the key fingerprints via a reliable
channel (e.g., face-to-face in person, or perhaps over a trusted phone line). The
fingerprint can be obtained with the following command:

$ PGP -kvc bsmtp@bsin.host0
Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil’s Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software may be restricted by the U.S. government.
Current time: 1997/04/02 23:08 GMT

Key ring: ’/pmdf/table/.pgp/pubring.pgp’, looking for user ID
"bsmtp@bsin.host0".

Type bits/keyID Date User ID
pub 1024/BFFA43E9 1997/04/02 PMDF MTA key <bsmtp@bsin.host0>

Key fingerprint = 2F 5C A1 0A 35 25 E1 23 ED AF 23 11 00 37 5A CD
1 matching key found.

Then the public key itself can be extracted as described in Step (6) and sent through
e-mail. Upon receipt, the fingerprint should be manually verified before certifying
the key. After adding and certifying the key for the remote server, you may want to
sign that key as well. If you sign the key, and extract it as described in Step (6) this
can be used to tell other people you believe that key actually belongs to the MTA it
claims to belong to. For more information, see the PGP documentation.

8. Add the key in extract.asc to the keyrings on the other PMDF systems. If you
are unsure about how to answer the questions, see the PGP User’s Manual.

$ PGP EXTRACT.ASC
Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil’s Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software may be restricted by the U.S. government.
Current time: 1997/04/02 21:09 GMT

File contains key(s). Contents follow...
Key ring: ’extract.$00’
Type bits/keyID Date User ID
pub 1024/BFFA43E9 1997/04/02 PMDF MTA key <bsmtp@bsin.host0>
sig BFFA43E9 PMDF MTA key <bsmtp@bsin.host0>
1 matching key found.

Do you want to add this keyfile to keyring ’/pmdf/table/.pgp/pubring.pgp’ (y/N)? y

Looking for new keys...
pub 1024/BFFA43E9 1997/04/02 PMDF MTA key <bsmtp@bsin.host0>

Checking signatures...
pub 1024/BFFA43E9 1997/04/02 PMDF MTA key <bsmtp@bsin.host0>
sig! BFFA43E9 1997/04/02 PMDF MTA key <bsmtp@bsin.host0>

Keyfile contains:
1 new key(s)

One or more of the new keys are not fully certified.
Do you want to certify any of these keys yourself (y/N)? y

23–13

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

Key for user ID: PMDF MTA key <bsmtp@bsin.host0>
1024-bit key, Key ID BFFA43E9, created 1997/04/02
Key fingerprint = 2F 5C A1 0A 35 25 E1 23 ED AF 23 11 00 37 5A CD
This key/userID association is not certified.
Questionable certification from:
PMDF MTA key <bsmtp@bsin.host0>

Do you want to certify this key yourself (y/N)? y

Looking for key for user ’PMDF MTA key <bsmtp@bsin.host0>’:

Key for user ID: PMDF MTA key <bsmtp@bsin.host0>
1024-bit key, Key ID BFFA43E9, created 1997/04/02

Key fingerprint = 2F 5C A1 0A 35 25 E1 23 ED AF 23 11 00 37 5A CD

READ CAREFULLY: Based on your own direct first-hand knowledge, are
you absolutely certain that you are prepared to solemnly certify that
the above public key actually belongs to the user specified by the
above user ID (y/N)? y

You need a pass phrase to unlock your RSA secret key.
Key for user ID "PMDF MTA key <bsmtp@bsin.host1>"

Enter pass phrase: another-secret
Pass phrase is good. Just a moment....
Key signature certificate added.

Make a determination in your own mind whether this key actually
belongs to the person whom you think it belongs to, based on available
evidence. If you think it does, then based on your estimate of
that person’s integrity and competence in key management, answer
the following question:

Would you trust "PMDF MTA key <bsmtp@bsin.host0>"
to act as an introducer and certify other people’s public keys to you?
(1=I don’t know. 2=No. 3=Usually. 4=Yes, always.) ? 2

9. Repeat Steps (6)—(8) in the other direction.

10. You may check which keys are on your keyring with the following command:

$ PGP -kv
Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil’s Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software may be restricted by the U.S. government.
Current time: 1997/04/02 23:23 GMT

Key ring: ’/pmdf/table/.pgp/pubring.pgp’
Type bits/keyID Date User ID
pub 1024/BFFA43E9 1997/04/02 PMDF MTA key <bsmtp@bsin.host0>
pub 1024/6405957D 1997/03/17 PMDF MTA key <bsmtp@bsin.host0>
2 matching keys found.

Once you have exchanged the keys, you should then be able to send digitally signed
BSMTP parcels.

23–14

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

23.2.3 Examples on UNIX

The following sections provide examples of using BSMTP channels on UNIX.

23.2.3.1 Configuring the BSMTP Channels to Compress Their Payloads on UNIX

Using PMDF’s general purpose, on-the-fly conversion facilities, BSMTP parcels can
be compressed on the sending system and then uncompressed on the receiving system.
This allows for faster transmission of the parcels through the network.

In the CHARSET-CONVERSION mapping table on each PMDF system, a simple entry
enabling conversions for the BSMTP channels must be made:

CHARSET-CONVERSION

in-chan=bsout_*;out-chan=*;convert yes
in-chan=*;out-chan=bsin_*;convert yes

In the PMDF conversions file on each system, conversion entries are added which
call out to the site-supplied shell script, compress.sh:

in-chan=bsout_*; part-number=1; in-type=*; in-subtype=*;
service-command="/pmdf/bin/compress.sh compress $INPUT_FILE $OUTPUT_FILE"

out-chan=bsin_*; part-number=1; in-type=application;
in-subtype=compressed-bsmtp;
service-command="/pmdf/bin/compress.sh decompress $INPUT_FILE $OUTPUT_FILE"

The compress.sh shell script is shown in Figure 23–4. It assumes that the gzip and
gunzip utilities are installed in /usr/local/bin/.

23.2.3.2 Configuring the BSMTP Channels to Provide Authentication Services on
UNIX

Using PMDF’s general purpose, on-the-fly conversion facilities, authentication and
integrity services may be tied in to the BSMTP channels. This is done through the
CHARSET-CONVERSION mapping table, the PMDF conversions file, and a site-supplied
shell script to digitally sign payloads and verify the signature and integrity of the data
upon receipt.

In the CHARSET-CONVERSION mapping table on each PMDF system, a simple entry
enabling conversions for the BSMTP channels must be made:

CHARSET-CONVERSION

in-chan=bsout_*;out-chan=*;convert yes
in-chan=*;out-chan=bsin_*;convert yes

23–15

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

Figure 23–4 compress.sh: Compress and decompress BSMTP payloads

#!/sbin/sh

compress operation in-file out-file [addr-file]

where

operation == "compress" | "decompress"
input-file == path of file to sign or verify
output-file == output file to produce
addr-file == file of envelope recipient addresses

if [$# -lt 3]; then exit 1; fi

case $1
in
compress)

/usr/local/bin/gzip < $2 > $3.tmp
/pmdf/bin/pmdf encode -nofilename -encoding=base64 -type=application \

-subtype=compressed-bsmtp $3.tmp $3.tmp2
rm -f $3.tmp $3.tmp2
;;

decompress)
/pmdf/bin/pmdf decode $2 $3.tmp
/usr/local/bin/gunzip < $3.tmp > $3
rm -f $3.tmp
;;

*)
exit 1
;;

esac
exit 0

In the PMDF conversions file file on each system, there must be conversion entries
to invoke the site-supplied shell scripts:

in-chan=bsout_*; part-number=1; in-type=*; in-subtype=*;
service-command="/pmdf/bin/pgp_sign.sh $INPUT_FILE $OUTPUT_FILE"

out-chan=bsin_*; part-number=1; in-type=multipart; in-subtype=signed;
service-command="/pmdf/bin/pgp_verify.sh $INPUT_FILE $OUTPUT_FILE"

These two scripts are shown in Figures 23–5 and 23–6. They assume that the pgp utility
is installed in /usr/local/bin/ and that awk is installed in /usr/bin/. Note that the
pgp_sign.sh script requires the pass phrase for the PMDF MTA’s private PGP key in
order to generate signatures. Edit the script to reflect the correct pass phrase and be
sure to protect the file from other users:

% chown pmdf:bin /pmdf/bin/pgp_sign.sh
% chmod 0700 /pmdf/bin/pgp_sign.sh

23–16

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

Figure 23–5 pgp_sign.sh: Digitally sign BSMTP payloads

#!/sbin/sh

pgp_sign.sh input-file output-file [addr-file]

where

input-file == path of file to sign or verify
output-file == output file to produce
addr-file == file of envelope recipient addresses

Check that we have at least three command line parameters
if [$# -lt 2]; then exit 1; fi

Change these to match your site
PGPUSER="PMDF MTA key"
PGPPATH=/pmdf/table/pgp
PGPPASS="Percy eats pealed banannas"

Generate the digital signature
/usr/local/bin/pgp -sab $1 -u $PGPUSER -z $PGPPASS -o $2 +batchmode

Make some temporary files used to MIME-ify the results
BOUNDARY=‘/pmdf/bin/unique_id‘
echo ’Content-type: multipart/signed; boundary="’$BOUNDARY’"; ’\
’micalg=pgp-md5; protocol=application/pgp-signature

--’$BOUNDARY > $2.top
echo ’--’$BOUNDARY’
Content-type: application/pgp-signature
’ > $2.mid
echo --$BOUNDARY-- > $2.bot

Make a multipart/signed message part
cat $2.top $1 $2.mid $2.asc $2.bot > $2

Now clean up
rm -f $2.top $2.mid $2.asc $2.bot

And exit
exit 0

23.2.3.2.1 Using PGP with PMDF on UNIX

Note: Use of PGP for commercial purposes requires a license from Pretty Good Privacy, Inc.
Please contact Pretty Good Privacy, Inc. for details and assistance in licensing PGP.

Use of PGP requires installation of PGP as well as generation and exchange of
PGP public keys between the PMDF BSMTP systems which will be using PGP for
authentication. This section documents step-by-step how to generate and exchange PGP
keys. No attempt is here made to document PGP. Please refer to the documentation
supplied with PGP for information on those subjects.

1. Acquire copies of PGP and install it on the PMDF systems. The following URLs
might be helpful:

23–17

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

Figure 23–6 pgp_verify.sh: Verify the integrity of a digitally signed BSMTP payload

#!/sbin/sh

pgp_verify.sh input-file output-file [addr-file]

where

input-file == path of file to sign or verify
output-file == output file to produce
addr-file == file of envelope recipient addresses

Check that we have at least three command line parameters
if [$# -lt 2]; then exit 1; fi

Change this to match your site
PGPPATH=/pmdf/table/pgp

Use awk to split the multipart/signed part into
two files: the signed data and the digital signature
/usr/bin/awk ’
BEGIN { state = 0 }
{

if (state == 0) {
if (substr ($0, 0, 2) == "--") {

boundary = $0
state = 1

}
} else if (state == 1) {

if ($0 != boundary) {
print $0 > OUT_DATA

} else {
state = 2

}
} else if (state == 2) {

if (NF == 0) state = 3
} else if (state == 3) {

print $0 > OUT_SIGN
}

}’ OUT_DATA=$2.data OUT_SIGN=$2.sign $1

Verify the digital signature
/usr/local/bin/pgp $2.sign $2.data +batchmode > $2.check

Build a X-Content-MIC-check: header line
MICINFO=‘grep -h ’ signature from user ’ $2.check‘
if [-n "$MICINFO"]
then

echo ’X-Content-MIC-check: ’$MICINFO > $2.mic
else

echo ’X-Content-MIC-check: Bad signature’ > $2.mic
fi
cat $2.mic $2.data > $2

Clean up
rm -f $2.sign $2.data $2.check $2.mic

And exit
exit 0

23–18

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

<http://www.pgp.com/>
<ftp://ftp.csn.net/mpj/getpgp.asc>
<http://world.std.com/~franl/pgp/where-to-get-pgp.html>

2. After installing PGP, create an MTA key for the PMDF system. Note that the name
for the key will be

PMDF MTA key bsmtp@bsin.host0

bsmtp@bsin.host0 where host0 is as in Section 23.1. The important element
here is that the remote BSMTP channel will send the message to the address
bsmtp@bsin.host0. The local PMDF system will receive that message and, via the
FORWARD mapping table, route it to the incoming BSMTP channel, bsin_gateway,
for the recipient bsmtp@bsin.host0. This recipient address is the user id of the
decryption key which will be used.

The PGP key rings need to be located somewhere; placing them in the directory
/pmdf/table/pgp/ is as good as place as any. The easiest way to set this up is as
follows:

% su pmdf
% cd /pmdf/table
% mkdir pgp
% setenv PGPPATH /pmdf/table/pgp
% pgp -kg
Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil’s Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software may be restricted by the U.S. government.
Current time: 1997/04/02 20:44 GMT
Pick your RSA key size:

1) 512 bits- Low commercial grade, fast but less secure
2) 768 bits- High commercial grade, medium speed, good security
3) 1024 bits- "Military" grade, slow, highest security

Choose 1, 2, or 3, or enter desired number of bits: 3
Generating an RSA key with a 1024-bit modulus.

You need a user ID for your public key. The desired form for this
user ID is your name, followed by your E-mail address enclosed in
<angle brackets>, if you have an E-mail address.
For example: John Q. Smith <12345.6789@compuserve.com>
Enter a user ID for your public key: PMDF MTA key <bsmtp@bsin.host0>

You need a pass phrase to protect your RSA secret key.
Your pass phrase can be any sentence or phrase and may have many
words, spaces, punctuation, or any other printable characters.

Enter pass phrase: secret
Enter same pass phrase again: secret
Note that key generation is a lengthy process.

23–19

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

We need to generate 736 random bits. This is done by measuring the
time intervals between your keystrokes. Please enter some random text
on your keyboard until you hear the beep:

0 * -Enough, thank you.
....********
Key generation completed.
% ls -l pgp
total 6
-rw------- 1 pmdf 30 197 Apr 2 12:52 pubring.pgp
-rw------- 1 pmdf 30 408 Apr 2 12:52 randseed.bin
-rw------- 1 pmdf 30 530 Apr 2 12:52 secring.pgp

The final ls command verifies that the correct three PGP files have been created
with appropriate rights.

3. You may want change the permissions of the file pubring.pgp so that others can
read the public key:

% chmod 644 pgp/pubring.pgp
% ls -l pgp
total 6
-rw-r--r-- 1 pmdf 30 197 Apr 2 12:52 pubring.pgp
-rw------- 1 pmdf 30 408 Apr 2 12:52 randseed.bin
-rw------- 1 pmdf 30 530 Apr 2 12:52 secring.pgp

4. Now you need to sign your public key. This prevents someone else from modifying
the user id of the key.

% pgp -ks bsmtp@bsin.host0
Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil’s Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software may be restricted by the U.S. government.
Current time: 1997/04/02 20:46 GMT

A secret key is required to make a signature.
You specified no user ID to select your secret key,
so the default user ID and key will be the most recently
added key on your secret keyring.

Looking for key for user ’bsmtp@bsin.host0’:

Key for user ID: PMDF MTA key <bsmtp@bsin.host0>
1024-bit key, Key ID BFFA43E9, created 1997/04/02

Key fingerprint = 2F 5C A1 0A 35 25 E1 23 ED AF 23 11 00 37 5A CD

READ CAREFULLY: Based on your own direct first-hand knowledge, are
you absolutely certain that you are prepared to solemnly certify that
the above public key actually belongs to the user specified by the
above user ID (y/N)? y

You need a pass phrase to unlock your RSA secret key.
Key for user ID "PMDF MTA key <bsmtp@bsin.host0>"

Enter pass phrase: secret
Pass phrase is good. Just a moment....
Key signature certificate added.

23–20

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

5. Repeat Steps (1)—(4) on the other PMDF systems.

6. Next, you need to exchange public keys between the PMDF systems. On a given
system, you may extract the public key as follows:

% pgp -kxa bsmtp@bsin.host0 extract
Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil’s Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software may be restricted by the U.S. government.
Current time: 1997/04/02 20:47 GMT

Extracting from key ring: ’/pmdf/table/.pgp/pubring.pgp’,
userid "bsmtp@bsin.host0".

Key for user ID: PMDF MTA key <bsmtp@bsin.host0>
1024-bit key, Key ID BFFA43E9, created 1997/04/02

Transport armor file: extract.asc
Key extracted to file ’extract.asc’.

The file extract.asc may then be transferred by FTP or e-mail to the other PMDF
system. If you’re exchanging keys with another server you control go on to the next
step. However, if you’re exchanging keys with a remote site, some care needs to be
taken to make sure the public keys are properly certified.

7. The best way to exchange keys is to first exchange the key fingerprints via a reliable
channel (e.g., face-to-face in person, or perhaps over a trusted phone line). The
fingerprint can be obtained with the following command:

% pgp -kvc bsmtp@bsin.host0
Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil’s Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software may be restricted by the U.S. government.
Current time: 1997/04/02 23:08 GMT

Key ring: ’/pmdf/table/.pgp/pubring.pgp’, looking for user ID
"bsmtp@bsin.host0".

Type bits/keyID Date User ID
pub 1024/BFFA43E9 1997/04/02 PMDF MTA key <bsmtp@bsin.host0>

Key fingerprint = 2F 5C A1 0A 35 25 E1 23 ED AF 23 11 00 37 5A CD
1 matching key found.

Then the public key itself can be extracted as described in Step (6) and sent through
e-mail. Upon receipt, the fingerprint should be manually verified before certifying
the key. After adding and certifying the key for the remote server, you may want to
sign that key as well. If you sign the key, and extract it as described in Step (6) this
can be used to tell other people you believe that key actually belongs to the MTA it
claims to belong to. For more information, see the PGP documentation.

23–21

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

8. Add the key in extract.asc to the keyrings on the other PMDF systems. If you
are unsure about how to answer the questions, see the PGP User’s Manual.

% pgp extract.asc
Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil’s Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software may be restricted by the U.S. government.
Current time: 1997/04/02 21:09 GMT

File contains key(s). Contents follow...
Key ring: ’extract.$00’
Type bits/keyID Date User ID
pub 1024/BFFA43E9 1997/04/02 PMDF MTA key <bsmtp@bsin.host0>
sig BFFA43E9 PMDF MTA key <bsmtp@bsin.host0>
1 matching key found.

Do you want to add this keyfile to keyring ’/pmdf/table/.pgp/pubring.pgp’ (y/N)? y

Looking for new keys...
pub 1024/BFFA43E9 1997/04/02 PMDF MTA key <bsmtp@bsin.host0>

Checking signatures...
pub 1024/BFFA43E9 1997/04/02 PMDF MTA key <bsmtp@bsin.host0>
sig! BFFA43E9 1997/04/02 PMDF MTA key <bsmtp@bsin.host0>

Keyfile contains:
1 new key(s)

One or more of the new keys are not fully certified.
Do you want to certify any of these keys yourself (y/N)? y

Key for user ID: PMDF MTA key <bsmtp@bsin.host0>
1024-bit key, Key ID BFFA43E9, created 1997/04/02
Key fingerprint = 2F 5C A1 0A 35 25 E1 23 ED AF 23 11 00 37 5A CD
This key/userID association is not certified.
Questionable certification from:
PMDF MTA key <bsmtp@bsin.host0>

Do you want to certify this key yourself (y/N)? y

Looking for key for user ’PMDF MTA key <bsmtp@bsin.host0>’:

Key for user ID: PMDF MTA key <bsmtp@bsin.host0>
1024-bit key, Key ID BFFA43E9, created 1997/04/02

Key fingerprint = 2F 5C A1 0A 35 25 E1 23 ED AF 23 11 00 37 5A CD

READ CAREFULLY: Based on your own direct first-hand knowledge, are
you absolutely certain that you are prepared to solemnly certify that
the above public key actually belongs to the user specified by the
above user ID (y/N)? y

You need a pass phrase to unlock your RSA secret key.
Key for user ID "PMDF MTA key <bsmtp@bsin.host1>"

Enter pass phrase: another-secret
Pass phrase is good. Just a moment....
Key signature certificate added.

23–22

BSMTP Channels: MTA to MTA Tunnelling
Performing the Desired Message Transformation via Service Conversions

Make a determination in your own mind whether this key actually
belongs to the person whom you think it belongs to, based on available
evidence. If you think it does, then based on your estimate of
that person’s integrity and competence in key management, answer
the following question:

Would you trust "PMDF MTA key <bsmtp@bsin.host0>"
to act as an introducer and certify other people’s public keys to you?
(1=I don’t know. 2=No. 3=Usually. 4=Yes, always.) ? 2

9. Repeat Steps (6)—(8) in the other direction.

10. You may check which keys are on your keyring with the following command:

% pgp -kv
Pretty Good Privacy(tm) 2.6.2 - Public-key encryption for the masses.
(c) 1990-1994 Philip Zimmermann, Phil’s Pretty Good Software. 11 Oct 94
Uses the RSAREF(tm) Toolkit, which is copyright RSA Data Security, Inc.
Distributed by the Massachusetts Institute of Technology.
Export of this software may be restricted by the U.S. government.
Current time: 1997/04/02 23:23 GMT

Key ring: ’/pmdf/table/.pgp/pubring.pgp’
Type bits/keyID Date User ID
pub 1024/BFFA43E9 1997/04/02 PMDF MTA key <bsmtp@bsin.host0>
pub 1024/6405957D 1997/03/17 PMDF MTA key <bsmtp@bsin.host0>
2 matching keys found.

Once you have exchanged the keys, you should then be able to send digitally signed
BSMTP parcels.

23–23

24PhoneNet Channels (OpenVMS and UNIX)

PhoneNet is an asynchronous terminal line-based transport designed for use with
PMDF, MMDF, and CSNET. When it operates in master mode, PhoneNet is capable
of ‘‘dialing out’’ over telephone lines to establish a connection with a PhoneNet slave
on another machine. When it operates in slave mode, PhoneNet responds to a remote
master’s requests for message transfers.

PhoneNet is divided into two separate protocols. The lower ‘‘link-level’’ protocol,
called the ‘‘dial protocol’’, provides a basic byte-stream environment. It is responsible for
connection acquisition and management, character set translation and flow control. Dial
is only used on asynchronous terminal lines.

The higher-level protocol, called the ‘‘phone protocol’’, is responsible for the semantics
of mail transfer. It must establish the context and then pass individual messages. The
overall structure of PhoneNet and the interaction of these two protocols is shown in
Figure 24–1.

The following sections describe many, but not all, aspects of PhoneNet. In particular,
the various input and output files used by PhoneNet channels are described in detail.
However, the internal format of the dial and phone protocols are not described here.
Refer to the files phone.ovr and dialproto.col in PMDF’s documentation directory,
(PMDF_DOC: on OpenVMS, or /pmdf/doc/ on UNIX, or usually C:\pmdf\doc\ on NT),
for information on, respectively, the phone and dial protocols.

Four steps are required to set up a PhoneNet channel: (1) Add the channel
to your PMDF configuration, (2) Create an option file for the channel, (3) Create a
phone_list.dat file listing your serial devices, and (4) Create a script file that provides
the necessary modem commands and login sequences. Each of these steps is described
in detail in the following sections.

PhoneNet channels are not generated by the automatic configuration generator.

24.1 Adding PhoneNet channels to the configuration file

The first step is to add the PhoneNet channel to the PMDF configuration file.
PhoneNet channel names must begin with ‘‘p_’’, for example p_smc.

Note: For compatability with previous releases, PMDF on OpenVMS will allow PhoneNet
channel names without the ‘‘p_’’ prefix. Such names are not recommended.

Since PhoneNet channels are point-to-point, you must create a separate channel,
with its own option and script files, for each link to a remote system. A typical channel
definition looks like this:

24–1

PhoneNet Channels (OpenVMS and UNIX)
Adding PhoneNet channels to the configuration file

Figure 24–1 The Structure of PhoneNet

asynchronous
terminal lines

option files
x_option

dial protocol
(DI routines)

message log
ph_x_y.log

error log
di_x_y.log

transaction
log di_x_y.trn

PhoneNet channel programs

PhoneNet
MASTER

PhoneNet
SLAVE

script files
x_script

error log
err_x.log

phone protocol
(PH routines)

p_smc
engvax.smc.com

The rewrite rules in the configuration files should now be edited to refer to the new
channel as appropriate. Continuing our example, a likely rewrite rule for the channel
definitions shown above:

engvax.smc.com $U@engvax.smc.com

24.2 PhoneNet option files

Option files are used to set several run-time PhoneNet options on a per-channel
basis. Option files are stored in the PMDF table directory (PMDF_TABLE: on OpenVMS,
or /pmdf/table/ on UNIX, or typically C:\pmdf\table\ on NT) and have names of
the form x_option, where ‘‘x’’ is the name of the PhoneNet channel to which the option
file applies. Every PhoneNet channel must have an option file.

24–2

PhoneNet Channels (OpenVMS and UNIX)
PhoneNet option files

Option files consist of several lines. Each line contains the setting for one option.
An option setting has the form:

option=value

where value can be either a string or an integer, depending on the option’s requirements.
If the option accepts an integer value, value, a base can be specified using notation of the
form b%v, where b is the base expressed in base 10 and v is the actual value expressed
in base b.

Comments are allowed. Any line that begins with an exclamation point is considered
to be a comment and is ignored. Blank lines are also ignored in any option file.

The available options are:

BACKOFF (integer >= 0)

When BACKOFF specifies an integer greater than zero, backoff retries will be attempted
for messages which could not be delivered immediately. See Section 24.6 for details. By
default, BACKOFF=0.

BAUDRATE (integer)

This option specifies the baud rate at which to dial-out using the MASTER program.
Possible values are: 50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2000, 2400, 3600, 4800,
7200, 9600, 19200, and 38400. Not all hardware interfaces support all these baud rates.
In particular, Local Area Terminal Server (LAT) lines can ignore the baud rate setting on
the host side; the line speed might need to be set from the terminal server itself (which
PMDF cannot access) to have any effect.1

If no BAUDRATE option is specified in the option file the MASTER program does not
change the baud rate of the terminal. On OpenVMS, it is also possible to set the baud
rate using a SET TERMINAL command in the all_master.com command file (see
Section 24.3.2).

CHANNEL (string)

The CHANNEL option defines the name of the channel with which the option file is
associated. This name is used to generate Received: header lines in message headers.
The CHANNEL option must be specified for any channel other than the default PhoneNet
channel (channel p); if it is not, the channel will not work properly.

LOGGING (0 or 1)

LOGGING controls whether or not the channel maintains a PhoneNet message log file
ph_x_y.log. A value of 1, the default, specifies that a log is to be kept. A value of 0
disables use of the PhoneNet log file.

TRANSCRIBE (0 or 1)

TRANSCRIBE controls whether or not the channel maintains a Dial protocol transaction
log file di_x_y.log. A value of 1, the default, specifies that a log is to be kept. A value
of 0 disables use of the transaction log file.

1 Some terminal servers allow the host to alter a port’s speed provided the port has the ‘‘remote modification’’ characteristic
enabled.

24–3

PhoneNet Channels (OpenVMS and UNIX)
PhoneNet option files

DATAWAIT (integer)

This defines the number of seconds to wait for a data packet from the remote host.
Normally the default value of 180 suffices. A higher value can be necessary if the remote
host runs very slowly.

XMITWAIT (integer)

This is the number of seconds to wait for a packet to be transmitted. The default value
of 60 should work for almost all applications.

QACKWAIT (integer)

This is the number of seconds to wait for a response to a QUIT packet before
retransmission. The default value of 30 should work for almost all applications.

EACKWAIT (integer)

This is the number of seconds to wait for a response to an ESCAPE packet before
resending. The default value of 30 should work for almost all applications.

DACKWAIT (integer)

This is the number of seconds to wait for data acknowledgement packets before
retransmission. The default value of 30 should work for almost all applications.

ESCAPEWAIT (integer)

This is the number of seconds to wait for an ESCAPE packet during protocol startup.
The default value of 60 should work for almost all applications.

XPATHWAIT (integer)

This is the number of seconds to wait for an XPATH packet during protocol startup. The
default value of 60 is usually sufficient. However, since this is the first packet exchanged
in PhoneNet, it can be necessary to increase this parameter on systems which process
lots of files (tallying files to be transmitted delays the sending of the first packet) or which
take a long time to start up the PhoneNet programs.

RPATHWAIT (integer)

This is the number of seconds to wait for RPATH packets. The default value of 60 should
work for almost all applications.

NBUFFWAIT (integer)

This is the number of seconds to wait for NBUFF packets. The default value of 60 should
work for almost all applications.

XPAWAIT (integer)

This is the number of seconds to wait for XPATH packet acknowledgements. The default
value of 20 should work for almost all applications.

RPAWAIT (integer)

This is the number of seconds to wait for RPATH packet acknowledgements. The default
value of 20 should work for almost all applications.

NBAWAIT (integer)

This is the number of seconds to wait for NBUFF packet acknowledgements. The default
value of 20 should work for almost all applications.

24–4

PhoneNet Channels (OpenVMS and UNIX)
PhoneNet option files

EIGHTBIT (0 or 1)

The EIGHTBIT option controls whether eight-bit characters are enabled by MASTER.
On OpenVMS, this corresponds to the eightbit setting of the OpenVMS terminal driver.
If EIGHTBIT has a value of 0 the eighth bit is masked out on output characters and
ignored on input characters. If EIGHTBIT is 1 the eighth bit is preserved on output and
interpreted on input. Any other value or the omission of the EIGHTBIT option will tell
MASTER not to change the interpretation of the EIGHTBIT flag from its current setting.

On OpenVMS, it is also possible to set this option using a SET TERMINAL command in
the all_master.com command file as described in Section 24.3.2.

PhoneNet normally quotes eight-bit characters so the setting of this characteristic is not
relevant insofar as the PhoneNet protocol is concerned. However, it can be necessary to
enable or disable the EIGHTBIT option in order for the MASTER login script to work
properly.

EXPECTWINDOW (0 or 1)

This option tells the local slave program whether to expect a ‘‘set window size’’ packet
from the remote master. The default is 0 which means that the packet must not be
received. A setting of 1 means that the packet must be received. If EXPECTWINDOW
is set to 1, the window size that is received in the ‘‘set window size’’ packet overrides the
setting of the WINDOW option.

FLUSHRATE (integer)

The FLUSHRATE parameter controls how often transaction log file buffers are emptied
and the files brought up to date. PMDF periodically issues a $FLUSH on the transaction
log. This operation, coupled with the fact that the file is shareable, makes it possible to
examine the file while MASTER or SLAVE is still running. (On OpenVMS, the standard
DCL TYPE command can be used to examine the file if desired.) The FLUSHRATE value
is expressed as the number of lines between flush operations. The minimum value of 1
means that the file will be updated as each line of text is written to it. Low values can
cause performance degradation due to the expense of issuing so many $FLUSH calls.
The default value is 32.

HOSTSYNC (0 or 1)

This option tells PMDF whether or not to use flow control (CTRL/S and CTRL/Q) to
regulate incoming data flow. If HOSTSYNC’s value is 1 PMDF will instruct the system
to send a CTRL/S when the terminal input buffer is nearly full and a CTRL/Q when the
buffer empties. A HOSTSYNC value of 0 tells PMDF to disable this form of flow control.
Any other value or not specifying the HOSTSYNC will leave this setting unchanged from
the default already set on the terminal.

The HOSTSYNC setting on one side of a connection should usually match the TTSYNC
setting on the other, and vice versa.

On OpenVMS, it is also possible to set this option using a SET TERMINAL command in
the all_master.com command file as described in Section 24.3.2. Setting this option
in this command file will not affect its use by SLAVE, however.

NOISE (list of integers)

This defines the set of characters to ignore when reading data from the remote host. The
decimal ASCII values of the characters to ignore are listed separated by commas. The
default is 13 (CR).

24–5

PhoneNet Channels (OpenVMS and UNIX)
PhoneNet option files

PARITY (NONE, ODD, EVEN, MARK, SPACE)

This controls the use of parity on the line. Possible values are NONE, ODD, EVEN,
MARK, and SPACE. PMDF will assert the specified parity on outgoing characters. Any
setting other than NONE will cause the uppermost (eighth) bit to be stripped from all
incoming characters. A parity setting of NONE passes all characters as-is. The default
is NONE.

SENDWINDOW (0 or 1)

This tells the local master program whether to send a ‘‘set window size’’ packet to
the remote slave. The default is 0 (no). A setting of 1 means yes. Some older link-
level protocol implementations do not accept this ‘‘set window size’’ packet. The actual
window size is determined by the WINDOW option setting described above. The default
window size on relay.cs.net is 1 so set WINDOW=2 and SENDWINDOW=1 to override
this default.

TERMINATOR (integer)

This defines the packet-terminator for packets sent to the remote host. The decimal
ASCII values of the desired terminators should be listed without quotes and separated
by commas. The default is ‘‘13,10’’ (CR,LF).

TTSYNC (0 or 1)

This option tells PMDF whether or not to interpret flow control (CTRL/S and CTRL/Q)
sent by the remote system. If TTSYNC’s value is 1 PMDF will instruct the system to stop
sending characters when a CTRL/S is received and to resume sending when a CTRL/Q
is received. A TTSYNC value of 0 tells PMDF to disable this form of flow control. Any
other value or not specifying the TTSYNC will leave this setting unchanged from the
default already set on the terminal.

On OpenVMS, it is also possible to set this option using a SET TERMINAL command in
the all_master.com command file as described in Section 24.3.2. Setting this option
in this command file will not affect its use by SLAVE, however.

The TTSYNC setting on one side of a connection should usually match the HOSTSYNC
setting on the other, and vice versa.

WINDOW (1 or 2)

This defines the window size for the link-level PhoneNet protocol. The default is 1 (single
buffering). A setting of 2 means double buffering. Double buffering can be used only
over full-duplex lines and typically results in 25% to 60% throughput improvements,
depending on the type of communication line being used. The local and remote hosts
must agree on the window size. (See SENDWINDOW and EXPECTWINDOW above.)

24.2.1 An example option file

Continuing our example channel from above, the following is an example option file
demonstrating typical options that are specified. Only the CHANNEL option is actually
required.

24–6

PhoneNet Channels (OpenVMS and UNIX)
PhoneNet option files

CHANNEL=p_smc
TERMINATOR=10
DATAWAIT=180
WINDOW=2
SENDWINDOW=1
EXPECTWINDOW=1

24.3 Defining serial devices

PhoneNet and Pager channels use the file phone_list.dat in the PMDF table
directory to relate transport methods to certain channels. Each line in this file is referred
to as a ‘‘method’’ and has the format

channel device [script [options]]

where channel is the name of a channel, device is a possible device that the channel
can use, script is the name used to find the script file, and options are a set of options
passed to a user-written command file. The options field is ignored on UNIX platforms.

device is usually, but not always, the name of an asynchronous terminal device. On
OpenVMS, it can be a logical name which translates to one or more devices. If options
are omitted, an empty set of options is used. If script and options are both omitted
an empty set of options are used and script is set to device.

The usual form of PMDF comment lines are all allowed in the file. Channel names
are not case sensitive. The device, options, and script are not case sensitive on
OpenVMS, but are case sensitive on UNIX platforms.

Example 24–1 depicts a typical phone_list.dat file for OpenVMS. Example 24–2
depicts a typical phone_list.dat file for UNIX systems.

Example 24–1 OpenVMS Sample PhoneNet phone_list.dat file

! phone_list.dat - Allow the use of either modem
! for Pager channel.
! There are two numbers to try on P_SMC channel,
! so try it with two different scripts.
!
pager_pactel SLOW_MODEM pager_slow
pager_pactel AUTO_DIALER pager_fast
!
p_smc AUTO_DIALER dial_one
p_smc AUTO_DIALER dial_two

Example 24–2 UNIX Sample PhoneNet phone_list.dat file

! phone_list.dat - Allow the use of either slow or fast modem
! for Pager channel.

Example 24–2 Cont’d on next page

24–7

PhoneNet Channels (OpenVMS and UNIX)
Defining serial devices

Example 24–2 (Cont.) UNIX Sample PhoneNet phone_list.dat file

! There are two numbers to try on P_SMC channel,
! so try it with two different scripts but only on fast modem.
!
pager_pactel /dev/ttyd0 pager_slow
pager_pactel /dev/ttyd1 pager_fast
!
p_smc /dev/ttyd1 dial_one
p_smc /dev/ttyd1 dial_two

A channel can have one or more entries associated with it. In the two examples, two
entries are present for each channel. For the pager_pactel channel we want to use two
different devices. For the p_smc channel we only want to use one device, but we want to
try with two different scripts.

On OpenVMS, multiple devices such as a modem pool, can be used by specifying a
logical name for device which translates to the list of devices to use. For example, the
logical AUTO_DIALER used in Example 24–1 defined as

$ DEFINE/SYSTEM AUTO_DIALER LTA100:,TXA6:,LTA2:,LTA5:

is a search list specifying the four devices LTA100:, TXA6:, LTA2:, and LTA5:.

On UNIX and NT platforms, multiple devices need to be handled with multiple
entries in the phone_list.dat file for each channel, one entry per channel per device.

24.3.1 Script files

The final piece of information needed for PhoneNet and Pager channels is the
connection script to use for each particular channel, device, and script combination.
The script field of an entry identifies a file containing the PhoneNet script. The script
is located in a subdirectory under the PMDF table directory. The subdirectory has the
same name as the channel. On OpenVMS systems, the script file would be named
as pmdf_root:[table.channel]script_script.; on UNIX platforms, the script file
would be named as /pmdf/table/channel/script_script; on NT systems, the script
file typically would be named as C:\pmdf\table\channel \script_script.

Different or common files can be used for each channel, device, script combi-
nation. Each connection can potentially require a completely different script, or it can
share a script with many other entries, depending on the application. Note the use of an
individual subdirectory for each channel.

The format of script files is described in Section 24.5.

Note: It is customary to protect script files from world or group access: script files generally
contain the information required to login on remote system running PhoneNet. If that
remote system runs PMDF, then the remote account will be a restricted account. But,
nonetheless, it is best to protect this information.

24–8

PhoneNet Channels (OpenVMS and UNIX)
Defining serial devices

24.3.2 The all_master.com file (OpenVMS)

Note: On UNIX platforms there is no equivalent of the all_master.com procedure. The
PhoneNet and Pager channels set all terminal line characteristics from the channel
options file.

On OpenVMS platforms, once a method is found, master.com executes the
procedure all_master.com to set up and condition the terminal line. This file is
used in lieu of the usual x_master.com command file that master.com invokes.
all_master.com is invoked with device as its first parameter and options as its
second parameter. These two parameters are drawn from the phone_list.dat file
which is described in Section 24.3 above. A typical all_master.com file is shown in
Example 24–3. You should supply what is appropriate for your terminals in your own
all_master.com.

Example 24–3 A Sample PhoneNet all_master.com file

$! all_master.com - A sample all_master.com file
$!
$ IF P1 .NES. "" THEN GOTO USE_’P1’
$!
$ USE_AUTO_DIALER:
$ ALLOCATE AUTO_DIALER
$ SET TERM/SPEED=1200 AUTO_DIALER
$ DEFINE TT AUTO_DIALER
$ EXIT
$!
$ USE_MUX_LINE:
$ ALLOCATE MUX_LINE
$ DEFINE TT MUX_LINE
$ EXIT

The conditions and restrictions that apply to x_master.com files also apply to
all_master.com. TT can be defined to point at a multi-equivalence logical name (i.e.,
a search list) as in the case of x_master.com. If a search list is used the ALLOCATE
commands should be removed.

24.3.3 Handling failures

If a particular method from the phone_list.dat file fails to provide a PhoneNet
connection for whatever reason (terminal unavailable, script timeout, no answer,
bad transmission line, no free ports, etc.), then PMDF resumes the search through
phone_list.dat, trying each method that it finds for the current channel until one
succeeds or the file is exhausted. Entries can be repeated if multiple connection attempts
using the same method are desired.

24–9

PhoneNet Channels (OpenVMS and UNIX)
Defining serial devices

On OpenVMS, if a failure occurs within a section of script marked as an initialization
section, then before trying the next method, any additional devices specified by device

will first be tried. Note that in order for device to specify more than one device, it must
be a logical search list as described in Section 24.3. Initialization sections of a script file
are marked with the ‘‘init’’ script command.

24.4 Log files

Four log files are produced by PhoneNet as it operates. These log files are useful
both for keeping track of PhoneNet activity and for diagnosing problems with PhoneNet
as they occur.

All PhoneNet log files are kept in the PMDF log directory, (i.e., in PMDF_LOG: on
OpenVMS, or in /pmdf/log/ on UNIX, or in C:\pmdf\log\ on NT). A separate copy
of each log file is maintained for each PhoneNet channel and for each master and slave.
A typical log file name is ph_x_y.log, where x is the name of the channel with which
the log file is associated and y is either master for an outbound call or slave for an
inbound call.

The log files are:

Dial protocol transaction log (di_x_y.trn)

This file contains a complete transcript of the most recent PhoneNet session. This log
shows the low-level protocol and is generally useful only for purposes of pinpointing
where a failure is occurring. A new version of this file is created for each session. The
TRANSCRIBE channel option can be used to disable creation and maintenance of this
log file if desired.

Dial protocol error log (di_x_y.log)

This file contains a list of all the transmission errors detected by the dial protocol (DI
routines). It should be examined and purged periodically by the system manager. This
file is appended to rather than recreated for each session. This file will be created
automatically if it does not exist.

Message log (ph_x_y.log)

This file contains a list of all the messages that have been transmitted or received. It is
useful for keeping track of the number and volume of messages handled by PhoneNet.
This file is appended to rather than recreated for each session. This file will be created
automatically if it does not exist. The LOGGING channel option can be used to disable
creation and maintenance of this log file if desired.

With the addition of a general logging facility activated by the logging channel keyword
in PMDF V3.0, this log file has become redundant. It will be removed in some future
release of PMDF. Sites that use the information logged in this file are advised to revise
their software to use the information logged in the general PMDF log file instead.

SLAVE error log (err_x.log)

This file contains any reports of errors detected during the operation of the SLAVE
program. Its contents are generally not useful. A new version of this file is created
each time SLAVE runs.

24–10

PhoneNet Channels (OpenVMS and UNIX)
Log files

Additional log files are created by the jobs that run MASTER either in response
to message queueing or for polling purposes. These files are described in detail in the
section on PMDF command files below.

24.5 Script files

Script files contain a series of commands which tell MASTER what to send to the
terminal in order to establish a connection with a remote PhoneNet slave. These files
are all located in one of the channel-specific subdirectories of the PMDF table directory,
as explained in Section 24.3.1.

Script file commands are provided to send strings to a serial device, to wait until
a specified string is received and to terminate script processing and start up the dial
protocol.

The available commands are described below. The quotedstring appearing in the
descriptions is any sequence of characters enclosed in double quotes.

xmit quotedstring

Send quotedstring to the terminal line. The sequence \x in the string causes a one-second
transmission delay at the point where it appears in the string.

recv quotedstring timeout

Wait until quotedstring is received before proceeding. Any characters leading up to
quotedstring are ignored. Script processing is terminated if the quotedstring is not
received within timeout seconds and timeout termination processing is enabled (the
default).

toff

Disable timeout termination processing on all subsequent recv commands. Any timeouts
that occur are ignored.

ton

Enable timeout termination processing on all subsequent recv commands. Any timeouts
that occur will cause program termination. This is the default unless a toff command
has been previously issued.

go

Start protocol. After the protocol finishes processing of the script file will resume after
the go command.

end

Terminate script processing. This should be the last command in every script file.

init begin
init end

The init begin and init end commands can be used to mark a sequence of script
commands as being initialization commands. Any commands appearing after a init
begin and before the next init end commands will be treated as initialization
commands.

24–11

PhoneNet Channels (OpenVMS and UNIX)
Script files

Table 24–1 lists special control sequences and their interpretation which can be used
with script files.

Table 24–1 PhoneNet Command Script Control Sequences

Sequence Interpretation

\ r carriage return (ASCII 13)
\n newline or line feed (ASCII 10)
\ f form feed (ASCII 12)
\ t tab (ASCII 9)
\ddd ASCII value ddd (in octal)
\ \ backslash character (ASCII 92)
\b break
\x delay one second (only for xmit command)

Comment lines are allowed in script files. Comment lines are any lines that have an
exclamation point, !, in column one.

All characters received and transmitted are logged in the dial protocol transaction
log.

A typical script file contains commands to initialize a modem, dial a number, make
a connection with a remote system and tell the remote the channel to use. An annotated
sample script file is shown in Example 24–4 below.

Example 24–4 Sample PhoneNet Script

! p_script.sample - Annotated script to establish dial-out connection
!
! To actually use this file as a dialing script, remove text
! enclosed in parentheses. Comment lines (those beginning with
! "!" can remain or they can be removed if desired.
!
! SECTION 1 - Tell your modem to call a number. Note that this
! section is modem-dependent. You will need to replace
! the example dialog of xmit/recv commands with the
! correct ones for your modem’s user interface.
!
init begin (begin script command which ready the device)
xmit "\r\r" (send carriage returns - get this modem’s attn)
init end (end script commands which ready the device)
recv "$" 15 (wait 15 sec. for your modem to answer (a $))
xmit "\xK" (your reply - tell it to dial a number)
recv "NUMBER" 15 (wait 15 sec. for your modem’s number prompt)
xmit "\x16175551212\r" (give number - remember 1 and area code)
recv "ON-LINE" 30 (wait 30 sec - for modems that report carrier)

Example 24–4 Cont’d on next page

24–12

PhoneNet Channels (OpenVMS and UNIX)
Script files

Example 24–4 (Cont.) Sample PhoneNet Script

!
! SECTION 2 - Log in to the remote machine (e.g., RELAY.CS.NET).
! if the remote system is also running PMDF, then the account
! to log in is the PMDF server account, usually called "PMDF"
!
xmit "\r\x\r" (send carriage returns - alert remote machine)
recv "ogin:" 30 (wait 30 sec for Login (or login) prompt)
xmit "siteacct\r" (transmit your account name to remote machine)
recv "assword:" 30 (wait for Password (or password) prompt)
xmit "mypasswd\r" (transmit password - remember carriage return)
recv "annel:" 120 (wait for Channel (or channel) prompt)
xmit "channelname\r" (transmit remote’s channel name)
go (starts the PhoneNet session)
end (hangs up and ends the script)

Additional example PhoneNet script files can be found in Section 26.4.1.4.

24.6 Backoff retries for undeliverable messages

Note: The following discussion does not apply to channels marked with either the slave or
periodic channel keywords.

As described in Section 1.4, when a message is first enqueued, an immediate message
delivery job attempts to deliver the message.3 Should that delivery attempt fail, then
the message will either be returned to the sender or retained for subsequent delivery
attempts if, respectively, the failure was permanent or temporary in nature. When the
message is retained, periodic delivery jobs will attempt to redeliver any messages which
have yet to be delivered.

For some channels, however, it can not be deemed desirable to wait for the next
periodic delivery job before another delivery attempt is made. With the BACKOFF
channel option and mapping table, it is possible to schedule an immediate message
delivery job to attempt a subsequent delivery of a message

Each entry in the BACKOFF mapping table has the format (note the use of the
vertical bar character, |)

channel|n time

where channel is the name of the channel, and where n is an integer given by the
formula

n = (number of delivery attempts so far - 1) / BACKOFF

with BACKOFF the value specified by the BACKOFF option in the channel’s option file.
time is an unsigned integer number of seconds to wait before making another delivery
attempt.

3 Unless, of course, the channel is marked slave or periodic.

24–13

PhoneNet Channels (OpenVMS and UNIX)
Backoff retries for undeliverable messages

VMS
On OpenVMS, there is an alternate format for specifying the time value. If the time

value is an unsigned integer, it will be interpreted as described above, as the number of
seconds to wait before making the next delivery attempt. Alternatively, the value can
be specified as an absolute, delta, or combination time specifying when the next delivery
attempt should be made.

When the BACKOFF option specifies a value greater than zero, then for each
message which cannot be delivered, the BACKOFF mapping table will be consulted. If
the table exists and a matching entry is found (i.e., an entry which matches the channel
name and n), then a delivery job to attempt redelivery for that message will be queued
to run at the time specified by time. If the table does not exist or no matching entry is
found, then no immediate job will be queued and the message will be retried when the
next periodic delivery job runs.4

For example, suppose that BACKOFF=5 has been specified and that the channel
name is dpd_pmdf. Then the following BACKOFF mapping table,

BACKOFF

dpd_pmdf|0 300
dpd_pmdf|1 600

or on OpenVMS the alternate specification

BACKOFF

dpd_pmdf|0 +00:05:00
dpd_pmdf|1 +00:10:00

requests that redelivery attempts should be made every 5 minutes for the first five
attempts [n=0=(1-1)/5, (2-1)/5, (3-1)/5, (4-1)/5, (5-1)/5], and every 10 minutes for the next
five attempts [n=1=(6-1)/5, ..., (10-1)/5]. All further attempts will be handled by periodic
delivery jobs.

4 Note that as long as the message is still waiting to be delivered, the periodic delivery jobs will attempt to deliver it
irrespective of any pending immediate delivery job.

24–14

25UUCP Channels (OpenVMS and UNIX)

UUCP (UNIX to UNIX Copy Program) is an asynchronous terminal line-based
system providing support for file transfer and remote execution between different
computer systems. These primitive operations are then used to construct a mail system,
which is also, confusingly, known as UUCP. Although UUCP was originally developed for
use with the UNIX operating system, versions of UUCP are available for other operating
systems, including OpenVMS.

VMS
PMDF for OpenVMS includes support for Encompass UUCP.

PMDF’s UUCP support conforms with RFC 976, ‘‘UUCP Mail Interchange Format
Standard’’, authored by Mark Horton. A copy of RFC 976 may be found in the RFC
subdirectory of the PMDF documentation directory, PMDF_DOC:[rfc] on OpenVMS or
/pmdf/doc/rfc on UNIX.

The following sections describe how to set up PMDF channels for use with UUCP.
Familiarity with the basics of UUCP networking is assumed; on OpenVMS systems,
familiarity with Encompass UUCP is also assumed.

25.1 Encompass UUCP (VMSNET) Channels for OpenVMS Systems

Encompass UUCP is available from Encompass, the HP User’s Group.

25.1.1 Setting Up the Channel

Two or more channels are needed for PMDF for OpenVMS to communicate using
Encompass UUCP. A single common channel is used for all incoming messages, no matter
from what system they originated. An additional channel is needed for each system
connected via UUCP. The incoming message channel is slave-only and should never have
any messages queued to it. The outgoing message channels are master-only.

25.1.1.1 Adding the Channel to the Configuration File

The entry for the incoming message channel should look like this (do not use a
different channel name):

vn_gateway uucp slave
vn-gateway

The official channel host name (the second line of the channel definition) is arbitrary, but
is usually specified as vn-gateway, e.g.,

25–1

UUCP Channels (OpenVMS and UNIX)
Encompass UUCP (VMSNET) Channels for OpenVMS Systems

vn_gateway uucp slave
vn-gateway

Entries for outgoing UUCP message channels will vary depending on the name of
the system to which the channel connects. For example, suppose the remote system’s
official name is YMIR.CLAREMONT.EDU and its UUCP name is simply ymir. A channel
definition for this system might be:

vn_ymir uucp master
ymir-uucp
ymir.claremont.edu ymir

In this case the name of the remote host to which the channel connects is derived
from the channel name. When a second channel connecting to the same remote host is
needed, it can be defined as follows:

vn_second uucp master daemon ymir
ymir-second
ymir.claremont.edu ymir

In this case the daemon channel keyword has been used to explicitly specify the
name of the remote system to which the channel connects.

If the official name and UUCP name are the same, ymir, the entry can be simplified:

vn_ymir uucp master
ymir

Rewrite rules should be set up to point at the proper outgoing channel using the
channel’s official host name.

25.1.1.2 Setting Up the Master Program

Once the Encompass UUCP channels have been added to the configuration file, the
UUCP master program should be ready to use. No additional log, script or option files
are needed; all such information is part of Encompass UUCP.

25.1.1.3 Setting Up the Slave Program

The uucp_slave program is used as the rmail image. The file that is named
UUCP_BIN:uuxqt_dcl.com must be edited to add an rmail command that invokes
uucp_slave. As of Encompass UUCP V1.1, the change consisted of removing all the code
between the labels DO_RMAIL: and FAILED_RMAIL: and replacing it with the following:

$ on warning then goto failed_rmail
$ pmdf_privilege_save = f$setprv("BYPASS, CMKRNL")
$ rmail = "$PMDF_EXE:uucp_slave.exe"
$ define/user SYS$INPUT ’infile’
$ rmail "’’addressee’"
$ delete ’infile’;0
$ delete ’xfile’
$ pmdf_privilege_save = f$setprv(pmdf_privilege_save)
$ goto read_loop

25–2

UUCP Channels (OpenVMS and UNIX)
Encompass UUCP (VMSNET) Channels for OpenVMS Systems

As of Encompass UUCP V2.0, you would have to change

$ rmail = "$PMDF_ROOT:[EXE]uucp_slave.exe"

To

$ rmail = "$PMDF_EXE:uucp_slave.exe"

and also add the following line to your UUCP_CFG:control. file.

UUCP_UUXQT_DCL_RMAIL_PMDF "YES"

Note: The account under which remote UUCP connections log in to your system must be
capable of reading and writing files in the PMDF queue and PMDF log directories, (i.e.,
in the directories PMDF_QUEUE: and PMDF_LOG: on OpenVMS) for proper operation.
Protections or privileges should be set to allow this access.

25.1.2 Log Files

Various log files are created during the operation of the UUCP channels. All PMDF-
specific log files are kept in the PMDF log directory, (i.e., in the directory PMDF_LOG: on
OpenVMS).

While running, the uucp_master program creates a log file, x_master.logfile
where x is the channel name. x_master.logfile logs each message as it is queued
to the UUCP system. This file is in the same format as PhoneNet log files. (See
Section 24.4.)

Operation of the uucp_slave program creates a log file called rmail.logfile.
This file is also in the same format as PhoneNet log files.

25.1.3 Returning Undelivered Messages

PMDF automatically returns undeliverable messages after a certain amount of time
has elapsed. (See Section 1.4.4.) However, Encompass UUCP maintains its own queues
for files, so it is possible for messages to get stuck in the UUCP queues where PMDF’s
regular message return job cannot see them.

Thus, an additional periodic batch job is needed to return undeliverable UUCP
messages. This batch job operates in the same way as PMDF’s regular message return job
except that it scans the UUCP queues and not the PMDF queues. This job is controlled
by the command file PMDF_COM:return_vn.com.

25–3

UUCP Channels (OpenVMS and UNIX)
Encompass UUCP (VMSNET) Channels for OpenVMS Systems

25.1.4 Starting the Message Return Batch Job

The UUCP message return job must be started manually. Log in to the account
under which this job should run (the account must have access to both the PMDF and
UUCP queue and log directories) and execute the PMDF_COM:return_vn.com command
file from the terminal. This action should run the return_uucp program (it is a good
idea to make sure it is working properly) as well as submitting the periodic batch job.

The pmdf_submit_jobs.com procedure, described in the section on post-installation
tasks in the OpenVMS edition of the PMDF Installation Guide, is capable of checking to
make sure the periodic Encompass UUCP message return job is running. To enable this
feature, make the following logical name definition:

$ DEFINE/SYSTEM PMDF_DO_RETURN_VN 1

This logical should be defined before pmdf_submit_jobs.com is run during system
startup. A convenient way to ensure that this is logical is defined when your system
reboots is to put the logical definition in a PMDF_COM:pmdf_site_startup.com file
you provide; the use of such a file for site specific definitions is adiscussed in the PMDF
Installation Guide, OpenVMS Edition.

25.1.5 Deinstalling the Encompass UUCP Mailer

Having made all necessary changes, the mailer supplied with Encompass UUCP
should be deinstalled; users will be confused as to which to use otherwise. In any case,
incoming mail will use PMDF, not the UUCP mailer. To deinstall the UUCP mailer,
edit UUCP_BIN:uucp_systartup.com to remove all references to MAIL$PROTOCOL_
* logicals, remove the line to reinstall mail.exe with privileges (this is not needed
by the PMDF interface to VMS MAIL) and remove the line that installs the image
UUCP_BIN:uucp_mailshr.

25.2 UUCP Channels for UNIX Systems

Tru64 UNIX and Solaris support the HoneyDanBer version of UUCP. Refer to the
guide Configuring Your Network Software to set up UUCP on your system.

25.2.1 Setting Up the Channel

Two or more channels are needed for PMDF on UNIX to communicate using UUCP.
A single common channel is used for all incoming messages, no matter from what system
they originated. An additional channel is needed for each system connected via UUCP.
The incoming message channel is slave-only and should never have any messages queued
to it. The outgoing message channels are master-only.

25–4

UUCP Channels (OpenVMS and UNIX)
UUCP Channels for UNIX Systems

25.2.1.1 Adding the Channel to the Configuration File

The entry for the incoming message channel should look like this (do not use a
different channel name):

uucp_gateway uucp slave
uucp-gateway

Entries for outgoing UUCP message channels will vary depending on the name of
the system to which the channel connects. For example, suppose the remote system’s
official name is YMIR.CLAREMONT.EDU and its UUCP name is simply ymir. A channel
definition for this system might be:

uucp_ymir uucp master
ymir-uucp
ymir.claremont.edu ymir

In this case the name of the remote host to which the channel connects is derived
from the channel name. When a second channel connecting to the same remote host is
needed, it can be defined as follows:

uucp_second uucp master daemon ymir
ymir-second
ymir.claremont.edu ymir

In this case the daemon channel keyword has been used to explicitly specify the
name of the remote system to which the channel connects.

If the official name and UUCP name are the same, ymir, the entry can be simplified:

uucp_ymir uucp master
ymir

Rewrite rules should be set up to point at the proper outgoing channel using the
channel’s official host name.

25.2.1.2 Setting Up the Master Program

Once the UUCP channels have been added to the configuration file, the UUCP master
program should be ready to use. No additional log, script or option files are needed.

25.2.1.3 Setting Up the Slave Program

The PMDF uucp_slave program is used to replace the rmail program on UNIX.
You should rename the original rmail program to, e.g., rmail.org, and create a symbolic
link that links rmail to /pmdf/bin/uucp_slave as follows:

cd /usr/bin
mv rmail rmail.org
ln -s /pmdf/bin/uucp_slave rmail

25–5

UUCP Channels (OpenVMS and UNIX)
UUCP Channels for UNIX Systems

25.2.2 UUCP Channel Option File

An option file may be used to control characteristics of a UUCP channel. Such an
option file must be named x_option, where x is the name of the channel, and stored in
the PMDF table directory.

25.2.2.1 Format of the Option File

Option files consist of several lines. Each line contains the setting for one option.
An option setting has the form:

option=value

value may be either a string or an integer, depending on the option’s requirements. If
the option accepts an integer value a base may be specified using notation of the form
b%v, where b is the base expressed in base 10 and v is the actual value expressed in
base b.

25.2.2.2 Available Options

UUCP channels have the following option:

COMMAND_FLAGS (string)

This option may be used to specify command flags to be passed to the uux invocation
command, e.g.,

COMMAND_FLAGS=-gC

Multiple flags may be specified, separated with spaces.

25.2.3 Log Files

Various log files are created during the operation of the UUCP channels. All PMDF-
specific log files are kept in the PMDF log directory, (i.e., in the directory /pmdf/log on
UNIX).

While running, the uucp_master program creates a log file, x_master.logfile
where x is the channel name. x_master.logfile logs each message as it is queued
to the UUCP system. This file is in the same format as PhoneNet log files. (See
Section 24.4.)

Operation of the uucp_slave program creates a log file called rmail.logfile.
This file is also in the same format as PhoneNet log files.

25–6

UUCP Channels (OpenVMS and UNIX)
UUCP Channels for UNIX Systems

25.2.4 Returning Undelivered Messages

PMDF automatically returns undeliverable messages after a certain amount of time
has elapsed. (See Section 1.4.4.) However, UUCP maintains its own queues for files,
so it is possible for messages to get stuck in the UUCP queues where PMDF’s regular
message return job cannot see them.

Thus, an additional periodic cron job is needed to return undeliverable UUCP
messages. This job operates in the same way as PMDF’s regular message return job
except that it scans the UUCP queues and not the PMDF queues. This job is scheduled
by the cron daemon.

25.2.5 Starting the Message Return cron Job

The UUCP message return job should be scheduled by cron. To submit commands
to the cron daemon, first become user pmdf:

su pmdf

To edit the crontab entries, issue the command

$ crontab -e

and use the editor thus invoked to add an entry such as the following:

30 1 * * * /pmdf/bin/return_uucp </pmdf/log/return_uucp.log-`/pmdf/bin/unique_id` 2>&1

The example entry shown above would be used to run the UUCP return job at 1:30
am and create the log file /pmdf/log/return_uucp.log-uniqueid, where uniqueid
will be a unique string disambiguifying the file name, allowing for multiple versions
of the file. The first value specifies the minutes after the hour, and the second value
specifies the hour — you may wish to specify other values according to the needs of
your site. You should use the return_uucp shell script as shown above, which itself
calls the program /pmdf/bin/return_uucp, rather than the UUCP cleanup command,
since return_uucp will honor the notices channel keyword and understand the MIME
format of the messages.

25–7

26Other Channels

This chapter contains descriptions of the following channels:

• the addressing channel (see Section 26.1) ,

• the bitbucket channel (see Section 26.2) ,

• the defragmentation channel (see Section 26.3) ,

• the pager channel (see Section 26.4) ,

• the pipe channel (see Section 26.5) ,

• the printer channel (see Section 26.6) ,

• the reprocessing and processing channels (see Section 26.7) ,

• the ‘‘generic’’ SMTP channel (see Section 26.8) , and

Note that some other miscellaneous channels can be found described in other chapters,
such as:

• the conversion channel, described in Section 22.1,

• the directory channel, described in Section 3.2,

• the filter_discard channel, described in Section 16.2.5, and

• the mailserv channel, described in Section 4.3.

26.1 Addressing Channels

The addressing channel extracts addressing information from within a message
body, constructs a To: address list from the extracted information, and then remails
the message, less the addressing information, to the constructed To: address list. Use
of such a channel is not the preferred way of handling mail but is often the only way
by which some mail systems (e.g., PROFS with its eight-by-eight naming space) can
interoperate with other mail systems and networks.

The addressing channel can be used in conjunction with the queue to e-mail symbiont
in order to allow applications, such as word processors, to ‘‘print’’ documents directly for
transmission as FAXes. This functionality even works with remote printing clients which
have access to OpenVMS print queues (e.g., Pathworks, LPD clients, etc.).

Note: If you use an option file with the addressing channel, then you must specify in the option
file all of the addressing channel commands which you will use.

26–1

Other Channels
Addressing Channels

26.1.1 Channel Operation

When the addressing channel processes a message, it scans, from top to bottom, the
body of the message for addressing information. Special commands are used to specify
addressing information. The rules used for parsing a message are:

1. The addressing information section begins when the first legal addressing command
is encountered; any portion of the message body preceding the addressing information
is discarded and not included in the subsequent message.

2. Whitespace between addressing commands is ignored; (except see rule 3, below).

3. At least one blank line must separate a printer address (block) from other addresses.

4. The addressing portion of the message is terminated with a stop or end command or
when something other than a legal addressing command is encountered; the portion
of the message body following the addressing information is the only part of the
message body to be mailed to the To: address list.

The syntax of an addressing command is as follows:

:command-name:value

where command-name is the name of the command and value is the addressing
information being specified with the command. A delimiter character other than a colon,
:, can be chosen with the DELIMITER channel option. See Section 26.1.3.2.

Command names are case insensitive and can include punctuation or spaces or both.
The default command names are

• A From: address and Subject:, Comments:, and X-PS-Qualifiers: header lines can
be specified with the From, Subject, Comments, PS Qualifiers commands. These
commands are primarily intended for use with files routed to an addressing channel
via a queue to e-mail symbiont (e.g., PostScript documents printed from a word
processor for FAXing via PMDF-FAX).1

• Regular mail addresses are specified using any of the synonymous commands To, Cc,
Bcc, e-mail, email, PMDF, or RFC822.

• Use the ‘‘delivery receipt’’ command to specify an address to which to send
delivery receipts. Delivery receipts will be requested of all recipients following this
command. Use the command ‘‘no delivery receipt’’ to suppress delivery receipts
from subsequently specified recipients. Note that report* channel keywords can
affect the interpretation of such delivery receipt requests.

• Printer addresses are built up using the commands shown in Table 26–1.

Table 26–1 Addressing Channel Printer Commands

Command name Printer channel AVPL equivalent

Recipient’s name AT
Mail stop MS
Printer domain name no equivalent AVPL item

1 If you want to disable the use of the From command, set up an option file which establishes all of the default commands
except for the From command. See Section 26.1.3.2.

26–2

Other Channels
Addressing Channels

Table 26–1 (Cont.) Addressing Channel Printer Commands

Command name Printer channel AVPL equivalent

Recipient’s organization O
Recipient’s address OU
P1–P8 P1–P8
Initialization file SETUP
Recipient’s telephone number TN
Username USERNAME

In Table 26–1, the command names are listed in the first (left) column and for each
command, the portion of a printer channel address which it represents is shown in the
second column. The addressing channel will automatically quote items of a printer
address which require quoting (e.g., the symbols /, $, and =). See Section 26.6.2 for
further information on printer channel addressing conventions.

In building up a printer address, the printer domain name (e.g., printer.example.com)
must be specified. If the DEFAULT_DOMAIN channel option has been used to
establish a default domain for use with FAX or printer addresses, then the printer
domain name can be omitted, in which case the default domain name will instead be
used.

• The addressing information can be terminated with a stop or end command, e.g.:

:stop:

The use of either of these two commands is optional in most cases. Only when
PostScript files are being routed to an addressing channel via a queue to e-mail
symbiont is their use mandatory.

26.1.2 Examples

Figure 26–1 illustrates a message which is to be addressed to

smith@vax.example.com
"Bob Jones" <jones@stateu.edu>
"/fn=621-5319/at=Mrocheck/o=Example, Inc./ou=250 South St./"@text-fax.example.com
"/tn=Beckett/o=Harvey Mudd College/ou=Academic Computing/"@printer.example.com

Figure 26–1 Addressing Channel Sample

This initial text appearing before the addressing commands
will be discarded.
!

:e-mail: smith@vax.example.com "
:e-mail: "Bob Jones" <jones@stateu.edu> #

Figure 26–1 Cont’d on next page

26–3

Other Channels
Addressing Channels

Figure 26–1 (Cont.) Addressing Channel Sample

:FAX telephone number: 621-5319 $
:Recipient’s name: Mrochek
:Recipient’s organization: Example, Inc.
:Recipient’s address: 250 South St.
:FAX gateway address: text-fax.example.com

:Recipient’s name: Beckett %
:Recipient’s organization: Harvey Mudd College
:Recipient’s address: Academic Computing
:Printer domain name: printer.example.com
:stop:

Only this text and any subsequent text will be mailed to the addressees
specified above. &

! Any portion of the message which appears before the addressing information is
discarded (i.e., will not be forwarded on with the remainer of the message).

" The first To: address, smith@vax.example.com.

The second To: address, jones@stateu.edu.

$ The third To: address which is a PMDF-FAX address. Note the required blank line
separating the FAX address block from the e-mail addresses.

% The fourth and final To: address which is a printer channel address. Note that the
preceding blank line is required.

& The portion of the message body which will be sent to the four To: addressees.

26.1.3 Setting Up the Channel

The following two sections document how to add an addressing channel to your
configuration and, if desired, how to customize the command names recognized by the
channel.

Note: More recent versions of the PMDF-MTA configuration utility automatically generate an
addressing channel in the PMDF configuration. If you have configured PMDF using a
recent version of the configuration utility and hence already have an addressing channel
in your configuration, then the steps in Section 26.1.3.1 have already been performed for
you.

26–4

Other Channels
Addressing Channels

26.1.3.1 Adding the Channel to the Configuration File

To set up an addressing channel, you must add rewrite rules and a channel block
definition to the PMDF configuration file.

The first step is to pick a domain name for the addressing channel; for example,
addressing.example.com. Mail to be processed by the channel should then be addressed
to x@addressing.example.com. The value of x is irrelevant — it is never used by the
channel and, at present, simply discarded. After selecting a domain name, add rewrite
rules for it to the top of the configuration file

addressing $U%domain-name@ADDRESSING-DAEMON
domain-name $U%domain-name@ADDRESSING-DAEMON

where domain-name is the domain name selected for the addressing channel. For
example, if the domain name selected is addressing.example.com, then the rewrite rule
would appear as

addressing.example.com $U%addressing.example.com@ADDRESSING-DAEMON

Next, add the channel block

address
ADDRESSING-DAEMON

to the end of the configuration file. Be sure to include a blank line before the first line
of the channel block.

If desired, additional addressing channels can be added. They should have names
beginning with ‘‘address_’’ and not exceed a length of 32 characters.

Note: If you are part of a TCP/IP network, then you can want to add the addressing channel’s
domain name (or names) you selected to your DNS using MX records. This will allow
other machines to route mail to the addressing channel.

26.1.3.2 Option Files

An option file can be used to alter the addressing commands recognized by the ad-
dressing channel. Option files are stored in the PMDF table directory and have names of
the form x_option, where x is the name of the channel to which the option file applies.
(In most instances, the file will be PMDF_TABLE:address_option. on OpenVMS, or
/pmdf/table/address_option on UNIX, or typically C:\pmdf\table\address_option
on NT.)

If you supply an option file, then you must define all commands which are to be
accepted. This is even the case if you are just supplying an option file to set some non-
command related parameter. This behavior is intentional; it allows commands to be
disabled.

Option files consist of several lines. Each line contains the setting for one option.
An option setting has the form:

26–5

Other Channels
Addressing Channels

option=command-name

where the valid values for option are given in Table 26–2 and command-name is a
string specifying the name of a command to establish. Synonymous commands can be
established by using the same option in the options file; e.g., EMAIL in Example 26–1.

Table 26–2 Addressing Channel Options

Option Usage

AFTER FAX address AFTER attribute

AT FAX & printer address AT attribute

AUTH FAX address AUTH attribute

COVER FAX address COVER attribute

COMMENTS RFC 822 Comments: header line

DEFAULT_DOMAIN Domain name to use when none specified for a FAX or printer address; by
default no default domain name is established

DELIMITER Single character used to delimit command names; e.g., the colon, :, in
‘‘:stop:’’

DELRCPT Address to which to send delivery receipts

DMN FAX & printer domain name

EMAIL Regular RFC 822 To: address (synonym for EMAIL_TO)

EMAIL_BCC Regular RFC 822 Bcc: address

EMAIL_CC Regular RFC 822 Cc: address

EMAIL_TO Regular RFC 822 To: address

FN FAX address FN attribute

FROM RFC 822 From: address

FSI FAX address FSI attribute

MIME_MODE Control whether the addressing channel will process commands from MIME
encoded message parts

MS Printer address MS attribute

NDELRCPT Suppress delivery receipt requests

O FAX & printer address O attribute

OU FAX & printer address OU attribute

P1–P8 Printer address P1–P8 attributes

PS_QUALIFIERS RFC 822 X-PS-Qualifiers: header line

RP_MODE Control whether the addressing channel operates in a mode compatible with
parsing MIME application/remote-printing message parts

SETUP FAX address SETUP attribute

SFN FAX address SFN attribute

STN FAX address STN attribute

STOP String to recognize as a stop or end command

SUBJECT RFC 822 Subject: header line

TN FAX & printer address TN attribute

26–6

Other Channels
Addressing Channels

Table 26–2 (Cont.) Addressing Channel Options

Option Usage

TTI FAX address TTI attribute

USERNAME Username to associate with printer channel print jobs

The example option file given in Example 26–1 establishes the default command
set used by the addressing channel. A copy of this file, address_option.sample, can
be found in the PMDF table directory, i.e., PMDF_TABLE:address_option.sample on
OpenVMS or /pmdf/table/address_option.sample on UNIX.

One of the most useful options is the DEFAULT_DOMAIN option. To prevent, for
instance, users from having to specify

:FAX gateway address: ps-fax

in messages, you can specify

DEFAULT_DOMAIN=ps-fax

in an option file. Remember that the existence of the option file clears all commands
and you must explicitly define each command in the option file. If you want to use the
default commands but specify a default domain, then simply copy the sample file, ad-
dress_option.sample, to an option file with the correct name (e.g., address_option),
and then add to that file the DEFAULT_DOMAIN setting.

26.2 Bitbucket Channel

As the name itself suggests, the bitbucket channel simply deletes any message
enqueued to it. Indeed, messages that match the bitbucket channel are instantly
deleted, without even being written to a bitbucket disk area. (In particular, note that
no PMDF_QUEUE:[bitbucket]* (OpenVMS) or /pmdf/queue/bitbucket/* (UNIX) or
C:\pmdf\queue\bitbucket* (NT) message files are created—a message is simply
discarded immediately once PMDF sees that it matches the bitbucket channel.)

26.2.1 Configuration

A bitbucket channel must be added to PMDF’s configuration file in order to be used.
The entry should have the form:

bitbucket
BITBUCKET-DAEMON

26–7

Other Channels
Bitbucket Channel

Example 26–1 Example Addressing Channel Option File

! *** If you make your own option file, then you must specify _ALL_ the
! *** addressing commands which you use!
!
DELIMITER=:
MIME_MODE=0
RP_MODE=0
EMAIL_TO=To
EMAIL_CC=Cc
EMAIL_BCC=Bcc
EMAIL_TO=e-mail
EMAIL_TO=email
EMAIL_TO=PMDF
EMAIL_TO=RFC822
COMMENTS=Comments
PS_QUALIFIERS=PS Qualifiers
AFTER=Transmit after
AT=Recipient’s name
AUTH=Authorization code
COVER=Cover page
DELRCPT=Delivery receipt
DMN=FAX gateway address
DMN=Printer domain name
FN=FAX telephone number
FROM=From
FSI=FAX modem’s telephone number
MS=Mail stop
NDELRCPT=No delivery receipt
O=Recipient’s organization
OU=Recipient’s address
P1=P1
P2=P2
P3=P3
P4=P4
P5=P5
P6=P6
P7=P7
P8=P8
SETUP=Initialization file
SFN=My FAX telephone number
STN=My telephone number
STOP=end
STOP=start
STOP=stop
SUBJECT=Subject
TN=Recipient’s telephone number
TTI=My organization
USERNAME=Username
USERNAME=User

And rewrite rules should be added for some pseudodomain name(s) which will be
used when directing messages to the bitbucket channel; for instance,

26–8

Other Channels
Bitbucket Channel

bitbucket $U%bitbucket.localhostname@BITBUCKET-DAEMON
bitbucket.localhostname $U%bitbucket.localhostname@BITBUCKET-DAEMON

where localhostname is the name of the local PMDF system.

26.3 Defragmentation Channel

The MIME standard (RFC 2046) provides the message/partial content type for
breaking up messages into smaller parts. This is useful when messages have to traverse
networks with size limits. Information is included in each part so that the message can
be automatically reassembled once it arrives at its destination.

The defragment channel keyword and the defragmentation channel provide the
means to reassemble messages in PMDF. When a channel is marked defragment any
message/partial messages queued to the channel will be placed in the defragmentation
channel queue instead. The defragmentation channel maintains a database which is
used to match the parts of each message up with each other. Once all the parts have
arrived the message is rebuilt and sent on its way.

All channels that perform local delivery or send messages on to networks that
cannot deal with fragmented messages should be marked with the defragment channel
keyword. The defragment channel keyword will have no effect unless a defragmentation
channel is also defined.

A defragmentation channel is produced automatically by the PMDF configuration
generator.

26.3.1 Defragmentation Channel Definition and Rewrite Rules

If your configuration was generated by the PMDF configuration utility2 (PMDF V4.1
or later), then you do not need to add a defragmentation channel to your configuration:
this was done automatically for you by the configuration utility. See the appropriate
edition of the PMDF Installation Guide for instructions on using the configuration utility.

The first step in installing a defragmentation channel is to insert the channel entry
in PMDF’s configuration file. The entry should have the form:

defragment
DEFRAGMENT-DAEMON

Rewrite rules can be added if desired to make it possible to queue mail explicitly to
the defragmentation channel. To do this, add the rewrite rules

2 The web based configuration utility, or the command line utility pmdf configure (UNIX) or PMDF CONFIGURE
(OpenVMS) or in older versions of PMDF for OpenVMS, one of the command procedures configure.com or
access_configure.com

26–9

Other Channels
Defragmentation Channel

defragment $U@defragment.localhostname@DEFRAGMENT-DAEMON
defragment.localhostname $U@defragment.localhostname@DEFRAGMENT-DAEMON

where localhostname should be replaced by the name of the local host. Once this is
done, an address of the form

user%host@defragment.localhostname

will be routed through the defragmentation channel. (Sending anything other than a
message/partial message to the defragmentation channel causes the channel to simply
requeue the message for normal delivery.)

26.3.2 Defragmentation Channel Retention Time

Messages are retained in the defragment channel queue only for a limited time.
When one half of the time before the first nondelivery notice is sent has elapsed, the
various parts of a message will be sent on without being reassembled. This choice of
time value eliminates the possibility of a nondelivery notification being sent about a
message in the defragment channel queue.

The notices channel keyword controls the amount of time that can elapse before
nondelivery notifications are sent, and hence also controls the amount of time messages
are retained before being sent on in pieces. Set the notices keyword value to twice the
amount of time you want to retain messages for possible defragmentation. For example,
a notices value of 4 would cause retention of message fragments for two days:

defragment notices 4
DEFRAGMENT-DAEMON

26.4 Pager Channels

Pager channels can be used to route e-mail messages to remote paging switches
for transmission to alpha-numeric page receivers. The pager channel will operate with
paging switches which use the TAP dialup protocol (Telelocator Alphanumeric input
Protocol; referred to as IXO). A dialup modem is used to communicate with remote paging
switches.

As necessary, the pager channel will automatically fragment large messages into
multiple pages so that no one page will exceed paging switch and page receiver size
limits.3 The pager channel can also generate status reports and delivery acknowledge-
ments.

TAP is primarily supported in North America. It is, however, finding a foot hold in
other countries. For instance, the PMDF pager channel is reported to work in Ireland
where TAP is also used. A subset of TAP, called PET (Pager Entry Terminal), is supported
in Australia and New Zealand. In Australia, The University of Melbourne has obtained
certification from Telecom Australia for the use of PMDF’s pager channels with Telecom

3 This fragmentation mechanism is, by necessity, separate from PMDF’s general message fragmentation facilities.

26–10

Other Channels
Pager Channels

Australia PET switches. See Section 26.4.1.6 for important directions on configuring
pager channels for use with PET switches.

26.4.1 Setting Up the Channel

There are four steps in setting up a pager channel: (1) adding the necessary
channel blocks and rewrite rules to the PMDF configuration file, (2) setting up a PAGER
mapping table, (3) setting up a modem script, and (4) setting up a channel option file,
if necessary. A fifth and optional step is to set up a directory channel. With a directory
channel, pager addressing can be simplified. For instance, rather then sending mail to
/id=1234/msglen=200/@mci.pager.example.com, addresses like andy@pager.example.com
can be used. This obviates, from the user’s perspective, the need to remember pager
numbers everytime a page is to be sent.

26.4.1.1 Before You Start

Before you begin setting up a pager channel, you should try to obtain the following
information from your paging service provider:

1. The phone numbers, preferably local, for each dial-up paging switch you plan to use.
Attempting to obtain these numbers can be quite frustrating: if you do not use the
proper terminology, the customer service representatives will not know what you are
talking about. Unfortunately, every service provider seems to have their own, unique
terminology.

You are asking for the phone number of an auto-answer, asynchronous modem. When
you dial it, you should hear a modem tone. Some possible ways of inquiring after
this number include:

a. Ask for the telephone number for ‘‘alpha-numeric paging’’.

b. Ask, ‘‘If I had a Motorola AlphaMate, what telephone number would I use?’’ An
AlphaMate is an intelligent terminal with an internal modem that some paging
companies will provide for you to send alpha-numeric pages.

c. Ask for the ‘‘paging modem telephone number’’.

If none of this works, ask to talk to a technician and repeat the questions.

2. The dialup modem characteristics (baud rate, etc.). It is very unlikely that your
paging provider will be able to tell you this information, but if you like hitting your
head up against a brick wall you can try asking them anyhow. We have not found
any paging switches that will not accept 300 baud, even parity, with 7 data bits. We
have seen paging switches which will handle 1200 and 2400 baud. We have also seen
paging switches which will accept ‘‘no parity’’ even though they send even parity. We
have also heard of paging switches which will claim to connect at, say 1200 or 2400
baud, but will nonetheless transmit at 300 baud.

3. The maximum number of bytes per page accepted by the switch. Do not confuse this
limit with that imposed by a page receiver. The limit imposed by the switch is handled

26–11

Other Channels
Pager Channels

through the MAX_PAGE_SIZE channel option; the limit imposed by individual pager
units is controlled on a per address basis with the PAGLEN address attribute.

If the paging provider seems unsure of this, or if your longer pages don’t work, you
will have to determine this value experimentally. You can find that you have to limit
your pages to a few bytes less than what the provider thinks the maximum is.

Note that this information can generally be determined by trial-and-error: enable
master_debug for the pager channel and send some messages of varying length. Then
look in the file pager_name_master.log (where name is the specific part of the name of
a pager channel) in the PMDF log file directory and see if the switch rejects the page.4 If
it does reject pages, then the values set with the MAX_PAGE_SIZE or MAX_BLOCKS_
PER_PAGE channel options can need to be reduced. Many switches only accept single
pages of lengths less than 200±100 bytes. The pager channel will automatically break
messages which exceed MAX_PAGE_SIZE into multiple pages, each page requiring no
more than MAX_BLOCKS_PER_PAGE data blocks.

26.4.1.2 Adding the Channel to the Configuration File

First choose domain names (i.e., host names) to associate with each paging switch
you intend to use. These domain names will be used when addressing a message to a
particular paging switch. For instance, suppose the local domain is EXAMPLE.COM
and mail is to be routed to one of two paging switches operated by Pacific Telephone
and MCI. Then appropriate domain names might be pactel.pager.example.com and
mci.pager.example.com.

After choosing domain names, domain-name-1, domain-name-2, ..., add to the
PMDF configuration file channel block entries of the form

pager_x1
domain-name-1

pager_x2
domain-name-2

.

.

.

Here x1, x2, ... are unique strings, each less than 26 characters in length, which serve to
uniquely identify each instance of a pager channel. Be sure to leave a blank line before
and after each channel block you add to your configuration file.

Continuing with our example from above, the channel blocks might appear as

pager_pactel
pactel.pager.example.com

pager_mci
mci.pager.example.com

4 Read Section 26.4.1.7 before beginning any trials. Note especially that some switches merely time out when presented
with too long of a page!

26–12

Other Channels
Pager Channels

After adding the channel block, go to the top of the configuration file and add rewrite
rules of the form:

domain-name-1 $U@domain-name-1
domain-name-2 $U@domain-name-2
.
.
.

For instance, in the context of our example, the following rewrite rules should be added

pactel.pager.example.com $U@pactel.pager.example.com
mci.pager.example.com $U@mci.pager.example.com

Note: If you are part of a TCP/IP network, then you can want to add the pager domain names
you selected to your DNS using MX records. This will allow other machines to route mail
to your pager channels.

26.4.1.3 PAGER Mapping

The next step in setting up one or more pager channels is to add a mapping table
named PAGER to the mapping file. This table serves three purposes: it specifies which
message header lines to include in a page, how to abbreviate those header lines, and
how to abbreviate the body of a message (i.e., remove superfluous spaces, abbreviate
words, etc.). Some familiarity with the use of the mapping file is helpful at this point;
see Chapter 5.

The name of the mapping table should either be PAGER or PAGER_x where x is the
name of the pager channel (e.g., PAGER_pager_pactel or PAGER_pager_mci). Each time
a pager channel runs, it will first attempt to load the mapping table PAGER_x or, if that
fails, it will then attempt to load the table PAGER. If neither table can be loaded, then
the entire message will be sent in its entirety.5

Two types of entries can be made in the mapping table. However, before explaining
the format of those entries, let it be made clear that an understanding of how to use the
mapping file is essential in order to understand how to construct and use these entries.
A sample mapping table is given after the description of these two types of entries. This
sample table, which exists as the file pager_table.sample in the PMDF table directory,
will probably meet most site’s initial needs and can simply be included into the mapping
file as follows: (a) copy the file to pager_table.txt, (b) set this new file to be world
readable, and (c) include a file reference to it in the PMDF mapping file.6 That is, to the
PMDF mapping file add an entry such as on OpenVMS

<PMDF_TABLE:pager_table.txt

or on UNIX

5 It will, however, be truncated if its length exceeds the MAX_MESSAGE_SIZE or MAX_PAGES_PER_MESSAGE
parameters or any sizes specified with either the MSGLEN or MAXPAG address attributes.

6 The mapping file is the file pointed at by the PMDF_MAPPING_FILE logical on OpenVMS, or PMDF tailor file option
on UNIX, or Registry entry on NT, so usually PMDF_TABLE:mappings. or /pmdf/table/mappings or
C:\pmdf\table\mappings, respectively. If this file does not already exist, then create it now. This file must be
world readable. If you have a compiled configuration, then you must recompile and re-install your configuration so that
this file, and changes to it, will be seen and used by PMDF. See Chapter 5 for complete details on the mapping file.

26–13

Other Channels
Pager Channels

</pmdf/table/pager_table.txt

or on NT

<C:\pmdf\table\pager_table.txt

Now, the two types of entries are as follows:

1. Message header entries. These entries specify which message header lines should be
included in a page and how they should be abbreviated or otherwise mapped. Only
if a header line is successfully mapped to a string of non-zero length by one of these
entries will it be included in the page being generated. Each entry has the format

H|pattern replacement-text

If a message header line matches the pattern pattern then it will be replaced with
the replacement text replacement-text using the mapping file’s pattern matching
and string substitution facilities. The final result of mapping the header line will
then be included in the page provided that the metacharacter $Y was specified in the
replacement text. If a header line does not match any pattern string, if it maps to a
string of length zero, or if the $Y metacharacter is not specified in the replacement
text, then the header line will be omitted from the page.

The two entries

H|From:* F:0Y
H|Subject:* S:0Y

cause the From: and Subject: header lines to be included in pages with ‘‘From:’’ and
‘‘Subject:’’ abbreviated as ‘‘F:’’ and ‘‘S:’’. The entries:

H|Date:* H|D:0R$Y
H|D:*,*%19%%*:*:* H|D:0 $5:$6RY

cause the Date: header line to be accepted and mapped such that, for instance, the
header line ‘‘Date: Wed, 15 Dec 2012 16:13:27 -0700 (PDT)’’ will be converted to ‘‘D:
Wed 16:13’’.

Very complicated, iterative mappings can be built. Managers who want to set up
custom filters will first need to understand how the mapping file works. The ‘‘H | ’’
in the right-hand-side of the entry can be omitted, if desired. The ‘‘H | ’’ is allowed in
that side so as to cut down on the number of table entries required by sets of iterative
mappings.

2. Message body mappings. These entries establish mappings to be applied to each line
of the message body. Each line of the message body will be passed through these
mappings before being incorporated into the page being built. These entries take the
form:

B|pattern B|replacement-text

If a line of the message body matches a pattern pattern then it will be replaced
with the replacement text replacement-text.

Again, very complicated, iterative mappings can be constructed using this facility.
The ‘‘B | ’’ in the right-hand-side of the entry can be omitted, if desired.

26–14

Other Channels
Pager Channels

The file pager_table.sample from the PMDF table directory is shown in Exam-
ple 26–2. The entries in this example are explained below.

! These two entries cause From: and Subject: header lines to be included in a page.
From: and ‘‘Subject:’’ are abbreviated as, respectively, F: and S:. Some of the other
entries can have further effects on From: and Subject: header lines.

" This entry will reduce a From: header line containing a <...> pattern to only the
text within the angle brackets. E.g., ‘‘F: "John C. Doe" <jdoe@example.com>
(Johnny)’’ will be replaced with ‘‘F: jdoe@example.com’’.

This entry will remove, inclusively, everything inside of a (...) pattern in a From:
header line. E.g., ‘‘F: "John C. Doe" <jdoe@example.com> (Johnny)’’ will be
replaced with ‘‘F: "John C. Doe" <jdoe@example.com>’’.

$ This entry will remove, inclusively, everything inside of a "..." pattern in a From:
header line. E.g., ‘‘F: "John C. Doe" <jdoe@example.com> (Johnny)’’ will be
replaced with ‘‘F: <jdoe@example.com> (Johnny)’’.

% This entry will remove, inclusively, everything to the right of an at-sign, @, in a
From: header line. E.g., ‘‘F: "John C. Doe" <jdoe@example.com> (Johnny)’’ will
be replaced with ‘‘F: "John C. Doe" <jdoe’’.

& These four entries remove leading and trailing spaces from lines in the message
header and body.

' These two entries reduce two spaces to a single space in lines of the message header
and body.

(These four entries reduce double dashes, periods, exclamation points, and question
marks to single occurrences of the matching character. Again, this helps save bytes
in a page.

Example 26–2 Sample PAGER Mapping Table

PAGER

H|From:* H|F:0R$Y !
H|Subject:* H|S:0R$Y !
H|F:*<*>* H|F:1R$Y "
H|F:*(*)* H|F:$0$2RY #
H|F:*"*"* H|F:$0$2RY $
H|F:*@* H|F:0R$Y %
H|%:$ * H|$0:$1RY &
H|%:*$ H|$0:$1RY &
H|%:*$ $ * H|$0:$1$ 2R$Y '

26–15

Other Channels
Pager Channels

B|*--* B|$0-$1$R (
B|*..* B|$0.$1$R (
B|*!!* B|$0!$1$R (
B|*??* B|$0?$1$R (
B|*$ $ * B|0 1R '
B|$ * B|0R &
B|*$ B|0R &

In Example 26–2, the metacharacter $R is used to implement and control iterative
application of the mappings. By iterating on these mappings, powerful filtering is
achieved. For instance, the simple mappings to remove a single leading or trailing space
(&) or reduce two spaces to a single space (') become, when taken as a whole, a filter
which strips all leading and trailing spaces and reduces all consecutive multiple spaces
to a single space. Such filtering helps reduce the size of each page.

The order of the entries is very important. For instance, with the given ordering,
the body of the message From: header line

From: "John C. Doe" <jdoe@example.com> (Naples)

will be reduced to
jdoe

The steps taken to arrive at this are as follows:

1. We begin with the From: header line
From: "John C. Doe" <jdoe@example.com> (Naples)

The pattern in the first mapping entry matches this and produces the result
F: "John C. Doe" <jdoe@example.com> (Naples)

The $R metacharacter in the result string causes the result string to be remapped.

2. The mapping " is applied to the result string of the last step. This produces:
F: jdoe@example.com

The $R in the mapping causes the entire set of mappings to be re-applied to the
result of this step.

3. Next, the mapping % is applied producing
F: jdoe

The $R in the mapping causes the entire set of mappings to be re-applied to the
result of this step.

4. Next, the mapping & is applied producing
F:jdoe

The $R in the mapping causes the entire set of mappings to be re-applied to the
result of this step.

5. Since no other entries match, the final result string
F:jdoe

is incorporated into the page.

26–16

Other Channels
Pager Channels

Note that the PMDF TEST/MAPPING utility (OpenVMS) or pmdf test -mapping
utility (UNIX and NT) can be used to test the PAGER mapping table. For instance, on
OpenVMS:

$ PMDF TEST/MAPPING/NOIMAGE_FILE/MAPPING_FILE=PMDF_TABLE:pager_table.sample
Enter table name: PAGER
Input string: H|From: "John C. Doe" <jdoe@example.com> (Naples)
Output string: H|F:jdoe
Output flags: [0,1,2,89]
Input string: ^Z
$

Or on UNIX:

pmdf test -mapping -noimage_file -mapping_file=/pmdf/table/pager_table.sample
Enter table name: PAGER
Input string: H|From: "John C. Doe" <jdoe@example.com> (Naples)
Output string: H|F:jdoe
Output flags: [0,1,2,89]
Input string: ^D
#

Or on NT:

C:\> pmdf test -mapping -noimage_file
-mapping_file=C:\pmdf\table\pager_table.sample
Enter table name: PAGER
Input string: H|From: "John C. Doe" <jdoe@example.com> (Naples)
Output string: H|F:jdoe
Output flags: [0,1,2,89]
Input string: ^C
C:\>

See Chapter 29 and Chapter 30 for information on using these utilities.

26.4.1.4 Modem Script

To handle the dialout modems used to call paging switches, the pager channel
uses PhoneNet’s modem handling facilities. Specifically, the pager channel uses the
phone_list.dat file, described in Section 24.3, and modem script files, described in
Section 24.5.

Before writing a modem script, you should manually dial the paging switch with
the modem you intend to use. Record the modem commands required to dial the switch
and the modem responses generated in the process. These commands and responses will
then form the basis for your modem script.

On all platforms, the modem and serial line must be 8 bits, no parity.

For each pager channel, a separate script file is required, stored in a required
subdirectory of the PMDF table directory. Each such script file must have a name of
the form

pmdf_root:[table.channel]script_script. (OpenVMS) or
/pmdf/table/channel/script_script (UNIX) or
C:\pmdf\table\channel\script_script on NT

where channel is the name of the pager channel and script is the script option specified
in the phone_list.dat file.

26–17

Other Channels
Pager Channels

Suppose that two pager channels, pager_pactel and pager_mci, are to be set up.
Then a phone_list.dat file in the PMDF table directory and two script files need to
be set up. A sample OpenVMS phone_list.dat file is shown in Example 26–3, and an
analogous sample UNIX phone_list.dat file is shown in Example 26–4.

Example 26–3 Example OpenVMS phone_list.dat File for Two Pager Channels

pager_pactel ! TTA3: " hayes #

pager_pactel ! TTA3: hayes
pager_mci $ TTA3: hayes
pager_mci $ TTA3: hayes

Example 26–4 Example UNIX phone_list.dat File for Two Pager Channels

pager_pactel ! /dev/ttyd0 " hayes #

pager_pactel ! /dev/ttyd0 hayes
pager_mci $ /dev/ttyd0 hayes
pager_mci $ /dev/ttyd0 hayes

In these examples, the following items should be noted:

! Two identical entries (methods) are provided for the pager_pactel channel. If the
first method fails, then the second method will be attempted. By providing two
identical methods, we ensure that if, for some reason, the first call fails (busy signal,
no answer) a second attempt will immediately be made.

" The same terminal line, (TTA3: on OpenVMS or /dev/ttyd0 on UNIX), is used by
all methods listed. The dialup modem is connected to this terminal line.

The same script prefix name is used by each method. However, two script files, are
required. Both are named hayes_script, but one is stored in the pager_pactel
subdirectory and the other in the pager_mci subdirectory of the PMDF table
directory.

$ Two identical entries (methods) are provided for the pager_mci channel.

The sample OpenVMS phone_list.dat file shown in Example 26–3 calls for two
script files,

pmdf_root:[table.pager_pactel]hayes_script., and
pmdf_root:[table.pager_mci]hayes_script.

The sample UNIX phone_list.dat file shown in Example 26–4 calls for two script
files,

/pmdf/table/pager_pactel/hayes_script, and
/pmdf/table/pager_mci/hayes_script.

26–18

Other Channels
Pager Channels

When the same modem is used for each pager channel, as in Example 26–3 and
Example 26–4, the only difference between the individual script files is usually just the
phone number to be dialed for each paging switch. A sample script file intended for a
Hayes compatible modems is shown in Example 26–5. (A sample script for Racal-Vadic
212a modems is given in Example 26–6.) Nearly all of the script commands shown are
modem specific. In writing your own script file, a knowledge of your modem’s command
language as well as the responses to expect from the modem is essential.

Example 26–5 Example Hayes-compatible Modem Script

init begin !
xmit "ATV1&M0&N1\r" "
recv "OK" 10 #
init end $
xmit "\xATDT99500572\r" %
recv "CONNECT" 30 &
xmit "\x\r\x" '
go (
xmit "\xATHZ\r")
end

The following notes apply to Example 26–5.

! Begin modem initialization.

" Issue ‘‘verbal’’ response codes rather than numeric response codes (V1); turn off MNP
negotiations (&M0); and tell the modem to negotiate a 300 baud connection (&N1).
Your modem might not understand MNP and thus lack the &M0 command. Or, it
might use some command other than &M0 to disable MNP negotiations.

Wait up to 10 seconds for the response ‘‘OK’’.

$ End modem initialization.

% Pause one second and then dial the paging switch.

& Wait up to 30 seconds for the response ‘‘CONNECT’’.

' Pause one second and then send a carriage return. With some paging switches you
can need to omit this xmit command.

(Connection has been made; allow the pager channel to take over.

) Pager channel is done; force the modem to hangup (H) and then reset the modem
(Z).

The following notes apply to Example 26–6.

! Start of the modem initialization section of the script.

" Transmit a control-E followed by a carriage return.

Wait up to 10 seconds for the response ‘‘*’’.

$ End of the modem initialization section of the script.

% Pause one second and then issue the modem’s dial command.

26–19

Other Channels
Pager Channels

& Wait up to 10 seconds for the response ‘‘UMBER?’’.

' Pause one second, specify that the modem should establish a 300 baud connection,
and then specify the number to be dialed (625-6149).

(Wait up to 10 seconds for the modem to echo the phone number to be dialed.

) Pause one second and then transmit a carriage return. After the return is received
by the modem, the modem will dial the number.

+> Wait up to 30 seconds for the response ‘‘N LINE’’.

+? Connection has been made; allow the pager channel to take over.

Example 26–6 Example Racal-Vadic 212a Modem Script

init begin !
xmit "\005\r" "
recv "*" 10 #
init end $
xmit "\xD\r" %
recv "UMBER?" 10 &
xmit "\x9k6256149\r" '
recv "6149" 10 (
xmit "\x\r")
recv "N LINE" 30 +>
go +?
end

The following is a fine technical point — don’t worry if you don’t understand this the
first time.

VMS
Normally, when the script processing fails, (e.g., a recv command times out), the

next method, if any, in the phone_list.dat file is attempted. However, this defeats the
use of modem pools on OpenVMS:7 for instance, if the initialization of the first device in
the pool fails then rather than try any other devices in the pool, the next method will
be tried. However, should the script fail because of a post initialization problem (e.g.,
the dialed number was busy), then attempting the next method rather than the next
device in the modem pool is the proper behavior. The init begin and init end script
commands should be used in conjunction with modem pools: they mark one or more
sections of the script file as being modem initialization steps. Should the script fail while
processing a command in a script section delimited by init begin and init end , then
the pager channel will first try any other devices in the search list. Only after that list
of devices has been exhausted, will the next method from the phone_list.dat file be
tried. Failures which occur in commands outside of an initialization section will result
in the next method being tried.

7 When a modem pool is used on OpenVMS, the device name given by a method in the phone_list.dat file is a logical
which translates to a list of device names; e.g.,

$ DEFINE/SYSTEM MODEMS LTA1:,LTA2:,TXA6:,LTA133:

26–20

Other Channels
Pager Channels

26.4.1.5 Option Files

A great number of options can be set with an option file. Option files are used to
set run-time options on a per channel basis. Option files are stored in the PMDF table
directory and have names of the form x_option, where x is the name of the pager
channel to which the option file applies, i.e., PMDF_TABLE:x_option. on OpenVMS, or
/pmdf/table/x_option on UNIX, or C:\pmdf\table\x_option on NT.

Option files consist of several lines. Each line contains the setting for one option.
An option setting has the form:

option=value

value can be either a string or an integer, depending on the option’s requirements. If
the option accepts an integer value, value, a base can be specified using notation of the
form b%v, where b is the base expressed in base 10 and v is the actual value expressed
in base b.

Comments are allowed. Any line that begins with an exclamation point, !, is
considered to be a comment and is ignored. Blank lines are also ignored in any option
file.

The available options are:

ACK_SUCCESS (0 or 1)

When the ACKNOWLEDGEMENT option specifies a value greater than zero, both status
reports and a final delivery report (success or failure) will be generated. By specifying
ACK_SUCCESS=0, any final success delivery report will be suppressed (not sent); the
originator of the page will then only receive status reports and any final error report.
This option is ignored when ACKNOWLEDGEMENT specifies a value less than unity. To
suppress all status reports and success delivery reports (i.e., only send a message when
an error occurs), simply specify ACKNOWLEDGEMENT=-1.

ACKNOWLEDGEMENT (integer)

By default, delivery acknowledgements are not generated (ACKNOWLEDGEMENT=-1).
However, when this option specifies an integer value greater than or equal to zero, then
a delivery acknowledgement will be sent to the message originator after a page has been
successfully transmitted to the paging switch provided that either NOTARY was not used
to submit or relay the message to PMDF, or, if NOTARY was used, that delivery reports
(DSNs) were requested.

Acknowledgements are preferentially sent to the delivery receipt address specified by
a Delivery-receipt-to: header line. If no such header line is specified, then the address
specified by a Reply-to: header line is used. Finally, if no Reply-to: header line is present,
then the envelope From: address is used. If the originating message specifies a delivery
receipt address of <>, then no acknowledgement will be generated. If USE_REPLY_TO=0
has been specified in the option file, then the Reply-to address will never be used.

If set to a positive integer n >= 1 then status reports are sent every nth unsuccessful
transmission attempt starting with the first attempt; i.e., on attempts 1, 1+n, 1+2n, 1+3n,
.... For instance, if ACKNOWLEDGEMENT=1 then a status report will be sent every at-
tempt until the message is successfully sent, and then, when the message is successfully
sent, an acknowledgement will be sent. If, however, ACKNOWLEDGEMENT=5 then

26–21

Other Channels
Pager Channels

status reports will be sent on attempts 1, 6, 11, 16, etc. until the message is successfully
delivered or returned. When it is delivered or returned, an acknowledgement is sent.

Set ACKNOWLEDGEMENT=0 if you only want acknowledgements sent when the
message is successfully transmitted; set ACKNOWLEDGMENT=-1 if you want no
acknowledgements or status reports sent.

See also ACK_SUCCESS.

BACKOFF (integer >= 0)

When BACKOFF specifies an integer greater than zero, backoff retries will be attempted
for messages which could not be delivered immediately. See Section 26.4.1.8 for details.
By default, BACKOFF=0.

BLOCK_ACK_TIMEOUT (integer > 0)

This option specifies how long to wait after transmitting a data block to the paging
switch for an acknowledgement. The default value is 30 seconds. If no acknowledgement
is received within BLOCK_ACK_TIMEOUT seconds after transmitting a block, then the
page will be aborted and requeued for a subsequent delivery attempt. See the description
of the BLOCK_TX_RETRIES option for further details on the use of this option.

BLOCK_TX_RETRIES (integer > 0)

After a data block is transmitted to the paging switch, the pager channel waits up to
BLOCK_ACK_TIMEOUT seconds for an acknowledgement. If no acknowledgement is
received within BLOCK_ACK_TIMEOUT seconds, then the page will be aborted and
requeued for a subsequent delivery attempt. If a negative acknowledgement is received,
then the pager channel will retransmit the data. Up to BLOCK_TX_RETRIES attempts
will be made to send a data block. The page will be aborted and requeued for a subsequent
delivery attempt when any one data block cannot be successfully transmitted after
BLOCK_TX_RETRIES attempts (negative acknowledgements) or if the channel times
out while waiting for an acknowledgement (no acknowledgement). The default value for
BLOCK_TX_RETRIES is 7.

HEADER_STOP (character string)

This option specifies a character string to use as a delimiter between the message header
lines and the message body. By default, the string ‘‘M:’’ is used.

ID_RX_RETRIES (integer > 0)

This option specifies the number of times the pager channel will attempt to obtain
an ‘‘ID=’’ response from the paging switch. If an ‘‘ID=’’ is not received after ID_RX_
TIMEOUT seconds, then the pager channel will transmit a carriage return to the switch
and resume waiting for an ‘‘ID=’’ response. By default, the pager channel will try up to
4 times to obtain an ‘‘ID=’’ response. This default value can be changed with this option.

If an ‘‘ID=’’ response is not received after ID_RX_RETRIES attempts, then the page will
be aborted and requeued for a subsequent delivery attempt.

ID_RX_TIMEOUT (integer > 0)

This option specifies the number of seconds to wait for an ‘‘ID=’’ response from the paging
switch before timing out. The default value is 5 seconds. See the description of the ID_
RX_RETRIES option for further details.

LINE_STOP (character string)

This option specifies a character string to use as a delimiter between each line of the
filtered message. By default, a single space is inserted between each line.

26–22

Other Channels
Pager Channels

LOGIN_RETRIES (integer > 0)

This option specifies the number of times the pager channel will attempt to log into
a paging switch. After transmitting the password in response to an ‘‘ID=’’ received
from the switch, the pager channel will wait up to LOGIN_ACK_TIMEOUT seconds for
an acknowledgement. If no acknowledgement is received, then the pager channel will
resume waiting again. If a negative acknowledgement or ‘‘ID=’’ response is received, then
the password will be retransmitted and the channel will resume waiting for a response.
If after going through this process LOGIN_RETRIES times and a successful login has
not been established, the page will be aborted and requeued for a subsequent delivery
attempt. In no case will the channel ever wait more than an accumulated LOGIN_
RETRIES * LOGIN_ACK_TIMEOUT seconds.

By default, a value of 4 is used for LOGIN_RETRIES.

LOGIN_ACK_TIMEOUT (integer > 0)

This option specifies the number of seconds to wait for a login acknowledgement from
the paging switch before timing out. The default value is 5 seconds. See the description
of the LOGIN_ACK_RETRIES option for further details.

LOGOUT_RETRIES (integer > 0)

This option specifies the number of times the pager channel will attempt to log off from a
paging switch. After transmitting the logout command, the pager channel will wait up to
LOGOUT_ACK_TIMEOUT seconds for an acknowledgement. If no acknowledgement is
received, then the pager channel will merely close its connection to the paging switch and
consider the pages to not have been sent.9 If a negative acknowledgement is received,
then the page was rejected. This is treated as a permanent error and the channel will
return the message to the originator. If an unrecognized response is received, then
the channel will resume waiting for a response. If, after waiting LOGOUT_RETRIES
times only unrecognized responses have been received, the channel will merely close its
connection and consider the pages to have been sent successfully. In no case will the
channel ever wait more than an accumulated LOGOUT_RETRIES * LOGOUT_ACK_
TIMEOUT seconds.

By default, a value of 4 is used for LOGOUT_RETRIES.

LOGOUT_ACK_TIMEOUT (integer > 0)

This option specifies the number of seconds to wait for a logout acknowledgement from
the paging switch before timing out. The default value is 5 seconds. See the description
of the LOGOUT_ACK_RETRIES option for further details.

MAX_BLOCKS_PER_PAGE (integer)

Some paging switches impose a limit on the number of data blocks per page. The two
typical cases are either no limit on the number of blocks per page (MAX_BLOCKS_PER_
PAGE=-1) or at most one block per page (MAX_BLOCKS_PER_PAGE=1). When a limit
is imposed, each message will be broken into the requisite number of pages, no one page
requiring more than MAX_BLOCKS_PER_PAGE data blocks to transmit.

No limit will be imposed when MAX_BLOCKS_PER_PAGE specifies a negative value.
This is the default case, MAX_BLOCKS_PER_PAGE=-1.

This option and the MAX_PAGE_SIZE option are the two most important options used
by the pager channel. They are also the most likely to vary from switch to switch. If the

9 It’s important to note that the logout response is the critical response from the paging switch which tells whether or not
the pages were actually accepted. As such, the lack of a logout response cannot be treated as a success since to do so can
result in lost pages.

26–23

Other Channels
Pager Channels

proper values are not used, the paging switch will reject the pages presented to it.

MAX_DELIVERY_ATTEMPTS (integer > 0)

The MAX_DELIVERY_ATTEMPTS option controls the maximum number of delivery
attempts to be made for a message. The default value is 15. If this option is set to 0, then
no upper limit is imposed and PMDF’s normal message return system will eventually
return undeliverable messages. If a value is specified, then after delivery of the message
has been tried MAX_DELIVERY_ATTEMPTS times, no further attempts will be made;
the message will be immediately returned to the sender.

MAX_MESSAGE_SIZE (integer)

Messages which exceed, after filtering with the PAGER table mappings, a size of MAX_
MESSAGE_SIZE bytes will be truncated to MAX_MESSAGE_SIZE bytes. The extra
bytes are discarded. If MAX_MESSAGE_SIZE specifies a negative value, then no size
limit will be imposed. This is the default setting, MAX_MESSAGE_SIZE=-1.

This option can be overridden on a per address basis with the MSGLEN address attribute.

MAX_PAGE_SIZE (integer)

Messages which exceed, after filtering with the PAGER table mappings, a size of MAX_
PAGE_SIZE bytes will be split into multiple pages, no one page exceeding a byte count
of MAX_PAGE_SIZE or requiring more than MAX_BLOCKS_PER_PAGE data blocks. If
MAX_PAGE_SIZE specifies a negative value, then no size limit will be imposed. This is
the default setting, MAX_PAGE_SIZE=-1.

This option can be overridden on a per address basis with the PAGLEN address attribute.

This option and the MAX_BLOCKS_PER_PAGE option are the two most critical options
used by the pager channel. If the proper values are not used, the paging switch will
reject the pages presented to it.

MAX_PAGES_PER_MESSAGE (integer)

Messages which require, after filtering with the PAGER table mappings, more pages
than MAX_PAGES_PER_MESSAGE to transmit will be truncated to MAX_PAGES_PER_
MESSAGE pages. The remaining pages are discarded. If MAX_PAGES_PER_MESSAGE
specifies a negative value, then no pages will be discarded. This is the default setting,
MAX_PAGES_PER_MESSAGE=-1.

This option can be overridden on a per address basis with the MAXPAG address attribute.

PAGES_PER_CALL (integer)

This option specifies the maximum number of pages to be sent per phone call (dialup
session) to the paging switch. When a message is broken into more pages than PAGES_
PER_CALL, then several calls will be placed so as to deliver all of the pages. In each call,
no more than PAGES_PER_CALL pages will be sent. If PAGES_PER_CALL specifies a
negative value, then no limit will be imposed on the number of pages which can be sent
during any one call. This is the default setting, PAGES_PER_CALL=-1.

PASSWORD (character string)

Most, if not all, paging switches use the password ‘‘000000’’. If you happen to be using a
switch which uses a different password, then that password must be specified with this
option.

26–24

Other Channels
Pager Channels

RETURN_HEADERS (0 or 1)

By default, the header lines for the originating message are appended to the bottom of
acknowledgement and status reports generated by the pager channel. The display of
these headers can be suppressed by specifying RETURN_HEADERS=0 in the option file.
RETURN_HEADERS=1 yields the default behavior.

RETURN_PAGES (0 or 1)

By default, actual pages sent are not included in acknowledgement or status reports
generated by the pager channel. To include the text of these pages, specify RETURN_
PAGES=1. RETURN_PAGES=0 yields the default behavior.

REVERSE_ORDER (0 or 1)

When a message is broken into multiple pages, page 1/n, page 2/n, ..., page n/n, the
pages are sent in reverse order: page n/n is sent first, followed by pages n-1/n, ..., 2/n,
1/n. This is done because many pagers present the most recently received page first (i.e.,
some pagers store received pages in a last in, first out buffer). By specifying REVERSE_
ORDER=0, multiple pages will be sent in the order page 1/n, 2/n, ..., n/n. The default
setting is REVERSE_ORDER=1.

STRIP_8BIT_CHARS (0 or 1)

By default, characters with the eighth bit high are removed from the message.
(They are removed prior to application of the PAGER mapping.) To preserve these
characters,specify STRIP_8BIT_CHARS=0.

STRIP_CONTROL_CHARS (0 or 1)

By default, control characters (i.e., characters with ordinal values 0 - 8, 10 - 31, and 127)
are removed from the message. (They are removed prior to application of the PAGER
mapping.) Each tab is converted to a single space prior to application of the PAGER
mapping. To preserve these characters, specify STRIP_CONTROL_CHARS=0.

TEXT_CASE (LOWER, MIXED, NUMERIC, UPPER)

By default, the cases (upper case, lower case) of characters in a message are left
undisturbed.a This default setting corresponds to TEXT_CASE=MIXED. By specifying
either TEXT_CASE=LOWER or TEXT_CASE=UPPER, the message, after being filtered
with the PAGER mapping table, will be converted entirely to lower or upper case
characters. To only pass the numerals 0 through 9 to a pager, specify TEXT_
CASE=NUMERIC.

USE_REPLY_TO (0 or 1)

One possible address to which acknowledgement and status report messages are sent
is the original message’s Reply-To: address. Under some circumstances it is never
appropriate to use this address for this purpose. The USE_REPLY_TO option controls
the use of the Reply-To: address for acknowledgements. A value of one (the default)
causes the Reply-To: header to be used in the normal course of events. A value of zero
inhibits use of the Reply-To: header for acknowledgements.

a Note that site supplied PAGER table entries can alter the case of characters in a message.

26–25

Other Channels
Pager Channels

26.4.1.6 Use with PET Switches

When using a pager channel with a PET switch such as those used by Telecom
Australia, the following options must be specified in the channel’s option file

BLOCK_ACK_TIMEOUT=10
BLOCK_TX_RETRIES=5
LOGIN_RETRIES=2
LOGIN_ACK_TIMEOUT=10
LOGOUT_ACK_TIMEOUT=10
MAX_BLOCKS_PER_PAGE=1
MAX_PAGE_SIZE=156
PAGES_PER_CALL=6
PASSWORD=passwd

Failure to specify any or all of these options will render the pager channel incompliant
with the PET specification (Telecom Australia document INB 028).

If you need to report problems to Telecom Australia, in so doing reference the
University of Melbourne certification tests.

26.4.1.7 A Word on Determining Channel Options by Trial and Error

You can have to determine by trial and error the appropriate value for the MAX_
PAGE_SIZE channel option.

To determine MAX_PAGE_SIZE, just try sending a long message (~500 bytes) and
see what value you need for MAX_PAGE_SIZE to get the switch to accept the resulting
pages. Be sure to enable master_debug for the channel so that you can see, blow by blow,
the dialogue with the paging switch. Be warned that the paging switch can respond by
ignoring data sent to it and timeout (e.g., respond with a message like ‘‘Too Slow - Good
Bye’’). If this should happen, then decrease MAX_PAGE_SIZE and try again.

With some paging switches you can find that you need to pause a second or two
and possibly even send a carriage return before issuing the go command in your modem
script. (See, e.g., Example 26–5.) With other switches, you can find that you cannot
do this and must issue a go immediately after getting a CONNECT response from your
modem. You’ll have to experiment.

26.4.1.8 Frequent Delivery Retries with the BACKOFF Option

Normally, if a page cannot be delivered owing to a temporary error condition (e.g.,
busy signal when dialing the paging switch), another delivery attempt will not be
attempted until the next periodic delivery job runs as described in Section 1.4. However,
for urgent pages, a retry in minutes rather than tens of minutes or hours is desirable.
Rather than setting PMDF’s periodic delivery job interval to a small value and then
adjusting the service period for each channel with the period channel keyword, the
BACKOFF mapping table and BACKOFF channel option can be used. With this mapping
table and option, you can schedule exactly when to run jobs to attempt redelivery of
undeliverable pages (e.g., make attempts every minute for the first five minutes, then

26–26

Other Channels
Pager Channels

every five minutes for the next thirty minutes, etc.). See Section 24.6 for complete details
on the use of the BACKOFF mapping table and BACKOFF channel option.

26.4.1.9 Using a Directory Channel to Simplify Pager Addresses

A directory channel can be used to simplify pager addresses by creating a pseu-
dodomain (e.g., pager.example.com) and aliases (e.g., user@pager.example.com) which
translate to actual pager addresses (e.g., /id=1234/paglen=100/@pactel.pager.example.com).
These aliases insulate users from needing to know the actual pager addresses for indi-
vidual pagers.

Directory channels are described in Section 3.2.

As an example, assume that the two channels pager_pactel and pager_mci and associ-
ated rewrite rules for the domains pactel.pager.example.com and mci.pager.example.com
as shown in Section 26.4.1.2 have been added to the PMDF configuration file. Then a
directory channel for the domain pager.example.com can be set up as follows:

1. Add to the PMDF configuration file the rewrite rule

pager.example.com $U%pager.example.com@DIRECTORY-DAEMON

2. Add a directory channel to the configuration file:

directory
DIRECTORY-DAEMON

3. Create the world readable directory pmdf_root:[directories] (OpenVMS) or
/pmdf/directories (UNIX) with the OpenVMS command

$ CREATE/DIR pmdf_root:[directories]/OWNER=[SYSTEM]

or the UNIX commands

mkdir -mu=rwx,go= /pmdf/directories
chown pmdf /pmdf/directories

On NT, the PMDF installation created this directory for you automatically.

4. In that directory create a directory database named pager$example$com.dat on
OpenVMS or pager.example.com on UNIX with the PMDF CRDB (OpenVMS) or
pmdf crdb (UNIX and NT) utility; e.g., on OpenVMS

$ PMDF CRDB pager$example$com.txt pager$example$com.dat

or on UNIX

pmdf crdb pager$example$com.txt pager.example.com

or on NT

C:\> pmdf crdb pager$example$com.txt pager.example.com

Here pager$example$com.txt is an input file with the format:

26–27

Other Channels
Pager Channels

alias_1 value_1

alias_2 value_2

. .

. .

. .

with alias_1, alias_2, ... the names of aliases and value_1, value_2, ... the
associated translation values. A sample pager$example$com.txt file is shown in
Example 26–7.

Example 26–7 Sample pager$example$com.txt File

andy /id=1234/paglen=100/@pactel.pager.example.com
sue /id=1122/paglen=100/@pactel.pager.example.com
joe /id=4321/paglen=300/@mci.pager.example.com
spare /id=1111/paglen=100/@mci.pager.example.com
support /id=0101/@pactel.pager.example.com

Of course, steps 2 and 3 should be omitted if a directory channel has previously been set
up.

26.4.2 Pager Channel Addresses

A pager channel address can take one of two forms:

1. pager-id@domain-name where pager-id is the pager identification number for the
pager to which a message is to be sent, and domain-name is one of the pager domain
names added to the configuration file as described in Section 26.4.1.2. An example
of such an address is 1234@pager.example.com.

2. AVPL@domain-name where AVPL item, an attribute-value pair list, is described in the
following subsections. An example of such an address is /ID=1234/@pager.example.com.

26.4.2.1 The Contents of the Attribute-value Pair List (AVPL)

The left hand side of a pager channel address in AVPL form, (i.e., the AVPL in
AVPL@domain-name, is constructed in the linear attribute-value pair list (AVPL) format
recommended by RFC 987 and RFC 1148. The general form is:

/attribute1=value1/attribute2=value2/.../

The attribute codes specify the destination pager number and its characteristics.
The available attributes are shown in Table 26–3.

26–28

Other Channels
Pager Channels

Table 26–3 Pager Channel Addressing Attributes

Attribute name Usage

ID Pager ID number.

MAXPAG Maximum number of pages to send for any one message. If a message is
broken into more than MAXPAG pages, then pages MAXPAG, MAXPAG+1,
MAXPAG+2... are discarded and not sent.

MSGLEN Maximum length in bytes of the message to send as one or more pages.
Message will be truncated to this length if necessary. This will override any
size set with the MAX_MESSAGE_SIZE channel option.

PAGLEN Maximum length in bytes per page; message will be broken into multiple
pages with no one page exceeding this length. This will override any size
set with the MAX_PAGE_SIZE channel option.

When an AVPL oriented pager address is used, the ID attribute must be specified.

If any of the characters ‘‘/’’, ‘‘=’’, and ‘‘$’’ are to appear within values in the AVPL,
then they must be quoted. See Section 26.6.2.2 for instructions on how to quote these
characters.

26.4.2.2 Examples of Pager Channel Addresses

Some sample pager addresses are shown below:

1234@mci.pager.example.com
/id=1234/@mci.pager.example.com
/paglen=100/id=1234/@mci.pager.example.com
/msglen=400/id=1234/@mci.pager.example.com
/maxpag=2/id=1234/@mci.pager.example.com
/id=1234/paglen=200/msglen=400/@mci.pager.example.com

26.4.3 Pager Channel Logging

The logging channel keyword can be used with pager channels to enable logging
activity. Activity is logged in the PMDF mail log file. See Section 2.3.4.84 for a description
of this file. The ‘‘type of entry’’ item in each log file will be a single character selected
from the set A, F, R, S:

Logging
Code Error Type Description

A Permanent Message aborted; maximum delivery attempts exceeded
F Temporary Error occurred while communicating with the paging switch
R Permanent Message rejected by the paging switch
S Success Message sent successfully

In the case of a temporary error, the message is requeued for a subsequent delivery
attempt provided that the maximum number of delivery attempts has not been exceeded.

26–29

Other Channels
Pager Channels

If the maximum number of delivery attempts has been exceeded, then the error is
promoted to a permanent error. In the case of a permanent error, the message is returned
to the message’s originator.

26.4.4 Identifying Troublesome Modems

When the pager channel finds one or more modems to be unusable, it will note the
device names.

On OpenVMS, these device names are sent via an OPCOM broadcast to all operator
classes, or if the site-supplied command procedure PMDF_COM:bad_modem_alert.com
exists, that command procedure is instead executed. This site-supplied command
procedure bad_modem_alert.com can obtain the list of bad modems from the DCL
symbol PMDF_BAD_MODEMS. The value of that symbol is a comma separated list of
the bad device names. The name of the currently running channel can be obtained from
the OpenVMS logical PMDF_CHANNEL.

On UNIX, these device names are written to a file /tmp/pmdf_bad_modem-
uniqueid, where uniqueid is a unique string generated to disambiguify the file name.
In addition, if a site-supplied /pmdf/bin/bad_modem_alert shell script exists, it will
be executed, and the bad modem device names will be supplied to it via standard input,
stdin.

On NT, these device names are written to a file C:\tmp\pmdf_bad_modem-
uniqueid, where uniqueid is a unique string generated to disambiguify the file name.
In addition, if a site-supplied C:\pmdf\bin/bad_modem_alert shell script exists, it will
be executed, and the bad modem device names will be supplied to it via standard input,
On UNIX, these device names are written to a file /tmp/pmdf_bad_modem-uniqueid,
where uniqueid is a unique string generated to disambiguify the file name. In addition,
if a site-supplied /pmdf/bin/bad_modem_alert shell script exists, it will be executed,
and the bad modem device names will be supplied to it via standard input, stdin.

26.5 Pipe Channels (OpenVMS and UNIX)

Pipe channels are used to effect delivery for specific addresses via a site-supplied
program or script. While pipe channels are loosely based upon the | (pipe) functionality
of sendmail, they have been carefully designed to not pose a security threat. First,
you, as the postmaster, have to manually add a pipe channel to your configuration
before it can be used. If you do not trust the technology, then do not add one to your
configuration. Second, the commands executed by the pipe channel are controlled by you,
as the postmaster, and no user supplied input can find its way into those commands: each
command you supply is used verbatim with the exception of the optional substitution of a
filename generated by the channel itself without reference to user supplied input. Finally,
the decision to run a command is not based upon the presence of special characters
appearing in a recipient address, but rather upon a recipient address exactly matching
a specific address or host name in a table or database which you must provide. If an
exact match between an incoming address and your table or database exists, then your
command listed in the table for that match is executed.

26–30

Other Channels
Pipe Channels (OpenVMS and UNIX)

Unlike the sendmail pipe functionality, the PMDF pipe channel does not pipe the
message to be processed to the program or script. Instead, it writes the message to
be processed to a temporary file and then forks a subprocess to run the site-supplied
command for that message. That command should make use of the name of the temporary
file which can be substituted into the command by the channel. The temporary file should
not be deleted or altered by the subprocess; the channel will delete it itself. If it is not
possible to prevent the subprocess from disrupting the file, then the pipe channel should
be marked with the single channel keyword.

VMS
On OpenVMS systems, if the subprocess exits with a successful completion code (i.e.,

an odd valued completion code), then the message is presumed to have been delivered
successfully. If it exits with a completion code of PMDF_ _NO (decimal value 178028690,
hexadecimal value 0A9C8092), then the message is returned as undeliverable. Delivery
of the message will be deferred if any other completion code is returned.

UNIX

On UNIX systems, if the subprocess exits with exit code of 0 (EX_OK) then the
message is presumed to have been delivered successfully and is removed from PMDF’s
queues. If it exits with an exit code of 71, 74, 75, or 79 (EX_OSERR, EX_IOERR, EX_
TEMPFAIL, or EX_DB) then a temporary error is presumed to have occurred and delivery
of the message is deferred. If any other exit code is returned, then the message will be
returned to its originator as undeliverable. These exit codes are defined in the system
header file sysexits.h.

26.5.1 Setting Up the Channel

There are two steps in setting up a pipe channel: (1) adding the channel to the
PMDF configuration file, and (2) setting up the channel option file, pipe database or
(UNIX only) profile database entries to specify particular commands for particular user
or host addresses.

26.5.1.1 Adding the Channel to the Configuration File

Note: While you can configure multiple pipe channels, in general you only need to configure a
single pipe channel.

A message to be processed by a pipe channel is usually routed to the channel via a
combination of an alias and rewrite rules. For instance, the system example.com might
want all mail for the addresses info-pmdf@example.com and gripes@example.com to be
routed to a pipe channel. This could be accomplished with the alias file entries

info-pmdf: info-pmdf@pipe.example.com
gripes: gripes@pipe.example.com

where pipe.example.com is in turn a host name associated with a pipe channel via
rewrite rules. For instance,

pipe.example.com $u%pipe.example.com@PIPE-DAEMON

26–31

Other Channels
Pipe Channels (OpenVMS and UNIX)

So, to configure a pipe you need to determine the host names, pipe1.domain,
pipe2.domain, ... which you want to use. Once you have determined these, add them
to the rewrite rules section of your PMDF configuration file:

pipe1.domain $u%pipe1.domain@PIPE-DAEMON
pipe2.domain $u%pipe2.domain@PIPE-DAEMON
... ...

Then, to the end of your PMDF configuration, add the definition of the pipe channel
itself:

pipe
PIPE-DAEMON

Be sure to include a blank line before and after this channel definition.

On UNIX, the pipe channel normally runs as user pmdf. So on UNIX, if you want
the pipe channel to run as some other user, you can use the user channel keyword to
specify the desired username. Note that the argument to user is normally forced to
lowercase, but original case will be preserved if the argument is quoted.

At this point, the pipe channel has been added to the configuration. However, it
cannot be used until you create a channel option file, or a pipe database, or (UNIX only)
define and set delivery methods for pipe channel addressees, as described next.

26.5.1.2 Profile Database Entries for Pipe Channel Addressees (UNIX only)

On UNIX, before looking in the channel database or option file, a pipe channel first
queries the PMDF profile database checking whether there is a delivery method set for
the addressee. Only if there is no such entry is the pipe database or pipe option file
consulted.

A PMDF profile database delivery method entry for a pipe channel addressee is
similar to that for a local (L) channel addressee, except that the pipe channel domain is
used. For instance,

pmdf profile
profile> set delivery mailworks -user=jane.doe@pipe.example.com

26.5.1.3 Pipe Database

Rather than placing user or host addresses and corresponding commands in a pipe
channel option file, described below in Section 26.5.1.4, or on UNIX using profile database
entries for users, described above in Section 26.5.1.2, user or host entries can be placed
in the PMDF pipe database. The pipe database can be particularly useful for sites with
large numbers of entries (more efficiently stored in a database than in an option file), or
for sites where the user addresses and command strings are rather long (in which case
a ‘‘long’’ database created with the /LONG_RECORDS (OpenVMS) or -long_records
qualifier (UNIX) can be used).

26–32

Other Channels
Pipe Channels (OpenVMS and UNIX)

The pipe database is referenced via the PMDF_PIPE_DATABASE logical (OpenVMS)
or PMDF tailor file option (UNIX), hence it is usually PMDF_TABLE:pipe.dat on
OpenVMS or /pmdf/table/pipedb.* on UNIX. This database is a regular PMDF
CRDB (OpenVMS) or pmdf crdb (UNIX) database created from a text input file.

The format of entries in the input text file should be:

address1 command1

address2 command2

... ...

where the addresses, address1, address2, ..., can be either of the form user@host or
host. PMDF probes first for user-specific entries and only if no user-specific entry is
found, will PMDF then look for a host entry. See Section 26.5.2 below for an additional
discussion of the order in which probes of various forms are made to the various possible
entry sources.

On OpenVMS, such an input text file would be turned into a pipe database using
the commands:

$ PMDF CRDB input-file-spec pipe.tmp
$ RENAME pipe.tmp PMDF_PIPE_DATABASE

On UNIX, use the commands:

pmdf crdb input-file-spec PMDF_PIPE_DATABASE

26.5.1.4 Option Files

Unless you have a pipe database, or have established delivery methods for pipe
channel addressees, each pipe channel must have an option file. If there are no delivery
methods set in the PMDF profile database, and no option file nor pipe database, then
the channel will not operate.

The commands to execute for each envelope recipient address presented to the
channel are specified in the PMDF profile database, in the pipe database or in the pipe
channel’s option file. If an address does not appear in one of these locations, then an
error notification is sent back to the message originator.

Pipe channel option files are stored in the PMDF table directory and have names
of the form x_option, where x is the name of the pipe channel to which the
option file applies. (In most instances, the file name will be pipe_option; i.e.,
PMDF_TABLE:pipe_option. on OpenVMS or /pmdf/table/pipe_option on UNIX.)

To process the address user@host, the pipe channel first probes the option file for
an entry of the form

user@host=command

If no matching entry is found, the channel next probes the option file for an entry of the
form

host=command

26–33

Other Channels
Pipe Channels (OpenVMS and UNIX)

If still no matching entry is found, then the recipient address is deemed bad and
an error notification is sent back to the message originator. See Section 26.5.2 below for
an additional discussion of the order in which probes of various forms are made to the
various possible entry sources.

If, however, a probe does find a matching entry, then the specified command,
command, is executed. Prior to being executed, any occurrences of the phrase %s
appearing in command are replaced with the name of the temporary file containing the
message to be processed. It is important that the command to be executed neither delete
nor otherwise alter the temporary message file as it can be needed for further pipe
channel recipients of the same message. If disruption of the message file cannot be
prevented, then mark the channel with the single channel keyword.

The command to be executed will be run by a subprocess of the process running the
pipe channel. As such, it will be running with the privileges of the PMDF processing
account (usually the SYSTEM account on OpenVMS or pmdf account on UNIX). See
Section 26.5 for a description of the exit or completion codes with which the command
should exit the subprocess.

Note: As with any PMDF option file, it is important that the option file not be world writable.
This is especially true of pipe channel option files.

In addition to the command entries in the pipe channel option file, there is one
additional general option available:

SHELL_TIMEOUT (integer; UNIX only)

The SHELL_TIMEOUT option can be used to control how long in seconds the channel
will wait for a shell command to complete. Upon such time outs, the message will be
returned back to the original sender with an error message along the lines of ‘‘Timeout
waiting for ...’s shell command ... to complete’’. The default value is 600 (corresponding
to 10 minutes).

26.5.2 The Order in Which Entries are Checked

The logic for checking entries in the profile database (UNIX only), pipe database and
pipe channel option file is as follows:

1. (UNIX only) Check the profile database for a user@host entry.

2. Check the database for a user@host entry.

3. Check the option file for a user@host entry.

4. Check the database for a host entry.

5. Check the option file for a host entry.

If no profile database entry exists (as is always the case on OpenVMS) and if the pipe
database does not exist, then only the pipe option file is checked, i.e., steps (3) and (5)
only. If no profile database entry exists (as is always the case on OpenVMS) and if
the database file exists but cannot be opened, then the message is passed over — the
condition is treated as a temporary error. And when checks (1)–(5) turn up no results,
the message is bounced.

26–34

Other Channels
Pipe Channels (OpenVMS and UNIX)

26.5.3 Example Usage

Suppose that messages for the two addresses wombat@example.com and
sflovers@example.com are to be processed by a site-supplied programs using the com-
mand

/usr/local/uurec < filename

where filename is the name of the input file to process.

Suppose further that example.com is the official local host name for the site so that
entries for wombat and sflovers in the alias file will serve to redirect messages to those
two addresses. Then, the entries

wombat: wombat@pipe.example.com
sflovers: sflovers@pipe.example.com

should be added to the alias file. Next, add the following entries to the pipe channel
option file:

wombat@pipe.example.com=/usr/local/uurec < %s
sflovers@pipe.example.com=/usr/local/uurec < %s

With this configuration, messages for sflovers@example.com are rerouted to the pipe
channel using the address sflovers@pipe.example.com. The pipe channel, upon receipt of
the message, will then execute the supplied command to process the message.

26.6 Printer Channels

Printer channels can be used to route e-mail to a spooled printer queue. While the
current implementation of the printer channel is designed for use with ‘‘dumb’’ printers, it
is flexible enough to do sophisticated printing on ‘‘intelligent’’ printers such as PostScript
printers as described in e.g., Section 26.6.4.

The addressing format required to direct e-mail to a printer channel is presented in
Section 26.6.2.

On OpenVMS systems, the printer channel interfaces to printer queues via the
$SNDJBC system service. On UNIX systems, the channel forks a child to print each
message file. The command used to issue the print request can be controlled with the
PRINT_COMMAND option described in Section 26.6.1.2. By default, an lpr command
is used.

VMS
On OpenVMS, do not ever specify an execution queue for a printer channel

queue; (i.e., make sure that the printer channel queue is an output queue). Picture
the following scenario: a printer channel is marked headeromit (or headerbottom)
and a message containing only a command procedure is sent to the printer channel
for ‘‘printing’’. This message — a command procedure — will then be submitted to the

26–35

Other Channels
Printer Channels

execution queue under the guise of the user running the printer channel, who is typically
a privileged user.

26.6.1 Setting Up the Channel

There are two steps in setting up a printer channel: (1) adding the channel to the
PMDF configuration file, and (2) setting up a channel option file, if necessary. For most
‘‘dumb’’ printers (e.g., a line printer), an option file is not required. In addition, no option
file is required of ‘‘intelligent’’ printers (e.g., PostScript printers), if the printer’s queue
is managed by a symbiont which knows how to deal with raw ASCII text files.

VMS
If you want to select the usernames under which print jobs should be submitted, then

specify SET_USERNAME=1 in the channel option file. The USERNAME addressing
attribute can then be used to select the username under which a given message should
be submitted. This makes it possible for banner and trailer pages to bear the name of the
intended recipient rather than the username of the process running the printer channel.

26.6.1.1 Adding the Channel to the Configuration File

First determine the names of the printer queues (OpenVMS) or print job destina-
tions (UNIX) to which you will be directing mail and then select a domain name to
identify with each queue. These domain names are used to route mail to a particular
queue. For instance, suppose mail is to be routed to the printer SYS$PRINT on the host
vaxa.example.com. Then an appropriate domain name might be sysprint.vaxa.example.com.

Once the printer names are determined and domain names selected, add a channel
block of the form

printer single 733
PRINTER-DAEMON
domain-name-1 printer-name-1

domain-name-2 printer-name-2

.

.

.

to the PMDF configuration file. Here domain-name-1, domain-name-2, ... and
printer-name-1, printer-name-2, ... are, respectively, the selected domain name
and the printer names. On OpenVMS you must use printer queue names. On UNIX,
you must use printer names suitable for use in an lpr command with the -P switch.

Continuing with the SYS$PRINT and vaxa.example.com example from above, the
channel block would be

printer single 733
PRINTER-DAEMON
sysprint.vaxa.example.com SYS$PRINT

26–36

Other Channels
Printer Channels

After adding the channel block, go to the top of the configuration file and add rewrite
rules of the form shown below:

domain-name-1 $U@domain-name-1
domain-name-2 $U@domain-name-2
.
.
.

For instance, in the context of our example, the following rewrite rules can be added

sysprint $U@sysprint.vaxa.example.com
sysprint.vaxa.example.com $U@sysprint.vaxa.example.com

The first rewrite rule shown is not necessary: it merely allows PMDF to recognize the ad-
dress avpl@sysprint as a short form address for avpl@sysprint.vaxa.example.com.

Note: If you are part of a TCP/IP network, then you can want to add the printer domain names
you selected to your DNS using MX records. This will allow other machines to route mail
to your printer queues.

26.6.1.2 Option Files

In order to properly print messages on the printers associated with the channel, it
can be necessary to use an option file. With an option file, the following items can be
specified:

• introductory text or commands which must be sent to the printer — referred to below
as a ‘‘preamble’’;

• commands which must proceed and/or follow lines of text to be printed;

• commands to eject a page and/or terminate the print job; and

• various options to be passed to the print symbiont.

Option files are used to set run-time options on a per channel basis. Option files are
stored in the PMDF table directory and have names of the form x_option, where x is
the name of the printer channel to which the option file applies. (In most instances, the
file name will be printer_option; i.e., PMDF_TABLE:printer_option. on OpenVMS
or /pmdf/table/printer_option on UNIX.)

Note that an option file applies to an entire printer channel; a printer channel
which can be serving more than one printer queue. If you have printer queues which
require different option files, then you should set up multiple printer channels (giving
the channels different names such as printer1 and printer2 instead of printer).

Option files consist of several lines. Each line contains the setting for one option.
An option setting has the form:

option=value

value can be either a string or an integer, depending on the option’s requirements. If
the option accepts an integer value, value, a base can be specified using notation of the
form b%v, where b is the base expressed in base 10 and v is the actual value expressed
in base b.

26–37

Other Channels
Printer Channels

Comments are allowed. Any line that begins with an exclamation point, !, is
considered to be a comment and is ignored. Blank lines are also ignored in any option
file.

The available options are:

AT (string <= 252 characters long)

This option can be used to specify the content of the text string printed along with
the contents of any /AT=value attribute-value pair (AVP) appearing in the To: address
presented to the printer channel. If no AT option is specified in the option file, then the
default string ‘‘Attention: ’’ will be used. For example, if the To: address passed to the
printer channel is

"/AT=Mrocheck Doe/MS=DH X.25/"@printer.example.com

then the text

Attention: Mrocheck Doe

will be printed on the first page of the message.

BURST (0 or 1; OpenVMS only)

The BURST option controls whether two file flag pages with a burst bar between them
are printed preceding the mail message. BURST=0 requests that no burst pages be
printed; BURST=1 requests that the burst pages be printed preceding the message. By
default, no burst pages are requested (BURST=0).

END_ATTRIBUTE (string <= 252 characters long)

The END_ATTRIBUTE option specifies a text string to be printed immediately following
the display of an attribute value extracted from the mail message’s To: address. By
default, no text string is printed after displaying an attribute value.

END_COVER (string <= 252 characters long)

The END_COVER option specifies a text string to be printed at the end of the cover page
printed prior to the message body. By default, a form feed character is printed at the
end of the cover page.

END_HEADERLINE (string <= 252 characters long)

The END_HEADERLINE option specifies a text string to be printed immediately
following a header line from the mail message (e.g., To:, From:, Subject:, etc.). By default,
no text string is printed after a header line.

END_JOB (string <= 252 characters long)

The END_JOB option specifies a text string to be printed at the end of the mail message.
By default, no text string is printed.

END_LINE (string <= 252 characters long)

The END_LINE option specifies a text string to be printed immediately following a line
from the mail message’s body. By default, no text string is printed after a message body
line.

FLAG (0 or 1; OpenVMS only)

The FLAG option controls whether a flag page is printed preceding the mail message.
FLAG=0 requests that no flag page be printed; FLAG=1 requests that a flag page be
printed preceding the message. By default, no flag page is requested (FLAG=0). The
setting of this option has no effect if BURST=1 is specified in the option file.

26–38

Other Channels
Printer Channels

FORM (string <= 252 characters long; OpenVMS only)

Specifies the name or number of the print form to be associated with the message when it
is submitted to the printer queue. By default, no print form is associated with messages
when they are submitted for printing.

HEADER_OPTIONS (filename <= 252 characters long)

This option specifies the name of a header option file to use when parsing message header
lines. By default, no header option file is used. If the channel is tagged headeromit in
the channel block in the PMDF configuration file, this option is ignored.

MIME_HANDLING (0 or 1)

By default, the printer channel will interpret the MIME structure of MIME messages,
decoding and printing each part of a multipart message. This corresponds to specifying
MIME_HANDLING=1. To supress the MIME interpretation of messages and have their
content just printed as an ordinary RFC 822 message, specify MIME_HANDLING=0.

MS (string <= 252 characters long)

This option can be used to specify the content of the text string printed along with the
contents of any /MS=value attribute-value pair (AVP) appearing in the To: address
presented to the printer channel. If no MS option is specified in the option file, then the
default string ‘‘Mail stop: ’’ will be used. For example, if the To: address passed to the
printer channel is

"/AT=Mrocheck Doe/MS=DH X.25/"@printer.example.com

then the text

Mail stop: DH X.25

will be printed on the first page of the message.

NOTIFY (0 or 1; OpenVMS only)

Generate a notification broadcast when a mail message is printed. By default, this
notification is not generated, NOTIFY=0. It will only be generated when NOTIFY=1,
SET_USERNAME=1, and a username has been specified in the printer address. In that
case, the specified user will receive a broadcast message after their mail message has
completed printing.

O (string <= 252 characters long)

This option can be used to specify the content of the text string printed along with
the contents of any /O=value attribute-value pair (AVP) appearing in the To: address
presented to the printer channel. If no O option is specified in the option file, then the
default blank string will be used.

OU (string <= 252 characters long)

This option can be used to specify the content of the text string printed along with the
contents of any /OU=value attribute-value pair (AVP) appearing in the To: address
presented to the printer channel. If no OU option is specified in the option file, then the
default blank string will be used.

P1–P8 (string <= 252 characters long; OpenVMS only)

These options can be used to specify the content of the text string printed along with the
contents of any /P1=value, ..., /P8=value attribute-value pair (AVP) appearing in the
To: address presented to the printer channel. If no P1, P2, ..., or P8 option is specified
in the option file, then the default blank string will be used.

26–39

Other Channels
Printer Channels

P1_DEFAULT–P8_DEFAULT (string <= 252 characters long; OpenVMS only)

These eight options set values for the parameters P1 through P8 to be specified when
submitting a print job. Unless a message specifically sets any of P1 through P8 with
addressing attributes, these default values will be used. If a message specifies any of P1
through P8, then none of these default values will be used and the values specified by
the message will instead be used.

PAGINATE (0 or 1; OpenVMS only)

Specify whether or not the printer symbiont should paginate the output by inserting a
form feed whenever output reaches the bottom margin of the output form. PAGINATE=0
disables the insertion of form feeds; PAGINATE=1 enables the insertion of form feeds.
By default, form feeds are inserted by the symbiont (PAGINATE=1).

PREAMBLE (string <= 252 characters long)

The PREAMBLE option specifies a text string to print at the top of the cover page for the
message. If the first character in the string is an at-sign, @, then the remainder of the
string is interpreted as a file name and the contents of that file is first sent to the printer
prior to the cover page. (This mechanism can be used to download code to intelligent
printers such as PostScript printers.)

PRINT_COMMAND (string <= 252 characters long; UNIX only)

Specifies the format of the command to issue to print a message. By default, the lpr
command is used with the format

PRINT_COMMAND=lpr -P%p -r %f

See Section 26.6.1.2 for further details.

QUOTE_CHARS (string <= 252 characters long; UNIX only)

Specifies the shell metacharacters which require quoting with a backslash, \, in order
to literalize them. By default,

QUOTE_CHARS="#$&’()*;<=>?[\]`{|}

is used. Specify

QUOTE_CHARS=

to disable the quoting of characters. See Section 26.6.1.3 for further details.

SET_USERNAME (0 or 1; OpenVMS only)

USERNAME addressing attributes-value pairs are ignored by default and not passed on
to the print subsystem when the message is spooled for printing. By specifying SET_
USERNAME=1 in the option file, these attribute-value pairs will be honored; the spooled
print job will be submitted using the specified username. Process running the channel
— typically SYSTEM — must have CMKRNL privilege in order to use this option. The
channel itself does not make use of this privilege: the $SNDJBC system service requires
it of any process which submits jobs under a different username.

The username under which PMDF channel programs run usually has CMKNRL privilege.
This username is given by the PMDF_BATCH_USERNAME logical.

SETUP (string <= 252 characters long)

This option can be used to specify the content of the text string printed along with the
contents of any /SETUP=value attribute-value pair (AVP) appearing in the To: address

26–40

Other Channels
Printer Channels

presented to the printer channel. If no SETUP option is specified in the option file, then
the default blank string will be used.

SETUP_DEFAULT (string <= 252 characters long; OpenVMS only)

This option allows specification of a setup module to be used by the print symbiont. This
setup module will be specified unless the printer address itself specifies a setup module.
In that case, the module specified in the address is instead used. To specify multiple
module names, specify each name separated by commas; e.g.,

SETUP_DEFAULT=module1,module2,module3

START_ATTRIBUTE (string <= 252 characters long)

The START_ATTRIBUTE option specifies a text string to be printed immediately prior
to the display of an attribute value extracted from the mail message’s To: address. By
default, no text string is printed before displaying an attribute value.

START_HEADERLINE (string <= 252 characters long)

The START_HEADERLINE option specifies a text string to be printed immediately before
a header line from the mail message (e.g., To:, From:, Subject:, etc.). By default, no text
string is printed before a header line.

START_LINE (string <= 252 characters long)

The START_LINE option specifies a text string to be printed immediately before a line
from the mail message’s body. By default, no text string is printed before a message body
line.

TN (string <= 252 characters long)

This option can be used to specify the content of the text string printed along with
the contents of any /TN=value attribute-value pair (AVP) appearing in the To: address
presented to the printer channel. If no TN option is specified in the option file, then the
default string ‘‘Telephone number: ’’ will be used. For example, if the To: address passed
to the printer channel is

"/AT=Mrocheck Doe/TN=900-555-1212/"@printer.example.com

then the text

Telephone number: 900-555-1212

will be printed on the first page of the message.

TRAILER (0 or 1; OpenVMS only)

The TRAILER option controls whether a file trailer page is requested when the message
is submitted to the printer queue. TRAILER=0 requests that no trailer page be printed;
TRAILER=1 requests that a trailer page be printed. By default, no trailer page is
requested (TRAILER=0).

26–41

Other Channels
Printer Channels

26.6.1.3 Controlling the Print Command (UNIX)

On UNIX systems, the print command issued by the printer channel can be controlled
with the PRINT_COMMAND channel option. With that option, the format of the print
command to issue is specified:

PRINT_COMMAND=command

where command is the command to issue. command can contain two special sequences,
%f and %p. Should they appear, they will be replaced, respectively, with the name of the
file to print and the name of the printer to use. The PRINT_COMMAND should be such
as to delete the file after printing. The printer name is the name given in the channel
definition (e.g., printer-name-1, printer-name-2, ... in Section 26.6.1.1). To specify
a literal % or \ in the print command, use \% or \\ in command.

For example, the default value of the PRINT_COMMAND option is

PRINT_COMMAND=lpr -P%p -r %f

Thus with this default, when given a printer name of PS_TIPSY and file name of
/pmdf/queue/printer/spool/ZZAX02G.00, the resulting print command would be

lpr -PPS_TIPSY -r /pmdf/queue/printer/spool/ZZAX02G.00

Note that the -r switch of the lpr command requests that the file be deleted after it has
been printed.

Prior to be being substituted into the print command, any occurrences of the
characters

" # $ & ’ () * ; < = > ? [\] ` { | }

in the printer name or file name are preceded with a backslash, \, so as to literalize them
and prevent them from being interpreted as shell metacharacters. Use the QUOTE_
CHARS channel option to change the list of characters requiring quoting. To inhibit the
quoting of characters, specify a null string with the QUOTE_CHARS option.

Utmost care is taken to ensure that user-supplied information is not injected into
the command line executed by the forked child. As such, several of the features found in
the OpenVMS printer channel are not available under UNIX (e.g., the ability to specify
the username under which to print, use of the destination address in the print job name,
specification of printing options, etc.).

26.6.1.4 Handling Multipart Messages

By default, the printer channel will interpret MIME messages, decoding and printing
each part of the message. This is likely to cause problems when a user sends a binary
message part such as an executable to a printer channel. There are two ways to deal
with this: (1) disable entirely the interpretation of MIME messages, printing the entire
message as a single RFC 822 message without decoding any encoded message parts, or
(2) using a conversion channel to discard unwanted message parts.

26–42

Other Channels
Printer Channels

While (1) is easily implemented by just specifying MIME_HANDLING=0 in the
channel option file, it can result in printing large amounts of unwanted data (e.g., printing
an encoded executable). Approach (2) is therefore more practical. See Section 22.1
for complete information on configuring a conversion channel. Note that when using
this approach, it’s best to use entries in the conversions file which explicitly accept the
message content types which you will allow to be printed and then discard all other types.

For instance, to print only message parts of type text and substitute for all other
message parts a text string stating that an original part was discarded, on OpenVMS
you might use:

out-chan=printer; in-type=text; in-subtype=*;
command="COPY ’INPUT_FILE’ ’OUTPUT_FILE’"

out-chan=printer; in-type=*; in-subtype=*;
out-type=text; out-subtype=plain; out-mode=text; out-encoding=none;
command="@PMDF_TABLE:discard.com"

where PMDF_TABLE:discard.com is the site-supplied DCL command procedure

$ SIZE = F$FILE_ATTRIBUTES (INPUT_FILE, "EOF")
$ OPEN/WRITE FILE ’OUTPUT_FILE’
$ WRITE FILE -
"[’’SIZE’ block ’’INPUT_TYPE’/’’INPUT_SUBTYPE’ message part discarded]"

$ CLOSE FILE

Similarly, on UNIX you might use:

out-chan=printer; in-type=text; in-subtype=*;
command="COPY ’INPUT_FILE’ ’OUTPUT_FILE’"

out-chan=printer; in-type=*; in-subtype=*;
out-type=text; out-subtype=plain; out-mode=text; out-encoding=none;
command="/pmdf/table/discard.sh"

where /pmdf/table/discard.sh is the site-supplied shell script

size=`wc -c $INPUT_FILE | awk ’{print $1}’`
echo ’[’$size ’byte’ $INPUT_TYPE’/’$INPUT_SUBTYPE \
’message part omitted]’ > $OUTPUT_FILE

Alternatively, to simply discard non-text parts silently, without bothering to include
a text note explaining that a part was discarded, you could use DELETE=1 in the
conversion entry, e.g.,

out-chan=printer; in-type=text; in-subtype=*;
command="COPY ’INPUT_FILE’ ’OUTPUT_FILE’"

out-chan=printer; in-type=*; in-subtype=*;
delete=1

26–43

Other Channels
Printer Channels

26.6.2 Printer Channel Addresses

Printer channel addresses are straightforward but do take a few minutes to learn.
PMDF-FAX users will find printer addresses quite familiar.

The general format of an address for a printer channel is:

AVPL@printer-domain-name

where printer-domain-name is one of the printer domain names added to the
configuration file as described in Section 26.6.1.1. The AVPL item is described in following
subsections.

26.6.2.1 The Contents of the Attribute-value Pair List, AVPL

The left hand side of a printer channel address, (i.e., the AVPL in AVPL@printer-
domain-name, is constructed in the linear attribute-value pair list (AVPL) format
recommended by RFC 2156. The general form is:

/attribute1=value1/attribute2=value2/.../

The trailing / at the end of the AVPL is here superfluous but nonetheless called for by
the RFCs. PMDF does not require that it be supplied; however, future releases of PMDF
can require its presence so it is best not to get into the habit of omitting it.

The attribute codes, for the most part, describe the intended recipient of the printer
output. The available codes are similar to X.400 attribute codes, but they are not
identical. They must be chosen from those shown in Table 26–4. Note that the P1
— P8, SETUP, and USERNAME attributes are only supported on OpenVMS.

Table 26–4 Printer Channel Addressing Attributes

Attribute name Usage

AT Attention (usually a person’s name)
MS Mail stop
O Organization or company
OU Organizational unit or department
P1 — P8 Parameters to be passed through the print job; OpenVMS only
SETUP Setup module to be used by the print job; specify multiple modules in a

comma separated list; OpenVMS only
TN Recipient’s telephone number
USERNAME Username under which to submit print job; OpenVMS only

There are no mandatory attributes; however, the use of at least AT is recommended so
that the printer operator can identify for whom the printer output is intended. Attributes
can be specified in any order and can be specified multiple times. If more than one P1
attribute is specified, then only the rightmost one will be used. The same holds for the
other parameter attributes, P2 through P8.

26–44

Other Channels
Printer Channels

USERNAME attributes will be ignored unless the SET_USERNAME=1 option has
been specified in the channel’s option file. Use of this attribute allows specification of the
username under which to submit each print job. This username, rather than that of the
process running the printer channel, will then appear on any banner or trailer pages.

26.6.2.2 Quoting the AVPL

The attribute-value pair list (AVPL) can contain spaces and other special characters.
If so, the entire list must be enclosed in double or single quotes.

The characters /, =, and $ are treated as list punctuation characters. If any of these
characters appear in either attribute names or values, they must be prefixed with a dollar
sign, $, to remove their special meaning. For instance, the ‘‘a/s’’ in the name ‘‘Example
a/s’’ requires special quoting:

IN%"’/at=Rex Sheds/O=Example a$/s/’@printer.example.com"

26.6.2.3 Examples of Printer Channel Addresses

Assume that the domain name printer.example.com is a legal printer domain name.
Then, the following are examples of legal printer channel addresses as they would be
specified to either VMS MAIL or DECwindows MAIL:

IN%"’/AT=Ralph/TN=(714) 624-7907/’@printer.example.com"
IN%"’/TN=(714) 621-8465/AT=John Doe/O=Example/’@printer.example.com"
IN%"’/AT=Dan/O=Example/OU=MIS Dept./MS=XJ 614/’@printer.example.com"
IN%"’/AT=Dan Doe/USERNAME=DAN/’@printer.example.com"

When using a user agent which accepts plain RFC 822 addresses (e.g., PMDF MAIL or
Pine), use instead:

"/AT=Ralph/TN=(714) 624-7907/"@printer.example.com
"/TN=(714) 621-8465/AT=John Doe/O=Example/"@printer.example.com
"/AT=Dan/O=Example/OU=MIS Dept./MS=XJ 614/"@printer.example.com
"/AT=Dan Doe/USERNAME=DAN/"@printer.example.com

26.6.3 Logging

If the logging keyword is specified for a printer channel, then the channel will log
its activity to the logging files. However, the printer channel logs the first 32 characters
of the print queue name in place of the enqueuing channel name in the log file. On
OpenVMS, in place of the message size in the log file, the printer channel logs the
print job’s queue entry number thereby allowing system accounting records to be cross-
referenced with the logging file; on UNIX, the message size field is always shown as 0.

26–45

Other Channels
Printer Channels

26.6.4 A PostScript Printer Channel

While the printer channel is primarily intended for use with dumb printers such as
line printers, it is flexible enough to support PostScript printers requiring raw PostScript
(i.e., PostScript printers which are not driven by a symbiont capable of formatting raw
ASCII text for printing).

The sample preamble file printer_setup.ps_sample, provided in the PMDF
table directory (i.e., as PMDF_TABLE:printer_setup.ps_sample on OpenVMS or as
/pmdf/table/printer_setup.ps_sample on UNIX), documents how to do this. As
described in this file, simply create the option file x_option in the PMDF table directory,
where x is the name of your printer channel (e.g., ‘‘printer’’), and in this file place four
lines as shown below. On OpenVMS:

PREAMBLE=@PMDF_TABLE:printer_setup.ps_sample
START_ATTRIBUTE=DO_HEADING
START_HEADERLINE=DO_HEADER
END_COVER=EJECT DO_BODY

On UNIX:

PREAMBLE=@/pmdf/table/printer_setup.ps_sample
START_ATTRIBUTE=DO_HEADING
START_HEADERLINE=DO_HEADER
END_COVER=EJECT DO_BODY

Owing to the design of the sample file printer_setup.ps_sample, it is necessary
that there be a space at the end of the lines beginning with START_ATTRIBUTE and
START_HEADERLINE.

26.6.5 Security Considerations

The printer channel is a secure program. However, there are some facets of its
operation of which system managers should be aware.

Of paramount importance is to never configure a printer channel to print to an
execution queue of some sort. Doing otherwise could cause a serious security hole under
the right (wrong) circumstances. Consider the case where the channel doesn’t require
special printer control sequences and is configured to discard all message headers. Then,
all that would be printed would be the body of a message directed to it. In that case,
a message containing just commands appropriate to the execution queue could then be
sent by anyone with permission to send mail to the printer channel.

Additional, operating system specific issues are discussed in the following sections.

26–46

Other Channels
Printer Channels

26.6.5.1 Security Considerations on OpenVMS Systems

On OpenVMS systems, the ability to use the USERNAME addressing attribute is
disabled by default. This prevents a user from maliciously generating print requests
under any username. However, the USERNAME addressing attribute is useful since it
allows specification of the OpenVMS username under which to print messages to a given
address. That in turn both helps in accounting for print jobs and in identifying for which
user the printer output is intended; (e.g., given a username, the printer symbiont can
display that username in trailer and flag pages). Use the SET_USERNAME option to
enable the use of the USERNAME addressing attribute if you consider it safe for use
at your site. Note that the account under which the printer channel runs will require
CMKRNL privilege in order to submit print jobs under a username different than its
own. The channel itself does not use that privilege: it is needed because the $SNDJBC
system service checks for it.

26.6.5.2 Security Considerations on UNIX Systems

On UNIX systems, each message is printed by forking a child to execute a print
command. The system() routine is used to accomplish this task; the child runs as the
pmdf account. The format of the print command is specified with the PRINT_COMMAND
channel option. Absolutely no user supplied data is put into the print command and hence
there is no possibility for the channel to execute a user generated command. The only
information substituted into the print command is the printer name and the name of
the file to print. The printer name was specified when the channel was configured; the
file name is that of a PMDF message file and produced by the channel itself. Moreover,
that information which is substituted into the command is filtered so that any shell
metacharacters are literalized. That is, all occurrences of the characters

" # $ & ’ () * ; < = > ? [\] ` { | })

are preceded with a backslash, \. The QUOTE_CHARS channel option can be used to
specify which characters, if any, require quoting.

26.7 Processing and Reprocessing Channels

The processing and reprocessing channels are essentially the intersection of all other
channel programs — they perform only those operations that are shared among all other
channels. In other words, such a channel is simply a channel queue whose contents
are processed and requeued to other channels. Messages receive no special processing
whatsoever.

The different between a reprocessing channel and a processing channel is that a
reprocessing channel is normally ‘‘invisible’’ as a source or destination channel, as for
instance in a CONVERSION, CHARSET-CONVERSION, or SEND_ACCESS mapping
table, or in a source channel or destination channel specific rewrite rule. A processing
channel, on the other hand, is visible like other PMDF channels.

26–47

Other Channels
Processing and Reprocessing Channels

It can appear that such a channel is effectively useless, but this turns out to be
untrue. For example, the act of expanding a large mailing list can be very time-
consuming. Timeouts can occur if this is done during the operation of a channel slave
program with an open network connection. So PMDF provides the expandlimit channel
keyword, which forces requeuing of the message to the reprocessing channel. Address
expansion is then done as the reprocessing channel runs, free of any network timing
constraints.

If a message destined to an address of the form user@domain is routed to
the reprocessing channel, (e.g., due to rewrite rules or the expandlimit keyword)
then the reprocessing channel will simply re-enqueue the message to the channel
associated with the domain domain; if a message destined to an address of the form
user@reprocessing-domain is routed to the reprocessing channel, (e.g., as can be
the case for mailing lists using deferred expansion), then the reprocessing channel will
re-enqueue the message to the local channel. In either case, the reprocessing channel
performs any necessary expansion of the user part of the address.

When a PMDF channel has to generate a notification (bounce) message, such a
notification message is initially enqueued to the processing channel.

A processing channel and a reprocessing channel are produced automatically by the
PMDF configuration generator.b

26.7.1 Process Channel Definition and Rewrite Rules

If your configuration was generated by the PMDF configuration utility, then you do
not need to add a reprocessing channel to your configuration: this was done automatically
for you by that utility.c See the appropriate edition of the PMDF Installation Guide for
instructions on using the configuration utility.

The first step in installing a processing channel is to insert the channel entry in
PMDF’s configuration file. The entry should have the form:

process
PROCESS-DAEMON

Rewrite rules can be added if desired to make it possible to queue mail explicitly to
the processing channel. Something like

process $U%process.localhostname
process.localhostname $U%process.localhostname@PROCESS-DAEMON

where localhostname is the name of the local PMDF system will provide the necessary
functionality. Once this is done any address of the form

b If you are using an older configuration generated prior to PMDF V5.2, you can need to manually add a processing channel
definition and rewrite rules to your configuration. If you are using an older configuration generated prior to PMDF V5.0,
you can need to manually add a reprocessing channel definition and rewrite rules to your configuration. For its own uses,
PMDF will act as if process and reprocess channels are defined even if they are not explicitly present in your configuration.
But if you want to make any site specific uses of such channels, explicitly addressing or rewriting to such channels, then
you will need to have the channels explicitly present in your configuration.

c Configurations generated prior to PMDF V5.2 did not automatically include a processing channel.

26–48

Other Channels
Processing and Reprocessing Channels

user%host@process.localhostname

will be routed through the processing channel.

26.7.2 Reprocess Channel Definition and Rewrite Rules

If your configuration was generated by the PMDF configuration utility, then you do
not need to add a reprocessing channel to your configuration: this was done automatically
for you by that utility.d See the appropriate edition of the PMDF Installation Guide for
instructions on using the configuration utility.

The first step in installing a reprocessing channel is to insert the channel entry in
PMDF’s configuration file. The entry should have the form:

reprocess
REPROCESS-DAEMON

Rewrite rules can be added if desired to make it possible to queue mail explicitly to
the reprocessing channel. Something like

reprocess $U%reprocess.localhostname
reprocess.localhostname $U%reprocess.localhostname@REPROCESS-DAEMON

where localhostname is the name of the local PMDF system will provide the necessary
functionality. Once this is done any address of the form

user%host@reprocess.localhostname

will be routed through the reprocessing channel.

26.8 Generic SMTP Channels

The channel programs test_smtp_master and test_smtp_slave are provided as
models upon which additional channels using the SMTP protocol can be built. They are
intended as examples only and not as production channel programs.

Both programs require that the logical name PMDF_CHANNEL (on OpenVMS) or
the environment variable PMDF_CHANNEL (on UNIX and NT) translate to the name
of the channel they are servicing.

When test_smtp_master is executed, it looks in the queue cache database for mes-
sages waiting to be processed by the channel PMDF_CHANNEL. On OpenVMS, SMTP
commands are written to SYS$OUTPUT and responses are expected on SYS$INPUT; on
UNIX and NT, SMTP commands are written to stdout and responses are expected on
stdin.

d Configurations generated prior to PMDF V5.0 did not automatically include a reprocessing channel.

26–49

Other Channels
Generic SMTP Channels

Similarly, on OpenVMS, test_smtp_slave accepts SMTP commands on SYS$INPUT
and writes responses to SYS$OUTPUT; on UNIX and NT, test_smtp_slave accepts
SMTP commands on stdin and writes responses to stdout.

The distributed master.com command procedure on OpenVMS and the pmdf run
utility and Job Controller on UNIX never invoke test_smtp_master and will have to
be modified in order to use test_smtp_master. The code supporting tcp_master can
be used as a model to drive test_smtp_master.

test_smtp_master includes code to distinguish between use as a direct connection
to the target system and use for routing through a gateway. This facility parallels the
gateway support found in TCP/IP channels, namely support for the daemon keyword.

26.9 DEC NOTES Channels (OpenVMS)

Note: The DEC NOTES channel is only supported on OpenVMS VAX and Alpha systems.

NOTES channels are used to provide a connection between PMDF and the DEC
NOTES utility. DEC NOTES is a proprietary product of Hewlett-Packard Company; it is
not a part of PMDF. This connection currently only works in one direction: mail messages
will be registered as notes in DEC NOTES but DEC NOTES messages are not exported
back out to PMDF.

NOTES channels try to convert mail messages into a format that is as close to a
true NOTES posting as possible. In particular, options are provided to remove header
information from messages or place it at the end of the posting. The NOTES channel
program also attempts to group messages about a common subject into what DEC NOTES
expects to see: a single original note with followup notes attached.

26.9.1 Setting Up the NOTES Channel

The first step in installing a NOTES channel is to insert the channel entry in PMDF’s
configuration file. The entry should appear as:

notes_local single
decnotes.domain.name

decnotes.domain.name should be a valid domain name that is reserved for use by
the NOTES channel. One possible choice is to prepend the official local host name
with ‘‘decnotes.’’. For example, in domain example.com, a reasonable domain name for
the NOTES channel might be decnotes.example.com and the channel entry would then
appear as

notes_local
decnotes.example.com

26–50

Other Channels
DEC NOTES Channels (OpenVMS)

Some additional rewrite rules are also needed. Continuing the decnotes.example.com
example, the appropriate rules would be:

decnotes $U@decnotes.example.com
decnotes.example.com $U@decnotes.example.com

At this point the installation of the NOTES channel is basically complete. Any
message sent to CONFERENCE@decnotes.example.com would be inserted into the
conference named CONFERENCE. You can either subscribe addresses of this form to
the mailing lists you want to read as notes files or you can set up aliases in the PMDF
alias file and subscribe the aliases instead:

info-vax: info-vax@decnotes.example.com
info-pmdf: info-pmdf@decnotes.example.com

26.9.2 Using an Option File for the NOTES Channel

The NOTES channel processes e-mail messages converting them to DEC NOTES
notes which are stored in a NOTES file. An options file can be used to control some of
the characteristics of this conversion process. If an option file is used it must have the
name notes_local_option and it must be located in the PMDF table directory, i.e.,
PMDF_TABLE:notes_local_option. on OpenVMS. NOTES channel option files are in
the same format used by other PMDF option files. See, for example, Section 26.4.1.5.
The available options are:

NOTEFILE_conference (string, < 252 characters)

Normally the name of the NOTES file is derived from the name of the conference in
an obvious way: the device specification NOTES$LIBRARY: is prepended and the file
extension .notes is appended. In some cases NOTES files can be located elsewhere.
The NOTEFILE_conference option provides a way to specify the name of a NOTES file
for the conference conference. If it is specified it gives the full file specification; if it is
not specified the defaults described above will be used instead.

PREFIXES (list of space-separated strings)

The PREFIXES option provides a default for cases where no specific PREFIXES_
conference option is provided. If not specified this option’s value defaults to ‘‘Re: FWD:’’.

PREFIXES_conference (list of space-separated strings)

When subject grouping is enabled (see the discussion of SUBJECT_GROUPING_
conference options below) subject lines are compressed prior to being stored in subject
files. Specifically, leading and trailing spaces are removed, multiple embedded spaces
are converted into a single space, and leading prefixes often used in replies are removed.
However, the specific leading prefixes used tends to be dependent on language and
conference conventions.

The PREFIXES_conference options provide the means to specify what prefix strings
should be removed on a per-conference basis. Prefix strings should be listed separated
by single spaces. Case is ignored; entries can be specified in any case. If no PREFIXES_
conference option is specified the PREFIXES option is used as a default.

26–51

Other Channels
DEC NOTES Channels (OpenVMS)

RETAIN_FAILURES (0 or 1)

The RETAIN_FAILURES option provides a default for cases where no specific RETAIN_
FAILURES_conference option is provided. This option is provided mostly for debugging
and is usualy set to the default value of 0.

RETAIN_FAILURES_conference (0 or 1)

When a delivery failure of some kind occurs on the NOTES channel the normal action
is to abort the delivery and return the message to its sender. This default action can
be disabled on a per-conference basis with the RETAIN_FAILURES_conference option.
When this option is set to 1 all delivery failures will be retained in the channel queue.
This is primarily used for debugging; it is useful to have messages retained in the queue
until delivery quirks have been worked out.

The default value of the RETAIN_FAILURES_conference settings is obtained from the
RETAIN_FAILURES option.

RETENTION_TIME (OpenVMS delta time)

The RETENTION_TIME option provides a default for cases where no specific RETEN-
TION_TIME_conference option is provided. This option is normally set to whatever
default a majority of conferences require. The time should be specified as an Open-
VMS delta time string in the usual format (i.e., DD HH:MM:SS; e.g., RETENTION_
TIME_GRIPES=30 00:00:00). The default value for this option is 30 days, RETENTION_
TIME=30 00:00:00.

RETENTION_TIME_conference (OpenVMS delta time)

Entries in the subject grouping databases are only retained for a limited amount of
time. This option provides a way of specifying how long to retain subject headers for the
conference conference. The time should be specified as an OpenVMS delta time string in
the usual format (i.e., DD HH:MM:SS; e.g., RETENTION_TIME_GRIPES=30 00:00:00).
This option has no effect if subject grouping is disabled. If this option is not specified the
default established by the RETENTION_TIME option will be used instead.

SET_PERSONAL_NAME (0-2)

The SET_PERSONAL_NAME option provides a default for cases where no specific
SET_PERSONAL_NAME_conference option is provided. This option is normally set to
whatever default a majority of conferences requires. The default value for this option is
1.

SET_PERSONAL_NAME_conference (0-2)

Each note that is posted contains a personal name field. This is normally the name
of the person posting the note. When the NOTES channel posts a note it usually sets
the personal name field to the address that’s most appropriate for replies to go to. This
address is given in a format that would be acceptable to VMS MAIL; that is, it has an
IN% prefix and so forth.

In some cases, however, such a setting can be inappropriate. For example, some mailing
lists can unconditionally appear to originate from a single user. In this case such a
conversion is probably inappropriate.

The SET_PERSONAL_NAME_conference option controls this behavior for the conference
conference. A value of 1 causes the conversion to take place. A value of 2 causes addresses
specifically for replies to be ignored; the address of the actual message author will be
used instead. A value of 0 blocks the conversion. If no option is specified the default is
taken from the SET_PERSONAL_NAME option.

26–52

Other Channels
DEC NOTES Channels (OpenVMS)

SUBJECT_GROUPING (-1 or 0 or 1)

The SUBJECT_GROUPING option provides a default for cases where no specific
SUBJECT_GROUPING_conference option is provided. This option is normally set to
whatever default a majority of conferences require. The default value for this option is
1.

SUBJECT_GROUPING_conference (-1 or 0 or 1)

The NOTES channel attempts to group messages with common subjects into a group of
notes (specifically, an initial entry followed by one or more followup postings). This task is
accomplished by building a database containing all the subject lines for recent messages
and the corresponding note number. (A NOTES-SUBJECT mapping table can be used
for even more control over the subject database entries; see Section 26.9.3.) A separate
database is built for each conference; the names of the databases are controlled with the
SUBJECTFILE_conference options. All this activity consumes resources and can in fact
be inappropriate for some sorts of conferences. For example, the Risks-Digest conference
is customarily grouped into messages containing multiple postings called digests; the
names given to these digests are always unique and it would be a waste of time to try
and group them in DEC NOTES.

The SUBJECT_GROUPING_conference option controls whether or not any attempt
is made to group the messages sent to the conference conference. A value of 1
requests grouping. A value of 0 disables grouping. A value of -1 requests that the
RETENTION_TIME_conference option (or failing that, the RETENTION_TIME option)
be used to control grouping; messages received with the RETENTION_TIME setting will
be collected in one group, but after RETENTION_TIME, a new group will be started.
If this option is not specified the channel will obey the more general setting of the
SUBJECT_GROUPING option.

SUBJECTFILE_conference (string, < 252 characters)

Normally the databases of subjects associated with each active conference conference
have names of the form PMDF_TABLE: conference.subjects . This default can be
overridden with an appropriate SUBJECTFILE_conference option. If this option is used,
be sure to specify a complete path to the database.

USERNAME_conference (string, < 252 characters)

Each posting to a DEC NOTES conference is associated with a specific OpenVMS
username. When the NOTES channel posts notes to a conference it normally uses the
username it runs under; this is normally SYSTEM. In some cases, however, it can be
useful to post notes under a different username. The USERNAME_conference option
establishes a username to use for postings to the conference conference. This option
must be set on a per-conference basis; the default if no option is given is to use the
username the NOTES channel is running under (again, this is normally SYSTEM).

26.9.3 Further Control of the Subject Database

Normally, the NOTES channel builds a subject database with entries constructed
from a message subject line and its corresponding note number. The option NOTES-
SUBJECT mapping table can be used to modify what is used in such entries.

26–53

Other Channels
DEC NOTES Channels (OpenVMS)

The format of the probe into the NOTES-SUBJECT mapping table, i.e., the template,
is

conference|subject

If the $Y flag is set in the mapping table pattern, then the pattern is used as the subject
database entry.

For instance, the following NOTES-SUBJECT mapping table recursively strips off
all but the last sequence number on a subject line for messages to the info-list conference:

NOTES-SUBJECT

info-list|*$ [*]$ [*] RY0 [$2]
info-list|*$ [*] Y0$ [$1]

26–54

27The PMDF Queue to E-mail Symbiont (OpenVMS)

Note: The content of this chapter is only applicable to OpenVMS systems.

The queue to e-mail symbiont is a single threaded server symbiont which accepts,
via the OpenVMS print subsystem command, messages to be sent as e-mail. Sending
e-mail in this fashion has many inherent limitations and for this reason this symbiont
is considered to be experimental at present; (e.g., if the message is entered into the print
queue via a remote system, it can not be possible to verify the name of the sender or to
return error notifications).

Messages sent with the queue to e-mail symbiont are entered into the PMDF mail
system through PMDF’s callable SEND interface. Consequently, the behavior of the
queue to e-mail symbiont is identical to that of the PMDF SEND utility described in the
PMDF User’s Guide, OpenVMS Edition.

The queue to e-mail symbiont can also be configured to use an addressing channel.
Mail which lacks any forward addressing information (e.g., To:, cc:, or bcc: addresses),
can be passed on to an addressing channel. The addressing channel will then attempt to
extract addressing information from the body of the message. Addressing channels are
described in Chapter 26.

As described in Section 27.4, the symbiont can relay PostScript files to PMDF-
FAX for transmission as facsimiles. This allows users of word processors to send
FAXes directly from their word processing applications. This functionality works with
Pathworks thereby enabling users of Macintoshes and PCs to print their documents from
applications on their micro computers.

This symbiont is not part of the PMDF Process Symbiont and thus the installation
of this symbiont does not require or depend upon the PMDF Process Symbiont.

27.1 Symbiont Configuration

Before creating a queue to e-mail queue, the symbiont executable must be copied
to the system’s executable directory, pointed at by the logical SYS$SYSTEM. (OpenVMS
requires that all symbionts reside in the that directory.) To place a copy of the symbiont
into this directory, issue the command

$ COPY PMDF_EXE:pmdf_q2email.exe SYS$SYSTEM:pmdf_q2email.exe

This will place the queue to e-mail symbiont in the system specific SYS$SYSTEM
directory; to place it in the cluster common directory, use SYS$COMMON:[sysexe] in
place of SYS$SYSTEM: in the above command.

27–1

The PMDF Queue to E-mail Symbiont (OpenVMS)
Symbiont Configuration

A queue to e-mail queue is then created by initializing a server queue with
pmdf_q2email as its processor on the appropriate cluster node, node:

$ INITIALIZE/QUEUE/DEVICE=SERVER/NOENABLE_GENERIC -
$_ /PROCESSOR=pmdf_q2email/ON=node:: queue-name

where queue-name is the name to use for the queue. If node is a member of a
cluster, then omit the /ON= qualifier. The /NOENABLE_GENERIC qualifier prevents
generic printer queues without specifically defined execution queues from unintentionally
printing to this queue.

If the logical name PMDF_Q2EMAIL_LOG is defined and translates to a valid file
name, then symbiont activity will be logged to that file. A new version of the file is
created each time the symbiont is restarted.

27.2 Option Files

When the queue to e-mail symbiont queue is started, it consults the option file
q2email_option. in the PMDF table directory, i.e., PMDF_TABLE:q2email_option.
If the file does not exist, the symbiont will use internal defaults. The format of the entries
in the file is the same as those in other PMDF option files (but not the PMDF Process
Symbiont). See, for instance, Section 7.2.

The available options are:

ADDRESSING_CHANNEL (text string <= 252 characters long)

The domain name (host name) associated with an addressing channel. Messages queued
to the symbiont without any TO, CC, or BCC parameters will be forwarded to the
specified addressing channel which will then try to extract information from the body
of the message. There is no default for this option. This option applies to all instances
of the queue to e-mail server and, for a given queue queue, can be overridden with the
ADDRESSING_CHANNEL_queue option.

ADDRESSING_DELIMITER (single character)

Specifies the character to use as a command delimiter when generating a message
containing addressing channel commands. Such messages are generated when a
PostScript file is printed to the symbiont, in which case the symbiont attempts to extract
addressing channel commands from the PostScript file itself and to reformat them for
use by an addressing channel.

By default, a colon is used. When the target addressing channel uses a delimiter
other than a colon (as specified with the DELIMITER option to that addressing chan-
nel), then the queue to e-mail symbiont must be made aware of this via the ADDRESS-
ING_DELIMITER option.

This option applies to all instances of the the queue to e-mail server and, for a given
queue queue, can be overridden with the ADDRESSING_DELIMITER_queue option.

CHARSET

This option is used to specify the character set used in PostScript files passed to the
symbiont. If this option is not specified, the local channel’s character set will be assumed.

27–2

The PMDF Queue to E-mail Symbiont (OpenVMS)
Option Files

This option applies to all instances of the the queue to e-mail server and, for a given queue
queue, can be overridden with the CHARSET_queue option.

EXCLUDE_PROXIES (text string <= 252 characters long)

This option specifies a list of usernames which, when encountered, will be discarded
and the print job’s job name used instead. This option is intended for use with
Pathworks which typically submits print jobs under the username MSAP$ACCOUNT
or PCFS$ACCOUNT and specifies for the job name the remote Pathworks user’s login
name (i.e., the username under which the remote user logged into the server). By using
the job name in such instances, a more apt return address is used for the From: address
of the e-mail message to be generated.

If not specified, the list ‘‘/MSAP$ACCOUNT/PCFS$ACCOUNT/’’ is used. The list must
begin and end with a slash, ‘‘/’’, and a slash must delimit each entry in the list. No spaces
or other punctuation can appear.

This option applies to all instances of the the queue to e-mail server and, for a given
queue queue, can be overridden with the EXCLUDE_PROXIES_queue option.

EXCLUDE_USERNAMES (text string <= 252 characters long)

A list of usernames to not use in a From: address (e.g., DECNET). The address ‘‘<>’’
will be used in place of any username found in this list. If not specified, the list
‘‘/SYSTEM/DECNET/’’ is used. The list must begin and end with a slash, ‘‘/’’, and a
slash must delimit each entry in the list. No spaces or other punctuation can appear.

This option applies to all instances of the the queue to e-mail server and, for a given
queue queue, can be overridden with the EXCLUDE_USERNAMES_queue option.

FROM_ALLOWED (0 or 1)

This option specifies whether or not users can specify the message’s From: address
with the FROM parameter. By default, users are not allowed to specify the From:
address (FROM_ALLOWED=0). To allow users to set the From: address, specify
FROM_ALLOWED=1 in the option file.

This option applies to all instances of the the queue to e-mail server and, for a given
queue queue, can be overridden with the FROM_ALLOWED_queue option.

HEADERS_ALLOWED (0 or 1)

This option specifies whether or not users can specify an initial set of header lines for
an e-mail message submission. (Users do so with the HEADERS parameter when they
print a file to the symbiont.) By default, users are allowed to specify an initial set of
header line (HEADERS_ALLOWED=1). To disallow users to specify header lines, specify
HEADERS_ALLOWED=0 in the option file.

This option applies to all instances of the the queue to e-mail server and, for a given
queue queue, can be overridden with the HEADERS_ALLOWED_queue option.

SPACE_STRINGS (0 or 1)

By default (SPACE_STRINGS=1), when composing addressing channel commands from
text strings extracted from a PostScript file, a space will be placed between each extracted
string. This behavior can be inhibited by specifying SPACE_STRINGS=0.

This option applies to all instances of the the queue to e-mail server and, for a given
queue queue, can be overridden with the SPACE_STRINGS_queue option.

27–3

The PMDF Queue to E-mail Symbiont (OpenVMS)
Option Files

27.3 Sending Mail with the Symbiont

Mail is sent with the queue to e-mail symbiont by printing a file with the OpenVMS
PRINT command. Addressing information can either be specified with the /PARAMETER
qualifier or embedded in the message body in a format acceptable to an addressing
channel.

The recognized parameters are shown in Table 27–1.

Table 27–1 Queue to e-mail Symbiont Parameters

Parameter Usage

BCC List of one or more addresses to which to send a blind carbon copy.

CC List of one more addresses to which to send a carbon copy.

ENCODING Encoding format to use; can be one of BASE64, HEXADECIMAL, QUOTED_
PRINTABLE, or UUENCODE.

FROM Address to use as the message’s From: address; requires that the option FROM_
ALLOWED be set to 1 in the option file.

HEADERS The symbiont is to use the RFC 822 headers already present in the file; does not take
a value.

MODE File access mode to use; can be one of CRATTRIBUTE, LFATTRIBUTE,
CRLFATTRIBUTE, BLOCK, RECORD, or TEXT.

SUBJECT Subject: line to use for the message.

For example, the PRINT command

$ PRINT/QUEUE=Q2EMAIL/PARAMETER=(TO="mrochek@example.com",-
_$ CC="bob@example.com,sue@example.com",SUBJECT="Test message") -
_$ message.txt

would send, via the queue Q2EMAIL, the file message.txt to mrochek@example.com,
bob@example.com, and sue@example.com. The Subject: line will read ‘‘Subject: Test
message’’.

To print a Word Perfect PostScript file doc.ps to the PS-FAX channel, a command
of the following form might be used:

$ PRINT/QUEUE=Q2EMAIL/PARAMETER=(MODE=BLOCK,ENCODING=BASE64,-
_$ TO="""/fn=621 5319/at=Mrochek/""@ps-fax") doc.ps

When mail is to be sent from a remote system (e.g., via LPD), then all of the
addressing information can be embedded in the message body in a format acceptable
to the addressing channel to which the message will be routed (since it will lack TO,
BCC, or CC parameters specifying where to route it).

27–4

The PMDF Queue to E-mail Symbiont (OpenVMS)
Printing Documents from Word Processors

27.4 Printing Documents from Word Processors

The queue to e-mail symbiont has logic to extract addressing information from word
processing documents printed as PostScript. These documents can either be printed
locally or from network sources such as Pathworks. The first page of a document should
contain addressing channel commands followed by a hard page break. The addressing
information will be extracted from the PostScript in an application independent fashion
and used to send the document along as e-mail. This allows users to print a document
from their Macintosh, PC, etc., and have the document, for instance, sent as a FAX via
PMDF-FAX. The page containing addressing information will not appear in the FAXed
document.

The logic used by the symbiont is as follows:

IF a file printed to the symbiont lacks To: addressing information THEN

IF the file is a PostScript file (i.e., begins with ‘‘%!’’) THEN

1. Addressing information is extracted from the first page of the document, and

2. the message is converted to a MIME multipart/mixed message and passed on
to the addressing channel. The converted message has the structure shown
below:

... RFC822 message headers ...
Content-type: MULTIPART/MIXED; BOUNDARY="boundary"

--boundary
Content-type: TEXT/PLAIN; CHARSET=charset

... extracted addressing information ...

--boundary
Content-type: APPLICATION/POSTSCRIPT

... special PostScript to suppress the display of the

first document page ...

--boundary
Content-type: APPLICATION/RMS
Content-transfer-encoding: BASE64

... PostScript document; encoded to prevent any possible damage

(e.g., line wrapping) while transferring through

the mail system ...

--boundary--

In 1. above, if the PostScript file does not follow the PostScript Document Structuring
Conventions (DSC) then a second pass is made during which all PostScript strings are
extracted. (In the first pass, the DSC is used to attempt to identify the beginning and
end of the first page of the document.)

The character set information will be as specified with the CHARSET option. If no such
option was specified, then the character set used by the local channel will be assumed.

27–5

The PMDF Queue to E-mail Symbiont (OpenVMS)
Printing Documents from Word Processors

27.4.1 Adding PostScript Support

To add support for the handling of PostScript documents, an option file must be
created, and an addressing channel configured, if one is not already available. Consult
Section 26.1 for details on configuring an addressing channel; consult Section 27.2 for
instructions on setting up an option file.

Two options must be specified in the option file. (Others can or can not be required.)
These two options are ADDRESSING_CHANNEL=domain_name and FROM_ALLOWED=1.
Here, domain_name should be the domain name associated with the addressing channel
you have or will configure; e.g.,

ADDRESSING_CHANNEL=address.example.com
FROM_ALLOWED=1

You can also need to specify the CHARSET option. If the addressing channel will
be accepting PostScript from a Macintosh, then specify CHARSET=MACINTOSHPS;
if the channel will be accepting PostScript from a PC running windows, then specify
CHARSET=WINDOWSPS. See Section 27.4.2 for futher details on the use of this option.

A sample option file is shown below:

ADDRESSING_CHANNEL=address.example.com
CHARSET=MACINTOSHPS
FROM_ALLOWED=1

If multiple queues are set up, then use entries of the form

ADDRESSING_CHANNEL=address.example.com
CHARSET_queue1=MACINTOSHPS
CHARSET_queue2=MACINTOSHPS
FROM_ALLOWED=1

where queue1 and queue2 are the names of the individual queues.

27.4.2 Character Set Handling

The text encoded in PostScript files will typically be encoded in a platform dependent,
or possibly even application dependent, character set. PMDF must know what character
set is used so that it can properly convert the text extracted from the PostScript file to
the HP MultiNational Character Set (DEC MCS) prior to processing by the addressing
channel. For instance, Macintosh systems will use a character set in which an apostrophe
(the ASCII character 27 in hexadecimal) will appear as the character with ordinal value
D5; (in DEC MCS, this appears as the character Õ). This causes the addressing channel
command

:Recipient’s name: Fresnel

to appear in the PostScript file on VMS as

:RecipientÕs name: Fresnel

27–6

The PMDF Queue to E-mail Symbiont (OpenVMS)
Printing Documents from Word Processors

The CHARSET option is used to inform PMDF as to which character set is used in the
PostScript. This option can specify any character set defined in the file charsets.txt
in the PMDF table directory. Additional character sets can be added to that file as
needed. When character sets are added to charsets.txt, the file must be recompiled
and reinstalled:

$ PMDF CHBUILD
$ INSTALL REPLACE PMDF_CHARSET_DATA

Now, not only must PMDF be informed as to what character set is used, but it must
also be told to perform character set conversions when processing mail queued to the
addressing channel. To the mapping file add the table2

CHARSET-CONVERSION

IN-CHAN=l;OUT-CHAN=address*;CONVERT Yes
IN-CHAN=l;OUT-CHAN=address*;IN-CHARSET=* OUT-CHARSET=DEC-MCS

This will cause all messages queued to the addressing channel from the l channel (i.e.,
the local channel) to be converted to HP MCS. (The queue to e-mail symbiont submits
messages under the guise of the local channel.) See Chapter 6 for documentation on the
use of the CHARSET-CONVERSION mapping table; see Chapter 5 for documentation on
the use of the mapping file itself.

If you have a compiled configuration, then it must be recompiled before these entries
in the mapping file will take effect. Likewise, the configuration needs to be recompiled
whenever changes are made to the mapping file.

Note that a single queue to e-mail symbiont can only handle one type of incoming
character set. Additional symbionts must be set up to handle additional character sets.
This is not a limitation of the symbiont, but rather an inability to determine the input
source to a symbiont. Different input sources can only be distinguished by using different
printer queues which, in turn, requires multiple symbionts, one per printer queue. So,
a separate printer queue should be set up for each set of input sources using a given
character set. For instance, a site with both Macintosh and PC users should set up two
queue to e-mail printer queues: one for the Macintosh users and one for the PC users.
The q2email_option. file might then appear as

ADDRESSING_CHANNEL=address.example.com
CHARSET_queue_mac=MACINTOSHPS
CHARSET_queue_pc=WINDOWSPS
FROM_ALLOWED=1

where queue_mac and queue_pc are, respectively, the names of the Macintosh and PC
printer queues.

2 If you already have a CHARSET-CONVERSION table in the mapping file, then simply add the necessary table entries.

27–7

28E-mail Firewalls and Other E-mail Security
Considerations

This chapter discusses how to configure PMDF to act as an e-mail firewall, and
various e-mail security issues to consider when doing so. Judicious implementation of the
broad spectrum of techniques described below provides an effective e-mail firewall. Many
of the techniques and configuration strategies described below can also be of interest even
in a regular, non-e-mail-firewall configuration.

28.1 What is an e-mail Firewall?

Here an e-mail firewall refers to an enhanced, firewall-oriented e-mail handling
component on an Internet firewall system. A basic Internet firewall system generally
controls what TCP/IP interactions are allowed between the external world, considered to
be unsafe, and an internal, protected environment, considered to be safe. To be an e-mail
firewall system, this system should also check and control the e-mail passing between
the internal and external environments.

• An e-mail firewall can perform address transformations, converting external pre-
sentation addresses in messages incoming from the external world to actual internal
addresses, and transforming internal addresses to external presentation addresses on
messages outgoing to the external world. See Chapter 3 for a discussion of centralized
naming in general, and Section 28.4.8.4 below for mention of special considerations
on an e-mail firewall.

• An e-mail firewall can enforce restrictions on what messages are allowed in or out.
See Section 28.4.5 below. In particular, an e-mail firewall can disallow certain sorts
of message traffic, and can be configured to protect against denial of service attacks.

• An e-mail firewall can be set up to perform filtering on message content, e.g.,
limiting message size, or checking incoming binary attachments for viruses. See
Section 28.4.7 below.

• An e-mail firewall is careful in what information it emits in response to external
systems’ possible probe attempts. See Section 28.4.8 below.

• And an e-mail firewall provides facilities for message logging and message traffic
statistics. See Section 28.4.3.

28.1.1 The e-mail Firewall Orientation

One of the most important parts of setting up an effective e-mail firewall is having
a security orientation: this is sometimes described as taking the attitude that ‘‘anything
not permitted is forbidden’’.

28–1

E-mail Firewalls and Other E-mail Security Considerations
What is an e-mail Firewall?

There are a number of tradeoffs when configuring message handling. In a
firewall configuration, the emphasis tends to be on tracking and control of messages
and information passing through, whereas a regular PMDF-MTA configuration tends
to emphasize efficiency and effectiveness. That is, where a regular PMDF-MTA
configuration is geared towards ‘‘getting the mail through’’ one way or another, e.g.,
accepting various address formats and fixing them up if necessary, a PMDF firewall
configuration will typically be more concerned with ensuring that only ‘‘appropriate’’
addresses work and rejecting other addresses. A PMDF firewall configuration will
typically maintain detailed logging information even at the expense of some additional
overhead. And in a PMDF firewall configuration, there will typically be some concerns
about what internal addressing information is exposed externally, which can mean
performing additional work on address transformations, or stripping potentially useful
(but overly informative) information from messages.

28.2 Preliminary Tasks Before Setting Up an e-mail Firewall

Before setting up an e-mail firewall, you should have an Internet firewall in place
to control what sorts of general TCP/IP access are permitted to your systems, and you
should consider and establish general security and e-mail messaging policies appropriate
for your site.

28.2.1 Have an Internet Firewall in Place

Before setting up an e-mail firewall, you have presumably already set up a general
firewall or ‘‘Internet firewall’’ to control general sorts of TCP/IP connections, etc., to your
systems. Note that in comparison with remote logins or FTP access to files on your
systems, e-mail is generally much less of an overall security exposure; there is generally
not much point to concerning oneself with e-mail security until more fundamental
security issues have been addressed. The discussion on e-mail firewalls in this chapter
is referring solely to the additional control of e-mail that you may want to impose when
you already have an Internet firewall set up.

28.2.2 Security and e-mail Policies

When setting up your Internet firewall, you presumably considered and established
general security policies for your site. You should do the same for e-mail. For instance,
depending upon your site, you may want to have explicit policies regarding e-mail address
spoofing, the sending of harassing e-mail, list subscriptions, the sending of virus-infected
PC executable programs, the use of e-mail for personal business, etc.

What is appropriate policy for your site will depend upon your site’s goals and needs
and what can be reasonably expected from your users. Your greatest aid in good e-
mail security, as in other security, is users who are educated as to your policies and
committed to implementing them. With the tightest security procedures in the world, if

28–2

E-mail Firewalls and Other E-mail Security Considerations
Preliminary Tasks Before Setting Up an e-mail Firewall

your users do not understand the reasons for your policies and practices or find them
overly burdensome, sooner or later some users will disregard or circumvent them.

28.3 The PMDF Firewall Configuration Utility

The PMDF CONFIGURE FIREWALL utility (OpenVMS) or pmdf configure
firewall utility (UNIX) creates a basic PMDF firewall configuration. In accordance
with the answers you give it about your particular site and goals, it uses the techniques
described below to create a PMDF firewall configuration for your site. See the appropriate
edition of the PMDF Installation Guide for instructions on using the utility and an
example configuration.

28.4 Firewall Configuration Features

This section describes specific features and techniques useful in a firewall configu-
ration.

28.4.1 Separating Message Traffic

One of the fundamental issues for a firewall configuration tends to be separation
between internal and external messages: separating message traffic allows for tracking
and appropriately controlling the different sorts of messages. So the first recommenda-
tion for a firewall system is to set up separate channels to handle messages originating
from external sites versus messages originating from internal systems.

For background on rewrite rules, see Section 2.2; for background on channels, see
Section 2.3.

28.4.1.1 Separating SMTP Over TCP/IP Message Traffic

The most common case is where messages originating from external sites come in to
the PMDF system as SMTP messages over a TCP/IP channel. To separate the externally
originating SMTP messages from internally originating SMTP message, use a separate
TCP/IP channel in addition to the default TCP/IP channel; e.g., use a tcp_internal
channel in addition to the default tcp_local channel. Put the switchchannel channel
keyword on your current tcp_local channel, the allowswitchchannel channel
keyword (the default) on the tcp_internal channel and any other channels you want
to allow switching to, and put noswitchchannel on all other channels, e.g., the local
channel, and use rewrite rules to associate internal TCP/IP system names and IP
addresses with the tcp_internal channel and all other domains, e.g., Internet domains,
with the tcp_local channel.

28–3

E-mail Firewalls and Other E-mail Security Considerations
Firewall Configuration Features

When deciding whether and to what channel to ‘‘switch’’ an incoming connection,
PMDF uses the literal IP address of the incoming connection to perform a reverse-
pointing envelope rewrite looking for an associated channel. If that rewrite fails, or if
that rewrite matches the default incoming TCP/IP channel, then PMDF will try rewriting
the host name as found by a DNS reverse lookup on the incoming IP address; (depending
on the use of any ident* keywords, such DNS reverse lookups can be disabled).

So in order to allow internal systems to be recognized as such, you should use IP
literal rewrite rules to associate internal IP literals (at least during backwards envelope
rewriting) with your internal TCP/IP channel. (Note that even if you do not normally
use any IP literal rewrite rules so that PMDF tries to fall through to using host names,
you should have such rewrite rules for your internal systems in case of DNS problems
causing DNS reverse lookup failures.) If you want to limit the rewriting of internal IP
numbers to actual system names in the forward direction, say if you do not want to allow
external users to ‘‘probe’’ for internal IP number/internal system name correspondences,
then you can want these IP literal rewrite rules to be backwards envelope specific, i.e.,
ER rewrite rules.

Note that the default incoming TCP/IP channel is tcp_local and only system names
or IP numbers recognized as internal system names are ‘‘switched’’ to the tcp_internal
channel. This provides ‘‘failsafe’’ behavior; systems not specifically recognized (even
internal systems, if the PMDF configuration has not been set up to recognize them)
are handled by the external, ‘‘unsafe’’ channel.

By default, PMDF allows any channel to be ‘‘switched to’’; i.e, the default is
allowswitchchannel. On a firewall system in particular, it is likely appropriate to
make noswitchchannel the default — for instance, you probably do not want to allow
‘‘switching’’ to the local channel—and mark only the specific channels for which you want
to allow switching with the allowswitchchannel channel keyword.

28.4.1.1.1 Sample Configuration with Separate TCP/IP Channels

For instance, a site whose internal systems’ IP numbers are all in the [a.b.subnet]
range, might want channels

defaults noswitchchannel routelocal

l defragment ...
official-local-host-name

...

tcp_local single_sys smtp mx remotehost switchchannel inner
TCP-DAEMON

tcp_internal single_sys smtp mx noremotehost allowswitchchannel routelocal
TCP-INTERNAL

and rewrite rules

28–4

E-mail Firewalls and Other E-mail Security Considerations
Firewall Configuration Features

! Rewrite rules for private TCP/IP systems/domains
!
internaldomain1 $U%internaldomain1@TCP-INTERNAL
internaldomain2 $U%internaldomain2@TCP-INTERNAL
...
! Rewrite rules for private TCP/IP system/domain literals
!
[a.b.] $U%[a.b.$L]@TCP-INTERNALER
...
! Rewrite rules for the Internet
! Principality of Andorra
.AD $U%$H$D@TCP-DAEMON
...
! Zimbabwe
.ZW $U%$H$D@TCP-DAEMON

Note also how the remotehost and noremotehost channel keywords are used on
these channels. The remotehost and noremotehost channel keywords affect PMDF’s
handling of bare usernames (‘‘addresses’’ that are illegally formatted in that they have
no domain name). PMDF always inserts a domain name on such addresses, to make the
addresses syntactically legal. For envelope To: addresses that are missing a domain
name, PMDF always inserts the local host name. However for other sorts of addresses,
such as From: addresses, another factor comes into play. The remotehost channel
keyword on the tcp_local channel (handling incoming messages from external sites)
tells PMDF to use the remote sending system’s name (as determined by a reverse DNS
lookup); the default noremotehost channel keyword on the tcp_internal channel
(handling incoming messages from internal sites) tells PMDF to use its own local host
name, which can be particularly appropriate in the case of poorly configured POP clients.

The routelocal keyword causes PMDF to attempt ‘‘short circuited’’ rewriting of any
explicit routing in the address, such as ! routing, %-hack routing, or @ source routing.
If a site expects no legitimate uses of explicit source routing, then blocking such usage
blocks a potential way for external senders to relay messages by explicitly routing them
past the firewall system through internal systems. Of course, sites that have legitimate
uses of explicit routing will not be able to afford to block such usage and hence should
not use routelocal on all channels.

The inner keyword causes PMDF address rewriting to be applied to addresses
in embedded message parts (MESSAGE/RFC822 parts) within the message; if you are
applying address reversal on outgoing messages, this is liable to be desirable.

28.4.1.2 The Case of an Internal Mailhub

In the case where the e-mail firewall relays all messages for internal systems to an
internal mailhub system, and receives internal messages only from the internal mailhub,
message traffic separation is straightforward: the connection to and from the mailhub
system is the only internal connection, and all other connections are external.

Indeed, this can be thought of as a two system e-mail firewall setup, where the
system we have been referring to as ‘‘the’’ e-mail firewall is the external portion of the
e-mail firewall, and the mailhub system is the internal portion of the e-mail firewall. (In
such a setup, particularly if the internal mailhub is a capable system such as another

28–5

E-mail Firewalls and Other E-mail Security Considerations
Firewall Configuration Features

PMDF system, you can even want to have the e-mail firewall system be ignorant of
internal addressing details which are handled by the internal mailhub system.)

For such a setup you will want an internal channel for communicating with the
internal mailhub, and an external channel (generally a TCP/IP channel, but UUCP,
Phonenet, etc. channels are also possible) or channels for communicating with the rest
of the world, and corresponding rewrite rules.

28.4.1.2.1 Sample Configuration With an Internal Mailhub System

For instance, for a site using SMTP over TCP/IP to communicate between the
e-mail firewall and the mailhub, and with an SMTP over TCP/IP connection to the
Internet, a configuration where all internal mail passes through the internal mailhub
is simply a special (and potentially simpler) case of having separate TCP/IP channels,
as in Section 28.4.1 above, with the major difference being that the tcp_internal channel
should be a daemon router channel connecting to the mailhub system, e.g.,

defaults noswitchchannel routelocal

l defragment ...
official-local-host-name

tcp_local single_sys smtp mx remotehost switchchannel inner
TCP-DAEMON

tcp_internal smtp mx remotehost allowswitchchannel daemon router
mailhubdomain

TCP-INTERNAL

and rewrite rules

! Rewrite rules for private TCP/IP systems/domains
!
internaldomain1 $U%internaldomain1@TCP-INTERNAL
internaldomain2 $U%internaldomain2@TCP-INTERNAL
...
! Rewrite rules for private TCP/IP system/domain literals
!
[mailhubIPaddress] $U%[mailhubIPaddress]@GTCP-INTERNALER
...
! Rewrite rules for the Internet
! Principality of Andorra
.AD $U%$H$D@TCP-DAEMON
...
! Zimbabwe
.ZW $U%$H$D@TCP-DAEMON

Compare this with the sample configuration excerpt shown in Section 28.4.1.1.1.

In this case, since messages from the internal side are coming from a PMDF system,
the remotehost keyword is likely appropriate on both channels.

28–6

E-mail Firewalls and Other E-mail Security Considerations
Firewall Configuration Features

28.4.2 Postmaster Messages

On an e-mail firewall, the issue of postmaster mail can need a bit of extra
consideration.

Domain names visible on the Internet are required to be able to accept mail addressed
to postmaster@domain. PMDF itself will send warning messages and, (by default),
copies of users’ bounce messages to the postmaster.

It is critical that the postmaster address be a valid address for receiving mail. The
normal recommendation for postmaster mail, therefore, is that it be directed to a local
account (in the PMDF sense, i.e., delivered via the local channel) on the PMDF system
itself. However, for an e-mail firewall it is possible that you will not want to have to
have someone log on regularly to the e-mail firewall to check postmaster mail. If you do
want mail to a different system, be sure to ensure that the connection between the e-mail
firewall system and that other system is a very reliable connection; and be prepared that
if something happens to break that connection, you will want to immediately change
the postmaster address on the e-mail firewall to some other functioning address or be
prepared for the potential for serious e-mail problems. (Bouncing postmaster mail is not
pretty.)

28.4.3 Logging and Tracking Messages and Connections

This section points out some message logging and tracking techniques.

Snapshots of message traffic, and information on TCP/IP connections handled by the
PMDF Service Dispatcher, are also available.

28.4.3.1 Logging Messages Passing through PMDF

The logging channel keyword causes PMDF write a log file entry for each
pass of a message through a PMDF channel; see Section 2.3.4.84 for details. The
LOG_CONNECTION PMDF option can be used to cause PMDF to log TCP/IP connections,
such as SMTP, POP, and IMAP connections; such connection entries can either be
included in the regular PMDF message log file, or written to a separate file. See
Section 7.3.6 for discussion of the LOG_CONNECTION and SEPARATE_CONNECTION_LOG
options. Note that with logging turned on, the cumulative mail.log file in the PMDF
log directory will continue to grow and grow; PMDF itself never does anything with this
log file and it is up to you to periodically write it to backup and delete it, or truncate it,
or whatever your site prefers; the same is true for the connection.log file if TCP/IP
connections are logged separately. Section 31.1.1 has a further discussion of managing
the PMDF log files.

In addition to the base set of data logged when the logging keyword is used,
there are options to cause the log output to include additional details, as discussed in
Section 28.4.3.1.1 below.

28–7

E-mail Firewalls and Other E-mail Security Considerations
Firewall Configuration Features

28.4.3.1.1 Extra Logging Detail

In addition to the base set of logging enabled via the logging channel keyword,
PMDF has options that cause additional information to be included in the entries written
to the mail.log* files. Note that logging such additional information tends to incur
additional overhead.

In particular, setting LOG_MESSAGE_ID=1, LOG_CONNECTION=7, and LOG_FILENAME=1
in your PMDF option file can be of interest on a PMDF e-mail firewall. Logging the
message ID makes it easier to find entries in the log file corresponding to a particular
message, or to correlate different entries in the log file corresponding to a single message.
Logging the SMTP client connection information can be useful to show just what system
really sent the message to your PMDF firewall. Logging the process id also logs the
thread id in the case of multithreaded channels; while the process ids themselves nor-
mally will be rather monotonous on a PMDF firewall system, being that of a Dispatcher
Worker Process (for SMTP messages received) or a PMDF Process Symbiont process (for
SMTP messages sent), having the process id and thread id logged is quite useful for
correlating message entries with connection entries. Logging the filename can be useful
if you want to correlate log file entries with actual message files currently in the PMDF
queue area.

Setting LOG_HEADER=1 can be of interest if you want to save certain message headers
to the mail.log* files.

Additionally, setting LOG_USERNAME=1 on a PMDF firewall system ought generally
to result in fairly monotonous extra information being logged, as the username would
normally just be the username of the user who last started the PMDF Service Dispatcher.
Enable this options if you want to confirm that the username of processes enqueuing
messages are as expected.

See Section 7.3.6 for more details on such logging options.

28.4.3.2 Snapshots of Message Traffic through PMDF

PMDF maintains channel counters based on the Mail Monitoring MIB, RFC 1566.
These counters can provide ‘‘snapshots’’ of the state of the PMDF queues and a feel for
the volume of messages passing through PMDF. See Chapter 31 for details.

28.4.3.3 Monitoring TCP/IP Connections to the Dispatcher

The PMDF Service Dispatcher maintains statistics on connections it handles, e.g.,
the number of recent SMTP connections and the hosts from which the connections were
made. See Section 11.7 for details.

28–8

E-mail Firewalls and Other E-mail Security Considerations
Firewall Configuration Features

28.4.4 Controlling Address Rewriting and Controlling Message
Pathways

General PMDF configurations are usually set up to allow very flexible address
rewriting, fixing up as many sorts of addresses as possible no matter what source the
address comes in from. In a firewall configuration, however, you can want to control
which sorts of rewriting happen for which sorts of messages. Therefore source and
destination specific, and direction specific rewrite rules can be of particular interest.
(This is akin/related to the point below regarding centralized naming, that a technique
such as a directory channel (with a directory database), which isolates the address
transformation to a particular channel, allowing for greater control at the cost of some
additional overhead, can be more appropriate than the (more efficient but more ‘‘inline’’)
alias database, general database, or mapping table sorts of approaches.)

For instance, consider a common setup where externally originating messages to
internal users are expected to be addressed using a centralized format without internal
node names, and where a directory channel (with a directory database) is then used to
transform the addresses to the true internal address format. In a firewall configuration
you can want to ensure not only that the centralized addresses work, but that only
the centralized addresses work. So for instance, you might have a rewrite rule for the
centralized domain routing it to the directory channel, and then make the rewrite rules
for the true internal domains (routing such addresses to channels for sending internal)
be source channel specific rewrite rules that only apply for messages coming from the
directory channel.

28.4.4.1 Sample Configuration Controlling Internal Domain Rewriting

For instance, consider a site that wants to accept messages addressed in the form
First.Last@example.com, route such messages to the directory channel where a di-
rectory database will transform the address to internal addresses such as FLast@hosta.example.com
or Last@hostb.example.com, or "First Last"@ccmail.example.com, but, for what-
ever reason, does not want to accept messages that come in from the external world
already addressed to any of the domains hosta.example.com, hostb.example.com,
or ccmail.example.com.

Note that unless the site has MX records for hosta.example.com, hostb.example.com,
or ccmail.example.com pointing to the e-mail firewall system, then messages ad-
dressed using such explicit internal domain names would not normally ever reach the
e-mail firewall system in the first place — unless the sender used explicit routing in the
address, e.g.,

Last%hostb.example.com@emailfirewalldomain

To achieve the goal of routing messages addressed to example.com to the directory
channel for expansion to internal addresses, but rejecting messages that come in from
the external world already addressed to such an internal address, appropriate rewrite
rules and channels might be along the lines of:

28–9

E-mail Firewalls and Other E-mail Security Considerations
Firewall Configuration Features

example.com $U%example.com@DIRECTORY-DAEMON
hosta.example.com $U@bogus$?Explicit domain addressing not allowed$Ntcp_local
hosta.example.com $U%hosta.example.com@GTCP-DAEMON$Mdirectory
hosta.example.com $U%hosta.example.com@GTCP-DAEMON$Mdefragment
hosta.example.com $U%hosta.example.com@GTCP-DAEMON$Mconversion
hostb.example.com $U@bogus$?Explicit domain addressing not allowed$Ntcp_local
hostb.example.com $U%hosta.example.com@GTCP-DAEMON$Mdirectory
hostb.example.com $U%hosta.example.com@GTCP-DAEMON$Mdefragment
hostb.example.com $U%hosta.example.com@GTCP-DAEMON$Mconversion
ccmail.example.com $U@bogus$?Explicit domain addressing not allowed$Ntcp_local
ccmail.example.com $U%hosta.example.com@GTCP-DAEMON$Mdirectory
ccmail.example.com $U%hosta.example.com@GTCP-DAEMON$Mdefragment
ccmail.example.com $U%hosta.example.com@GTCP-DAEMON$Mconversion
...
.AD $U%$H$D@TCP-DAEMON
...
.ZW $U%$H$D@TCP-DAEMON
...

tcp_local ...
TCP-DAEMON

tcp_internal ...
GTCP-DAEMON

directory ...
DIRECTORY-DAEMON

28.4.5 Controlling e-mail Access

You can control which users can send to which users, what channels can send to what
channels, and use hooks in PMDF to allow for dynamic, load-based rejection decisions.

28.4.5.1 Staticly Controlling e-mail Access

The PORT_ACCESS mapping table can be used to control from what IP numbers
PMDF servers will accept connection attempts; the PMDF multithreaded SMTP server,
POP3 server, IMAP server, and HTTP server check this table when a connection attempt
comes in. The SEND_ACCESS and similar mapping tables can be used to control, based on
From: address, To: address, and source and destination channel, what messages PMDF
allows to pass through. See Section 21.2.1 for details on the PORT_ACCESS mapping table,
and see Section 16.1 for details on the SEND_ACCESS and similar mapping tables.

For instance, consider a PMDF firewall system with postmaster address postmas-
ter@example.com and with channels and rewrite rules set up, as described in Sec-
tion 28.4.1, to segregate internal SMTP traffic onto a different channel than the tcp_
local channel handling external SMTP traffic. On such a system, minimal PORT_ACCESS
and ORIG_SEND_ACCESS mapping tables might be along the lines of:

28–10

E-mail Firewalls and Other E-mail Security Considerations
Firewall Configuration Features

PORT_ACCESS

TCP|*|25|*|* $Y
TCP|*|*|*|* $N

ORIG_SEND_ACCESS

tcp_local|*|tcp_local|* $NRouting$ not$ allowed
tcp_local|*|*|postmaster@example.com $Y
tcp_local|*|l|* $N

The first PORT_ACCESS entry shown allows incoming SMTP connections (i.e., TCP
connections to port 25) to PMDF’s multithreaded SMTP server from anywhere. The
second PORT_ACCESS entry shown disallows all other connections, e.g., connections to
the PMDF HTTP server, POP server, or IMAP server.

The first ORIG_SEND_ACCESS entry shown disallows other sites from routing SMTP
mail by way of your system. (Note that it is normal and useful to allow explicit
routing through your system. However, if you are worried about external users
attempting to forge e-mail so that it appears to originate from your site, you can want
to disallow the ability for routing through your system from external sites.) For a more
detailed discussion of SMTP relay blocking, and examples of more sophisticated entries
for blocking various source-routed address variants, see Section 16.1.6. The second
ORIG_SEND_ACCESS entry is very important, as it allows messages to be sent to your
postmaster account. The third ORIG_SEND_ACCESS entry disallows messages to any
other (than the postmaster) local mailboxes on the PMDF firewall system.

28.4.5.2 Sidelining Messages for Manual Inspection

In some cases, it can be useful to allow in but sideline certain suspicious incoming
messages (such as suspected junk e-mail)—perhaps messages to suspiciously large
numbers of recipients or messages from particular suspicious sources—rather than
simply rejecting them on either a temporary or permanent basis. The PMDF postmaster
can then manually inspect the messages and determine the proper course: releasing the
messages for delivery processing, bouncing them back to the original sender, or simply
deleting them, if appropriate.

Note that allowing the messages onto the PMDF e-mail firewall allows them to use
disk space on the PMDF system, where they will sit until the PMDF postmaster manually
intervenes. So sidelining techniques should not be used unless the PMDF postmaster will
in fact be checking periodically for the presence of such sidelined messages and taking
action on them.

The holdlimit keyword on, for instance, the incoming TCP/IP channel can be
used to automatically sideline messages to greater than a specified number of envelope
recipients. See Section 2.3.4.16 for details.

Rather than rejecting messages (either permanently or temporarily), SEND_ACCESS
or related mappings can be used to sideline incoming messages via the $H flag.

28–11

E-mail Firewalls and Other E-mail Security Considerations
Firewall Configuration Features

28.4.5.3 Dynamically Controlling e-mail Access, and Defending Against Denial of
Service Attacks

A denial of service attack is where an attacker tries (intentionally or inadvertently)
to overwhelm your system by flooding you with e-mail.

In some cases, adding a simple static entry to unconditionally reject messages from
the problem address or site is a sufficient defense, particularly if you know ahead of
time (or can quickly detect) that the attack is occurring; see Section 28.4.5.1 above. In
other cases, however, you can either want to automate dynamic detection of message
volume upswings sufficient to be considered an attack. Or you can not want to reject all
messages from the problem address or site and instead want merely to ‘‘turn down the
volume’’, i.e., slow down the flow to a level more easily managed by your users or system.
For instance, you can be under a practical or legal mandate to accept certain messages,
or good messages can be mixed in with the bad message flow; in such a case turning
down the volume to a manageable level allows the good messages a chance to get into
your system while preventing the bad messages from overloading your resources.

The PORT_ACCESS and SEND_ACCESS mapping tables described in Section 28.4.5
above—as well as related mapping tables discussed in Section 16.1—can be used in more
sophisticated ways than simple unconditional entries to achieve such goals, and can
indeed be hooked into dynamic, heuristic routines to decide ‘‘Yea’’ or ‘‘Nay’’ on accepting
messages, should you choose to provide such routines.

First, on the most simple level, the PORT_ACCESS, SEND_ACCESS or related mapping
tables can take a random argument, effectively having PMDF ‘‘flip a coin’’ each time
it needs to decide whether to accept a connection or message, respectively, or in the
case of SEND_ACCESS and related mapping tables whether to sideline a message; see
Section 5.3.2.5 for details.

For more sophisticated needs, the PORT_ACCESS, SEND_ACCESS, or related mapping
tables can call out to site-supplied shareable image routines; see Section 5.3.2.10
for details. Such routines can, if you want, use PMDF API calls to access PMDF
counters information; this can allow for heuristic decisions based on recent message
load, comparing PMDF counters levels at one sampled time with PMDF counters levels
when checked a little later; e.g., ‘‘lots of messages came in to the tcp_local channel in
the last few minutes, so let us reject additional connection attempts for the moment’’ or
whatever decision basis you decide to implement.

VMS
On OpenVMS, it is also possible to capture a copy of PMDF’s mail.log_current

output in a mailbox device; so site supplied routines can use this information also,
which is more detailed than the PMDF counters information, in making accept or reject
decisions.

The heuristics for making dynamic decisions about accepting or rejecting messages
tend to be very site specific, and involve a variety of critical issues. Note also that sites
can want to keep the details of their own heuristic algorithms secure. Process Software
recommends that sites interested in implementing their own denial of service prevention
techniques obtain specialized consulting assistance.

28–12

E-mail Firewalls and Other E-mail Security Considerations
Firewall Configuration Features

Particularly when implementing dynamic rejection mechanisms, the TCP/IP channel
options ALLOW_TRANSACTIONS_PER_SESSION and ALLOW_RECIPIENTS_PER_TRANSACTION
can be of interest. The ALLOW_TRANSACTIONS_PER_SESSION option can be used to limit
the number of messages accepted during a particular connection. After refusing a num-
ber of connection attempts from a particular site, once you do let them connect, they are
liable to have a backlog of messages for your site which they will try to deliver during
that connection. If you are attempting to ‘‘slow down’’ how much mail you accept from
that site, you likely will want to use this option to say, in effect, ‘‘enough for now’’ after
some point in the connection. Similarly, the ALLOW_RECIPIENTS_PER_TRANSACTION
option can be used to limit the number of recipients allowed for a particular message;
this can be useful in protecting against a denial of service attack in the form of messages
blanketing large numbers of your users.

28.4.6 Controlling External Stimulation of Message Delivery

The extended SMTP command ETRN (RFC 1985) allows an SMTP client to request
that a remote SMTP server start up processing of the remote side’s message queues
destined for sending to the original SMTP client; that is, it allows an SMTP client
and SMTP server to negotiate ‘‘switching roles’’, where the side originally the sender
becomes the receiver, and the side originally the receiver becomes the sender. Or in
other words, ETRN provides a way to implement ‘‘polling’’ of remote SMTP systems for
messages incoming to one’s own system. This can be useful for systems that only have
transient connections between each other, for instance, over dial-up lines. When the
connection is brought up and one side sends to the other, via the ETRN command the
SMTP client can also tell the remote side that it should now try to deliver any messages
that need to travel in the reverse direction.

The SMTP client specifies on the SMTP ETRN command line the name of the system
to which to send messages (generally the SMTP client system’s own name). If the remote
SMTP server supports the ETRN command, it will trigger execution of a separate process
to connect back to the named system and send any messages awaiting delivery for that
named system.

See also Section 2.3.4.33 and Section 2.3.4.34 for a general discussion of the SMTP
ETRN command and PMDF channel keywords affecting PMDF’s sending and behavior
upon receipt of ETRN commands.

The ETRN command can be quite useful on an e-mail firewall system, particularly if
communication partners have only dial-up or other intermittently scheduled connectivity.
But for general external SMTP connections, you can want to limit the number of ETRN
commands to which PMDF will respond in a single session, so that a single remote
site cannot attempt to ‘‘monopolize’’ the PMDF system’s message delivery processing.
For this, the ALLOW_ETRNS_PER_SESSION channel option can be used in the external
TCP/IP channel’s option file; see Section 21.1.2.2.

Also, in the interest of limiting the amount of information about the firewall’s
configuration visible externally, you can want to block PMDF’s normal echo of the name
of the PMDF channel an ETRN command domain matches on the tcp_local channel
handling general external SMTP connections. For this, specify the silentetrn channel
keyword on the tcp_local channel.

28–13

E-mail Firewalls and Other E-mail Security Considerations
Firewall Configuration Features

28.4.7 Controlling e-mail Content and Message Priority

This section discusses imposing limits on the size or sensitivity of messages allowed
through, and the related issue of setting message priority based on size, and general
checking or filtering of message content.

28.4.7.1 Imposing Message Size Limits

The PMDF options BLOCK_LIMIT and LINE_LIMIT can be used to impose global
size limits on all PMDF channels. The channel keywords blocklimit and linelimit
can be used to impose size limits on specific destination channels; the channel keyword
sourceblocklimit can be used to impose size limits on specific source channels.

The PMDF option CONTENT_RETURN_BLOCK_LIMIT can be used to force the NOTARY
non-return of content flag for messages over the specified size; if such a message is subse-
quently bounced by a system that supports NOTARY, then the original message contents
will not be included in the bounce message. The PMDF option BOUNCE_BLOCK_LIMIT
can be used to cause PMDF, when generating a bounce message itself, to return only
message headers for messages over the specified size.

28.4.7.2 Message Priority and Size Limits

On OpenVMS, PMDF jobs pay attention to message priority, i.e., to the presence of
a Priority: header in the message. The priority of message that PMDF immediate
jobs (those jobs created when a message is first submitted) will handle can be controlled
with the immnonurgent, immnormal, and immurgent channel keywords. The priority
of message that PMDF periodic jobs (those jobs run periodically by PMDF to retry
delivery of previously undelivered messages) will handle can be controlled with the
minperiodicpriority and maxperiodicpriority keywords. Or the urgentqueue,
normalqueue, and nonurgentqueue keywords can be used to cause messages of
different priorities to be processed in different queues.

Some sites can want to control the time of day, for instance, at which low priority
messages are sent. And note that the nonurgentblocklimit, normalblocklimit, and
urgentblocklimit keywords can be used to forcibly downgrade the priority of ‘‘large’’
messages.

28.4.7.3 Imposing Message Sensitivity Limits

The channel keywords sensitivitynormal, sensitivitypersonal, sensitiv-
ityprivate, and sensitivitycompanyconfidential can be used to impose an upper
limit on the sensitivity of messages that can be enqueued to a channel. For instance, a
site wanting not to emit messages of Company-confidential sensitivity might choose to
set sensitivityprivate on their channel that sends out to the Internet, generally a
tcp_local channel. See Section 2.3.4.88 for more details.

28–14

E-mail Firewalls and Other E-mail Security Considerations
Firewall Configuration Features

28.4.7.4 Filtering Based on Message Headers

PMDF’s channel level mailbox filter facility can be used to check the headers of
incoming messages and make decisions to reject messages based on, for instance, the
Subject: header. See Section 16.2 for details.

28.4.7.5 Checking or Filtering Message Content

The best protection against problematic message content coming into your site is
educated users who are committed to implementing your site security policies. The best
protection against problematic message content leaving your site is educated users who
are committed to conforming to your site security policies. If the users want to evade
your policies, they can generally work around any imposed restrictions, for instance, by
encrypting their messages.

If you do want to check the actual content of message parts, the PMDF conversion
channel can be useful. You can use a CONVERSION mapping table to direct that certain
message traffic, that is messages coming in certain channels and going out certain
channels, pass through the PMDF conversion channel. The PMDF conversion
channel can then run whatever content checking or filtering procedure or utility you
want.

For instance, some sites like to have binary message attachments checked by virus
sniffing software. A CONVERSION mapping table along the lines of

CONVERSION

IN-CHAN=*;OUT-CHAN=tcp_internal;CONVERT Yes

and PMDF conversions file entries along the lines of

out-chan=tcp_internal; in-type=application; in-subtype=*;
parameter-copy-0=*;
command="yourviruscheckcommand ’INPUT_FILE’ ’OUTPUT_FILE’"

out-chan=tcp_internal; in-type=audio; in-subtype=*;
parameter-copy-0=*;
command="yourviruscheckcommand ’INPUT_FILE’ ’OUTPUT_FILE’"

out-chan=tcp_internal; in-type=image; in-subtype=*;
parameter-copy-0=*;
command="yourviruscheckcommand ’INPUT_FILE’ ’OUTPUT_FILE’"

out-chan=tcp_internal; in-type=video; in-subtype=*;
parameter-copy-0=*;
command="yourviruscheckcommand ’INPUT_FILE’ ’OUTPUT_FILE’"

where yourviruscheckcommand is a site-supplied command to do virus checking, will
run any MIME message parts of type APPLICATION, AUDIO, IMAGE, or VIDEO MIME
through your procedure.

Note that when you are using the conversion channel to check message parts on
the PMDF firewall system, you are likely to want the defragment channel keyword
on outgoing channels, particularly channels that send to internal systems. The MIME
format allows for messages to be split into multiple pieces, which are normally not
reassembled until arrival at the final destination system. However, if you want the

28–15

E-mail Firewalls and Other E-mail Security Considerations
Firewall Configuration Features

intermediate PMDF firewall system to check the message content, you will want to
reassemble the message parts on the PMDF firewall system, so that the message content
(rather than message content fragments) can be checked. See Section 2.3.4.76 for details.

28.4.7.6 Verifying Message Integrity

The conversion channel or service conversions can be used to perform site supplied
message authentication (integrity) check procedures. See Chapter 6 for an overview of
service conversions and the conversion channel. See also Chapter 23, discussing using
BSMTP channels to ‘‘tunnel’’ messages between cooperating PMDF systems.

28.4.8 Restricting or Controlling Information Emitted

This section describes various ways information that you can not want to emit can
‘‘leak out’’ and describes ways of blocking this.

28.4.8.1 Restricting Access to PMDF Information via the PMDF HTTP Server

PMDF includes an HTTP server. This HTTP server is used to serve out PMDF
version information, PMDF documentation, statistics on general PMDF operation
(numbers of message moving through PMDF, etc.), and statistics on the Dispatcher’s
operation (IP addresses of connections, etc.). The HTTP server also provides a CGI
interface to configuring PMDF mailbox filters, and CGI interfaces to the PMDF popstore
for management, user access to their own popstore messages, and for users to change
their own popstore passwords.

You should consider which, if any, of this information you want to allow access to
from outside your site and which, if any, of this information you want to access on the
PMDF e-mail firewall from within your site.

If you want to take advantage of absolutely none of this information even from
within your site, then on the principle of ‘‘everything not permitted is forbidden’’ you can
choose to simply disable PMDF’s HTTP server entirely. To do so, edit your Dispatcher
configuration file and remove or comment out the entire HTTP service definition section,
see Section 12.1.1, and then restart the Dispatcher.

The more common case, however, is that you will want to allow access to at least
some of the facilities from within your site: for instance, you will probably want to be
able to access the PMDF monitoring information and mailbox filter configration from
internal systems or at least your own workstation. You can even want to allow external
access to a few selected facilities, such as the web interface to LDAP or X.500 directory
information (if you are running an LDAP or X.500 directory which you want to be visible
externally) or perhaps user-level access to the PMDF popstore1 (if you are using the
PMDF popstore to provide e-mail accounts for external users). In this case, you should

1 User accounts are not generally implemented on an e-mail firewall system, but PMDF popstore accounts are a possible
exception. For instance, PMDF popstore accounts might be set up specifically for use by users who are travelling out of
the office.

28–16

E-mail Firewalls and Other E-mail Security Considerations
Firewall Configuration Features

make sure that your HTTP_ACCESS mapping is set up to allow only the access you want
to permit, and to block all other access.

For instance, at a site whose internal addresses comprise the [1.2.3.0] subnet and
where the PMDF HTTP server has been configured to run on its normal default port
of 7633, then an HTTP_ACCESS mapping to allow full access to the PMDF HTTP server
facilities from internal systems, allow access only to the PMDF popstore from external
systems, and block all other access by external systems would be:

HTTP_ACCESS

! Allow full access from systems in the [1.2.3.0] subnet.
!
$(1.2.3.0/24)|*|*|7633|*|* $Y

!
! Allow access to user interfaces
! from external systems.
!
||*|7633|*|/msps_user/* $Y
||*|7633|*|/chng_pwd/* $Y

!
! Disallow all other access
!
* $N

28.4.8.2 SMTP Probe Commands

During an SMTP connection, a remote sending side (or a person manually telnetting
to your SMTP port) can issue commands requesting information such as a check on the
validity of addresses. This very useful information can, however, be subject to abuse, e.g.,
by automated search engines checking for valid email addresses on your firewall system.
Therefore some sites can have an interest in disabling these helpful features.

Setting DISABLE_EXPAND=1 in your Internet TCP/IP channel disables the SMTP
EXPN command. The SMTP EXPN command is normally used to expand (get the
membership of) mailing lists.

Setting HIDE_VERIFY=1 in your Internet TCP/IP channel causes PMDF to return a
‘‘generic’’ response to the SMTP VRFY command. The SMTP VRFY command is normally
used to check whether an address is a legitimate address on the local system. (Note that
as it is required that SMTP servers support the VRFY command, PMDF has to return
some sort of response; with HIDE_VERIFY=1, this response is simply a ‘‘maybe’’ sort of
response rather than an explicit yes or no.)

Setting DISABLE_ADDRESS=1 in your Internet TCP/IP channel causes PMDF to
disable responses to the PMDF SMTP server’s private XADR command, which normally
returns information about the channel an address matches.

Setting DISABLE_CIRCUIT=1 in your Internet TCP/IP channel causes PMDF to
disable responses to the PMDF SMTP server’s private XCIR command, which normally
returns information about the PMDF message circuit checking facility.

28–17

E-mail Firewalls and Other E-mail Security Considerations
Firewall Configuration Features

Setting DISABLE_STATUS=1 in your Internet TCP/IP channel causes PMDF to
disable responses to the PMDF SMTP server’s private XSTA command, which normally
returns information about the numbers of messages in PMDF queues.

Setting DISABLE_GENERAL=1 in your Internet TCP/IP channel option file causes
PMDF to disable responses to the PMDF SMTP server’s private XGEN command, which
normally returns status information about whether a PMDF compiled configuration and
character set are in use.

A sample TCP/IP channel option file to disable probing via the SMTP server, for a
site using a tcp_local channel, would be as shown in Example 28–1.

Example 28–1 A Sample tcp_local_option File Disabling SMTP Probes

DISABLE_EXPAND=1
HIDE_VERIFY=1
DISABLE_ADDRESS=1
DISABLE_CIRCUIT=1
DISABLE_STATUS=1
DISABLE_GENERAL=1

See Section 21.1.2.2 for more details on TCP/IP channel options.

28.4.8.3 Internal Names in Received: Headers

Received: headers are normally exceptionally useful headers for displaying the
routing that a message really took. Their worth can be particularly apparent in cases
of dealing with apparently forged email, or in cases where one is trying to track down
what happened to a broken messages, or in cases where a message does not appear to be
repliable and one is trying to figure out who might know how to respond to the message.
Received: headers are also used by PMDF and other mailers to try to detect message
loops.

Message-id: headers are normally useful for message tracking and correlation.

However, on the converse side, Received: headers on messages you send out
give the message recipient information about the routing that a message really took
through your internal systems and tend to include internal system names and possibly an
envelope recipient address. And Message-id: headers tend to include internal system
names. At some sites, this can be considered a security exposure.

If your site is concerned about this information being emitted, first see if you can
configure your internal systems to control what information they put in these headers.
For instance, the PMDF options RECEIVED_DOMAIN and ID_DOMAIN can be used on
a PMDF system to specify the domain name to use when constructing Received:
headers and Message-id: headers, respectively. Although these options are not
usually particularly relevant on the PMDF firewall system itself — after all, the firewall
system is by definition a system whose name is intended to be visible to the outside
world — if you have PMDF on internal systems also, the options can be of interest

28–18

E-mail Firewalls and Other E-mail Security Considerations
Firewall Configuration Features

on those internal PMDF systems. See Section 7.2 for details on these options. In
a similar spirit, the channel keyword noreceivedfor can be used on channels on a
PMDF system to instruct PMDF not to include the envelope recipient address in the
Received: header it constructs, if limiting the exposure of internal routing addresses
is a concern for your site. And for those rare cases where the inclusion of original envelope
From: information in Received: headers constructed is of concern, the channel keyword
noreceivedfrom can be used on channels on a PMDF system to instruct PMDF not to
include envelope From: information in Received: headers it constructs in those cases
(involving changing the envelope From:, such as certain sorts of mailing list expansions)
where PMDF would normally include the envelope From: address.

If necessary, address reversal on the PMDF firewall system can be used to ‘‘canon-
icalize’’ message id’s, to remove undesired information, (though note that this removal
of information can mean that the resulting message id’s are no longer particularly use-
ful). Note that the USE_REVERSE_DATABASE PMDF option (in the option.dat file) must
have bit 6 (value 64) set in order for address reversal to apply to message id’s; for in-
stance, if the option was previously set to the default value of 5, it must be set to 69
to apply to message id’s. For instance, a site example.com that wants to ensure that
no host.example.com domains appear in message id’s might use a REVERSE mapping
such as:

REVERSE

@.example.com C:I$0@example.com$Y$E

This REVERSE mapping only applies to message id’s, due to the $:I flag.

As to Received: headers, only if you cannot configure your internal systems to
control such sorts of information should you consider resorting to stripping such headers
off entirely. Received: headers should not be removed lightly, due to their many and
important uses, but if the internal routing and system name information in them is
sensitive for your site and if you cannot configure your internal sytems to control what
information appears in these headers, then you can want to strip off those headers on
messages going out to the Internet via header trimming on your outgoing TCP/IP channel.

Note: Do not remove Received: headers or remove or simplify Message-id: headers on general
principles or because your users do not like them. Removing such headers, among
other things, (1) removes one of the best tracking mechanisms you have, (2) removes
information that can be critical in tracking down and solving problems, (3) removes one
of the few (and best) warnings of forged mail you can have, and (4) blocks the mail
system’s ability to detect and short-circuit message loops. Only remove such headers if
you know your site needs them removed.

To implement header trimming, put the headertrim keyword — you will probably
want the innertrim keyword as well — on your outgoing external TCP/IP channel or
channels, generally tcp_local and possibly other tcp_* channels (possibly every tcp_*
channel except your internal channel, tcp_internal), and create a header trimming file
for each such channel. The headertrim keyword causes header trimming to be applied
to the outer message headers; the innertrim keyword causes the header trimming to
be applied also to embedded message parts (message/rfc822 parts) within the message.
A sample header trimming file for a site using a tcp_local channel is shown in
Example 28–2.

28–19

E-mail Firewalls and Other E-mail Security Considerations
Firewall Configuration Features

Example 28–2 A Sample tcp_local_headers.opt File for Stripping Received:
Headers

Received: MAXIMUM=-1
MR-Received: MAXIMUM=-1
X400-Received: MAXIMUM=-1

See Section 2.3.4.59 for more details on header trimming.

28.4.8.4 Centralized Naming and Internal Addresses

One function that is often performed on an email firewall is the transformation of
addresses from true, internal format to an external ‘‘centralized naming’’ format, e.g.,
from mailbox@host.example.com to First.Last@example.com. (Note that if you
have a ‘‘smart’’ internal mailhub system, e.g., another PMDF system, you can choose to
perform the centralized naming there, rather than on the e-mail firewall.) PMDF has
flexible and varied facilities for performing such address transformations; see Chapter 3
for details. There are several points that can be of special interest when performing
centralized naming on an e-mail firewall.

1. Put the inner keyword on (at least) your channels outgoing to the external world
so that address rewriting will be applied to address in embedded message parts
(message/rfc822 parts).

2. For the forward direction of address transformation, the directory channel with a
directory database lookup offers the potential for more control via channel specific
rewrite rules or a SEND_ACCESS mapping table than similar transformations
performed via the PMDF alias file, alias database, or general database. The separate
channel processing step that the directory channel incurs allows both for more control,
and incurs more overhead, than the ‘‘inline’’ transformations performed via the alias
file, alias database, or general database.

The directory channel with directory database lookup, being a separate channel
processing step rather than being performed ‘‘inline’’, also provides more ‘‘insulation’’
of the forward direction of address transformation from any potential for external
SMTP probing and allows for more precise control with channel specific rewrite
rules, should you have a use for them; the flip side of this is that in some cases
PMDF will have to accept a message onto the system and then do a separate channel
run to discover that an address is bad, rather than being able to reject a message
immediately during the actual SMTP dialogue before the message ever comes onto
the PMDF system (using PMDF system resources).

3. If you want to do LDAP or X.500 or CCSO directory lookups from the e-mail firewall
system, say as part of your centralized naming scheme, note that either of these
involves a network access to the directory. You should either put a good deal of effort
into securing that network connection, to prevent spoofing at that network level,
or alternatively, instead do the LDAP or X.500 or CCSO directory lookup from an
internal ‘‘secure’’ system.

4. If you do not want notification messages generated by the e-mail firewall system to
include the internal address, then you can want to use the suppressfinal keyword;
see Section 2.3.4.27.

28–20

E-mail Firewalls and Other E-mail Security Considerations
Other Features and Techniques that can Impact an e-mail Firewall

28.5 Other Features and Techniques that can Impact an e-mail
Firewall

This section describes additional specific features and techniques that can impact an
e-mail firewall.

28.5.1 General Performance Issues on an e-mail Firewall

Chapter 32 has a general discussion of tuning PMDF performance. This section is
to point out in particular two of the issues discussed therein.

Perhaps even more than on a general PMDF system, you can want to consider
using the queue channel keyword to segregate different channels’ message processing to
different queues, to ensure that particularly heavy traffic over one channel will not impact
message traffic over another channel; e.g., you can want to have one queue dedicated to
your tcp_local channel and a different queue dedicated to your tcp_internal channel.

If the e-mail firewall system is not a system logged into regularly and thus subject
to longer than usual spells where no one is actively checking it, thus potentially large
buildups of backed up messages, then use of the subdirs channel keyword to split
message files among multiple subdirectories can be a particularly good idea, to postpone
the time at which OpenVMS RMS or UNIX directory performance begins to suffer due
to large numbers of files in a single directory.

28.5.2 Additional Channel Keywords

Firewall considerations for additional channel keywords:

• The deferred channel keyword is discussed in Section 2.3.4.19; note that use of this
keyword allows users to use the PMDF system’s e-mail disk space as an extension
of their own disk space. The default behavior of nodeferred is likely particularly
appropriate behavior for an e-mail firewall if you are concerned about preventing a
denial of service attack on your disk space.

• The maxprocchars channel keyword causes PMDF to not bother processing ad-
dresses in headers over the specified number of characters; in such a case PMDF
passes the unprocessed headers through unchanged. See Section 2.3.4.79 for details.

• On OpenVMS, the network rightslist identifier requires users of the channel to have
the NETMBX privilege; see Section 2.3.4.89 for details.

• The nonurgentblocklimit, normalblocklimit, and urgentblocklimit chan-
nel keyword can be used to set thresholds for when to downgrade message priority.
Message priority, in turn, can affect whether PMDF attempts to send a message im-
mediately, or whether PMDF lets the message wait until the next time the PMDF
periodic delivery job runs. Depending upon your needs and circumstances, having
large messages wait on the firewall system until a periodic job runs can be either

28–21

E-mail Firewalls and Other E-mail Security Considerations
Other Features and Techniques that can Impact an e-mail Firewall

beneficial, by not using resources that could be used to send small messages imme-
diately, or can expose your firewall system to the potential for getting its disk space
‘‘clogged up’’ with pending large messages in between runs of the periodic job.

• The nox_env_to channel keyword, which is the default, ensures that no X-Envelope-
to: headers are put on messages. If you are using centralized naming, this is likely
a particularly appropriate default. The x_env_to channel keyword, on the other
hand, requests that PMDF include an X-Envelope-to: header.

28.5.3 Rightslist Identifiers and Group ids

The SEND_ACCESS and related mapping tables provide a general and flexible way
to control who can send to whom. However, the use of rightslist identifiers (OpenVMS)
or group ids (UNIX) to control who can send to whom is another possible approach. See
Section 2.3.4.89 for details.

For instance, give the account under which PMDF runs — normally the SYSTEM
account on OpenVMS — a rightslist identifier no one else has and put that identifier on
all channels. Then only SYSTEM can use PMDF.

Or as another example, with a directory channel setup as above in Section 28.4.4.1
where one goal is to reject mail originally addressed to internal addresses, put a rightslist
identifier on tcp_internal and grant that to SYSTEM, but have a different account run
the SMTP server. Then at the rightslist identifier level also, external users cannot send
straight to internal addresses (straight to the tcp_internal channel).

28.5.4 PMDF Options

The following describes special considerations for the following options on an e-mail
firewall. For a detailed general discussion of these options, see Chapter 7.

• ACCESS_ERRORS: Note that if you do use rightslist identifiers (OpenVMS) or group
ids (UNIX) for PMDF channel usage control, then the default ACCESS_ERRORS=0
is almost certainly desirable.

• BLOCK_LIMIT, BLOCK_SIZE, LINE_LIMIT: See also the discussion in Section 28.4.7.1
above.

• LOG_CONNECTION, LOG_FILENAME, LOG_FORMAT, LOG_MESSAGE_ID, LOG_
SNDOPR, LOG_USERNAME: See also the discussion in Section 28.4.3.1 above.

• MAX_HEADER_BLOCK_USE and MAX_HEADER_LINE_USE: These options are
used to control when PMDF automatically fragments messages. If you are using a
conversion channel for message filtering, message fragmentation and defragmenta-
tion is an issue to consider.

• MAX_LOCAL_RECEIVED_LINES, MAX_MR_RECEIVED_LINES, MAX_RECEIVED_
LINES, MAX_TOTAL_RECEIVED_LINES, MAX_X400_RECEIVED_LINES: These
options specify after how many Received: lines PMDF decides that a message is
looping. Once PMDF has decided that a message is looping, the message is renamed

28–22

E-mail Firewalls and Other E-mail Security Considerations
Other Features and Techniques that can Impact an e-mail Firewall

to a .HELD file and sidelined, thereby breaking the cycle of the looping, until the
PMDF system manager intervenes manually. See Section 28.4.8.3 above for a dis-
cussion of Received: headers. Adjusting these values can affect which system (if any)
detects that the message is looping and sidelines it, which can be of interest if the
PMDF e-mail firewall is not a system checked regularly.

• The NON_URGENT_BLOCK_LIMIT, NORMAL_BLOCK_LIMIT, and URGENT_BLOCK_
LIMIT PMDF options can be used to set global thresholds for when to downgrade
message priority. Message priority, in turn, can affect whether PMDF attempts to
send a message immediately, or whether PMDF lets the message wait until the next
time the PMDF periodic delivery job runs. Depending upon your needs and circum-
stances, having large messages wait on the firewall system until a periodic job runs
can be either beneficial, by not using resources that could be used to send small mes-
sages immediately, or can expose your firewall system to the potential for getting its
disk space ‘‘clogged up’’ with pending large messages in between runs of the periodic
job.

• NAME_TABLE_NAME: Using logical names for address transformations is not
recommended in any case, as it allows senders to ‘‘probe’’ for logical names, and
is distinctly not a good idea on an e-mail firewall. The default where this option is
not specified is strongly recommended.

• RETURN_ADDRESS: If you are directing postmaster mail to somewhere other than
the PMDF e-mail firewall system itself, then you can want to consider setting this
option to match. However, consider with caution: as noted in the discussion above,
using such a non-local address (and in particular, changing the return address used
on messages from the postmaster by setting this option) can lead to rapid mail looping
and pile-ups of huge numbers of spurious error messages.

• RETURN_DELIVERY_HISTORY and HISTORY_TO_RETURN: These control how
much information PMDF includes in returned messages about why the message could
not be delivered. This can be very useful information to the recipient of the returned
message, but in some cases this helpful information canc include information that
you prefer recipients not see, e.g., internal system names.

• REVERSE_ENVELOPE: Note that if you are performing address reversal, say with a
REVERSE mapping or reverse database, then the default REVERSE_ENVELOPE=1
is almost certainly desirable.

28–23

Volume III

The PMDF System Manager’s Guide is in four volumes. Volume I comprises
Chapter 1 through Chapter 13. Volume II comprises Chapter 14 through Chapter 28.
Volume III comprises Chapter 29 through Chapter 34.

PMDF software products are marketed directly to end users in North America, and
either directly or through distributors in other parts of the world depending upon the
location of the end user. Contact Process Software for ordering information, to include
referral to an authorized distributor where applicable:

Process Software, LLC
959 Concord Street
Framingham, MA 01701 USA
+1 508 879 6994
+1 508 879 0042 (FAX)
sales@process.com

29Utilities on OpenVMS

PMDF contains a modest collection of management utility programs, which are used
to perform various maintenance, testing, and management tasks. The following sections
describe these utilities. Note that many of the utilities are mentioned elsewhere in this
document in the context of how they are actually used. PMDF popstore and PMDF
MessageStore utilities are described in the PMDF popstore & MessageStore Manager’s
Guide. User-level utilities are described in the PMDF User’s Guide.

Briefly, the PMDF utilities, both those documented in the PMDF User’s Guide or
PMDF popstore & MessageStore Manager’s Guide and those documented here, are shown
in Table 29–1. Those utilities only available under OpenVMS are marked with a †; those
only available under UNIX and NT are marked with a ‡; those available on UNIX but
not available on NT are marked with a §.

Table 29–1 PMDF Utilities

Web-based utilities and displays

URL Description

http://pmdfhost:7633/configure/ Configure: generate PMDF
configuration files; see the PMDF
Installation Guide

http://pmdfhost:7633/dispatcher/ Dispatcher Statistics: view statistics
on recent connections to the
Dispatcher, e.g., SMTP, POP
and IMAP connections

http://pmdfhost:7633/mailbox_filters/ Mailbox Filters: generate and
modify system and user mailbox
filters controlling filtering of incoming
messages

http://pmdfhost:7633/qm/ Message Queue Management:
queue management utility

http://pmdfhost:7633/msgstore/ MessageStore Administration:
manage PMDF MessageStore;
see the PMDF popstore &
MessageStore Manager’s Guide

http://pmdfhost:7633/monitor/ Monitoring: view PMDF counters;
on OpenVMS, also view the status
of PMDF processing queues

29–1

Utilities on OpenVMS

Table 29–1 (Cont.) PMDF Utilities

Web-based utilities and displays

URL Description

http://pmdfhost:7633/chng_pwd/ Password Change Utility: change
your e-mail password; usually used
to change a PMDF MessageStore
or PMDF popstore account
password, but may also change
a system password, depending
upon configuration; see the
PMDF popstore & MessageStore
Manager’s Guide

http://pmdfhost:7633/popstore/ popstore Administration: manage
PMDF popstore; see the PMDF
popstore & MessageStore
Manager’s Guide

http://pmdfhost:7633/msps_user/ popstore and MessageStore User
Interface: change your password
or view your account settings,
or for popstore only view your
messages; see the PMDF popstore
& MessageStore Manager’s Guide

Command utilities

OpenVMS utility UNIX utility Description

† CACHE/CLOSE Have detached processes close
their connections to the queue
cache database

† CACHE/REBUILD Build a new, synchronized queue
cache database

CACHE/SYNCHRONIZE cache -synchronize Synchronize the current queue
cache database

‡ cache -view View entries in the queue cache
database

CHBUILD chbuild Compile the PMDF character set
conversion tables

CLBUILD clbuild Compile a PMDF command
definition file

CNBUILD cnbuild Compile the PMDF configuration,
alias, mapping, security, system
wide filter, circuit check, and option
files

CONFIGURE § configure Create a PMDF configuration file

† convert_cache.com Perform a CONVERT/RECLAIM on
the queue cache

§Not available on NT

†Available on OpenVMS only

‡Available on UNIX only

29–2

Utilities on OpenVMS

Table 29–1 (Cont.) PMDF Utilities

Command utilities

OpenVMS utility UNIX utility Description

§ convertdb Read entries from a V6.0-V6.4
PMDF crdb database and write
out a corresponding V6.5 or later
PMDF crdb database

COUNTERS/CLEAR counters -clear Clear the in-memory cache of
channel counters

† COUNTERS/CRDB Create a database of channel
counters

COUNTERS/SHOW counters -show Display the contents of the database
of channel counters

† COUNTERS/SYNCHRONIZE Synchronize the in-memory cache of
channel counters with the database

COUNTERS/TODAY counters -today Display PMDF’s count of the
number of messages processed
today

CRDB crdb Create a PMDF database

DB db Manage a personal alias database;
see the PMDF User’s Guide

† DCF Convert WPS and DX files to ASCII;
provided with PMDF-MR

DECODE decode Decode a file encoded using MIME
encodings; see the PMDF User’s
Guide

\ \ dumpdb \Dump entries in a PMDF crdb database to a flat text file)

® edit Edit PMDF configuration files

ENCODE encode Encode a file using MIME
encodings; see the PMDF User’s
Guide

‡ find Find the filename corresponding to
the specified ‘‘version’’ of a PMDF
file

† FOLDER Place a message file into a VMS
MAIL folder; see the PMDF User’s
Guide, OpenVMS Edition

† FORWARD Set a forwarding address in the
PMDF alias database; see the
OpenVMS Edition of the PMDF
User’s Guide

† G3 Analyze a PMDF-FAX G3 file;
provided with PMDF-FAX

®Available on NT only

§Not available on NT

†Available on OpenVMS only

‡Available on UNIX only

29–3

Utilities on OpenVMS

Table 29–1 (Cont.) PMDF Utilities

Command utilities

OpenVMS utility UNIX utility Description

† INSTALL Install or deinstall PMDF images
and databases

KILL § kill Kill the specified PMDF component

LICENSE license -verify On OpenVMS, activate or deactivate
PMDF bundle licenses on a node;
on Solaris, Linux, and Windows,
verify the validity of a PMDF license
file

† MAIL An extended version of VMS MAIL;
see the OpenVMS Edition of the
PMDF User’s Guide

migrate § migrate Copy message folders from one
IMAP host to another IMAP host;
see the appropriate edition of the
PMDF User’s Guide

MOVEIN § movein Migrate a user’s mailbox from one
message store to another; see the
PMDF popstore & MessageStore
Manager’s Guide

MSGSTORE msgstore Interactive PMDF Message Store
management utility; see the
PMDF popstore & MessageStore
Manager’s Guide

PASSWORD password Set remote authentication
passwords

POPSTORE popstore Interactive PMDF popstore
management utility; see the
PMDF popstore & MessageStore
Manager’s Guide

PROCESS § process List currently running PMDF jobs

§ profile Set local user’s choice of delivery
mechanism in the PMDF user profile
database

† PS Convert text and Runoff .mem files
to PostScript; provided with PMDF-
FAX; see the OpenVMS Edition of
the PMDF User’s Guide

‡ purge Purge PMDF log files

QCLEAN qclean Hold or delete message files
matching specified criteria

§Not available on NT

†Available on OpenVMS only

‡Available on UNIX only

29–4

Utilities on OpenVMS

Table 29–1 (Cont.) PMDF Utilities

Command utilities

OpenVMS utility UNIX utility Description

QM qm Manage PMDF message queues;
see also the web-based QM utility,
Section 31.2

QTOP qtop Display the most frequently
occurring strings found in message
files in the PMDF queue area

RESTART restart Restart detached PMDF processes

RETURN return Return (bounce) a mail message to
its originator

master.com run Process messages in a specified
channel

SEND send Send a mail message; see the
PMDF User’s Guide

SHUTDOWN shutdown Shut down detached PMDF
processes

STARTUP startup Start detached PMDF processes

submit_master.com submit Process messages in a specified
channel

submit_master.com submit_master Process messages in a specified
channel—on UNIX, a synonym for
submit

tls_certdump tls_certdump Dump the contents of a certificate
file

tls_certreq tls_certreq Generate a public key pair and a
certificate request

tls_ciphers tls_ciphers List available ciphers

‡ view Display the specified ‘‘version’’ of a
PMDF file

VERSION version Print PMDF version number

‡Available on UNIX only

This chapter is broken into two main sections. The first section, Command Line
Utilities on OpenVMS, describes the command line utilities available on OpenVMS
(except those documented in the PMDF User’s Guide); the second section, Interactive
Utilities on OpenVMS, describes the interactive QM utility available on OpenVMS.

29–5

Utilities on OpenVMS
Command Line Utilities on OpenVMS

29.1 Command Line Utilities on OpenVMS

This section documents the PMDF command line utilities available on OpenVMS;
these utilities are implemented as DCL verbs using the CDU file PMDF_COM:pmdf.cld.

29–6

Utilities on OpenVMS
CACHE/CLOSE

CACHE/CLOSE—Close queue cache I/O channels

Force detached PMDF processes to close any open I/O channels to the queue cache
database.

SYNTAX PMDF CACHE/CLOSE

Command Qualifiers Defaults

None. None.

restrictions SYSLCK privilege is required to in order to use this utility.

PARAMETERS None.

DESCRIPTION

The CACHE/CLOSE utility is used to force, cluster-wide, all detached PMDF
processes to close any open I/O channels that they have to the queue cache
database. This is generally done for two reasons: to close all channels to the
file so that it can be modified, and to force detached processes to re-open the queue
cache database file so as to begin using any new version of that database.

Sites using the TCP/IP channel will have detached PMDF processes which
may need to close channels to the database.1

EXAMPLES

After a new queue cache database is built with CACHE/REBUILD, a CACHE/CLOSE
command should be issued to force any detached processes to begin using the new
database:

$ PMDF CACHE/REBUILD
$ PMDF CACHE/CLOSE
$! ...wait a minute or two...
$ PMDF CACHE/SYNCH

1 Also, customer-supplied detached processes which use the PMDF API routine PMDF_set_call_backmay be notified
of the need to close the queue cache database with the CACHE/CLOSE command.

29–7

Utilities on OpenVMS
CACHE/REBUILD

CACHE/REBUILD—Build a new queue cache

Build a new, synchronized queue cache database.

SYNTAX PMDF CACHE/REBUILD

Command Qualifiers Defaults

None. None.

restrictions Requires sufficient privileges to create a file in the PMDF_TABLE: directory, and
to scan the PMDF_QUEUE:[*] directories.

PARAMETERS None.

DESCRIPTION

The CACHE/REBUILD utility creates a new, synchronized queue cache
database. Although the new database will inherit the ownership and file
protections of the previous database, it is a good idea to check afterwards that
the new queue cache is owned by the same UIC as the queue.dir and log.dir
files in the PMDF_ROOT:[000000] directory and that the file is protected against
group and world access (S:RWED,O:RWED,G,W).

Rebuilding the queue cache database with this command should only be
performed as a last resort, e.g., if disk problems have corrupted your queue cache
database, as it will cause loss of some information from the queue cache database.
(The sort of information lost includes, but is not limited to, message creation dates,
message deferral dates, message expiration dates, and the original message owner
information used by the PMDF QM utility to allow users to bounce their own
messages.)

The command PMDF CACHE/CLOSE should be issued immediately after
building the new queue cache so as to ensure that any detached processes close
any I/O channels to the old database and open new channels to the new database.

The queue cache database is the file pointed at by the PMDF_QUEUE_
CACHE_DATABASE logical. Normally, this is the file queue_cache.dat in the
PMDF_TABLE: directory. This file should be protected against world and group
access and be owned by the same UIC as the directory files queue.dir and
log.dir in the PMDF_ROOT: directory.

29–8

Utilities on OpenVMS
CACHE/REBUILD

EXAMPLES

To build a new queue cache database issue the commands

$ PMDF CACHE/REBUILD
$ PMDF CACHE/CLOSE
$! wait a minute or two
$ PMDF CACHE/SYNCH

29–9

Utilities on OpenVMS
CACHE/SYNCHRONIZE

CACHE/SYNCHRONIZE—Synchronize the queue
cache

Update the queue cache database so as to reflect all messages currently present in
the message queues.

SYNTAX PMDF CACHE/SYNCHRONIZE

Command Qualifiers Defaults

None. None.

restrictions Requires sufficient privileges to scan the PMDF_QUEUE:[*] subdirectories and add
entries to the queue cache database.

PARAMETERS None.

DESCRIPTION

The CACHE/SYNCHRONIZE utility updates the active queue cache database
by updating it to reflect all non-held message files currently present in the
PMDF_QUEUE:[*] subdirectories.

The PMDF CACHE/CLOSE command does not need to be issued in conjunc-
tion with the PMDF CACHE/SYNCHRONIZE command.

The queue cache database is the file pointed at by the PMDF_QUEUE_
CACHE_DATABASE logical. Normally, this is the file queue_cache.dat in the
PMDF_TABLE: directory. This file should be protected against world and group
access and be owned by the same UIC as the directory files queue.dir and
log.dir in the PMDF_ROOT: directory.

EXAMPLES

To synchronize the queue cache, for instance after renaming a message file, issue
the command

$ PMDF CACHE/SYNCHRONIZE

29–10

Utilities on OpenVMS
CHBUILD

CHBUILD—Character set table compiler

Compile the PMDF character set conversion tables in an OpenVMS shareable image.

SYNTAX PMDF CHBUILD

Command Qualifiers Defaults

/IMAGE_FILE=file-spec /IMAGE_FILE=PMDF_CHARSET_DATA
/MAXIMUM /NOMAXIMUM
/OPTION_FILE=file-spec /OPTION_FILE=PMDF_CHARSET_OPTION_FILE
/STATISTICS /NOSTATISTICS

PARAMETERS None.

DESCRIPTION

The CHBUILD utility compiles the character set conversion tables into an
OpenVMS shareable image. The resulting file can then be installed with the
OpenVMS INSTALL utility.

PMDF ships with very complete character set tables so it is not normally
necessary to run this utility.

COMMAND
QUALIFIERS

/IMAGE_FILE=file-spec
/NOIMAGE_FILE
By default, CHBUILD creates as output the file PMDF_CHARSET_DATA. With
the /IMAGE_FILE qualifier, an alternate file name may be specified.

When the /NOIMAGE_FILE qualifier is specified, CHBUILD does not produce an
output file. This qualifier is used in conjunction with the /OPTION_FILE qualifier
to produce as output an option file which specifies table sizes adequate to hold the
tables required by the processed input files.

/MAXIMUM
/NOMAXIMUM (default)
The file PMDF_TABLE:maximum_charset.dat is read in addition to the file
PMDF_CHARSET_OPTION_FILE when /MAXIMUM is specified. This file speci-
fies near maximum table sizes but does not change any other option file parameter
settings. Only use this qualifier if the current table sizes are inadequate. The
/NOIMAGE and /OPTION_FILE qualifiers should always be used in conjunction
with this qualifier—it makes no sense to output the enormous character set image
that is produced by /MAXIMUM, but it does make sense to use /MAXIMUM to get
past size restrictions in order to build a properly sized character set option file so

29–11

Utilities on OpenVMS
CHBUILD

that a properly sized character set data can be built with a subsequent CHBUILD
invocation.

/OPTION_FILE[=file-spec]
/NOOPTION_FILE (default)
CHBUILD can optionally produce an option file that contains correct table sizes to
hold the conversion tables which were just compiled (plus a little room for growth).
The /OPTION_FILE qualifier causes this file to be output. By default, this file
is the file pointed to by the logical PMDF_CHARSET_OPTION_FILE, normally
PMDF_TABLE:option_charset.dat. The value on the /OPTION_FILE qualifier
may be used to specify an alternate file name. If the /NOOPTION_FILE qualifier
is given, then no option file will be output.

CHBUILD always reads any option file that is already present via the PMDF_
CHARSET_OPTION_FILE logical name; use of this qualifier will not alter this
behavior. However, use of the /MAXIMUM qualifier causes CHBUILD to read
options from maximum_charset.dat in addition to PMDF_CHARSET_OPTION_
FILE. This file specifies near maximum table sizes. Only use this qualifier if
the current table sizes are inadequate, and only use it to create a new option file.
The /NOIMAGE qualifier should always be specified when /MAXIMUM is specified
since a maximum-size image would be truly enormous and extremely wasteful.

/SIZES
/NOSIZES (default)
The /SIZES qualifier instructs PMDF CHBUILD to output information on the sizes
of the uncompiled character set tables.

/STATISTICS
/NOSTATISTICS (default)
The /STATISTICS qualifier instructs CHBUILD to output information on the
compiled conversion tables. These numbers give a rough measurement of the
efficiency of the compilation, and may indicate whether or not an additional rebuild
with the /OPTION_FILE qualifier is needed.

EXAMPLES

The standard commands used to compile character set conversion tables and
reinstall them are:

$ PMDF CHBUILD
$ INSTALL REPLACE PMDF_CHARSET_DATA

29–12

Utilities on OpenVMS
CLBUILD

CLBUILD—Command definition compiler

Compile a PMDF command definition file into an OpenVMS shareable image.

SYNTAX PMDF CLBUILD cld-file-spec

Command Qualifiers Defaults

/DEBUG /NODEBUG
/IMAGE_FILE=file-spec /NOIMAGE_FILE
/MAXIMUM /NOMAXIMUM
/OPTION_FILE=file-spec /NOOPTION_FILE
/SIZES /NOSIZES
/STATISTICS /NOSTATISTICS

PARAMETERS

cld-file-spec
The file specification of a PMDF command line definition file to read as input, e.g.,
PMDF_COM:pmdf.cld

DESCRIPTION

The CLBUILD utility compiles a command line definition file into an OpenVMS
shareable image. The resulting image can then be installed with the OpenVMS
INSTALL utility.

PMDF ships with a pre-compiled command line definition image so it is not
normally necessary to run this utility.

COMMAND
QUALIFIERS

/DEBUG
/NODEBUG (default)
The /DEBUG qualifier causes CLBUILD to output debug information regarding its
operation.

/IMAGE_FILE=file-spec
/NOIMAGE_FILE (default)
By default, CLBUILD does not produce a compiled command definition file. In
order to produce a compiled command definition file, the file to produce must
be specified using the /IMAGE_FILE qualifier. Note that the logical name
PMDF_COMMAND_DATA may be specified as the image file-spec, if the goal is
to produce a compiled version of the main PMDF command definition file,
PMDF_COM:pmdf.cld.

29–13

Utilities on OpenVMS
CLBUILD

/MAXIMUM
/NOMAXIMUM (default)
The file PMDF_TABLE:maximum_command.dat is read when /MAXIMUM is speci-
fied. This file specifies near maximum table sizes but does not change any other
command option file parameter settings. Only use this qualifier if the current table
sizes are inadequate. The /NOIMAGE_FILE and /OPTION_FILE qualifiers should
always be used in conjunction with this qualifier—it makes no sense to output the
enormous command definition image that is produced by /MAXIMUM, but it does
make sense to use /MAXIMUM to get past size restrictions in order to build a prop-
erly sized command option file so that a properly sized command definition image
can be built with a subsequent CLBUILD invocation.

/OPTION_FILE[=file-spec]
/NOOPTION_FILE (default)
CLBUILD can optionally produce a command option file that contains correct table
sizes to hold the command definitions which were just compiled (plus a little room
for growth). The /OPTION_FILE qualifier causes this file to be read as input and a
new such option file created as output. If /OPTION_FILE is specified with no value,
then the file written will have the same name as the input command definition
file, but with the file extension .cop; for instance, if the file PMDF_COM:pmdf.cld
was the input parameter, then the default name for the output command option
file would be PMDF_COM:pmdf.cop. If the /NOOPTION_FILE qualifier is specified
(the default), then no option file will be output.

Note that use of the /MAXIMUM qualifier causes CLBUILD to read options from
maximum_command.dat in addition to any command option file. This file specifies
near maximum table sizes. Only use this qualifier if the current table sizes are
inadequate, and only use it to create a new command option file. The /NOIMAGE
qualifier should always be specified when /MAXIMUM is specified since a maximum-
size image would be truly enormous and extremely wasteful.

/SIZES
/NOSIZES (default)
The /SIZES qualifier instructs PMDF CLBUILD to output information on the sizes
of the uncompiled command definitions.

/STATISTICS
/NOSTATISTICS (default)
The /STATISTICS qualifier instructs CLBUILD to output information on the
compiled conversion tables. These numbers give a rough measurement of the
efficiency of the compilation, and may indicate whether or not an additional rebuild
with the /OPTION_FILE qualifier is needed.

EXAMPLES

The standard commands used to compile the basic PMDF command definition file
and restart PMDF to use it, plus update the system DCL tables, are:

$ PMDF CLBUILD/OPTION_FILE/IMAGE_FILE=PMDF_COMMAND_DATA PMDF_COM:pmdf.cld
$ INSTALL REPLACE PMDF_COMMAND_DATA
$ SET COMMAND/TABLE=SYS$COMMON:[syslib]dcltables.exe -
_$ /OUTPUT=SYS$COMMON:[syslib]dcltables.exe PMDF_COM:pmdf.cld
$ INSTALL REPLACE SYS$LIBRARY:dcltables.exe

29–14

Utilities on OpenVMS
CNBUILD

CNBUILD—Configuration compiler

Compile the PMDF configuration, alias, mapping, security, system wide filter, circuit
check, and option files into an OpenVMS shareable image.

SYNTAX PMDF CNBUILD

Command Qualifiers Defaults

/IMAGE_FILE=file-spec /IMAGE_FILE=PMDF_CONFIG_DATA
/MAXIMUM /NOMAXIMUM
/OPTION_FILE=file-spec /OPTION_FILE=PMDF_OPTION_FILE
/SIZES /NOSIZES
/STATISTICS /NOSTATISTICS

restrictions None.

PARAMETERS None.

DESCRIPTION

The CNBUILD utility compiles the textual configuration, option, mapping,
security, conversion, system wide filter, and alias files into a single OpenVMS
shareable image. The resulting image, PMDF_CONFIG_DATA (usually
PMDF_EXE:CONFIG_DATA.EXE), can then be installed with the OpenVMS IN-
STALL utility.

Whenever a component of PMDF (e.g., a channel program) must read
any possibly compiled configuration component, it first checks to see if the
PMDF_CONFIG_DATA image exists. If it does, the image is merged into the
running program using the OpenVMS RTL routine LIB$FIND_IMAGE_SYMBOL.
There are five exceptions to this rule. The first is CNBUILD itself, which for
obvious reasons always reads the text files and never tries to load the image form
of the configuration data. The remaining four exceptions are TEST/REWRITE, and
TEST/MAPPING, which can all be instructed with the /NOIMAGE_FILE qualifier to
ignore any compiled image information. This facility in TEST/REWRITE is useful
for testing changes prior to compiling them.

The reason for compiling configuration information is simple: performance.
The only penalty paid for compilation is the need to rebuild and reinstall the file
any time the configuration or alias files are edited. Also, be sure to restart any
channels or components which load the configuration data only once when they
start up (e.g., the PMDF multithreaded TCP SMTP server, the POP or IMAP
servers, FAX_RECEIVE, BITNET channels, or, if using PMDF-MR for MR TS
replacement, the All-in-1 Sender, All-in-1 Fetcher, and MailWorks server).

29–15

Utilities on OpenVMS
CNBUILD

Once you begin to use a compiled configuration, it will be necessary to
recompile the configuration every time changes are made to any of the following
files: the PMDF configuration file, pmdf.cnf (or any files referenced by it); the
system alias file, aliases.; the system mapping file, mappings.; the PMDF
option file, option.dat; the conversions file, conversions., the system wide
filter file, pmdf.filter, the circuit check configuration file, circuitcheck.cnf,
or the security configuration file, security.cnf. Until such time that the
configuration is recompiled and reinstalled, changes to any of these files will not
be visible to the running PMDF system.

See Chapter 8 for further details on the use of compiled configurations.

COMMAND
QUALIFIERS

/IMAGE_FILE=file-spec
/NOIMAGE_FILE
By default, CNBUILD creates as output the file PMDF_CONFIG_DATA. With the
/IMAGE_FILE qualifier, an alternate file name may be specified.

When the /NOIMAGE_FILE qualifier is specified, CNBUILD does not produce an
output file. This qualifier is used in conjunction with the /OPTION_FILE qualifier
to produce as output an option file which specifies table sizes adequate to hold the
configuration required by the processed input files.

/MAXIMUM
/NOMAXIMUM (default)
The file PMDF_TABLE:maximum.dat is read in addition to PMDF_OPTION_FILE
when /MAXIMUM is specified. This file specifies near maximum table sizes but does
not change any other option file parameter settings. Only use this qualifier if the
current table sizes are inadequate. The /NOIMAGE and /OPTION_FILE qualifiers
should always be used in conjunction with this qualifier—it makes no sense to
output the enormous configuration that is produced by /MAXIMUM, but it does make
sense to use /MAXIMUM to get past size restrictions in order to build a properly sized
option file so that a properly sized configuration can be built with a subsequent
CNBUILD invocation.

/OPTION_FILE[=file-spec]
/NOOPTION_FILE (default)
CNBUILD can optionally produce an option file that contains correct table sizes to
hold the configuration that was just compiled (plus a little room for growth). The
/OPTION_FILE qualifier causes this file to be output. By default, this file is the file
pointed to by the PMDF_OPTION_FILE logical, normally PMDF_TABLE:option.dat.
The value on the /OPTION_FILE qualifier may be used to specify an alternate file
name. If the /NOOPTION_FILE qualifier is given, then no option file will be output.

CNBUILD always reads any option file that is already present via the
PMDF_OPTION_FILE logical name; use of this qualifier will not alter this behavior.
However, use of the /MAXIMUM qualifier causes CNBUILD to read PMDF options
from the PMDF_TABLE:maximum.dat in addition to reading PMDF_OPTION_FILE.
This file specifies near maximum table sizes. Only use this qualifier if the cur-
rent table sizes are inadequate, and only use it to create a new option file. The
/NOIMAGE qualifier should always be specified when /MAXIMUM is specified since
a maximum-size image would be truly enormous and extremely wasteful.

29–16

Utilities on OpenVMS
CNBUILD

/SIZES
/NOSIZES (default)
The /SIZES qualifier instructs PMDF CNBUILD to output information on the sizes
of the elements of the uncompiled configuration.

/STATISTICS
/NOSTATISTICS (default)
The /STATISTICS qualifier instructs CNBUILD to output information on how much
of the various tables in the compiled configuration were actually used to store data.
These numbers give a rough measurement of the efficiency of the compilation,
and may indicate whether or not an additional rebuild with the /OPTION_FILE
qualifier is needed.

EXAMPLES

1 $ PMDF CNBUILD
$ INSTALL REPLACE PMDF_CONFIG_DATA

Above are the standard commands used to regenerate and reinstall a compiled config-
uration. After compiling the configuration, install it with the DCL INSTALL command
and then restart any programs which may need to reload the new configuration. (For
instance, it is necessary to restart the PMDF multithreaded TCP SMTP server with the
‘‘PMDF RESTART SMTP’’ command after recompiling the configuration.)

2 $ PMDF CNBUILD/NOIMAGE_FILE/OPTION_FILE/MAXIMUM
$ PMDF CNBUILD
$ INSTALL REPLACE PMDF_CONFIG_DATA

Use the sequence of three commands shown above when you encounter the infamous
‘‘No room in table’’ error message.

29–17

Utilities on OpenVMS
CONFIGURE

CONFIGURE—Create PMDF configuration files

Create basic PMDF configuration files.

SYNTAX PMDF CONFIGURE [product-or-component-name]

restrictions To write ‘‘live’’ files, must have write access to the PMDF table directory,
PMDF_TABLE:.

PARAMETERS

product-or-component-name
The product name, i.e., mta, access, firewall, lan, or the component name,
i.e., dispatcher, mailbox_servers, or queues. This parameter need not be
specified if the product is PMDF or PMDF-MTA.

DESCRIPTION

CONFIGURE is an interactive command line utility for creating basic PMDF
configuration files. Note that there is also a newer, web-based configuration utility
for generating PMDF-MTA (including mailbox servers) configurations; see the
PMDF Installation Guide for additional details.

Most fundamentally, it is used to generate a basic PMDF configuration file,
alias file, mappings file, and security configuration file, usually
PMDF_TABLE:pmdf.cnf, PMDF_TABLE:aliases., PMDF_TABLE:mappings., and
PMDF_TABLE:security.cnf, respectively. The utility prompts for answers to
questions regarding a site’s node names and network connectivity, and then cre-
ates the basic files in accord with the answers to those questions.

The utility is also used to configure optional PMDF layered products, and to
configure various PMDF components.

This utility is usually run when PMDF is first installed. It may also
be convenient to run this utility, rather than manually editing the PMDF
configuration file, after changes in a site’s network configuration, such as the
addition or removal of nodes, or a change in the status of a site’s access to a
larger network. Although by default this utility writes ‘‘live’’ files, overwriting any
existing configuration and alias file, different file names may be specified, which
can be useful for comparison or testing purposes. Note that since this utility does
not take into account any pre-existing configuration file and alias file, any manual
changes made to such files must be re-entered into the new files.

For a complete description and examples of using this utility to create
configuration files for PMDF products or components, see the PMDF Installation
Guide, OpenVMS Edition.

29–18

Utilities on OpenVMS
CONVERT

CONVERT—Convert a file

Convert a file.

SYNTAX CONVERT input-file output-file

Command Qualifiers Defaults

/CHECKSUM /NOCHECKSUM
/DEBUG /NODEBUG
/FTYPE=type See text
/FCREATOR=creator See text
/FDL=fdl-spec None
/LINE_LENGTH=value /LINE_LENGTH=0
/MPARAMETERS=param-list See text
/MSUBTYPE=type See text

Positional Qualifiers Defaults

/CHARSET=charset None
/ENCODING=encoding None
/FILENAME=name /NOFILENAME
/HEADER /NOHEADER
/MODE=mode None
/PARAMETERS=param-list None
/SUBTYPE=subtype None
/TYPE=type None

restrictions None.

PARAMETERS

input-file[,...]
A comma separated list of one or more text files to be converted. All specified input
files are read and merged into a single output file.

output-file
The name of the output file to write.

DESCRIPTION

CONVERT is a utility to convert files from one format to another.

29–19

Utilities on OpenVMS
CONVERT

COMMAND
QUALIFIERS

/CHARSET=charset
Specify the character set for the part.

/CHECKSUM
/NOCHECKSUM (default)

/DEBUG
/NODEBUG (default)
Control whether or not to display debug output.

/ENCODING=encoding
Specify the encoding used for the part.

/FILENAME=name
/NOFILENAME (default)
Specify a file name to include in the MIME labelling.

/FTYPE=type

/FCREATOR=creator

/FDL=fdl-spec

/HEADER
/NOHEADER (default)
Specify whether MIME headers are present or should be written to the part. The
default is /NOHEADER, MIME headers are neither looked for nor generated.

/LINE_LENGTH=value

/MODE=mode
Specify the conversion mode. The mode value may be any of CRATTRIBUTE,
LFATTRIBUTE, CRLFATTRIBUTE, BLOCK, RECORD, TEXT, POSTSCRIPT, ENRICHED,
FLOWED, HTML, DOUBLEAPPLE, SINGLEAPPLE, BINHEX, or VIRUSSCAN.

/MPARAMETERS=param-list

/MSUBTYPE=type

/PARAMETERS=param-list

/SUBTYPE=subtype
Specify the MIME subtype.

29–20

Utilities on OpenVMS
CONVERT

/TYPE=type
Specify the MIME type.

EXAMPLES

1 $ PMDF CONVERT A.MACB/MODE=MACBINARY A.SINGLE/MODE=SINGLE

The command above is an example of converting a file from Macbinary format to
Applesingle format; that is, this is an example of extracting just the data fork from
the Macbinary format file.

29–21

Utilities on OpenVMS
convert_cache.com

convert_cache.com—Perform a CONVERT/RECLAIM
on the queue cache

Perform a CONVERT/RECLAIM operation on the queue cache database.

SYNTAX @PMDF_COM:convert_cache.com

DESCRIPTION

The convert_cache.com utility performs a CONVERT/RECLAIM operation on
the queue cache database. If you encounter difficulties with the queue cache
database which a CACHE/SYNCHRONIZE command does not resolve, using this
utility should be your next step.

EXAMPLES

To convert the queue cache database issue the command

$ @PMDF_COM:convert_cache.com

29–22

Utilities on OpenVMS
COUNTERS/CLEAR

COUNTERS/CLEAR—Clear the in-memory counters

Clear the node-specific, in-memory cache of counters.

SYNTAX COUNTERS/CLEAR

Command Qualifiers Defaults

/ASSOCIATIONS /ASSOCIATIONS
/CHANNELS /CHANNELS

restrictions WORLD privilege is required to in order to use this utility. If the in-memory
section did not already exist (so that a new one must be created), then SYSGBL
and PRMGBL privileges are also required. If a new cluster-wide, on-disk database
must be created, then privileges sufficient to create a file in the PMDF_TABLE:
directory are required.

PARAMETERS None.

DESCRIPTION

The PMDF COUNTERS/CLEAR command is used to clear the values in the node-
specific, in-memory section of counters. The command creates the node-specific,
in-memory section of association and channel counters if it does not already exist.
Then it zeros all fields in the in-memory section. Note that the counters will be
zeroed without first merging their values into the cluster-wide database of channel
counters. If a cluster-wide, on-disk database does not already exist, a new one
will be created. Finally, the fields in the on-disk database for numbers of stored
messages, message recipients, and message volumes are set based on the entries
in the PMDF queue cache database.

Either the association counters, or channel counters, or both, may be cleared.
The default is to clear both association and channel counters.

If you want to update the on-disk database with the old in-memory values
before clearing them, then you should issue a

$ PMDF COUNTERS/SYNCHRONIZE

command before issuing the PMDF COUNTERS/CLEAR command.

You may also want to issue a

$ PMDF CACHE/SYNCHRONIZE

command before issuing the PMDF COUNTERS/CLEAR command, to ensure that
the queue cache database values (which will be used to set some of the on-disk
database values) are themselves current.

29–23

Utilities on OpenVMS
COUNTERS/CLEAR

COMMAND
QUALIFIERS

/ASSOCIATIONS (default)
/NOASSOCIATIONS
This qualifier specifies whether to clear the in-memory cache of association
counters.

/CHANNELS (default)
/NOCHANNELS
This qualifier specifies whether to clear the in-memory cache of channel counters.

29–24

Utilities on OpenVMS
COUNTERS/CRDB

COUNTERS/CRDB—Create a cluster-wide counters
database

Create a cluster-wide, on-disk database of association and channel counters.

SYNTAX COUNTERS/CRDB

Command Qualifiers Defaults

None. None.

restrictions Requires sufficient privileges to create a file in the PMDF_TABLE: directory; if a
in-memory section must also be created, SYSGBL and PRMGBL privileges are
required.

PARAMETERS None.

DESCRIPTION

A new, cluster-wide database of channel counters is created with the PMDF
COUNTERS/CRDB command. The new database will have all counters zeroed
except for the counts of stored messages, recipients, and message volumes for
each channel. Those counts will be determined by the entries in the PMDF queue
cache database. In addition, if an in-memory section for association and channel
counters on this node does not already exist, it will be created as well.

Once an on-disk database exists, its values may be updated from the node-
specific, in-memory sections by using the PMDF COUNTERS/SYNCRONIZE command.

Note that since some initial database values will be set based on entries in
the PMDF queue cache database, you may want to issue a

$ PMDF CACHE/SYNCHRONIZE

command before issuing the PMDF COUNTERS/CRDB command, to ensure that the
queue cache database values are themselves current.

29–25

Utilities on OpenVMS
COUNTERS/SHOW

COUNTERS/SHOW—Display the counters

Display the contents of the cluster-wide database of counters.

SYNTAX COUNTERS/SHOW

Command Qualifiers Defaults

/ASSOCIATIONS /ASSOCIATIONS
/CHANNELS /CHANNELS
/HEADERS /HEADERS
/OUTPUT=file-spec None
/TODAY /TODAY

restrictions Normally WORLD privilege is all that is required. But if the cluster-wide, on-
disk database must be created, then privileges sufficient to create a file in the
PMDF_TABLE: directory are required; or if the node-specific, in-memory section
must be created, then SYSGBL and PRMGBL privileges are required.

DESCRIPTION

The contents of the cluster-wide association and channel counters database
may be displayed with the PMDF COUNTERS/SHOW command.
A PMDF COUNTER/SYNCHRONIZE command is implicitly performed by this com-
mand; the database contents are synchronized with the in-memory section(s) be-
fore being displayed.

Note that as part of the implicit PMDFCOUNTERS/SYNCHRONIZE operation,
if the cluster-wide, on-disk database does not already exist, the PMDF COUN-
TERS/SHOW command will create it. And if the node-specific, in-memory cache
of counters does not already exist, the PMDF COUNTERS/SHOW command will create
it too.

COMMAND
QUALIFIERS

/ASSOCIATIONS (default)
/NOASSOCIATIONS
This qualifier specifies whether to show the in-memory cache of association
counters.

/CHANNELS (default)
/NOCHANNELS
This qualifier specifies whether to show the in-memory cache of channel counters.

29–26

Utilities on OpenVMS
COUNTERS/SHOW

/HEADERS (default)
/NOHEADERS
Controls whether or not a header line describing each column in the table of
counters is output.

/OUTPUT=file-spec
Direct the output to the specified file. By default the output appears on your
display.

/TODAY (default)
/NOTODAY
This qualifier specifies whether to show PMDF’s count for the number of messages
processed this day. Note that as discussed in Section 31.4.1, PMDF counters are
intentionally designed to be lightweight and as such by design, the value shown
becomes increasingly likely to be an undercount as message volume increases. So
high volume sites (sites with an unlimited volume PMDF license) in particular
should not place too much credence in the reported number.

EXAMPLES

To display the counters for all channels and associations, issue the command

$ PMDF COUNTERS/SHOW
4263 messages processed so far today
30000 messages per day are permitted by your license

Channel Messages Recipients Blocks
------------------------ ---------- ---------- ----------
l

Received 3863 3881 25786
Stored 89 89 460
Delivered 3876 3894 26018 (3859 first time)
Submitted 99 114 1611
Attempted 17 17 25
Rejected 0 0 0
Failed 1 1 6

Queue time/count 29794837/3877 = 7.68502E3
Queue first time/count 18904343/3860 = 4.8975E3

tcp_local
Received 208 217 4153
Stored 3 3 9
Delivered 200 212 2461 (197 first time)
Submitted 4053 4078 25919
Attempted 7 7 0
Rejected 46 68 0
Failed 14 14 1695

Queue time/count 1106266/211 = 5.24297E3
Queue first time/count 455897/208 = 2.19181E3

Current In Assocs 127
Total In Assocs 1056
Total Out Assocs 132
Rejected Out Assocs 11
Failed Out Assocs 1

29–27

Utilities on OpenVMS
COUNTERS/SHOW

Channel Timestamp Association
------------ ------------ ---
tcp_local 01-Feb 00:27 TCP|192.160.253.70|25|192.160.253.66|3465
tcp_local 25-Jan 00:31 TCP|192.160.253.70|5|192.160.253.66|3496
tcp_local 26-Jan 14:50 TCP|192.160.253.70|25|192.160.253.66|2086
tcp_local 05-Feb 12:23 TCP|192.160.253.70|25|192.160.253.66|3593
tcp_local 01-Feb 00:34 TCP|192.160.253.70|25|192.160.253.66|3581

...

$

29–28

Utilities on OpenVMS
COUNTERS/SYNCHRONIZE

COUNTERS/SYNCHRONIZE—Synchronize in-memory
counters with the
cluster-wide database

Synchronize each of the node-specific, in-memory caches of channel counters with
the cluster-wide database.

SYNTAX COUNTERS/SYNCHRONIZE

Command Qualifiers Defaults

None. None.

restrictions Normally, just WORLD privilege is required to use this utility. However, if the
node-specific, in-memory section must be created, then SYSGBL and PRMGBL are
required; or if the cluster-wide, on-disk database must be created, then privileges
sufficient to create a file in the PMDF_TABLE: directory are required.

PARAMETERS None.

DESCRIPTION

To synchronize each of the node-specific, in-memory caches of channel counters
with the cluster-wide database, issue a PMDF COUNTERS/SYNCHRONIZE command.
The command will not return control back to you until all the caches have been
synchronized. The PMDF COUNTERS/SYNCHRONIZE command signals each PMDF
counters synchronization process in the cluster—there should be one such process
on each node running PMDF. Note that on each node, the synchronization can
only be performed if the PMDF counters synchronization process is running on
that node.

Assuming that the PMDF counters synchronization process is running on each
node, then for each node the node-specific, in-memory cache will be created, if it
does not already exist. If the cluster-wide, on-disk database does not exist, it
will be created. The in-memory cache values will be used to update the on-disk
database, and then the on-disk database values for stored messages, recipients,
and volume will be set by scanning the PMDF queue cache database.

29–29

Utilities on OpenVMS
COUNTERS/TODAY

COUNTERS/TODAY—Display number of messages
processed today

Display PMDF’s count of the number of messages processed so far today.

SYNTAX COUNTERS/TODAY

Command Qualifiers Defaults

None. None.

restrictions WORLD privilege is required.

DESCRIPTION

PMDF’s count of the number of messages processed so far today may be
displayed with the PMDF COUNTERS/TODAY command.

Note that as discussed in Section 31.4.1, PMDF counters are intentionally
designed to be lightweight and as such by design, the value shown becomes
increasingly likely to be an undercount as message volume increases. So high
volume sites (sites with an unlimited volume PMDF license) in particular should
not place too much credence in the reported number.

EXAMPLES

To display PMDF’s count of the number of messages processed today, issue the
command

$ PMDF COUNTERS/TODAY
4263 messages processed so far today
30000 messages per day are permitted by your license
$

29–30

Utilities on OpenVMS
CRDB

CRDB—Create database

CRDB is a utility used to create and update PMDF database files.

SYNTAX PMDF CRDB input-file-spec[,...] output-database-spec

Command Qualifiers Defaults

/APPEND /NOAPPEND
/COUNT /COUNT
/DELETE /NODELETE
/DUMP See text
/DUPLICATES /NODUPLICATES
/EXCEPTION_FILE=file-spec /NOEXCEPTION_FILE
/EXCLUDE=(suffix1[,...]) See text
/FAST_LOAD /FAST_LOAD
/HUGE_RECORDS /NOHUGE_RECORDS
/LONG_RECORDS /NOLONG_RECORDS
/QUOTED /NOQUOTED
/REMOVE /NOREMOVE
/SCRATCH_DISK=device-spec See text
/STATISTICS /STATISTICS
/STRIP_COLONS /NOSTRIP_COLONS
/WRITE_CHECK /NOWRITE_CHECK

restrictions None.

prompts Input file: input-file-spec[,...]
Output database: output-database-spec

PARAMETERS

input-file-spec[,...]
A comma separated list of one or more text files containing the entries to be placed
into the database. Each line of the text files must correspond to a single entry. All
specified input files are read and merged into a single output database.

output-database-spec
The name of the database file to write the database to. This may be a new or
existing database. If the /NOFAST_LOAD qualifier is specified and the database
already exists no new database will be created; records will simply be added to the
existing database.

29–31

Utilities on OpenVMS
CRDB

DESCRIPTION

CRDB is a utility to create and or update PMDF database files. CRDB simply
converts a plain text file into PMDF database records and either builds a new
database or updates the records in an existing database.

In general, each line of the input file must consist of a left hand side and a
right hand side. The two sides are separated by one or more spaces or tabs. The
left hand side is limited to 32 characters in a short database (the default variety),
80 characters in a long database, or 252 characters in a huge database. The right
hand side is limited to 80 characters in a short database, 256 characters in a long
database, or 1024 characters in a huge database. Spaces and tabs may not appear
in the left hand side (but see the description of the /QUOTED qualifier below).

The format of the input files is described in the sections describing each
particular PMDF database. For instance, the format of the input files for an
alias database is described in Section 3.1.2; the format of the input files for the
domain database (rewrite rule database) is described in Section 2.2.9; the format
of the input files for the address reversal database is described in Section 3.3.2.

COMMAND
QUALIFIERS

/APPEND
/NOAPPEND (default)
If /APPEND is specified, the database is loaded with RMS $PUT operations. If
the database already exists it will be appended to; if not, a new database will be
created. Duplicate keys (left hand sides) will replace existing entries in databases
created with /NODUPLICATE, so the last occurrence of a given key will be the one
that is used.

/NOAPPEND is a synonym for for /FAST_LOAD.

/COUNT (default)
/NOCOUNT
Controls whether or not a count is output after each group of 100 input lines
are processed. This qualifier only applies if /APPEND is in effect; it is ignored in
/FAST_LOAD mode.

/DELETE
/NODELETE (default)
If /DELETE is specified, the given entries are deleted from the database. The input
file should contain one key value per line for the entries to delete. The data portion
of the line is ignored. If the database was created with /DUPLICATE, for multiple
entries with the same key value, only the first entry is deleted.

/DUMP
PMDF CRDB/DUMP is a synonym for PMDF DUMPDB. It is used to cause PMDF CRDB
to dump an existing database to a flat text file—or to SYS$OUTPUT if no output file
is specified. When /DUMP is specified, the parameters to PMDF CRDB are interpreted
as the input database specification, and optionally a flat text file to which to write
the output. No other qualifiers are valid when /DUMP is specified.

29–32

Utilities on OpenVMS
CRDB

/DUPLICATES
/NODUPLICATES (default)
Controls whether or not duplicate records are allowed in the output file. Currently
duplicate records are of use only in the domain databases (rewrite rule databases)
and databases associated with the directory channel.

/EXCEPTION_FILE=file-spec
/NOEXCEPTION_FILE
CRDB may encounter records that cannot be loaded into the database. This usually
means that in /FAST_LOAD mode these records had keys (left hand sides) that
were duplicates of other keys previously encountered in the input file. When
/FAST_LOAD is used (the default), these exception records can optionally be written
to a separate output file for later examination. The /EXCEPTIONS_FILE qualifier
controls the writing of this file. Note that the lines in this file are not plain text;
they are formatted as database entries.

/EXCLUDE=(suffix[,...])
Any left-hand side entries ending with the string suffix will be excluded from the
database. By default no entries are omitted.

/FAST_LOAD (default)
/NOFAST_LOAD
This qualifier controls whether or not the fast load algorithm is used. If
/FAST_LOAD is specified, callable CONVERT is used to build the database. A
new database is always created. If records with duplicate keys (left hand sides)
are encountered in the input stream and /NODUPLICATE is in effect, the specific
occurrence that will be used is unpredictable.

/NOFAST_LOAD is a synonym for for /APPEND.

/LONG_RECORDS
/NOLONG_RECORDS (default)
/HUGE_RECORDS
/NOHUGE_RECORDS
These qualifiers control the size of the output records. By default left hand sides
are limited to 32 characters and right hand sides are limited to 80 characters. If
/LONG_RECORDS is specified the limits are changed to 80 and 256, respectively. If
/HUGE_RECORDS is specified the limits are changed to 252 and 1024 characters,
respectively. Currently, /HUGE_RECORDS databases are supported only for the
alias database.

/QUOTED
/NOQUOTED (default)
This qualifier controls the handling of quotes. Normally CRDB pays no particular
attention to double quotes. If /QUOTED is specified, CRDB matches up double
quotes in the process of determining the break between the left and right hand
sides of each input line. Spaces and tabs are then allowed in the left hand side
if they are within a matching pair of quotes. This is useful for certain kinds of
databases, where spaces may form a part of the database keys. Note: The quotes
are not removed unless the /REMOVE qualifier is also specified.

/REMOVE
/NOREMOVE (default)
This qualifier controls the removal of quotes. If CRDB is instructed to pay attention
to quotes, the quotes are normally retained. If /REMOVE is specified, CRDB removes
the outermost set of quotes from the left hand side of each input line. Spaces and

29–33

Utilities on OpenVMS
CRDB

tabs are then allowed in the left hand side if they are within a matching pair of
quotes. This is useful for certain kinds of databases, where spaces may form a
part of the database keys. Note: /REMOVE is ignored if /QUOTED is not in effect.

/SCRATCH_DISK=device-spec
CRDB uses one or two temporary scratch files to build the database if /FAST_LOAD
is used (the default). The /SCRATCH_DISK qualifier can be used to specify the
device on which these files are created. It may be useful to place these files in a
specific place, either to improve performance or to get around protection and quota
limitations.

If /SCRATCH_DISK is not specified, the temporary files will be created on the disk
specified by PMDF_SCRATCH. If PMDF_SCRATCH is not defined, the temporary files
will be created on the disk specified by SYS$SCRATCH. If SYS$SCRATCH is not
defined, the temporary files will be created on whatever disk the current default
directory is on.

/STATISTICS (default)
/NOSTATISTICS
Controls whether or not some simple statistics are output by CRDB, including
number of entries (lines) converted, number of exceptions (usually duplicate
records) detected, and number of entries that could not be converted because they
were too long to fit in the output database. /NOSTATISTICS suppresses output of
this information.

/STRIP_COLONS
/NOSTRIP_COLONS (default)
The /STRIP_COLONS qualifier instructs CRDB to strip a trailing colon from the
right end of the left hand side of each line it reads from the input file. This is
useful for turning former alias file entries into an alias database.

/WRITE_CHECK
/NOWRITE_CHECK (default)
Controls whether or not RMS write checking is enabled on the output database.
This only applies to /FAST_LOAD mode; this qualifier is ignored otherwise.

EXAMPLES

The following commands may be used to create an alias database with ‘‘long’’ record
entries; note that the creation is performed in a two-step process using a temporary
database to minimize any window of time, such as during database generation, when
the database would be locked and inaccessible to PMDF:

$ PMDF CRDB/LONG_RECORDS PMDF_TABLE:aliases.txt aliases.tmp
$ RENAME aliases.tmp PMDF_ALIAS_DATABASE

29–34

Utilities on OpenVMS
DCF

DCF—Document format converter

Convert WPS and DX files to other formats.

SYNTAX PMDF DCF input-file-spec output-file-spec

Positional Qualifiers Defaults

/FORMAT=type See text

restrictions • This utility is available only for OpenVMS VAX. and is only intended for
internal use by the PMDF-MR channels.

• The file extensions of the input and output files are not user selectable.

prompts Input file: input-file-spec
Output file: output-file-spec

PARAMETERS

input-file-spec
The name of an input file to convert. The format of the file must be specified with
a positional /FORMAT qualifier. The file extension of the input file must match the
specified format (see the /FORMAT qualifier description for details).

output-file-spec
The name of an output file to create. The format of the output file is selected with
the /FORMAT positional qualifier. The file extension of the output file must match
the specified format (see the /FORMAT qualifier description for details).

DESCRIPTION

The DCF utility is used by PMDF-MR to convert WPS and DX message bodyparts
to ASCII. This facility is built from document conversion software supplied as part
of the MRGATE kit (version 3.1 or 3.2), the Message Router VMS MAIL gateway.
PMDF-MR will function without this utility but it will be unable to convert WPS and
DX bodyparts to ASCII.

29–35

Utilities on OpenVMS
DCF

POSITIONAL
QUALIFIERS

/FORMAT=type
This positional qualifier must be given for both the input and output file
specifications. The allowable types are ASCII, DX, and WPSFILE. The file extension
of the input and output file must be given and they must agree with the selected
format: for ASCII files the file extension must be .txt, for DX files the file
extension must be .dx, and for WPSFILE files the extension must be .wpl. Failure
to use the proper extension will result in unpredictable results.

EXAMPLES

The following command may be used to convert a WPS-PLUS file to an ordinary
text format:

$ PMDF DCF koala.wpl/FORMAT=WPSFILE mrsdd.txt/FORMAT=ASCII

All special text attributes (e.g., bold, underlined, etc.), are lost in the conversion from
WPS-PLUS to ASCII.

29–36

Utilities on OpenVMS
DUMPDB

DUMPDB—Dump contents of a PMDF CRDB
database to a file

Dump contents of a PMDF CRDB database to a file.

SYNTAX PMDF DUMPDB input-database-spec [output-file-spec]

Command Qualifiers Defaults

None. None.

restrictions None.

prompts Input database: input-database-spec[,...]
Output file: output-file-spec

PARAMETERS

input-database-spec
The name of the database from which to read entries.

output-file-spec
The name of the ASCII file to which to write the entries stored in the database.
If no output file is specified, the output is written to SYS$OUTPUT.

DESCRIPTION

The PMDF DUMPDB utility writes the entries in a PMDF CRDB database to a flat
ASCII file.

EXAMPLES

The following command illustrates dumping the PMDF alias database to SYS$OUTPUT.

$ PMDF DUMPDB PMDF_ALIAS_DATABASE
!!PMDF CRDB/QUOTED/REMOVE/NOLONG_RECORDS PMDF_ALIAS_DATABASE
adam.smith asmith@example.com
bob.brown bbrown@example.com

29–37

Utilities on OpenVMS
G3

G3—Analyze G3 file

Analyze the contents of a PMDF-FAX G3 file and generate a DDIF file containing the
G3 file’s bitmaps.

SYNTAX PMDF G3 G3-file-spec [DDIF-file-spec]

Command Qualifiers Defaults

/CDA /CDA
/EDIT None
/INFORMATION /INFORMATION
/MAGNIFICATION=factor /MAGNIFICATION=1

restrictions • Will only operate on PMDF-FAX G3 files; files with other formats will be rejected.

• Requires SYSLCK privilege to operate.

• This utility is supplied only with the PMDF-FAX optional layered product.

prompts Input file: G3-file-spec
Output file: DDIF-file-spec

PARAMETERS

G3-file-spec
The name of a PMDF-FAX G3 file. G3 will check that a proper G3 file is specified
and will abort execution when supplied the name of a non-G3 file. Only a single
input file name may be supplied; wildcards are not allowed.

DDIF-file-spec
The name of a DDIF file (CDA document) to which to write the input file’s bitmaps.
This file will be created by G3 and may subsequently be viewed with the CDA
viewer as shown in the example below. If the /NOCDA or /EDIT qualifies are used,
then this parameter must be omitted.

DESCRIPTION

The G3 utility may be used to analyze the contents of a G3 file in a G3_TO_FAX
channel queue directory. In addition, the G3 utility is capable of converting a
G3 file to a DDIF file which may then be viewed with the HP CDA Viewer. If
you merely want to view header and delivery information in a G3 file, then use
the /NOCDA qualifier. This will disable the time-consuming output of a DDIF file
containing the bitmap images stored in the G3 file.

29–38

Utilities on OpenVMS
G3

Information about each of the To: recipients in a G3 file may be edited
using the edit mode invoked with the /EDIT qualifier. This allows incorrect FAX
telephone numbers to be edited, delivery to specific recipients to be cancelled, etc.

Note: The G3 utility is part of the PMDF-FAX software product. It is not part of the
base PMDF distribution.

COMMAND
QUALIFIERS

/CDA (default)
/NOCDA
By default a CDA document is output by G3. This document is a DDIF file
containing the individual bitmaps stored in the G3 file. When the /CDA qualifier
is used, the DDIF-file-spec parameter must be supplied.

The DDIF-file-spec parameter must be omitted when the /NOCDA qualifier is
specified. The /MAGNIFICATION qualifiers may not be used in conjunction with
the /NOCDA qualifier.

/EDIT
When the /EDIT qualifier is given, the G3 utility operates in edit mode, presenting
each To: address contained in the G3 file for editing. The /CDA, /MAGNIFICA-
TION, and /INFORMATION qualifiers may not be used in conjunction with the
/EDIT qualifier. In addition, the output DDIF file specification may not be given
when this qualifier is used.

/INFORMATION (default)
/NOINFORMATION
By default, information about the G3 file is displayed (e.g., the recipients of the
FAX message embodied by the G3 file and the delivery status associated with each
recipient). When the /NOINFORMATION qualifier is used, the display of this
information is suppressed.

/MAGNIFICATION=factor
When a CDA document is output, it is scaled to be the same size as the actual FAX
message (approximately 8.5 by 10.5 inches). This corresponds to a magnification
of 1 (a scaling by a factor of unity). With the /MAGNIFICATION qualifier,
the document may be scaled upwards or downwards by a prescribed scaling
factor. For instance, to reduce the document to half size, use the qualifier
/MAGNIFICATION=0.5. This qualifier may not be used in conjunction with the
/NOCDA qualifier.

EXAMPLES

The following example illustrates the use of the CDA Viewer to view the FAX images
contained in a G3 file.

$ PMDF G3 PMDF_QUEUE:[g3_to_fax]xyzzy.01 fax.ddif
$ VIEWER/INTERFACE=DECWINDOWS/OVERRIDE fax.ddif

29–39

Utilities on OpenVMS
INSTALL

INSTALL—Install PMDF images

Install or deinstall PMDF images and databases.

SYNTAX PMDF INSTALL operation-type

Command Qualifiers Defaults

None. None.

restrictions Requires CMKRNL privilege.

prompts Operation: operation-type

PARAMETERS

operation-type
The type of operation to perform. May be one of ADD, CREATE, DELETE, LIST,
REMOVE, or REPLACE.

DESCRIPTION

The PMDF INSTALL utility is used to install or deinstall PMDF images. This
utility invokes the command file image_install.com with a command of the form

$ @PMDF_COM:image_install.com PMDF operation-type

where operation-type is one of ADD, CREATE, DELETE, LIST, REMOVE,
or REPLACE. Each of these operations corresponds to the OpenVMS INSTALL
utility operation of the same name; consult the OpenVMS Install Utility Reference
Manual for descriptions of these operations. image_install.com invokes the
OpenVMS INSTALL utility and executes the operation operation-type for
each file specified in the the file pmdfimage.dat in the PMDF_COM: directory.
(Exclamation marks are used in that file to introduce comments.)

The pmdfimage.dat file is reserved for PMDF use and should not be modified.
PMDF INSTALL will also use an optional, site-supplied PMDF_COM:siteimage.dat
file, of the same format as the pmdfimage.dat file, listing additional site-specific
files. Thus sites that want to install additional, site-specific PMDF images, should
do so by adding them to their own siteimage.dat file.

Note that the PMDF startup procedure installs PMDF at system startup by
issuing the command

29–40

Utilities on OpenVMS
INSTALL

$ @PMDF_COM:image_install.com PMDF CREATE

The PMDF INSTALL command is not used by the startup procedure since not all
sites insert the PMDF verb into their system DCL tables.

CMKRNL privilege is required to use the PMDF INSTALL utility.

EXAMPLES

The following command may be used to deinstall any installed PMDF images:

$ PMDF INSTALL DELETE

29–41

Utilities on OpenVMS
KILL

KILL—Kill all PMDF component processes

Kill all PMDF component processes.

SYNTAX PMDF KILL

Command Qualifiers Defaults

None. None.

restrictions Must have privileges sufficient to perform a STOP/ID upon the processes in
question.

PARAMETERS None.

DESCRIPTION

The PMDF KILL utility prompts you for each PMDF process and asks if you
want to kill it.

The PMDF KILL utility immediately and indiscriminately kills the specified
process (using STOP/ID), even if that process is in the middle of transferring
e-mail. So use of the PMDF SHUTDOWN utility, which performs an orderly
shutdown, is generally preferable.

29–42

Utilities on OpenVMS
LICENSE

LICENSE—Activate or deactivate PMDF bundle
licenses

Activate or deactivate PMDF bundle licenses on a node.

SYNTAX PMDF LICENSE operation-type

Command Qualifiers Defaults

None. None.

restrictions Requires SYSNAM and CMEXEC privileges.

prompts Operation: operation-type

PARAMETERS

operation-type
The type of operation to perform. May be one of LOAD or UNLOAD.

DESCRIPTION

The PMDF LICENSE utility is used to activate (load) or deactivate (unload)
a PMDF license Product Authorization Key (PAK) on a given OpenVMS system.
The PMDF license PAK must already be loaded with the OpenVMS LICENSE
utility. However, that is not sufficient to activate the license. PMDF’s model for
debitting license usage units (based upon CPU type) differs from HP’s. Because of
this difference, an additional utility—the PMDF LICENSE utility – is required to
properly debit usage units from a PMDF license PAK.

Normally the PMDF LICENSE utility is run at system startup by the
pmdf_startup.com command procedure. However, it may also be run manually.
When it is used to unload a license, the usage units used by that machine are
made available for use by other systems in the cluster.

Note that the use of the OpenVMS LICENSE utility is sufficient for load-
ing and activating license PAKs for PMDF-MTA, PMDF-MSGSTORE, PMDF-
POPSTORE, and PMDF-TLS. The PMDF LICENSE utility does not need to be
(and cannot be) used to activate license PAKs for PMDF-MTA or the listed layered
products.

29–43

Utilities on OpenVMS
LICENSE

EXAMPLES

To activate a PMDF license, use the command

$ PMDF LICENSE LOAD
%PMDF-I-LOADED, 1 license unit loaded

Had the license already of been activated then the informational message

%PMDF-I-ALREADY, 1 license unit already loaded

would have been displayed. To deactivate a license, use the command

$ PMDF LICENSE UNLOAD
%PMDF-I-UNLOADED, 1 license unit unloaded

29–44

Utilities on OpenVMS
PASSWORD

PASSWORD—Set remote authentication password

Set password for remote authentication, e.g., POP client (APOP), IMAP client (CRAM),
or mailbox filter authentication.

SYNTAX PMDF PASSWORD [password]

Command Qualifiers Defaults

/CONVERT /CREATE
/CREATE /CREATE
/DELETE /CREATE
/SERVICE=keyword /SERVICE=DEFAULT
/SHOW /CREATE
/TEST /CREATE
/USER=username See text

restrictions All operations other than setting or verifying one’s own password, or showing one’s
own password database entries, require privileges.

prompts New password: password

PARAMETERS

password
The password to set. Note that APOP passwords are case sensitive.

DESCRIPTION

The PMDF PASSWORD utility is used to create and modify PMDF password
database entries. This database may be used by POP clients issuing the APOP
command, by IMAP clients using the CRAM-MD5 authentication mechanism,
or possibly by users authenticating themselves to modify their personal mailbox
filters.

Note that in general, just which source of password authentication informa-
tion is used—whether the PMDF password database, or some other source—is
controlled by the PMDF security configuration file; see That is, a connection comes
in (POP, IMAP, or mailbox filtering) and is mapped to a security rule set; the se-
curity rule set in the PMDF security configuration then controls where and how
authentication is performed for that connection.

29–45

Utilities on OpenVMS
PASSWORD

For instance, the DEFAULT security rule set in PMDF’s implicit security
configuration (which applies if no security configuration file exists) checks first
for a PMDF user profile password (PMDF MessageStore or PMDF popstore profile
password), next for a PMDF password database entry, and finally falls through to
checking for a system password entry.

Note that APOP and CRAM-MD5 passwords cannot be stored in the system
password file. Therefore, in order to support use of the POP protocol’s APOP com-
mand or AUTH command with CRAM-MD5, or the IMAP protocol’s authenticate
command with CRAM-MD5, the user must have a password entry stored in an
authentication source other than (or in addition to) the system password file. The
PMDF password database can be that additional authentication source.

Thus for instance, for a POP or IMAP connection handled by the DEFAULT
security rule set, a user must either be a PMDF MessageStore user or a PMDF
popstore user (in which case their PMDF user profile password is normally1

sufficient for remote authentication), or if they are a legacy message store (VMS
MAIL) user then they must have a PMDF password database entry in addition to
their system password file entry.

For mailbox filter connections handled by the DEFAULT security rule set
of PMDF’s implicit security configuration, authentication will be performed
preferentially against the PMDF user profile, if the user has a PMDF user profile
entry (that is, a PMDF MessageStore or PMDF popstore profile entry), if not then
against the PMDF password database, if the user has an entry in it, and finally,
only if the user has neither sort of entry, against the system password file.

The above discussion regards whether the PMDF password database will
actually be used as the source of authentication information. When the PMDF
password database is used as the source of authentication information, then an
additional issue can arise, namely which of a user’s possibly multiple entries will
be checked for the authentication. That is, a user can have multiple entries in
the PMDF password database, one for each allowed /SERVICE value. The sort
of connection (assuming that the PMDF password database is even checked) will
control which /SERVICE entry is preferentially checked. Note that the sort of
/SERVICE checked has nothing to do with the PMDF security configuration (which
instead controlled whether or not the PMDF password database was queried at
all); the sort of /SERVICE entry checked when the PMDF password database is
queried has entirely to do with which component of PMDF is doing the querying
(what sort of connection this regards).

Queries by the POP server will first check a user’s /SERVICE=POP entry, but if
such an entry does not exist will fall through to the user’s /SERVICE=DEFAULT
entry. Queries by the IMAP server will first check a user’s /SERVICE=IMAP
entry, but if such an entry does not exist will fall through to the user’s
/SERVICE=DEFAULT entry.

1 The PMDF MessageStore and PMDF popstore, however, have a PWD_ELSEWHERE flag to say that their passwords are
stored elsewhere; if this is set, even a PMDF MessageStore user or a PMDF popstore user might use a PMDF password
database entry.

29–46

Utilities on OpenVMS
PASSWORD

Queries for mailbox filtering will check which channel a user matches. For
a user matching a msgstore channel, the mailbox filter query will preferentially
use the user’s /SERVICE=IMAP entry, but if such an entry does not exist will
fall through to the user’s /SERVICE=DEFAULT entry. For a user matching
a popstore channel, the mailbox filter query will preferentially use the user’s
/SERVICE=POP entry, but if such an entry does not exist will fall through to
the user’s /SERVICE=DEFAULT entry. For a user matching the local channel, the
mailbox filter query will use the user’s /SERVICE=DEFAULT entry.

Most sites and users will not want to use /SERVICE specific password database
entries. Then each user has one entry, their /SERVICE=DEFAULT entry, used
whenever the PMDF password database is queried.

But for sites and users who do want to use /SERVICE specific password
database entries, while the above description of /SERVICE specific probes may
sound complicated, the goal is simply to query the ‘‘natural’’ password entry for
each case.

COMMAND
QUALIFIERS

/CONVERT
The format of the PMDF password database changed in PMDF V5.1 from that
used previously. This qualifier is used to convert a PMDF V5.0 password database
to the PMDF V5.1 and later format.

/CREATE
Create a PMDF password database entry. This qualifier is the default.

/DELETE
Delete a user/password entry pair from the PMDF password database.

/SERVICE=keyword
Specify for what service a particular password method and password value apply.
The default service keyword is DEFAULT; POP and IMAP are other possible
keywords.

/SHOW
Show a user/service/password-method entry in the PMDF password database.
Note that this commmand does not show the password value.

/TEST
Compare a specified password against a password stored in the PMDF password
database.

/USER=username
Set or show a password entry in the PMDF password database for the specified
user. To show all users’ entries specify the asterisk as a value.

29–47

Utilities on OpenVMS
PASSWORD

EXAMPLES

To add a user JSMITH with password SeCrEt to the database, use the command

$ PMDF PASSWORD/USER=JSMITH "SeCrEt"

The user JSMITH may change his own password, with prompting so that the password
is not printed on the screen, using the command

$ PMDF PASSWORD
Password:

To list all usernames that have an entry in the PMDF password database, use the
following command:

$ PMDF PASSWORD/SHOW/USER=*

ERROR MESSAGES

%PMDF-E-CANOPNPASS, Password file does not exist or cannot be opened

The PMDF password database does not exist, or could not be opened.

%SYSTEM-F-NOWORLD, operation requires WORLD privilege

Must have WORLD privilege to use the PMDF PASSWORD/CONVERT command, or
to specify an entry for a user other than oneself.

29–48

Utilities on OpenVMS
PROCESS

PROCESS—Show currently executing PMDF jobs

List currently executing PMDF jobs.

SYNTAX PMDF PROCESS [node]

Command Qualifiers Defaults

/MEMORY See text

restrictions Requires WORLD privilege in order to see all processes.

PARAMETERS

node
The name of the node whose PMDF processes are to be displayed. The asterisk
character, *, may be specified to display processes on all nodes in the cluster.

DESCRIPTION

Show current PMDF processes. Normally, the PMDF Service Dispatcher
should always be present; additional processes may be present if messages are
currently being processed, or if certain additional PMDF components are in use.

COMMAND
QUALIFIERS

/MEMORY
Show the amount of memory being used by the processes.

EXAMPLES

The following command shows current PMDF processes:

$ PMDF PROCESS
VAX OpenVMS V6.2 on node NAPLES 15-NOV-2012 10:56:23.25
Physical memory 80 MB (163840 pages) up since 31-OCT-2012 06:34:27.50

----- The following are on node NAPLES, a VAXstation 4000-90A -----
Pid Process Name State Pri I/O CPU Page flts Pages

22600127 PMDF counters HIB 8 2028 0 00:00:07.66 4390 203
22600372 <HTTP-01> HIB 6 1824 0 00:00:02.74 4921 124
226002B2 <DISPATCHER-01> HIB 6 4412 0 00:00:10.04 15578 554
226002B3 <SMTP-01> HIB 6 5249 0 00:00:28.85 22094 1246
226002B6 <POPPASSD-01> HIB 6 166 0 00:00:01.62 5248 198

29–49

Utilities on OpenVMS
QCLEAN

QCLEAN—Hold or delete matching messages from
the PMDF queue area

Hold or delete message files from the PMDF queue area that contain specified
substrings in their envelope From: address, Subject: header, or message content.

SYNTAX PMDF QCLEAN [channel]

Command Qualifiers Defaults

/CONTENT=substring None
/DATABASE /DATABASE
/DELETE /HOLD
/DIRECTORY_TREE /DATABASE
/ENV_FROM=substring None
/HOLD /HOLD
/MATCH=keyword /MATCH=AND
/MIN_LENGTH=n /MIN_LENGTH=24
/SUBJECT=substring None
/THREADS=n /NOTHREADS
/VERBOSE /NOVERBOSE

restrictions Privileges sufficient to read and delete files in the PMDF channel queue directory
tree, as well as read and update the PMDF queue cache database, are required.

PARAMETERS

channel
Optional parameter which specifies a specific PMDF channel area to be searched
for matching messages. * or ? wildcard characters may be used in the channel
specification.

DESCRIPTION

Hold or delete message files containing specific substrings in their envelope
From: address, Subject: line, or content. By default, message files are held
(/HOLD). Specify /DELETE to instead delete matching message files. The
/CONTENT, /ENV_FROM, and /SUBJECT qualifiers are used to specify the
substrings for which to search.

Any combination of /CONTENT, /ENV_FROM, and /SUBJECT may be spec-
ified. However, only one of each may be used. The /MATCH qualifier controls
whether a message file must contain all (/MATCH=AND, the default) or only one
of (/MATCH=OR) the specified substrings in order to be held or deleted. The de-
fault is /MATCH=AND.

29–50

Utilities on OpenVMS
QCLEAN

By default, each substring to be searched for must be at least 24 bytes long
(/MIN_LENGTH=24). This is a safety measure: the longer the substring, the less
likely the chance of false ‘‘hits’’. Use the /MIN_LENGTH qualifier to override this
limit. Also by default, only message files identified by the queue cache database are
searched (/DATABASE). Use the /DIRECTORY_TREE qualifier to instead search
all message files actually present in the channel queue directory tree.

The optional channel parameter restricts the search to message files in the
specified channel. The channel parameter may use * and ? wild cards.

The /THREADS qualifier may be used to accelerate searching on multipro-
cessor systems by dividing the work amongst multiple, simultaneously running
threads. To run n simultaneous searchingg threads, specify /THREADS=n. The
value n must be in the range 1-8. The default is /NOTHREADS.

COMMAND
QUALIFIERS

/CONTENT=substring
/ENV_FROM=substring
/SUBJECT=substring
The /CONTENT, /ENV_FROM, and /SUBJECT qualifiers are used to specify the
substrings for which to search. Any combination of /CONTENT, /ENV_FROM,
and /SUBJECT may be specified. However, only one of each may be used.
When a combination of such qualifiers is used, the /MATCH qualifier controls
whether the qualifiers are interpreted as further restrictions (/MATCH=AND), or
as alternatives (/MATCH=OR).

/DATABASE (default)
/DIRECTORY_TREE
The /DATABASE qualifier, the default, specifies that only message files identified
by the queue cache database be searched. Use the /DIRECTORY_TREE qualifier
to instead search all message files actually present in the channel queue directory
tree.

/DELETE
/HOLD (default)
/HOLD is the default and means that matching message files will be held. Specify
/DELETE to instead delete matching message files.

/MATCH=keyword
The default is /MATCH=AND, meaning that any criteria specified by /CONTENT,
/ENV_FROM, and /SUBJECT qualifiers must all match in order for the current
hold or delete operation to be applied. Specifying /MATCH=OR means that a
message will match as long as at least one such criterion matches.

/MIN_LENGTH=n
By default, each substring to be searched for must be at least 24 bytes long (/MIN_
LENGTH=24). This is a safety measure: the longer the substring, the less likely
the chance of false ‘‘hits’’. Use the /MIN_LENGTH qualifier to override this limit.

29–51

Utilities on OpenVMS
QCLEAN

/THREADS=n
/NOTHREADS (default)
The /THREADS qualifier may be used to accelerate searching on multiprocessor
systems by dividing the work amongst multiple, simultaneously running threads.
To run n simultaneous searching threads, specify /THREADS=n. The value n must
be an integer in the range 1-8. The default is /NOTHREADS.

/VERBOSE
/NOVERBOSE (default)
The /VERBOSE qualifier may be used to request that the utility print out
information about what it is doing as it operates.

EXAMPLES

The following example shows holding all message files in the PMDF queue area that
have the string ‘‘real estate’’ in the Subject: header and have the string ‘‘ownership.com’’
in the envelope From: address.

$ PMDF QCLEAN/MIN_LENGTH=11/SUBJECT="real estate"
/ENV_FROM="ownership.com"
%QM-I-QCLISTING, building a list of message files to scan from the
queue cache
%QM-I-SCANNING, scanning 72 message files
%QM-I-SCANNED, scanned 72 message files in 3.7500 seconds
(19.20 messages/second)
%QM-I-HELD, held 5 message files

29–52

Utilities on OpenVMS
QTOP

QTOP—Display frequently occurring fields in PMDF
queue area messages

Display the most frequently occurring envelope From:, Subject:, or message content
fields found in message files in the channel queues.

SYNTAX PMDF QTOP [channel]

Command Qualifiers Defaults

/CONTENT[=offset-specifier] None
/DATABASE /DATABASE
/DIRECTORY_TREE /DATABASE
/ENV_FROM[=offset-specifier] None
/MIN_COUNT=n /MIN_COUNT=2
/SUBJECT[=offset-specifier] /SUBJECT=(START=1,LENGTH=2147483647)
/THREADS=n /NOTHREADS
/TOP=n /TOP=20
/VERBOSE /NOVERBOSE

restrictions Privileges sufficient to read files in the PMDF channel queue directory tree, as
well as read the PMDF queue cache database, are required.

PARAMETERS

channel
Optional parameter which specifies a specific PMDF channel area to be scanned
for string frequencies. * or ? wildcard characters may be used in the channel
specification.

DESCRIPTION

Display the most frequently occurring envelope From:, Subject:, or message
content fields found in message files in the channel queues. By default, only
Subject: fields are shown (/SUBJECT). Use /ENV_FROM to display frequent
envelope From: fields or /CONTENT to display frequent message contents.
Any combination of /CONTENT, /ENV_FROM, and /SUBJECT may be specified.
However, only one of each may be used.

The optional channel parameter restricts the scan to message files in the
specified channel. The channel parameter may use * and ? wild cards.

By default, the top 20 most frequently occurring fields are shown (/TOP=20)
provided that they occur 2 or more times (/MIN_COUNT=2). Use the /TOP and
/MIN_COUNT qualifiers to alter this behavior. Also by default, only message
files identified by the queue cache database are scanned (/DATABASE). Use the

29–53

Utilities on OpenVMS
QTOP

/DIRECTORY_TREE qualifier to instead scan all message files actually present in
the channel queue directory tree.

The /THREADS qualifier may be used to accelerate scanning on multiprocessor
systems by dividing the work amongst multiple, simultaneously running threads.
To run n simultaneous scanning threads, specify /THREADS=n. The value n must
be in the range 1-8. The default is /NOTHREADS.

The /CONTENT, /ENV_FROM, and /SUBJECT qualifiers accept the optional
qualifiers START=n and LENGTH=n. These qualifiers indicate the starting
offset and number of bytes in the field to consider. The defaults are /CON-
TENT=(START=1,LENGTH=256), /ENV_FROM=(START=1,LENGTH=2147483647),
and /SUBJECT=(START=1,LENGTH=2147483647). Use of these qualifiers is use-
ful when, for example, trying to identify occurrences of a spam message which
uses random text at the start of the Subject: line.

COMMAND
QUALIFIERS

/CONTENT[=offset-specifier]
/ENV_FROM[=offset-specifier]
/SUBJECT[=offset-specifier]
The /CONTENT, /ENV_FROM, and /SUBJECT qualifiers are used to specify which
frequently occurring fields should be displayed. By default, only Subject: fields are
shown (/SUBJECT). Use /ENV_FROM to display frequent envelope From: fields or
/CONTENT to display frequent message contents. Any combination of /CONTENT,
/ENV_FROM, and /SUBJECT may be specified. However, only one of each may be
used.

The /CONTENT, /ENV_FROM, and /SUBJECT qualifiers accept the optional
qualifiers START=n and LENGTH=n. These qualifiers indicate the starting
offset and number of bytes in the field to consider. The defaults are /CON-
TENT=(START=1,LENGTH=256), /ENV_FROM=(START=1,LENGTH=2147483647),
and /SUBJECT=(START=1,LENGTH=2147483647). Use of these qualifiers is use-
ful when, for example, trying to identify occurrences of a spam message which
uses random text at the start of the Subject: line.

/DATABASE (default)
/DIRECTORY_TREE
The /DATABASE qualifier, the default, specifies that only message files identified
by the queue cache database be searched. Use the /DIRECTORY_TREE qualifier
to instead search all message files actually present in the channel queue directory
tree.

/MIN_COUNT=n
By default, a string must occur at least 2 times, /MIN_COUNT=2, in order to be
displayed.

/THREADS=n
/NOTHREADS (default)
The /THREADS qualifier may be used to accelerate searching on multiprocessor
systems by dividing the work amongst multiple, simultaneously running threads.
To run n simultaneous searching threads, specify /THREADS=n. The value n must
be an integer in the range 1-8. The default is /NOTHREADS.

29–54

Utilities on OpenVMS
QTOP

/TOP=n
By default, the top 20 most frequently occurring fields are shown, (/TOP=20).

/VERBOSE
/NOVERBOSE (default)
The /VERBOSE qualifier may be used to request that the utility print out
information about what it is doing as it operates.

EXAMPLES

The following example shows displaying the most frequently occurring Subject: and
envelope From: addresses amongst messages in the PMDF queue area.

$ PMDF QTOP/SUBJECT/ENV_FROM
%QM-I-QCLISTING, building a list of message files to scan from the queue cache
%QM-I-SCANNING, scanning 73 message files
%QM-I-SCANNED, scanned 73 message files in 0.5600 seconds (130.36 messages/secon
d)
Top 20 Envelope From: addresses which occur 2 or more times
Count Envelope From: address
====== ==

27
10 owner-ex-list@example.com
2 owner-test-list@example.com

Top 20 Subject: header lines which occur 2 or more times
Count Subject
====== ==

6 Re: your ex-list posting
2 Test posting to test-list

The following example shows displaying the most frequently occuring Subject: lines
that occur 20 times or more, starting from 12 characters into the Subject: header value.
This may be useful when trying to spot spam that inserts random characters at the
beginning of the Subject: header value.

$ PMDF QTOP/SUBJECT=START=12/MIN_COUNT=15
%QM-I-QCLISTING, building a list of message files to scan from the queue cache
%QM-I-SCANNING, scanning 73 message files
%QM-I-SCANNED, scanned 73 message files in 0.5600 seconds (130.36 messages/secon
d)
Top 20 Subject: header lines which occur 15 or more times
Count Subject
====== ==

25 ake money fast $$$

29–55

Utilities on OpenVMS
RESTART

RESTART—Restart detached PMDF processes

Restart detached PMDF processes.

SYNTAX PMDF RESTART [component]

Command Qualifiers Defaults

/CLUSTER /NODE
/NODE[=node] /NODE
/ID=pid /NODE

restrictions SYSLCK privilege is required to restart detached PMDF processes.

prompts Component: component

PARAMETERS

component
Optional parameter which specifies a specific PMDF component to be restarted,
such as BN_SLAVE, CIRCUIT_CHECK, COUNTERS, DISPATCHER,
FAX_RECEIVE, HTTP, IMAP (which restarts both the system mailbox server
and the PMDF MessageStore mailbox server), IMAP_SERVER (the PMDF Mes-
sageStore server), POP_SERVER (the PMDF MessageStore server), POP3 (which
restarts both the system mailbox server and PMDF MessageStore server), POP-
PASSD, or SMTP. Note that restarting the PMDF Service Dispatcher, i.e., the DIS-
PATCHER component, effectively restarts all the service components it handles,
which may include HTTP, IMAP, IMAP_SERVER, POP_SERVER, POP3, POP-
PASSD, and SMTP servers. If no component name is given then all active compo-
nents will be restarted.

DESCRIPTION

Detached PMDF processes should be restarted whenever the PMDF config-
uration is altered—these processes load information from the configuration once
only and need to be restarted in order for configuration changes to become visible
to them.

The RESTART utility is used to restart detached PMDF processes. The default
is to restart processes on the node on which the command is executed. Use the
/NODE qualifier with a specific node name to affect processes on a different node
in the cluster; use the /CLUSTER qualifier to restart PMDF processes across the
cluster; use the /ID qualifier to affect only a single process in the cluster. If no
component parameter is specified, then all detached processes (including processes
which use the PMDF API PMDF_set_call_back procedure) will be restarted. If

29–56

Utilities on OpenVMS
RESTART

a component parameter is specified, then only detached processes associated with
that component will be restarted. The standard component names are

Component Description

BN_SLAVE Detached processes which act as the Jnet Local Mail Delivery (LMD)
daemon. Handles incoming local BITNET mail.

CIRCUIT_
CHECK

Detached process which monitors loopback message delivery.

COUNTERS Detached processes which synchronize the channel counters.
DISPATCHER PMDF multithreaded Service Dispatcher handling services such as SMTP,

POP, IMAP, and HTTP servers.
FAX_RECEIVE Detached processes which process incoming FAXes.
HTTP HTTP server processes.
IMAP This restarts both IMAP server processes serving out system mailboxes,

and IMAP server processes serving out PMDF MessageStore mailboxes.
IMAP_SERVER IMAP server processes serving out PMDF MessageStores mailboxes.
POP_SERVER PMDF MessageStore POP3 server processes; that is, the processes

serving out PMDF MessageStore and PMDF popstore mailboxes.
POP3 This restarts both POP3 server processes serving out system mailboxes,

and POP3 server processes serving out PMDF MessageStore and PMDF
popstore mailboxes.

POPPASSD POPPASSD server processes.
SMTP SMTP server processes.

Detached PMDF processes will restart as soon as is convenient. They restart
by performing an orderly shutdown, exiting the image they are running, starting
a new detached process running, and then exiting.

If there are no currently running process associated with a given component,
then that component will not be restarted.

COMMAND
QUALIFIERS

/CLUSTER
When the /CLUSTER qualifier is specified, the RESTART command will affect all
nodes in the cluster.

/NODE[=node]
By default, the RESTART command affects only processes on the node on which the
command is executed; this corresponds to specifying the /NODE qualifier without
the optional node name value. To restart processes on a different node, specify the
node name. The node name must be the SCS cluster node name.

/ID=pid
When the /ID qualifier is specified, only the process with the given process id (pid)
is affected. Note that process id’s are unique cluster wide and as such there is no
need to also specify /NODE.

29–57

Utilities on OpenVMS
RESTART

EXAMPLES

To restart cluster-wide all detached processes, simply use the command

$ PMDF RESTART/CLUSTER

To only restart, for instance, IMAP and POP3 servers on the current node, use the
commands

$ PMDF RESTART IMAP
$ PMDF RESTART POP3

ERROR MESSAGES

SYSTEM-F-TIMEOUT, device timeout

After waiting two minutes for the component(s) in question to acknowledge the restart
request, the PMDF RESTART utility returns control to the command line. The restart
request is still outstanding and should be honored by the PMDF component(s) for which
the command was issued; the utility has just given up waiting for the component(s) to
immediately acknowledge the request as it (they) may be busy with existing activity.

29–58

Utilities on OpenVMS
RETURN

RETURN—Return a mail message

Return (bounce) a mail message to its originator.

SYNTAX PMDF RETURN message-file-spec

Command Qualifiers Defaults

None. None.

restrictions Postmaster privileges (write access to the PMDF channel queues) are required to
use this utility.

PARAMETERS

message-file-spec
File specification of the message file to return. The specification may include
wildcards.

DESCRIPTION

The RETURN utility returns a message to the message’s originator. The
returned message is in two parts. The first part explains the reason why
the message is being returned; the text of the reason is contained in the
file return_bounced.txt file located in the PMDF language-specific directory.
The second part of the returned message contains the original message itself.
Postmaster privileges (write access to the PMDF channel queues) are required to
use this utility.

29–59

Utilities on OpenVMS
SHUTDOWN

SHUTDOWN—Shut down detached PMDF processes

Shut down detached PMDF processes.

SYNTAX PMDF SHUTDOWN [component]

Command Qualifiers Defaults

/CLUSTER /NODE
/NODE[=node] /NODE
/ID=pid /NODE

restrictions SYSLCK privilege is required to shut down detached PMDF processes.

prompts Component: component

PARAMETERS

component
Optional parameter which specifies a specific PMDF component to be shut down:
DISPATCHER (which effectively shuts down all components handled by the
PMDF Service Dispatcher), BN_SLAVE, CIRCUIT_CHECK, COUNTERS, FAX_
RECEIVE, HTTP, IMAP (which shuts down both the system mailbox IMAP server
and the PMDF MessageStore mailbox server), IMAP_SERVER (which shuts down
the PMDF MessageStore mailbox server), POP_SERVER (which shuts down the
PMDF MessageStore mailbox server), POP3 (which shuts down the system mailbox
POP server and the PMDF MessageStore mailbox server), POPPASSD, SMTP, or
the name of any Dispatcher service (as defined in the Dispatcher configuration
file). If no component name is given then all active components will be shut down.

DESCRIPTION

The SHUTDOWN utility is used to shut down detached PMDF processes.
The default is to shut down processes on the node on which the command is
executed. Use the /NODE qualifier with a specific node name to shut down
processes on a different node in the cluster; use the /CLUSTER qualifier to shut
down detached PMDF processes cluster wide. For the FAX_RECEIVE process,
the /ID qualifier may be used to affect only a single process in the cluster. If no
component parameter is specified, then all detached processes (including processes
which use the PMDF API PMDF_set_call_back procedure) will be shutdown. If
a component parameter is specified, then only detached processes associated with
that component will be shut down. The standard component names are

29–60

Utilities on OpenVMS
SHUTDOWN

Component Description

BN_SLAVE Detached processes which act as the Jnet Local Mail Delivery (LMD)
daemon. Handles incoming local BITNET mail.

CIRCUIT_
CHECK

Detached process which monitors loopback message delivery.

COUNTERS Detached processes which synchronize the channel counters.
DISPATCHER Multithreaded Service Dispatcher.
FAX_RECEIVE Detached processes which process incoming FAXes.
HTTP HTTP server processes.
IMAP This shuts down both IMAP server processes serving out system

mailboxes, and IMAP server processes serving out PMDF MessageStore
mailboxes.

IMAP_SERVER IMAP server processes serving out PMDF MessageStore mailboxes.
POP_SERVER PMDF MessageStore POP3 server processes; that is, the processes

serving out PMDF MessageStore and PMDF popstore mailboxes.
POP3 This shuts down both POP3 server processes serving out system

mailboxes, and POP3 server processes serving out PMDF MessageStore
and PMDF popstore mailboxes.

POPPASSD POPPASSD server processes.
SMTP SMTP server processes.

In addition, any Dispatcher service may be specified by name (that name used in
the Dispatcher configuration file).

Detached PMDF processes will shutdown as soon as is convenient for the
process to do so. They do so by performing an orderly shutdown, exiting the image
they are running, and then exiting the process.

Note that in the case of BN_SLAVE, no Local Mail Delivery (LMD) daemon is
left running, not even the default Jnet daemon.

COMMAND
QUALIFIERS

/CLUSTER
When the /CLUSTER qualifier is specified, the SHUTDOWN command will affect
all nodes in the cluster.

/NODE[=node]
By default, the SHUTDOWN command affects only processes on the node on
which the command is executed; this corresponds to specifying the /NODE qualifier
without the optional node name value. To shut down processes on a different node,
specify the node name. The node name must be the SCS cluster node name.

/ID=pid
For a FAX_RECEIVE process, the /ID qualifier may be used to specify that only
the FAX_RECEIVE process with the given process id (pid) is to be affected. The
/ID qualifier is only valid for FAX_RECEIVE; it is not valid for other processes
such as Dispatcher services. Note that process id’s are unique cluster wide and as
such there is no need to also specify /NODE.

29–61

Utilities on OpenVMS
SHUTDOWN

EXAMPLES

To shutdown cluster-wide all detached processes, simply use the command

$ PMDF SHUTDOWN/CLUSTER

To only shutdown, for instance, IMAP and POP3 servers on the current node, use the
commands

$ PMDF SHUTDOWN IMAP
$ PMDF SHUTDOWN POP3

ERROR MESSAGES

SYSTEM-F-TIMEOUT, device timeout

After waiting two minutes for the component(s) in question to acknowledge the
shutdown request, the PMDF SHUTDOWN utility returns control to the command
line. The shutdown request is still outstanding and should be honored by the PMDF
component(s) for which the command was issued; the utility has just given up waiting
for the component(s) to immediately acknowledge the request as it (they) may be busy
with existing activity.

29–62

Utilities on OpenVMS
STARTUP

STARTUP—Start up detached PMDF processes

Start up detached PMDF processes.

SYNTAX PMDF STARTUP component

Command Qualifiers Defaults

None. None.

restrictions SYSLCK privilege is required to start up detached PMDF processes.

prompts Component: component

PARAMETERS

component
Required parameter which specifies a specific PMDF component to be started:
DISPATCHER (which effectively starts all components handled by the PMDF
Service Dispatcher), CIRCUIT_CHECK, COUNTERS, FAX_RECEIVE.

DESCRIPTION

The STARTUP utility is used to start up detached PMDF processes such as
the PMDF Service Dispatcher, or specific service processes such as FAX_RECEIVE.
The standard component names are

Component Description

CIRCUIT_
CHECK

Detached process which monitors loopback message timings.

COUNTERS Detached processes which synchronize the channel counters.
DISPATCHER Multithreaded Service Dispatcher.
FAX_RECEIVE Detached processes which process incoming FAXes.

Note the services handled by the PMDF multithreaded Service Dispatcher
must be started by starting the PMDF Service Dispatcher; only services not being
handled by the PMDF Service Dispatcher can be individually started via the
PMDF STARTUP utility. The Service Dispatcher may be configured to handle
various services, e.g., and the multithreaded HTTP, IMAP (the system mailbox
IMAP server), IMAP_SERVER (the PMDF MessageStore mailbox server), POP_
SERVER (the PMDF MessageStore mailbox server), POP3 (the system mailbox
POP server), POPPASSD, and SMTP servers. See Chapter 11 for details.

29–63

Utilities on OpenVMS
STARTUP

EXAMPLES

The following command starts the PMDF Service Dispatcher:

$ PMDF STARTUP DISPATCHER

29–64

Utilities on OpenVMS
TEST/MAPPING

TEST/MAPPING—Test a mapping table

Test a mapping table in the mapping file.

SYNTAX PMDF TEST/MAPPING [input-string]

Command Qualifiers Defaults

/FLAGS=(a,b,c,...) /NOFLAGS
/IMAGE_FILE=file-spec /IMAGE_FILE=PMDF_CONFIG_DATA
/MAPPING_FILE=file-spec /MAPPING_FILE=PMDF_MAPPING_FILE
/OPTION_FILE=file-spec /OPTION_FILE=PMDF_OPTION_FILE
/TABLE=table-name None

restrictions None.

prompts Enter table name: table-name

PARAMETERS

input-string
Optional input string to map.

DESCRIPTION

TEST/MAPPING may be used to test the behavior of a mapping table in the
mapping file. The result of mapping an input string will be output along with
information about any metacharacters specified in the output string.

If an input string is supplied on the command line, then only the result
of mapping that input string will be output. If no input string is specified
TEST/MAPPING will enter a loop, prompting for an input string, mapping that
string, and prompting again for another input string. TEST/MAPPING will exit
when a CTRL/Z is entered.

COMMAND
QUALIFIERS

/FLAGS=(a,b,c,...)
/NOFLAGS
The /FLAGS qualifier is used to specify particular flags to set during the mapping
testing; for instance, the E (envelope), B (header/body), or I (message id) flags
when testing a REVERSE mapping.

29–65

Utilities on OpenVMS
TEST/MAPPING

/IMAGE_FILE[=filename]
/NOIMAGE_FILE
The /IMAGE_FILE qualifier serves two purposes. The first is when /NOIMAGE_
FILE is specified; this instructs TEST/MAPPING to ignore any compiled mapping
information unconditionally and to read mapping information from the mapping
file itself.

When the /IMAGE_FILE qualifier is specified without an optional file name, PMDF
will load the compiled configuration file PMDF_CONFIG_DATA. If, instead, a file
name is specified then that file, which is expected to be a compiled configuration
image, will be loaded instead.

/MAPPING_FILE=filename
This qualifier instructs TEST/MAPPING to use the specified mapping file rather
than the default mapping file, PMDF_MAPPING_FILE.

This qualifier has no effect unless /NOIMAGE_FILE is specified or no compiled
configuration exists; use of any compiled configuration will preclude reading any
sort of mapping file.

/OPTION_FILE=filename
/NOOPTION_FILE
This qualifier instructs TEST/MAPPING to use the specified option file rather than
the default option file PMDF_OPTION_FILE.

This qualifier has no effect unless /NOIMAGE_FILE is specified or no compiled
configuration exists; use of any compiled configuration will preclude reading any
sort of option file.

Use of the qualifier /NOOPTION_FILE will prevent the file PMDF_OPTION_FILE
from being read in when there is no compiled configuration.

/TABLE=table-name
This qualifier specifies the name of the mapping table to test. If this qualifier is
not specified, then TEST/MAPPING will prompt for the name of a table to use.

EXAMPLES

In the following example, the sample PAGER mapping is tested. The /MAPPING_
FILE qualifier is used to select the mapping file pager_table.sample instead of the
default mapping file.

$ PMDF TEST/MAPPING/NOIMAGE/MAPPING_FILE=PMDF_TABLE:pager_table.sample
Enter table name: PAGER
Input string: H|From: "Daniel C. Newman"
<dan@example.com> (Doof City)
Output string: H|F:dan
Output flags: [0, 1, 2, ’Y’ 89]
Input string: ^Z
$

29–66

Utilities on OpenVMS
TEST/MATCH

TEST/MATCH—Test a mapping wildcard pattern

Test a mapping wildcard pattern.

SYNTAX PMDF TEST/MATCH

Command Qualifiers Defaults

None. None.

restrictions None.

prompts Pattern: mapping-pattern
Target: target-string

PARAMETERS None.

DESCRIPTION

TEST/MATCH may be used to test wildcard and glob matching, such as in a
mapping pattern.

When invoked, TEST/MATCH prompts for a pattern and then for a target
string to compare against the pattern, and will output whether or not the target
string matched and if it did match, which characters in the target string matched
which wildcard or glob of the pattern. TEST/MATCH will loop, prompting for
input, until exitted with a CTRL/Z.

EXAMPLES

In the following example, the sample mapping pattern $[ax1]*@*.example.com
is tested for several sample target strings.

29–67

Utilities on OpenVMS
TEST/MATCH

$ PMDF TEST/MATCH
Pattern: $[ax1]*@*.example.com
[1S] cglob [1ax]
[2] "@"
[3S] glob, req 109, reps 2
[4] "."
[5] "a"
[6] "c"
[7] "m"
[8] "e"
[9] "."
[10] "c"
[11] "o"
[12] "m"

Target: xx11a@sys1.example.com
Match.
0 - xx11a
1 - sys1
Pattern: $[ax1]*@*.example.com
[1S] cglob [1ax]
[2] "@"
[3S] glob, req 109, reps 2
[4] "."
[5] "a"
[6] "c"
[7] "m"
[8] "e"
[9] "."
[10] "c"
[11] "o"
[12] "m"

Target: 12a@node.example.com
No match.
Pattern: $[ax1]*@*.example.com
[1S] cglob [1ax]
[2] "@"
[3S] glob, req 109, reps 2
[4] "."
[5] "a"
[6] "c"
[7] "m"
[8] "e"
[9] "."
[10] "c"
[11] "o"
[12] "m"

Target: 1xa@node.example.com
Match.
0 - 1xa
1 - node
Pattern: ^Z
$

29–68

Utilities on OpenVMS
TEST/REWRITE

TEST/REWRITE—Test address rewriting

Test address rewriting specified by a PMDF configuration

SYNTAX PMDF TEST/REWRITE [test-address[,...]]

Command Qualifiers Defaults

/ALIAS_FILE=file-spec /ALIAS_FILE=PMDF_ALIAS_FILE
/CHANNEL /CHANNEL
/CHECK_EXPANSIONS /NOCHECK_EXPANSIONS
/CONFIGURATION_FILE=file-spec /CONFIGURATION_FILE=PMDF_CONFIG_FILE
/DATABASE=database-list See text
/DEBUG /NODEBUG
/DELIVERY_RECEIPT See text
/DESTINATION_CHANNEL=channel None
/FILTER /NOFILTER
/FROM=address /FROM=postmaster@localhost
/GREY=setting /GREY=0
/IMAGE_FILE=file-spec /IMAGE_FILE=PMDF_CONFIG_DATA
/LOCAL_ALIAS=value None
/MAPPING_FILE=file-spec /MAPPING_FILE=PMDF_MAPPING_FILE
/OPTION_FILE=file-spec /OPTION_FILE=PMDF_OPTION_FILE
/READ_RECEIPT See text
/REPROCESSING /REPROCESSING
/RESTRICTED=setting /RESTRICTED=0
/SOURCE_CHANNEL=channel /SOURCE_CHANNEL=L

restrictions None.

prompts Address: test-address[,...]

PARAMETERS

test-address
Optional parameter specifying one or more addresses to rewrite.

DESCRIPTION

TEST/REWRITE provides a straightforward test facility for examining PMDF’s
address rewriting and channel mapping process without actually sending any mes-
sage. Various qualifiers can be used to control whether TEST/REWRITE uses the
configuration text files or the compiled configuration (if present), the amount of
output produced, and so on.

29–69

Utilities on OpenVMS
TEST/REWRITE

If one or more test addresses are specified on the command line, TEST/REWRITE
applies PMDF address rewriting to those addresses, reports the results, and ex-
its. If no test address is specified TEST/REWRITE will enter a loop, prompt-
ing for addresses, rewriting them, and prompting again for more addresses.
TEST/REWRITE will exit when a CTRL/Z is entered.

When testing rewriting of a alias corresponding to a mailing list which has an
AUTH_ or CANT_ type of named parameter controlling who is authorized to post
to the list, or when testing rewriting when SEND_ACCESS or related mapping
tables are in effect, note that by default TEST/REWRITE uses as the posting
address the return address of the local postmaster as specified by the RETURN_
ADDRESS option in the PMDF option file. To specify a different posting address
for the rewriting process, use the /FROM qualifier.

COMMAND
QUALIFIERS

/ALIAS_FILE=filename
TEST/REWRITE normally consults the default alias file PMDF_ALIAS_FILE
during the rewriting process. The /ALIAS_FILE qualifier specified an alternate
file for TEST/REWRITE to use.

This qualifier has no effect unless /NOIMAGE_FILE is specified or no compiled
configuration exists; use of any compiled configuration precludes reading any sort
of alias file.

/CHANNEL (default)
/NOCHANNEL
This qualifier controls whether the utility outputs detailed information, e.g.,
channel flags, regarding the channel an address matches.

/CHECK_EXPANSIONS
/NOCHECK_EXPANSIONS (default)
This qualifier controls checking of alias address expansion. Normally PMDF
considers the expansion of an alias to have been successful if any of the addresses
the alias expands to are legal. The /CHECK_EXPANSIONS qualifier causes a
much stricter policy to be applied; TEST/REWRITE checks each expanded address
in detail and reports a list of any addresses, expanded or otherwise, that fail to
rewrite properly. For addresses that match the L channel, PMDF also performs
validity checks.

/CONFIGURATION_FILE=filename
TEST/REWRITE normally consults the default configuration file PMDF_CONFIG_
FILE during the rewriting process. The /CONFIGURATION_FILE qualifier
specifies an alternate file to use in place of the file PMDF_CONFIG_FILE.

This qualifier has no effect unless /NOIMAGE_FILE is specified or no compiled
configuration exists; use of any compiled configuration will preclude reading any
sort of configuration file.

29–70

Utilities on OpenVMS
TEST/REWRITE

/DEBUG
/NODEBUG (default)
The address rewriting process is capable of producing additional, detailed expla-
nations of what actions are taken and why. The /DEBUG qualifier enables this
output; it is disabled by default.

/DATABASE=database-list
TEST/REWRITE normally consults the usual PMDF databases during its opera-
tion. This qualifier is used to either disable references to various databases or to
redirect the database paths to nonstandard locations.

The allowed list items are ALIAS, NOALIAS, PERSONAL_ALIAS, NOPERSONAL_
ALIAS, DOMAIN, NODOMAIN, FORWARD, NOFORWARD, GENERAL, NOGEN-
ERAL, REVERSE, and NOREVERSE. The list items beginning with ‘‘NO’’ disable
use of the corresponding database. The remaining items require an associated
value, which is taken to be the name of that database.

/DELIVERY_RECEIPT
/NODELIVERY_RECEIPT
The /DELIVERY_RECEIPT and /NODELIVERY_RECEIPT qualifiers, which ex-
plicitly set the corresponding receipt request flags, can be useful when testing the
handling of receipt requests when rewriting forwarded addresses or mailing lists.

/DESTINATION_CHANNEL=channel
The /DESTINATION_CHANNEL qualifier controls what destination or target
channel TEST/REWRITE rewrites addresses for. Some address rewriting is des-
tination channel specific; this qualifier allows control of the assumed destination
channel.

/FILTER
/NOFILTER (default)
The /FILTER qualifier may be used to have PMDF TEST/REWRITE output any
filters (personal mailbox, channel, or system) applying for the address in question.

/FROM=address
/NOFROM
This qualifier controls what envelope From: address is used for access control
probes and mailing list access probes. If the /FROM qualifier is omitted, then the
address used for access checks is the postmaster return address. Specifying either
/FROM=<> or /NOFROM tells the utility to use an empty envelope From: address
for access checks.

/GREY=setting
/NOGREY (default)
This qualifier controls the setting of the Grey Book flag. By default, this flag has
value 0. When set to 1, /GREY=1, the Grey Book flag will be set on and addresses
will be rewritten using the Grey Book format.

This flag is used to force rewriting of address in accordance with the JANET
(Grey Book) specifications. The most significant effect is that domain specifications
appear in reverse order, e.g., edu.claremont.ymir and not ymir.claremont.edu. See
Section 2.3.4.83 for further details.

Grey Book address formats are not currently used in PMDF, so this qualifier’s
usefulness is problematic at best.

29–71

Utilities on OpenVMS
TEST/REWRITE

/IMAGE_FILE[=filename]
/NOIMAGE_FILE
The /IMAGE_FILE qualifier serves two purposes. The first is when /NOIMAGE_
FILE is specified; this instructs TEST/REWRITE to ignore any compiled configu-
ration unconditionally and to read configuration information from the various text
files instead.

When the /IMAGE_FILE qualifier is specified without an optional file name,
PMDF TEST/REWRITE will load the compiled configuration from the file PMDF_
CONFIG_DATA. If, instead, a file name is specified then TEST/REWRITE will
load the compiled configuration from the specified file.

/LOCAL_ALIAS=value
/NOLOCAL_ALIAS (default)
This qualifier controls the setting of an alias for the local host. PMDF supports
multiple ‘‘identities’’ for the local host; the local host may have a different identity
on each channel. This qualifier may be used to set the local host alias to the
specified value; appearances of the local host in rewritten addresses will be
replaced by this value.

/MAPPING_FILE[=filename]
/NOMAPPING_FILE
This qualifier instructs TEST/REWRITE to use the specified mapping file rather
than the default mapping file named by the PMDF_MAPPING_FILE logical name,
usually PMDF_TABLE:mappings.

This qualifier has no effect unless /NOIMAGE_FILE was specified or no compiled
configuration exists; use of any compiled configuration will preclude reading the
mapping file.

Use of the /NOMAPPING_FILE qualifier will prevent the PMDF_MAPPING_FILE
file from being read in when there is no compiled configuration.

/OPTION_FILE=filename
/NOOPTION_FILE
This qualifier instructs TEST/REWRITE to use the specified option file rather than
the default option file PMDF_OPTION_FILE.

This qualifier has no effect unless /NOIMAGE_FILE is specified or no compiled
configuration exists; use of any compiled configuration will preclude reading any
sort of option file.

Use of the qualifier /NOOPTION_FILE will prevent the file PMDF_OPTION_FILE
from being read in when there is no compiled configuration.

/READ_RECEIPT
/NOREAD_RECEIPT
The /READ_RECEIPT and /NOREAD_RECEIPT qualifiers, which explicitly set
the corresponding receipt request flags, can be useful when testing the handling
of receipt requests when rewriting forwarded addresses or mailing lists.

/REPROCESSING (default)
/NOREPROCESSING
This qualifier allows the utility to display the contents of a mailing list which uses
the [REPROCESS] named parameter in its alias definition.

29–72

Utilities on OpenVMS
TEST/REWRITE

/RESTRICTED=value
/NORESTRICTED
This qualifier controls the setting of the restricted flag. By default, this flag
has value 0. When set to 1, /RESTRICTED=1, the restricted flag will be set
on and addresses will be rewritten using the restricted mailbox encoding format
recommend by RFC1137.

This flag is used to force rewriting of address mailbox names in accordance with
the RFC1137 specifications; see Section 2.3.4.57 for further details.

/SOURCE_CHANNEL=channel
The /SOURCE_CHANNEL qualifier controls what source channel to rewrite
addresses for. Some address rewriting is source channel specific; TEST/REWRITE
normally pretends that the channel source it is rewriting for is the local channel,
L.

EXAMPLES

This example shows the typical output generated by TEST/REWRITE. Perhaps
the single most important piece of information generated by TEST/REWRITE is the
last few lines of the TEST/REWRITE output, &, which give the channel to which
TEST/REWRITE would submit a message with the specified test address and the form
in which the test address would be rewritten for that channel. This output is invaluable
when debugging configuration problems.

$ PMDF TEST/REWRITE DAN@EXAMPLE.COM
! forward channel = tcp_local

channel description =
channel user filter =
dest channel filter =
source channel filter =

" channel flags #0 = BIDIRECTIONAL SINGLE_SYSTEM IMMNORMAL NOSERVICEALL
channel flags #1 = SMTP RANDOMMX MAYTLS DEFAULT
channel flags #2 = NOLOCALPOST POSTHEADBODY HEADERINC NOEXPROUTE
channel flags #3 = LOGGING NOGREY NORESTRICTED
channel flags #4 = EIGHTNEGOTIATE NOHEADERTRIM NOHEADERREAD RULES
channel flags #5 = MASTER_DEBUG
channel flags #6 = LOCALUSER REPORTHEADER
channel flags #7 = SWITCHCHANNEL NOREMOTEHOST DATEFOUR DAYOFWEEK
channel flags #8 = NODEFRAGMENT EXQUOTA REVERSE NOCONVERT_OCTET_STREAM
channel flags #9 = NOTHURMAN INTERPRETENCODING INCLUDEFINAL RECEIVEDFROM
linelength = 998
addrsperfile = 127
channel env addr type = SOURCEROUTE
channel hdr addr type = SOURCEROUTE

29–73

Utilities on OpenVMS
TEST/REWRITE

channel official host = TCP-DAEMON
channel local alias =

$ channel queue name = MAIL_TCP_BATCH
channel after param = 60
channel daemon name = fw.example.com
channel user name =
urgentnotices = 1 4 8 12
normalnotices = 1 4 8 12
nonurgentnotices = 1 4 8 12

% channel rightslist ids =
& backward channel = tcp_local

header To: address = DAN@EXAMPLE.COM
header From: address = DAN@EXAMPLE.COM
envelope To: address = DAN@EXAMPLE.COM (route (TCP-DAEMON,TCP-DAEMON))
envelope From: address = DAN@EXAMPLE.COM
name =
mbox = DAN

Extracted address action list:
DAN@EXAMPLE.COM

Extracted 733 address action list:
DAN@EXAMPLE.COM

Address list expansion:
0 expansion total.
Expanded address:

DAN@EXAMPLE.COM
' Submitted address list:

tcp_local
DAN@EXAMPLE.COM (EXAMPLE.COM) *NOTIFY FAILURES* *NOTIFY DELAYS*

(Submitted notifications list:

! The channel to which, after rewriting as an envelope To: address, the address is
mapped.

" The flags set for the channel indicated in !. These flags are controlled by the
channel keywords on the first line of the channel control block for the specified
channel. Any unknown keywords—keywords which may have been mistyped—will
be interpreted as rightslist identifiers and will appear on the line $.

The channel’s official host name as specified on the second line of the channel control
block for the channel indicated in !.

$ The channel queue name, channel after parameter, and channel daemon name
correspond to values specified via the queue, after, and daemon channel keywords,
respectively. If no such keyword is present on the channel, then no such line of
output will be displayed.

% Any items appearing on the first line of the channel block which were not channel
keywords are interpreted as rightslist identifiers. Any rightslist identifiers so
specified for the channel are listed on this line.

& The channel which the address would match as an envelope From: address.

' The channel to which a message with the address DAN@EXAMPLE.COM would
be queued and the envelope To: address which would be used. Here, the
message would be submitted to the TCP/IP channel, tcp_local, using the address
DAN@EXAMPLE.COM. Other information appearing here might include an explicit
Errors-to: address, which, if present, appears enclosed in square brackets; or
notations such as *RR* or *NRR*, indicating whether or not a message is flagged

29–74

Utilities on OpenVMS
TEST/REWRITE

for read receipts, or notations such as *NOTIFY FAILURES*, *NOTIFY DELAYS*,
NOTIFY SUCCESSES, etc., indicating the message’s delivery receipt mechanism
and flagging.

(Notification addresses (reserved for future use).

ERROR MESSAGES

Usually errors reported by PMDF TEST/REWRITE are not actually errors regard-
ing PMDF TEST/REWRITE in particular, but rather are the utility warning of an un-
derlying configuration problem. For instance, ‘‘Error in mm_init: ...’’ sorts of errors;
see for a discussion of many such general error messages.

Address list error -- unknown host or domain:

The domain name in the specified address did not rewrite to any PMDF channel. Check
that the domain name was correctly spelled. If the domain name was correct, then most
likely you need a new (or changed) rewrite rule in the PMDF configuration file to handle
that domain name; see

Unknown rightslist identifier ... found on channel ...

You do not have the specified rightslist identifier. Check that it is truly intended to
be present as a rightslist identifier, rather than simply being a misspelled channel
keyword.

29–75

Utilities on OpenVMS
TEST/URL

TEST/URL—Test an LDAP query URL

Test an LDAP query URL.

SYNTAX PMDF TEST/URL [ldap-url]

Command Qualifiers Defaults

/DEBUG /NODEBUG

restrictions None.

prompts _URL: ldap-url

PARAMETERS

ldap-url
LDAP URL to try resolving.

DESCRIPTION Test an LDAP query URL.

Note that the LDAP server to query is controlled by the setting of the PMDF
options LDAP_HOST and LDAP_PORT in the PMDF option file; see Section 7.3.2.

COMMAND
QUALIFIERS

/DEBUG
/NODEBUG (default)
The testing process is capable of producing additional debug output. The /DEBUG
qualifier enables this output; it is disabled by default.

EXAMPLES

This example shows a sample query for a site example.com that has set the LDAP_
HOST and LDAP_PORT options in the PMDF option file to point to an LDAP server
containing e-mail addresses in a mail attribute.

$ pmdf test/url "ldap:///dc=example,dc=com?mail?sub?sn=doe"
URL> Jane.Doe@example.com
URL> John.Doe@example.com

29–76

Utilities on OpenVMS
VERSION

VERSION—Print PMDF version number

Print PMDF version number.

SYNTAX PMDF VERSION

Command Qualifiers Defaults

None. None.

restrictions None.

PARAMETERS None.

DESCRIPTION

VERSION prints out the PMDF installed version number, and displays the
system’s architecture type and operating system version number.

EXAMPLES

To check what version of PMDF you are running, issue the command:

$ PMDF VERSION
%PMDF-I-VERSION, PMDF version is PMDF V6.6

AlphaServer 4X00 5/466 4MB running OpenVMS Alpha V8.3
PMDF_SHARE_LIBRARY version V6.6; linked 13:06:23, Feb 4 2012

29–77

Utilities on OpenVMS
Interactive Utilities on OpenVMS

29.2 Interactive Utilities on OpenVMS

PMDF has eight interactive utilities on OpenVMS, CONFIGURE, DB, MAIL,
MOVEIN, MSGSTORE, POPSTORE, and QM. Further details on use of CONFIGURE
may be found in the PMDF Installation Guide, OpenVMS Edition. DB and MAIL are
both described in the PMDF User’s Guide, OpenVMS Edition. POPSTORE and MOVEIN
are described in the PMDF popstore & MessageStore Manager’s Guide. MSGSTORE is
described in the PMDF popstore & MessageStore Manager’s Guide. QM is described in
Section 29.2.1.

29.2.1 QM: Queue Management Utility

PMDF QM is a utility program which allows inspection and manipulation of queued
messages. PMDF QM has two modes: maintenance mode and user mode. Maintenance
mode can be used to inspect and manipulate the channel queue directories and the
messages contained in them. Privileges sufficient to read, create, and delete files in the
channel queue directory tree as well as read and update the queue cache database are
required to use maintenance mode. User mode is a very restricted version of maintenance
mode which allows unprivileged users to read their own messages from the queues and
to return them (bounce them) back to their originator if desired. Users’ own messages
are messages which they themselves have sent or were posted to a list they own. They
are not messages destined for the user. User mode is documented in the PMDF User’s
Guide, OpenVMS Edition.

To run PMDF QM in maintenance mode, issue the command

$ PMDF QM/MAINTENANCE

Use the EXIT or QUIT command to exit PMDF QM.

The commands accepted by this utility2 are summarized in Table 29–2 below.

2 Note that the commands accepted by the PMDF QM utility are a subset of those used by the old qm.com command
procedure provided on OpenVMS. However, all of the functionality of that old procedure has been retained with redundant
commands removed (e.g., TIME and READHELD).

29–78

Utilities on OpenVMS
Interactive Utilities on OpenVMS

Table 29–2 Summary of PMDF QM Maintenance Mode Commands

CLEAN Hold or delete message files matching specified criteria
COUNTERS Control aspects of the channel counter caches and database
DATE Show current date and time
DELETE Irrevocably delete the specified messages
DIRECTORY List currently queued messages
EDIT_FAX Edit a queued PMDF-FAX message
HELD List messages which have been marked as held
EXIT Exit the utility
QUIT Exit the utility
HELP Obtain help
HISTORY Display message delivery history information
HOLD Mark a message as held
READ Display message envelope and header information
RELEASE Release held message
RETURN Return a message to its originator
SPAWN Spawn a subprocess
SUMMARIZE Display a summary listing of message files
TOP Display frequently occurring strings from PMDF queue area message files
VIEW Control whether the channel queue directory tree or queue cache database is

viewed

29–79

PMDF QM commands
CLEAN

CLEAN

Hold or delete message files from the PMDF queue area that contain specified
substrings in their envelope From: address, Subject: header, or message content.

SYNTAX CLEAN [channel]

Command Qualifiers Defaults

/CONTENT=substring None
/DATABASE See text
/DELETE /HOLD
/DIRECTORY_TREE See text
/ENV_FROM=substring None
/HOLD /HOLD
/MATCH=keyword /MATCH=AND
/MIN_LENGTH=n /MIN_LENGTH=24
/SUBJECT=substring None
/THREADS=n /NOTHREADS
/VERBOSE /NOVERBOSE

PARAMETERS

channel
Optional parameter which specifies a specific PMDF channel area to be searched
for matching messages. * or ? wildcard characters may be used in the channel
specification.

DESCRIPTION

Hold or delete message files containing specific substrings in their envelope
From: address, Subject: line, or content. By default, message files are held
(/HOLD). Specify /DELETE to instead delete matching message files. The
/CONTENT, /ENV_FROM, and /SUBJECT qualifiers are used to specify the
substrings for which to search.

Any combination of /CONTENT, /ENV_FROM, and /SUBJECT may be spec-
ified. However, only one of each may be used. The /MATCH qualifier controls
whether a message file must contain all (/MATCH=AND, the default) or only one
of (/MATCH=OR) the specified substrings in order to be held or deleted. The de-
fault is /MATCH=AND.

By default, each substring to be searched for must be at least 24 bytes
long (/MIN_LENGTH=24). This is a safety measure: the longer the substring,
the less likely the chance of false ‘‘hits’’. Use the /MIN_LENGTH qualifier to
override this limit. The message files searched may be either all those present
in the channel queue directory tree, or only those files with entries in the queue

29–80

PMDF QM commands
CLEAN

cache database. Use either the VIEW command or the /DIRECTORY_TREE or
/DATABASE qualifier to control which files are searched.

The optional channel parameter restricts the search to message files in the
specified channel. The channel parameter may use * and ? wild cards.

The /THREADS qualifier may be used to accelerate searching on multipro-
cessor systems by dividing the work amongst multiple, simultaneously running
threads. To run n simultaneous searchingg threads, specify /THREADS=n. The
value n must be in the range 1-8. The default is /NOTHREADS.

COMMAND
QUALIFIERS

/CONTENT=substring
/ENV_FROM=substring
/SUBJECT=substring
The /CONTENT, /ENV_FROM, and /SUBJECT qualifiers are used to specify the
substrings for which to search. Any combination of /CONTENT, /ENV_FROM,
and /SUBJECT may be specified. However, only one of each may be used.
When a combination of such qualifiers is used, the /MATCH qualifier controls
whether the qualifiers are interpreted as further restrictions (/MATCH=AND), or
as alternatives (/MATCH=OR).

/DATABASE
/DIRECTORY_TREE
Controls whether the message files searched are only those with entries in the
queue cache database, /DATABASE, or all message files actually present in the
channel queue directory tree, /DIRECTORY_TREE.

When neither /DATABASE nor /DIRECTORY_TREE is specified, then the ‘‘view’’
selected with the VIEW command will be used. If no VIEW command has been
issued, then /DIRECTORY_TREE is assumed.

/DELETE
/HOLD (default)
/HOLD is the default and means that matching message files will be held. Specify
/DELETE to instead delete matching message files.

/MATCH=keyword
The default is /MATCH=AND, meaning that any criteria specified by /CONTENT,
/ENV_FROM, and /SUBJECT qualifiers must all match in order for the current
hold or delete operation to be applied. Specifying /MATCH=OR means that a
message will match as long as at least one such criterion matches.

/MIN_LENGTH=n
By default, each substring to be searched for must be at least 24 bytes long (/MIN_
LENGTH=24). This is a safety measure: the longer the substring, the less likely
the chance of false ‘‘hits’’. Use the /MIN_LENGTH qualifier to override this limit.

/THREADS=n
/NOTHREADS (default)
The /THREADS qualifier may be used to accelerate searching on multiprocessor
systems by dividing the work amongst multiple, simultaneously running threads.

29–81

PMDF QM commands
CLEAN

To run n simultaneous searching threads, specify /THREADS=n. The value n must
be an integer in the range 1-8. The default is /NOTHREADS.

/VERBOSE
/NOVERBOSE (default)
The /VERBOSE qualifier may be used to request that the utility print out
information about what it is doing as it operates.

EXAMPLES

The following example shows holding all message files in the PMDF queue area that
have the string ‘‘real estate’’ in the Subject: header and have the string ‘‘ownership.com’’
in the envelope From: address.

qm.maint> CLEAN/MIN_LENGTH=11/SUBJECT="real estate"
/ENV_FROM="ownership.com"
%QM-I-QCLISTING, building a list of message files to scan from the queue cache
%QM-I-SCANNING, scanning 72 message files
%QM-I-SCANNED, scanned 72 message files in 3.7500 seconds (19.20 messages/second)
%QM-I-HELD, held 5 message files

29–82

PMDF QM commands
COUNTERS CLEAR

COUNTERS CLEAR

Clear the node-specific, in-memory cache of counters.

SYNTAX COUNTERS CLEAR

Command Qualifiers Defaults

/ASSOCIATIONS /ASSOCIATIONS
/CHANNELS /CHANNELS

PARAMETERS None.

DESCRIPTION

To clear (zero) the counters in a node-specific, in-memory cache, issue the
COUNTERS CLEAR command on that particular node. The command creates the
node-specific, in-memory section of association and channel counters if it does not
already exist. Then it zeros all fields in the in-memory section. Note that the
counters will be zeroed without first merging their values into the cluster-wide
database of channel counters. If a cluster-wide, on-disk database does not already
exist, a new one will be created. Finally, the fields in the on-disk database for
numbers of stored messages, message recipients, and message volumes are set
based on the entries in the PMDF queue cache database.

Either the association counters, or channel counters, or both, may be cleared.
The default is to clear both association and channel counters.

If you want to update the on-disk database with the old in-memory values
before clearing them, then you should issue a COUNTERS SYNCHRONIZE
command before issuing the COUNTERS CLEAR command.

COMMAND
QUALIFIERS

/ASSOCIATIONS (default)
/NOASSOCIATIONS
This qualifier specifies whether to clear the in-memory cache of association
counters.

/CHANNELS (default)
/NOCHANNELS
This qualifier specifies whether to clear the in-memory cache of channel counters.

29–83

PMDF QM commands
COUNTERS CRDB

COUNTERS CRDB

Create a cluster-wide database of accumulated association and channel counters.

SYNTAX COUNTERS CRDB

Command Qualifiers Defaults

None. None.

PARAMETERS None.

DESCRIPTION

A new, cluster-wide database of channel counters can be created with the
COUNTERS CRDB command. The new database will have all counters zeroed
except for the count of messages stored in each channel. Those counts will be
determined by entries in the PMDF queue cache database. In addition, if an in-
memory section for association and channel counters on this node does not already
exist, it will be created as well.

Once the on-disk, cluster-wide database exists, you may use the COUNTERS
SYNCHRONIZE command to merge the information from the node-specific, in-
memory cache of counters into the on-disk database.

29–84

PMDF QM commands
COUNTERS SHOW

COUNTERS SHOW

Display the contents of the cluster-wide database of channel counters.

SYNTAX COUNTERS SHOW [channel]

Command Qualifiers Defaults

/HEADER /HEADER
/OUTPUT=file-spec None
/SYNCHRONIZE /SYNCHRONIZE
/TIMEOUT=seconds /TIMEOUT=120

PARAMETERS

channel
Optional channel name indicating the channel(s) for which to show counters. May
contain wildcards.

DESCRIPTION

The contents of the cluster-wide channel counter database may be displayed
with the COUNTERS SHOW command. By default, before the counters are
displayed, an implicit COUNTERS SYNCHRONIZE command will be executed,
to attempt to synchronize each node-specific cache with the main cluster-wide
database. Specify /NOSYNCHRONIZE to merely display the current contents of
the database without first synchronizing the node-specific caches.

Note that SYSLCK privilege is required to perform the synchronization step.

Note that the output of PMDF QM’s COUNTERS SHOW command is currently
not as detailed as the output of the DCL level PMDF COUNTERS/SHOW
command.

COMMAND
QUALIFIERS

/HEADER (default)
/NOHEADER
Controls whether or not a header line describing each column in the table of
counters is output.

/OUTPUT=file-spec
Direct the output to the specified file. By default the output appears on your
display.

29–85

PMDF QM commands
COUNTERS SHOW

/SYNCHRONIZE (default)
/NOSYNCHRONIZE
Before displaying the counters, attempt to synchronize each of the node-specific
caches with the cluster-wide database. Specify /NOSYNCHRONIZE to skip this
synchronization step.

/TIMEOUT=seconds
By default, QM will wait upwards of 120 seconds for the node-specific caches to
be synchronized with the cluster-wide database. Should the synchronization step
not be completed before the specified time period, then QM will stop waiting and
proceed to display the information from the database. You may specify a different
period of time to wait with the /TIMEOUT qualifier.

This qualifier has no effect when /NOSYNCHRONIZE is specified.

EXAMPLES

To display the counters information for all TCP/IP channels, use the command

qm.maint> COUNTERS SHOW *tcp_*
Channel Messages Recipients Blocks
------------------------ ---------- ---------- ----------
tcp_local

Received 33 41 95
Stored 0 0 0
Delivered 33 41 95
Submitted 1 1 3

tcp_internal
Received 632 758 1453
Stored 1 2 10
Delivered 631 756 1443
Submitted 3 6 12

qm.maint>

29–86

PMDF QM commands
COUNTERS SYNCHRONIZE

COUNTERS SYNCHRONIZE

Synchronize each of the node-specific, in-memory caches of channel counters with
the cluster-wide database.

SYNTAX COUNTERS SYNCHRONIZE

Command Qualifiers Defaults

/TIMEOUT=seconds /TIMEOUT=120

PARAMETERS None.

DESCRIPTION

To synchronize each of the node-specific, in-memory cache of channel counters
with the cluster-wide database, issue a COUNTERS SYNCHRONIZE command.
The command will not return control back to you until either all the caches have
been synchronized or a ‘‘timeout’’ period has elapsed. Should the timeout period
elapse, then control will be returned to you. However, the synchronization process
will continue in the background. Use the /TIMEOUT qualifier to adjust the timeout
period which has a default value of 120 seconds.

Note that SYSLCK privilege is required to use this command.

Note that the COUNTERS SYNCHRONIZE command signals each PMDF
counters synchronization process in the cluster to perform the synchronization—
there should be one such process on each node running PMDF. Note that on
each node, the synchronization can only be performed if the PMDF counters
synchronization process is running on that node.

Assuming that the PMDF counters synchronization process is running on each
node, then for each node the node-specific, in-memory cache will be created, if it
does not already exist. If the cluster-wide, on-disk database does not exist, it
will be created. The in-memory cache values will be used to update the on-disk
database, and then the on-disk database values for stored messages, recipients,
and volume will be set by scanning the PMDF queue cache database.

COMMAND
QUALIFIERS

/TIMEOUT=seconds
By default, QM will wait upwards of 120 seconds for the node-specific caches to be
synchronized. Should the synchronizations not be completed before the specified
time period, QM will return control to you prompting you for another command.
The synchronization process will, however, continue in the background.

29–87

PMDF QM commands
COUNTERS TODAY

COUNTERS TODAY

Display PMDF’s count of the number of messages processed so far today.

SYNTAX COUNTERS TODAY

Command Qualifiers Defaults

None. None.

DESCRIPTION

PMDF’s count of the number of messages processed so far today may be
displayed with the COUNTERS TODAY command.

EXAMPLES

This example illustrates displaying PMDF’s count of the number of messages
processed so far today.

qm.maint> COUNTERS TODAY
4263 messages processed so far today
30000 messages per day are permitted by your license
qm.maint>

29–88

PMDF QM commands
DATE

DATE

Show the current date and time.

SYNTAX DATE

Command Qualifiers Defaults

None. None.

PARAMETERS None.

DESCRIPTION

The DATE command may be used to show the current date and time, in
RFC 822 and RFC 1123 format. It is useful for placing time stamps in log files
for command procedures which periodically run PMDF QM to check on PMDF’s
channel queues.

EXAMPLES

qm.maint> DATE
Fri, 15 Nov 2012 13:34:16 PST
qm.maint>

29–89

PMDF QM commands
DELETE

DELETE

Delete one or more messages from the channel queue directory.

SYNTAX DELETE [message-id[,...]]

Command Qualifiers Defaults

/ALL /NOALL
/CHANNEL=name None
/CONFIRM /NOCONFIRM
/LOG /LOG

PARAMETERS

message-id[,...]
A comma separated list of one or more message identification number or numbers
shown by a previous DIRECTORY command. Ranges are allowed.

DESCRIPTION

The DELETE command is used to delete one or more messages from the
channel queue directories. The messages to be deleted are specified by their
message identification numbers shown by the most recent DIRECTORY command.
That number appears in the leftmost column of the DIRECTORY command listing.
Ambiguous message numbers must be qualified by the proper channel name with
the /CHANNEL qualifier.

Note that the DELETE command irrevocably deletes each message it is
instructed to delete: the messages are not returned to their originators nor will
any further attempts to be made to deliver them to their recipients. The messages
are permanently deleted. Often, it is preferable to use the RETURN command so
as to return the message to its originator, (e.g., bounce it back to the sender).

QUALIFIERS

/ALL
/NOALL (default)
Delete all messages shown by the last DIRECTORY command. When used in
conjunction with the /CHANNEL qualifier, only those messages shown by the last
DIRECTORY command for the specified channel will be deleted.

Unless /NOCONFIRM is specified with /ALL, you will be required to confirm any
DELETE/ALL operation.

29–90

PMDF QM commands
DELETE

/CHANNEL=name
Specifies the name of the channel from which to delete messages. Wildcards are
not permitted.

/CONFIRM
/NOCONFIRM (default)
When /CONFIRM is specified, you will be prompted to confirm each message delete
operation.

/LOG (default)
/NOLOG
Specifies whether informational messages for each message delete operation are
generated.

EXAMPLES

In the following example, the DIRECTORY command is used to list the messages
in the local, l, channel. Then, the DELETE command is used to delete messages 1, 3,
20, 21, and 22. A range specification, 20-22, is used to specify message numbers 20, 21,
and 22.

qm.maint> DIRECTORY L
Mon, 23 Sep 2012 13:43:39 PDT
Data gathered from the queue directory tree

Channel: l Size Queued since
--

1 ZZ01HNP17LSUWY9D4DNR.00 4 23-SEP-2012 01:10:23
2 ZZ01HNP1RP3B6G9D4DNR.00 10 23-SEP-2012 01:10:24
3 ZZ01HNP42MAMAI9D4DNR.00 3 23-SEP-2012 01:10:24
4 ZZ01HNP4MEWC8G9D4DNR.00 8 23-SEP-2012 06:18:57
...

24 ZZ01HNP90X63ZG9D4DNR.00 6 23-SEP-2012 13:21:14
--
Total size: 108

24 total messages queued
qm.maint> DELETE 1,3,20-22
%QM-I-DELETED, deleted the message file PMDF_QUEUE:[L]ZZ01HNP17LSUWY9D4DNR.00
%QM-I-DELETED, deleted the message file PMDF_QUEUE:[L]ZZ01HNP42MAMAI9D4DNR.00
%QM-I-DELETED, deleted the message file PMDF_QUEUE:[L]ZZ01HNP76RTGHY9D4DNR.00
%QM-I-DELETED, deleted the message file PMDF_QUEUE:[L]ZZ01HNP82HTXYB9D4DNR.00
%QM-I-DELETED, deleted the message file PMDF_QUEUE:[L]ZZ01HNP83JPOCV9D4DNR.00
qm.maint>

29–91

PMDF QM commands
DIRECTORY

DIRECTORY

List currently queued messages.

SYNTAX DIRECTORY [channel-name]

Command Qualifiers Defaults

/DATABASE See text
/DIRECTORY_TREE See text
/ENVELOPE /NOENVELOPE
/FILE_INFO /FILE_INFO
/FROM See text
/HELD /NOHELD
/MATCH See text
/OWNER See text
/TO See text
/TOTAL See text

PARAMETERS

channel-name
An optional parameter specifying the channel for which to obtain a directory
listing. Wildcards are permitted.

DESCRIPTION

The DIRECTORY command is used to show the currently queued message files
in either all channel queues or a particular channel queue. In the listing, message
identification numbers will appear to the left of each message file name. These
numbers may be used with the DELETE, HISTORY, HOLD, READ, RELEASE,
and RETURN commands so as to identify which message to operate on.

The DIRECTORY command produces its listing by looking at either the actual
queue directory tree on disk, or by looking at the queue cache database. Use
either the VIEW command or the /DIRECTORY_TREE or /DATABASE qualifiers
to control the source of information used. Note that when /DIRECTORY_TREE
or VIEW DIRECTORY_TREE is used, the ‘‘queued since’’ dates are the date and
time that the message file was created; when /DATABASE or VIEW DATABASE is
used, the queued since dates are the date and time that the message was enqueued
and may pre-date the actual creation date for the message file itself.

29–92

PMDF QM commands
DIRECTORY

QUALIFIERS

/DATABASE
/DIRECTORY_TREE
Controls whether the information presented is gathered from the queue cache
database, /DATABASE, or by looking at the actual directory tree containing the
channel queues, /DIRECTORY_TREE.

When neither /DATABASE nor /DIRECTORY_TREE is specified, then the ‘‘view’’
selected with the VIEW command will be used. If no VIEW command has been
issued, then /DIRECTORY_TREE is assumed.

/ENVELOPE
/NOENVELOPE (default)
Use the /ENVELOPE qualifier to generate a directory listing including the
envelope From: address and the list of envelope To: recipients for each listed
message. By default, envelope information is not displayed as it involves opening
each message file and reading through its envelope.

/FILE_INFO (default)
/NOFILE_INFO
By default, message file size and creation date information is gathered. However,
this requires accessing each message file. Specify /NOFILE_INFO if you want to
avoid that overhead.

/FROM=address
This qualifier may be used to request showing only those messages with the
specified envelope From: address. This qualifier implies /ENVELOPE. To specify
an empty (blank) envelope From: address, use /FROM=<>.

/HELD
/NOHELD (default)
Show information only for those channels with held messages.

/MATCH=keyword
This qualifier controls the interpretation of the /FROM and /TO qualifiers. Valid
keywords are AND and OR.

/OWNER=username
This qualifier may be used to request showing only those message ‘‘owned’’ by
the specified username. This qualifier implies /DATABASE. Note that messages
submitted via SMTP with authentication (SMTP AUTH) will be considered to
be owned by the username that authenticated, prefixed with the asterisk, *,
character. For instance, if user JDOE submits a message from an IMAP client
that successfully performs SMTP authentication, then PMDF QM will consider
the owner of the message to be *JDOE, and to see such messages one would use
the command

qm.maint> DIR/OWNER=*JDOE

/TO=address
This qualifier may be used to request showing only those messages with the
specified envelope To: address. This qualifier implies /ENVELOPE.

29–93

PMDF QM commands
DIRECTORY

/TOTAL
This qualifier may be used to request showing only the total number of messages,
rather than listing each individual message as is the default.

EXAMPLES

1 qm.maint> DIRECTORY *TCP_*
Mon, 23 Sep 2012 14:53:39 PST
Data gathered from the queue directory tree

Channel: tcp_local Size Queued since
--

1 ZL01HNM78RMBP496VPJS.00 4 21-SEP-2012 09:12:29.53
2 ZM01HNMEDX5T8E96VQDN.00 10 21-SEP-2012 12:36:41.35
3 ZX01HNP9IO1ZAM96W55R.00 6 21-SEP-2012 13:50:06.89
4 ZY01HNP9HTAO9696W55R.00 5 21-SEP-2012 13:49:25.61
5 ZY01HNPBGF8JVI96W55R.00 6 21-SEP-2012 14:45:34.33
6 ZZ01HNPBFPQ4LG96W55R.00 5 21-SEP-2012 14:45:00.01
7 ZZ01HNPBFQ4BS896W55R.00 5 21-SEP-2012 14:45:00.53
8 ZZ01HNPBFR5KG296W55R.00 5 21-SEP-2012 14:45:01.92
9 ZZ01HNPBFRD2IC96W55R.00 5 21-SEP-2012 14:45:02.19
10 ZZ01HNPBFS7VP896W55R.00 5 21-SEP-2012 14:45:03.36
11 ZZ01HNPBFTM8YY96W55R.00 5 21-SEP-2012 14:45:05.23
12 ZZ01HNPBFY7JYU96W55R.00 5 21-SEP-2012 14:45:11.41
13 ZZ01HNPBGL2BYC96W55R.00 5 21-SEP-2012 14:45:42.10

--
Total size: 71

Channel: mtcp_gateway Size Queued since
--

1 ZY01HNP9HYJ0QK96W55R.00 6 23-SEP-2012 13:49:32.60
2 ZY01HNP9ID452296W55R.00 6 23-SEP-2012 13:49:52.18
3 ZZ01HNPBFT1MAC96W55R.00 5 23-SEP-2012 14:45:04.47
4 ZZ01HNPBGH5OAM96W55R.00 5 23-SEP-2012 14:45:36.85
5 ZZ01HNPBGZO97C96W55R.00 5 23-SEP-2012 14:46:01.73

--
Total size: 27

Grand total size: 98
28 total messages queued
qm.maint>

This example shows how to use the DIRECTORY command to list the messages queued
to all channels whose names match the pattern ‘‘*tcp_*’’; i.e., all TCP/IP channels.

2 qm.maint> DIRECTORY/HELD
Mon, 23 Sep 2012 13:45:18 PST
Data gathered from the queue directory tree

Channel: tcp_local Size Queued since
--

1 ZZG01HNM78RMBP496VPJS.HELD 10 12-SEP-2012 23:31:18.34
2 ZZM01HNMEDX5T8E96VQDN.HELD 8 8-JUL-2012 13:36:14.89
3 ZZX01HNP9IO1ZAM96W55R.HELD 23 29-AUG-2012 07:27:49.01

--
Total size: 41

29–94

PMDF QM commands
DIRECTORY

Grand total size: 41
3 total held messages queued
qm.maint>

In this example, the /HELD qualifier is used to check for held messages.

29–95

PMDF QM commands
EDIT_FAX

EDIT_FAX

Edit a queued PMDF-FAX message.

SYNTAX EDIT_FAX [message-id[,...]]

Command Qualifiers Defaults

/ALL /NOALL
/CHANNEL=name None
/CONFIRM /NOCONFIRM
/LOG /LOG

PARAMETERS

message-id[,...]
A comma separated list of one or more message identification numbers shown with
a previous DIRECTORY command. Ranges are allowed.

DESCRIPTION

The addresses of queued FAX messages may be edited so as, for instance, to
correct an incorrect FAX telephone number. The messages to be edited are specified
by their message identification numbers shown by the most recent DIRECTORY
command. That number appears in the leftmost column of the DIRECTORY
command listing. Ambiguous message numbers must be qualified by the proper
channel name with the /CHANNEL qualifier.

QUALIFIERS

/ALL
/NOALL (default)
Edit all messages shown by the last DIRECTORY command. When used in
conjunction with the /CHANNEL qualifier, only those messages shown by the last
DIRECTORY command for the specified channel will be edited.

Unless /NOCONFIRM is specified with /ALL, you will be required to confirm any
EDIT_FAX/ALL operation.

/CHANNEL=name
Specifies the name of the channel from which to edit messages. Wildcards are not
permitted.

29–96

PMDF QM commands
EDIT_FAX

/CONFIRM
/NOCONFIRM (default)
When /CONFIRM is specified, you will prompted to confirm each message edit
operation.

/LOG (default)
/NOLOG
Specifies whether informational messages for each message edit operation are
generated.

29–97

PMDF QM commands
EXIT

EXIT

Exit the PMDF QM utility.

SYNTAX EXIT

Command Qualifiers Defaults

None. None.

PARAMETERS None.

DESCRIPTION

The EXIT and QUIT commands exit the PMDF QM utility.

29–98

PMDF QM commands
HELD

HELD

List currently queued messages which have been marked as held.

SYNTAX HELD [channel-name]

Command Qualifiers Defaults

/DATABASE See text
/DIRECTORY_TREE See text
/ENVELOPE See text
/FILE_INFO /FILE_INFO
/HELD /HELD

PARAMETERS

channel-name
An optional parameter specifying the channel for which to obtain a directory
listing. Wildcards are permitted.

DESCRIPTION

The HELD command is a synonym for the DIRECTORY/HELD command. See
the description of the DIRECTORY command for further information.

QUALIFIERS

/DATABASE
/DIRECTORY_TREE
Controls whether the information presented is gathered from the queue cache
database, /DATABASE, or by looking at the actual directory tree containing the
channel queues, /DIRECTORY_TREE.

When neither /DATABASE or /DIRECTORY_TREE is specified, then the ‘‘view’’
selected with the VIEW command will be used. If no VIEW command has been
issued, then /DIRECTORY_TREE is assumed.

/ENVELOPE
Display envelope To: and From: for the held messages listed.

/FILE_INFO
/NOFILE_INFO (default)
By default, message file size and creation date information is gathered. However,
this requires accessing each message file. Specify /NOFILE_INFO if you want to
avoid that overhead.

29–99

PMDF QM commands
HELD

/HELD (default)
/NOHELD
Show information only for those channels with held messages.

29–100

PMDF QM commands
HELP

HELP

Obtain help on the use of PMDF QM.

SYNTAX HELP [topic]

Command Qualifiers Defaults

None. None.

PARAMETERS

topic
Optional topic to obtain help on.

DESCRIPTION

The HELP command may be used to obtain information on PMDF QM
commands. To obtain information on all of the PMDF QM commands, use the
command

qm.maint> HELP

To obtain information on individual commands or topics use the command

qm.maint> HELP topic

where topic is the name of the command or topic of interest.

29–101

PMDF QM commands
HISTORY

HISTORY

Display message history information.

SYNTAX HISTORY [message-id[,...]]

Command Qualifiers Defaults

/ALL /NOALL
/CHANNEL=name None
/CONFIRM /NOCONFIRM

PARAMETERS

message-id[,...]
A comma separated list of one or more message identification numbers shown with
a previous DIRECTORY command. Ranges are allowed.

DESCRIPTION

For many channels, delivery history information is appended to the end of
each message file after an unsuccessful delivery attempt has been made. With the
HISTORY command, this information can be displayed.

The messages to show histories for are specified by their message identification
numbers shown by the most recent DIRECTORY command. That number appears
in the leftmost column of the DIRECTORY command listing. Ambiguous message
numbers must be qualified by the proper channel name with the /CHANNEL
qualifier.

Note that history information is not recorded by some channels.

QUALIFIERS

/ALL
/NOALL (default)
Display history information for all messages shown with the last DIRECTORY
command. When used in conjunction with the /CHANNEL qualifier, only histories
of those messages shown with the last DIRECTORY command for the specified
channel will be shown.

/CHANNEL=name
Specifies the name of the channel for which to show message histories. Wild cards
are not permitted.

29–102

PMDF QM commands
HISTORY

/CONFIRM
/NOCONFIRM (default)
When /CONFIRM is specified, you will be prompted to confirm whether or not to
display the history for each selected message.

29–103

PMDF QM commands
HOLD

HOLD

Mark one or more messages as being held.

SYNTAX HOLD [message-id[,...]]

Command Qualifiers Defaults

/ALL /NOALL
/CHANNEL=name None
/CONFIRM /NOCONFIRM
/LOG /LOG

PARAMETERS

message-id[,...]
A comma separated list of one or more message identification numbers shown with
a previous DIRECTORY command. Ranges are allowed.

DESCRIPTION

Use the HOLD command to mark as held any messages which should
temporarily be placed on ‘‘hold’’. PMDF will not attempt to deliver any messages
which are marked as held. To resume processing of a held message, use the
RELEASE command. Messages which have been held can be listed with the
DIRECTORY/HELD command.

The messages to be held are specified by their message identification numbers
shown by the most recent DIRECTORY command. That number appears in
the leftmost column of the DIRECTORY command listing. Ambiguous message
numbers must be qualified by the proper channel name with the /CHANNEL
qualifier.

QUALIFIERS

/ALL
/NOALL (default)
Hold all messages shown by the last DIRECTORY command. When used in
conjunction with the /CHANNEL qualifier, only those messages shown by the last
directory command for the specified channel will be held.

Unless /NOCONFIRM is specified with /ALL, you will be required to confirm any
HOLD/ALL operation.

29–104

PMDF QM commands
HOLD

/CHANNEL=name
Specifies the name of the channel from which to hold messages. Wildcards are not
permitted.

/CONFIRM
/NOCONFIRM (default)
When /CONFIRM is specified, you will be prompted to confirm each message hold
operation.

/LOG (default)
/NOLOG
Specifies whether informational messages for each message hold operation are
generated.

EXAMPLES

In the following example, the DIRECTORY command is used to list the messages
in the local, l, channel. Then, the HOLD command is used to hold messages 1, 3, 20,
21, and 22. A range specification, 20-22, is used to specify message numbers 20, 21,
and 22.

qm.maint> DIRECTORY L
Fri, 15 Nov 2012 13:43:39 PDT
Data gathered from the queue directory tree

Channel: l Size Queued since
--

1 ZZ01HNP17LSUWY9D4DNR.00 4 15-NOV-2012 01:10:23
2 ZZ01HNP1RP3B6G9D4DNR.00 10 15-NOV-2012 01:10:24
3 ZZ01HNP42MAMAI9D4DNR.00 3 15-NOV-2012 01:10:24
4 ZZ01HNP4MEWC8G9D4DNR.00 8 15-NOV-2012 06:18:57
...

24 ZZ01HNP90X63ZG9D4DNR.00 6 15-NOV-2012 13:21:14
--

24 total messages queued
qm.maint> HOLD 1,3,20-22
%QM-I-HELD, held the message file PMDF_QUEUE:[L]ZZ01HNP17LSUWY9D4DNR.00
%QM-I-HELD, held the message file PMDF_QUEUE:[L]ZZ01HNP42MAMAI9D4DNR.00
%QM-I-HELD, held the message file PMDF_QUEUE:[L]ZZ01HNP76RTGHY9D4DNR.00
%QM-I-HELD, held the message file PMDF_QUEUE:[L]ZZ01HNP82HTXYB9D4DNR.00
%QM-I-HELD, held the message file PMDF_QUEUE:[L]ZZ01HNP83JPOCV9D4DNR.00
qm.maint>

29–105

PMDF QM commands
QUIT

QUIT

Exit the PMDF QM utility.

SYNTAX QUIT

Command Qualifiers Defaults

None. None.

PARAMETERS None.

DESCRIPTION

The EXIT and QUIT commands exit the PMDF QM utility.

29–106

PMDF QM commands
READ

READ

Display message envelope and header information.

SYNTAX READ [message-id[,...]]

Command Qualifiers Defaults

/ALL /NOALL
/CHANNEL=name None
/CONFIRM /NOCONFIRM
/CONTENT /NOCONTENT

PARAMETERS

message-id[,...]
A comma separated list of one or more message identification numbers shown with
a previous DIRECTORY command. Ranges are allowed.

DESCRIPTION

The READ command may be used to display envelope and header information
for one or more queued messages. To also view the message content, use the
/CONTENT qualifier.

The messages to display are specified by their message identification numbers
shown by the most recent DIRECTORY command. That number appears in
the leftmost column of the DIRECTORY command listing. Ambiguous message
numbers must be qualified by the proper channel name with the /CHANNEL
qualifier.

QUALIFIERS

/ALL
/NOALL (default)
Display all messages shown with the last DIRECTORY command. When used in
conjunction with the /CHANNEL qualifier, only those messages shown with the
last DIRECTORY command for the specified channel will be shown.

/CHANNEL=name
Specifies the name of the channel from which to display messages. Wildcards are
not permitted.

29–107

PMDF QM commands
READ

/CONFIRM
/NOCONFIRM (default)
When /CONFIRM is specified, you will be prompted to confirm whether or not to
display each selected message.

/CONTENT
/NOCONTENT (default)
When /CONTENT is specified, the content of the message will also be shown.

EXAMPLES

In the following example, the envelope and header information for message number
1 is displayed.

qm.maint> READ 1
Filename: PMDF_QUEUE:[L]ZZ01HNPFR2FUN89D4GAS.00

Message id: 1
Transport layer information:
--
Envelope From: address: fresnel@example.com
Envelope To: addresses: bernoulli

Message header:
--
Received: from EXAMPLE.COM by EXAMPLE.COM (PMDF V6.1-1 #8790)
id <01HNPFR0P5OW9D4GAS@EXAMPLE.COM> for BERNOULLI@EXAMPLE.COM; Fri,
15 Nov 2012 16:48:41 -0700 (PDT)
Date: Fri, 15 Nov 2012 16:48:40 -0700 (PDT)
From: Fresnel the tabby cat <fresnel@example.com>
To: bernoulli@example.com
Subject: catnip and catnaps
Message-id: <01HNPFR12JYA9D4GAS@EXAMPLE.COM>
MIME-version: 1.0
Content-type: TEXT/PLAIN; CHARSET=US-ASCII
Content-transfer-encoding: 7BIT

qm.maint>

29–108

PMDF QM commands
RELEASE

RELEASE

Release one or more held messages.

SYNTAX RELEASE [message-id[,...]]

Command Qualifiers Defaults

/ALL /NOALL
/CHANNEL=name None
/CONFIRM /NOCONFIRM
/LOG /LOG

PARAMETERS

message-id[,...]
A comma separated list of one or more message identification numbers shown with
a previous DIRECTORY/HELD command. Ranges are allowed.

DESCRIPTION

Use the RELEASE command to release any messages previously marked as
held, re-enter them in the queue cache database, and run the associated channel
so the messages can be processed. Messages which have been held can be listed
with the DIRECTORY/HELD command.

The messages to be released are specified by their message identification
numbers shown by the most recent DIRECTORY command. That number appears
in the leftmost column of the DIRECTORY command listing. Ambiguous message
numbers must be qualified by the proper channel name with the /CHANNEL
qualifier.

QUALIFIERS

/ALL
/NOALL (default)
Release all messages shown by the last DIRECTORY/HELD command. When used
in conjunction with the /CHANNEL qualifier, only those messages shown by the
last DIRECTORY/HELD command for the specified channel will be released.

Unless /NOCONFIRM is specified with /ALL, you will be required to confirm any
RELEASE/ALL operation.

/CHANNEL=name
Specifies the name of the channel from which to release messages. Wildcards are
not permitted.

29–109

PMDF QM commands
RELEASE

/CONFIRM
/NOCONFIRM (default)
When /CONFIRM is specified, you will be prompted to confirm each message
release operation.

/LOG (default)
/NOLOG
Specifies whether informational messages for each message release operation are
generated.

EXAMPLES

In the following example, the DIRECTORY/HELD command is used to list held
messages in the tcp_local channel. Then, the RELEASE command is used to release all
of the held messages from that channel.

qm.maint> DIRECTORY/HELD TCP_LOCAL
Fri, 10 Mar 2012 13:43:39 PDT
Data gathered from the queue directory tree

Channel: tcp_local Size Queued since
--

1 ZZ01HNP17LSUWY9D4DNR.HELD 4 10-MAR-2012 03:12:00
2 ZZ01HNP1RP3B6G9D4DNR.HELD 10 10-MAR-2012 11:46:23
3 ZZ01HNP42MAMAI9D4DNR.HELD 5 11-MAR-2012 18:17:01

--
Total size: 19

3 total messages queued
qm.maint> RELEASE/ALL
Release all message files (Y/N, default is N)? YES
%QM-I-RELEASED, released the message file

PMDF_QUEUE:[TCP_LOCAL]ZZ01HNP17LSUWY9D4DNR.HELD
%QM-I-RELEASED, released the message file

PMDF_QUEUE:[TCP_LOCAL]ZZ01HNP1RP3B6G9D4DNR.HELD
%QM-I-RELEASED, released the message file

PMDF_QUEUE:[TCP_LOCAL]ZZ01HNP42MAMAI9D4DNR.HELD
qm.maint>

29–110

PMDF QM commands
RETURN

RETURN

Return a message to its sender.

SYNTAX RETURN [message-id[,...]]

Command Qualifiers Defaults

/ALL /NOALL
/CHANNEL=name None
/CONFIRM /NOCONFIRM
/LOG /LOG

PARAMETERS

message-id[,...]
A comma separated list of one or more message identification numbers shown with
a previous DIRECTORY command. Ranges are allowed.

DESCRIPTION

Queued messages may be returned to their originator with the RETURN com-
mand. The messages to be returned are specified by their message identification
numbers shown by the most recent DIRECTORY command. That number appears
in the leftmost column of the DIRECTORY command listing. Ambiguous message
numbers must be qualified by the proper channel name with the /CHANNEL qual-
ifier.

The returned message is in two parts. The first part explains the reason
why the message is being returned; the text of the reason is contained in the file
return_bounced.txt file located in the PMDF language-specific directory. The
second part of the returned message contains the original message itself.

QUALIFIERS

/ALL
/NOALL (default)
Return all messages shown by the last DIRECTORY command. When used in
conjunction with the /CHANNEL qualifier, only those messages shown by the last
DIRECTORY command for the specified channel will be returned.

Unless /NOCONFIRM is specified with /ALL, you will be required to confirm any
RETURN/ALL operation.

29–111

PMDF QM commands
RETURN

/CHANNEL=name
Specifies the name of the channel from which to return messages. Wildcards are
not permitted.

/CONFIRM
/NOCONFIRM (default)
When /CONFIRM is specified, you will be prompted to confirm each message return
operation.

/LOG (default)
/NOLOG
Specifies whether informational messages for each message return operation are
generated.

29–112

PMDF QM commands
SPAWN

SPAWN

Create a subprocess.

SYNTAX SPAWN [command]

Command Qualifiers Defaults

/INPUT=in-file-spec None
/LOGICAL_NAMES /LOGICAL_NAMES
/OUTPUT=out-file-spec None
/PROCESS=name None
/SYMBOLS /SYMBOLS
/WAIT /WAIT

restrictions Cannot be used from a captive account.

PARAMETERS

command
Optional parameter specifying the command string for the subprocess to execute.
After the command completes, the subprocess terminates and control is returned
to the parent process.

DESCRIPTION

The SPAWN command may be used to either issue a single DCL command
from within PMDF QM or to leave PMDF QM temporarily, do other work (e.g.,
type out a file, generate a directory listing, etc.), and then return to PMDF QM.

By default, the context of the current process is copied to the subprocess.
This behavior may be controlled with the /LOGICAL_NAMES and /SYMBOLS
qualifiers.

QUALIFIERS

/INPUT=in-file-spec
Specifies an input command file from which the subprocess is to draw command
input. Once command processing is completed, the subprocess terminates. When
you specify both a command string and input file, then the command string is first
processed and then the commands from the input file.

29–113

PMDF QM commands
SPAWN

/LOGICAL_NAMES (default)
/NOLOGICAL_NAMES
The /LOGICAL_NAMES qualifier specifies that the logical names of the parent
process are to be copied to the subprocess. This is the default behavior. Specify
/NOLOGICAL_NAMES to prevent the subprocess from inheriting the logical name
definitions of its parent.

/OUTPUT=out-file-spec
Specifies the output file to which the output of the subprocess is to be directed.
If the /OUTPUT qualifier is omitted, then subprocess output is directed to the
current SYS$OUTPUT device (generally, your terminal).

/PROCESS=name
Specifies the process name to associate with the subprocess. If not specified, a
default name of the form USERNAME_n, where ‘‘USERNAME’’ is your username,
is used.

/SYMBOLS (default)
/NOSYMBOLS
The /SYMBOLS qualifier specifies that the DCL symbol definitions of the parent
process are to be copied to the subprocess. This is the default behavior. Specify
/NOSYMBOLS to prevent the subprocess from inheriting the symbol definitions of
its parent.

/WAIT (default)
/NOWAIT
By default, your current (parent) process will wait until the subprocess has finished
its processing and terminated. This default behavior is explicitly selected with the
/WAIT qualifier. The /NOWAIT qualifier allows you to continue working from your
current process while the subprocess is running. When you specify /NOWAIT, you
should also specify the /OUTPUT qualifier so as to prevent the subprocess output
from appearing on your terminal screen.

EXAMPLES

1 qm.maint> SPAWN DIRECTORY/SIZE=ALL a.txt

Directory D1:[BOB]

A.TXT;10 125/126
A.TXT;9 124/126
A.TXT;8 124/126

Total of 3 files, 373/378.
qm.maint> SPAWN PURGE/LOG a.txt
%PURGE-I-FILPURG, D1:[BOB]A.TXT;9 deleted (126 blocks)
%PURGE-I-FILPURG, D1:[BOB]A.TXT;8 deleted (126 blocks)
%PURGE-I-TOTAL, 2 files deleted (252 blocks)
qm.maint>

In this example, the SPAWN command is used to obtain a directory listing of the files
a.txt, and then to purge back old versions of that file. The ability to do this is useful
when you find that you have insufficient disk quota to create and edit a mail message
you want to send.

29–114

PMDF QM commands
SPAWN

2 qm.maint> SPAWN
.
.
.

$ LOGOUT
Process BOB_1 logged out at 15-NOV-2012 12:12:51.42

qm.maint>

In this example a SPAWN command with no command string is issued. This places you
into the subprocess where you can issue DCL commands and perform other processing.
When you are done with the subprocess and ready to return to PMDF QM, use the
LOGOUT or EOJ command.

29–115

PMDF QM commands
SUMMARIZE

SUMMARIZE

Display a summary listing of message files.

SYNTAX SUMMARIZE

Command Qualifiers Defaults

/DATABASE See text
/DIRECTORY_TREE See text
/HEADING /HEADING
/HELD /NOHELD
/TRAILING /TRAILING

PARAMETERS None.

DESCRIPTION

Display a summary listing of message files.

COMMAND
QUALIFIERS

/DATABASE
/DIRECTORY_TREE
Controls whether the information presented is gathered from the queue cache
database, /DATABASE, or by looking at the actual directory tree containing the
channel queues, /DIRECTORY_TREE.

When neither /DATABASE or /DIRECTORY_TREE is specified, then the ‘‘view’’
selected with the VIEW command will be used. If no VIEW command has been
issued, then /DIRECTORY_TREE is assumed.

/HEADING (default)
/NOHEADING
Controls whether or not a heading line describing each column of output is
displayed at the start of the summary listing.

/HELD
/NOHELD (default)
Controls whether or not to include counts of .HELD messages in the output.

/TRAILING (default)
/NOTRAILING
Controls whether or not a trailing line with totals is displayed at the end of the
summary.

29–116

PMDF QM commands
SUMMARIZE

EXAMPLES

The following example shows displaying a summary listing of message files.

qm.maint> SUMMARIZE
Messages

Channel Queued Size (Kb) Oldest
-------------------------------- -------- ----------- -----------------

cc_local 0 0.00
circuitcheck 4 7.51 8 Jun, 10:19:20
conversion 0 0.00

l 0 0.00
mailserv 0 0.00

mime_to_x400 0 0.00
mr_local 0 0.00
popstore 0 0.00
process 0 0.00

reprocess 0 0.00
tcp_internal 15 51.47 2 Jun, 12:10:03

tcp_local 0 0.00
wpo_local 0 0.00
x400_local 0 0.00

x400_to_mime 0 0.00
-------------------------------- -------- ----------- -----------------

Totals 19 58.98

qm.maint>

29–117

PMDF QM commands
TOP

TOP

Display the most frequently occurring envelope From:, Subject:, or message content
fields found in message files in the channel queues.

SYNTAX TOP [channel]

Command Qualifiers Defaults

/CONTENT[=offset-specifier] None
/DATABASE See text
/DIRECTORY_TREE See text
/ENV_FROM[=offset-specifier] None
/MIN_COUNT=n /MIN_COUNT=2
/SUBJECT[=offset-specifier] /SUBJECT=(START=1,LENGTH=2147483647)
/THREADS=n /NOTHREADS
/TOP=n /TOP=20
/VERBOSE /NOVERBOSE

PARAMETERS

channel
Optional parameter which specifies a specific PMDF channel area to be scanned
for string frequencies. * or ? wildcard characters may be used in the channel
specification.

DESCRIPTION

Display the most frequently occurring envelope From:, Subject:, or message
content fields found in message files in the channel queues. By default, only
Subject: fields are shown (/SUBJECT). Use /ENV_FROM to display frequent
envelope From: fields or /CONTENT to display frequent message contents.
Any combination of /CONTENT, /ENV_FROM, and /SUBJECT may be specified.
However, only one of each may be used.

The optional channel parameter restricts the scan to message files in the
specified channel. The channel parameter may use * and ? wild cards.

By default, the top 20 most frequently occurring fields are shown (/TOP=20)
provided that they occur 2 or more times (/MIN_COUNT=2). Use the /TOP and
/MIN_COUNT qualifiers to alter this behavior. The message files searched may
be either all those present in the channel queue directory tree, or only those files
with entries in the queue cache database. Use either the VIEW command of the
/DIRECTORY_TREE or /DATABASE qualifier to control which files are searched.

29–118

PMDF QM commands
TOP

The /THREADS qualifier may be used to accelerate scanning on multiprocessor
systems by dividing the work amongst multiple, simultaneously running threads.
To run n simultaneous scanning threads, specify /THREADS=n. The value n must
be in the range 1-8. The default is /NOTHREADS.

The /CONTENT, /ENV_FROM, and /SUBJECT qualifiers accept the optional
qualifiers START=n and LENGTH=n. These qualifiers indicate the starting
offset and number of bytes in the field to consider. The defaults are /CON-
TENT=(START=1,LENGTH=256), /ENV_FROM=(START=1,LENGTH=2147483647),
and /SUBJECT=(START=1,LENGTH=2147483647). Use of these qualifiers is use-
ful when, for example, trying to identify occurrences of a spam message which
uses random text at the start of the Subject: line.

COMMAND
QUALIFIERS

/CONTENT[=offset-specifier]
/ENV_FROM[=offset-specifier]
/SUBJECT[=offset-specifier]
The /CONTENT, /ENV_FROM, and /SUBJECT qualifiers are used to specify which
frequently occurring fields should be displayed. By default, only Subject: fields are
shown (/SUBJECT). Use /ENV_FROM to display frequent envelope From: fields or
/CONTENT to display frequent message contents. Any combination of /CONTENT,
/ENV_FROM, and /SUBJECT may be specified. However, only one of each may be
used.

The /CONTENT, /ENV_FROM, and /SUBJECT qualifiers accept the optional
qualifiers START=n and LENGTH=n. These qualifiers indicate the starting
offset and number of bytes in the field to consider. The defaults are /CON-
TENT=(START=1,LENGTH=256), /ENV_FROM=(START=1,LENGTH=2147483647),
and /SUBJECT=(START=1,LENGTH=2147483647). Use of these qualifiers is use-
ful when, for example, trying to identify occurrences of a spam message which
uses random text at the start of the Subject: line.

/DATABASE
/DIRECTORY_TREE
Controls whether the message files scanned are only those with entries in the
queue cache database, /DATABASE, or all message files actually present in the
channel queue directory tree, /DIRECTORY_TREE.

When neither /DATABASE nor /DIRECTORY_TREE is specified, then the ‘‘view’’
selected with the VIEW command will be used. If no VIEW command has been
issued, then /DIRECTORY_TREE is assumed.

/MIN_COUNT=n
By default, a string must occur at least 2 times, /MIN_COUNT=2, in order to be
displayed.

/THREADS=n
/NOTHREADS (default)
The /THREADS qualifier may be used to accelerate searching on multiprocessor
systems by dividing the work amongst multiple, simultaneously running threads.
To run n simultaneous searching threads, specify /THREADS=n. The value n must
be an integer in the range 1-8. The default is /NOTHREADS.

29–119

PMDF QM commands
TOP

/TOP=n
By default, the top 20 most frequently occurring fields are shown, (/TOP=20).

/VERBOSE
/NOVERBOSE (default)
The /VERBOSE qualifier may be used to request that the utility print out
information about what it is doing as it operates.

EXAMPLES

The following example shows displaying the most frequently occurring Subject: and
envelope From: addresses amongst messages in the PMDF queue area.

qm.maint> TOP/SUBJECT/ENV_FROM
%QM-I-QCLISTING, building a list of message files to scan from the queue cache
%QM-I-SCANNING, scanning 73 message files
%QM-I-SCANNED, scanned 73 message files in 0.5600 seconds (130.36 messages/secon
d)
Top 20 Envelope From: addresses which occur 2 or more times
Count Envelope From: address
====== ==

27
10 owner-ex-list@example.com
2 owner-test-list@example.com

Top 20 Subject: header lines which occur 2 or more times
Count Subject
====== ==

6 Re: your ex-list posting
2 Test posting to test-list

The following example shows displaying the most frequently occuring Subject: lines
that occur 20 times or more, starting from 12 characters into the Subject: header value.
This may be useful when trying to spot spam that inserts random characters at the
beginning of the Subject: header value.

qm.maint> TOP/SUBJECT=START=12/MIN_COUNT=15
%QM-I-QCLISTING, building a list of message files to scan from the queue cache
%QM-I-SCANNING, scanning 73 message files
%QM-I-SCANNED, scanned 73 message files in 0.5600 seconds (130.36 messages/secon
d)
Top 20 Subject: header lines which occur 15 or more times
Count Subject
====== ==

25 ake money fast $$$

29–120

PMDF QM commands
VIEW

VIEW

Control whether the DIRECTORY command shows the channel queue directory tree
or the queue cache database.

SYNTAX VIEW type

Command Qualifiers Defaults

None. None.

PARAMETERS

type
The type of view to use: DIRECTORY_TREE or DATABASE

DESCRIPTION

The DIRECTORY command produces its listing by looking at either the actual
channel queue directory tree on disk, or by looking at the queue cache database.
The VIEW command controls which is used. By default, the view is the channel
queue directory tree. Issue the command,

qm.maint> VIEW DATABASE
qm.maint>

to switch to viewing the queue cache database. The command

qm.maint> VIEW DIRECTORY_TREE
qm.maint>

will switch you back to viewing the channel queue directory tree. Issuing the
VIEW command without any parameter will restore the default behavior and is
thus equivalent to the VIEW DIRECTORY_TREE command.

29–121

Utilities on OpenVMS
VIEW

29–122

30Utilities on UNIX

PMDF contains a modest collection of management utility programs, which are used
to perform various maintenance, testing, and management tasks. The following sections
describe these utilities. Note that many of the utilities are mentioned elsewhere in this
document in the context of how they are actually used. User-level utilities are described
in the PMDF User’s Guide.

Briefly, the PMDF utilities, both those documented in the PMDF User’s Guide and
those documented here, are shown in Table 30–1. Those utilities only available under
OpenVMS are marked with a †; those only available under UNIX are marked with a ‡.

Table 30–1 PMDF Utilities

Web-based utilities and displays

URL Description

http://pmdfhost:7633/configure/ Configure: generate PMDF
configuration files; see the PMDF
Installation Guide

http://pmdfhost:7633/dispatcher/ Dispatcher Statistics: view statistics
on recent connections to the
Dispatcher, e.g., SMTP, POP
and IMAP connections

http://pmdfhost:7633/mailbox_filters/ Mailbox Filters: generate and
modify system and user mailbox
filters controlling filtering of incoming
messages

http://pmdfhost:7633/qm/ Message Queue Management:
queue management utility

http://pmdfhost:7633/msgstore/ MessageStore Administration:
manage PMDF MessageStore;
see the PMDF popstore &
MessageStore Manager’s Guide

http://pmdfhost:7633/monitor/ Monitoring: view PMDF counters;
on OpenVMS, also view the status
of PMDF processing queues

http://pmdfhost:7633/chng_pwd/ Password Change Utility: change
your e-mail password; usually used
to change a PMDF MessageStore
or PMDF popstore account
password, but may also change
a system password, depending
upon configuration; see the
PMDF popstore & MessageStore
Manager’s Guide

30–1

Utilities on UNIX

Table 30–1 (Cont.) PMDF Utilities

Web-based utilities and displays

URL Description

http://pmdfhost:7633/popstore/ popstore Administration: manage
PMDF popstore; see the PMDF
popstore & MessageStore
Manager’s Guide

http://pmdfhost:7633/msps_user/ popstore and MessageStore User
Interface: change your password
or view your account settings,
or for popstore only view your
messages; see the PMDF popstore
& MessageStore Manager’s Guide

Command utilities

OpenVMS utility UNIX utility Description

† CACHE/CLOSE Have detached processes close
their connections to the queue
cache database

† CACHE/REBUILD Build a new, synchronized queue
cache database

CACHE/SYNCHRONIZE cache -synchronize Synchronize the current queue
cache database

‡ cache -view View entries in the queue cache
database

CHBUILD chbuild Compile the PMDF character set
conversion tables

CLBUILD clbuild Compile a PMDF command
definition file

CNBUILD cnbuild Compile the PMDF configuration,
alias, mapping, security, system
wide filter, circuit check, and option
files

CONFIGURE § configure Create a PMDF configuration file

† convert_cache.com Perform a CONVERT/RECLAIM on
the queue cache

§ convertdb Read entries from a V6.0-V6.4
PMDF crdb database and write
out a corresponding V6.5 or later
PMDF crdb database

COUNTERS/CLEAR counters -clear Clear the in-memory cache of
channel counters

† COUNTERS/CRDB Create a database of channel
counters

§Not available on NT

†Available on OpenVMS only

‡Available on UNIX only

30–2

Utilities on UNIX

Table 30–1 (Cont.) PMDF Utilities

Command utilities

OpenVMS utility UNIX utility Description

COUNTERS/SHOW counters -show Display the contents of the database
of channel counters

† COUNTERS/SYNCHRONIZE Synchronize the in-memory cache of
channel counters with the database

COUNTERS/TODAY counters -today Display PMDF’s count of the
number of messages processed
today

CRDB crdb Create a PMDF database

DB db Manage a personal alias database;
see the PMDF User’s Guide

† DCF Convert WPS and DX files to ASCII;
provided with PMDF-MR

DECODE decode Decode a file encoded using MIME
encodings; see the PMDF User’s
Guide

™ DUMPDB dumpdb Dump entries in a PMDF crdb
database to a flat text file

® edit Edit PMDF configuration files

ENCODE encode Encode a file using MIME
encodings; see the PMDF User’s
Guide

‡ find Find the filename corresponding to
the specified ‘‘version’’ of a PMDF
file

† FOLDER Place a message file into a VMS
MAIL folder; see the PMDF User’s
Guide, OpenVMS Edition

† FORWARD Set a forwarding address in the
PMDF alias database; see the
OpenVMS Edition of the PMDF
User’s Guide

† G3 Analyze a PMDF-FAX G3 file;
provided with PMDF-FAX

† INSTALL Install or deinstall PMDF images
and databases

KILL § kill Kill the specified PMDF component

™See also the PMDF DB (OpenVMS) or pmdf db (UNIX or NT) utility’s write filename alias
command.

®Available on NT only

§Not available on NT

†Available on OpenVMS only

‡Available on UNIX only

30–3

Utilities on UNIX

Table 30–1 (Cont.) PMDF Utilities

Command utilities

OpenVMS utility UNIX utility Description

LICENSE license -verify On OpenVMS, activate or deactivate
PMDF bundle licenses on a node;
on Solaris, Linux, and Windows,
verify the validity of a PMDF license
file

† MAIL An extended version of VMS MAIL;
see the OpenVMS Edition of the
PMDF User’s Guide

migrate § migrate Copy message folders from one
IMAP host to another IMAP host;
see the appropriate edition of the
PMDF User’s Guide

MOVEIN § movein Migrate a user’s mailbox from one
message store to another; see the
PMDF popstore & MessageStore
Manager’s Guide

MSGSTORE msgstore Interactive PMDF Message Store
management utility; see the
PMDF popstore & MessageStore
Manager’s Guide

PASSWORD password Set remote authentication
passwords

POPSTORE popstore Interactive PMDF popstore
management utility; see the
PMDF popstore & MessageStore
Manager’s Guide

PROCESS § process List currently running PMDF jobs

§ profile Set local user’s choice of delivery
mechanism in the PMDF user profile
database

† PS Convert text and Runoff .mem files
to PostScript; provided with PMDF-
FAX; see the OpenVMS Edition of
the PMDF User’s Guide

‡ purge Purge PMDF log files

QCLEAN qclean Hold or delete message files
matching specified criteria

QM qm Manage PMDF message queues;
see also the web-based QM utility,
Section 31.2

§Not available on NT

†Available on OpenVMS only

‡Available on UNIX only

30–4

Utilities on UNIX

Table 30–1 (Cont.) PMDF Utilities

Command utilities

OpenVMS utility UNIX utility Description

QTOP qtop Display the most frequently
occurring strings found in message
files in the PMDF queue area

RESTART restart Restart detached PMDF processes

RETURN return Return (bounce) a mail message to
its originator

master.com run Process messages in a specified
channel

SEND send Send a mail message; see the
PMDF User’s Guide

SHUTDOWN shutdown Shut down detached PMDF
processes

STARTUP startup Start detached PMDF processes

submit_master.com submit Process messages in a specified
channel

submit_master.com submit_master Process messages in a specified
channel—on UNIX, a synonym for
submit

TEST/MAPPING test -mapping Test a mapping table

TEST/MATCH test -match

TEST/URL test -url Test an LDAP query URL
\ \ tls_certdump \Dump the contents of a certificate file)

tls_certreq tls_certreq Generate a public key pair and a
certificate request

tls_ciphers tls_ciphers List available ciphers

‡ view Display the specified ‘‘version’’ of a
PMDF file

VERSION version Print PMDF version number

‡Available on UNIX only

This chapter is broken into two main sections. The first section, Command Line
Utilities on UNIX, describes the command shell utilities available on UNIX; the second
section, Interactive Utilities, describes the interactive pmdf profile, pmdf qm, and
utilities available on UNIX.

30–5

Utilities on UNIX
Command Line Utilities on UNIX

30.1 Command Line Utilities on UNIX

This section documents the PMDF utilities available on UNIX.

On UNIX platforms, these utilities are implemented via /usr/bin/pmdf (which is
a symbolic link to /pmdf/bin/pmdf). For convenient use of the pmdf commands, add
the path /usr/bin to your search path.

On NT, these utilities are implemented via \pmdf\bin on the drive selected at
installation time. The PMDF installation procedure automatically makes the path to
these commands available, inserting the path under the ‘‘Start’’ menu, under ‘‘Settings’’,
under ‘‘Control Panel’’, under ‘‘System’’, under ‘‘System Variables’’, under ‘‘Path’’.

30–6

Utilities on UNIX
cache -synchronize

cache -synchronize—Synchronize the queue cache

Update the queue cache database so as to reflect all messages currently present in
the message queues.

SYNTAX pmdf cache -synchronize

Command Qualifiers Defaults

None. None.

restrictions Must have superuser privileges (UNIX) or be logged in as Administrator (NT) in
order to use this utility.

PARAMETERS None.

DESCRIPTION

The pmdf cache -synchronize utility updates the active queue cache
database to reflect all non-held message files currently present in the PMDF queue
subdirectories, /pmdf/queue/* on UNIX or C:\pmdf\queue* on NT.

The queue cache database consists of the files contained in the directory
pointed at by PMDF_QUEUE_CACHE_DATABASE option in the PMDF tailor
file, /etc/pmdf_tailor, on UNIX, or the PMDF_QUEUE_CACHE_DATABASE
PMDF Tailor registry entry on NT. Normally, the queue cache directory is called
/pmdf/table/queue_cache on UNIX, and is usually
C:\pmdf\table\queue_cache (possibly on a drive other than C:) on NT. On
UNIX, this directory and the files it contains should be protected against world and
group access (-rwx------) and have the same uid as the directories /pmdf/queue
and /pmdf/log.

EXAMPLES

To synchronize the queue cache, for instance after renaming a message file, issue
the UNIX command

pmdf cache -synchronize

or the NT command

C:\> pmdf cache -synchronize

30–7

Utilities on UNIX
cache -view

cache -view—View entries in the queue cache

View the current entries for a channel in the queue cache database.

SYNTAX pmdf cache -view [channel-name]

Command Qualifiers Defaults

None. None.

restrictions Must have superuser privileges (UNIX) or be logged in as Administrator (NT) in
order to use this utility.

PARAMETERS

channel-name
Optional parameter specifying the name of the channel for which to show entries.
If no channel name is specified, all entries in the queue cache database will be
shown.

DESCRIPTION

The pmdf cache -view utility shows the current entries in the PMDF queue
cache database for a channel.

EXAMPLES

This UNIX example shows checking the queue cache database for entries for the
tcp_local channel and finding one such entry:

pmdf cache -view tcp_local
recipient count : 1
subdir : 19
channel : tcp_local
filename : ZY0ETO00805RZ35T.00
recipient system : else.where.com
username : adam
creation : 28-May-2012 14:35:27
expiry :
deferred :
last_try : 28-May-2012 12:10:41
priority : 3

30–8

Utilities on UNIX
chbuild

chbuild—Character set table compiler

Compile the PMDF character set conversion tables and load the resulting image file
into shared memory.

SYNTAX pmdf chbuild

Command Qualifiers Defaults

-image_file=file-spec -image_file=PMDF_CHARSET_DATA
-maximum -nomaximum
-option_file=file-spec -option_file=PMDF_CHARSET_OPTION_FILE
-remove None
-sizes -nosizes
-statistics -nostatistics

restrictions Must have superuser privileges (UNIX) or be logged in as Administrator (NT) in
order to use this utility.

PARAMETERS None.

DESCRIPTION

The pmdf chbuild utility compiles the character set conversion tables and
loads the resulting file into shared memory.

PMDF ships with very complete character set tables so it is not normally
necessary to run this utility.

COMMAND
QUALIFIERS

-image_file[=file-spec]
-noimage_file
By default, pmdf chbuild creates as output the image file named by the PMDF_
CHARSET_DATA option of the PMDF tailor file, /etc/pmdf_tailor, (UNIX) or
Tailor Registry entry (NT). With the -image_file qualifier, an alternate file name
may be specified.

When the -noimage_file qualifier is specified, pmdf chbuild does not produce
an output file. This qualifier is used in conjunction with the -option_file
qualifier to produce as output an option file which specifies table sizes adequate
to hold the tables required by the processed input files.

30–9

Utilities on UNIX
chbuild

-maximum
-nomaximum (default)
The file /pmdf/table/maximum_charset.dat is read in addition to the file
named by the PMDF_CHARSET_OPTION_FILE option of the PMDF tailor file,
/etc/pmdf_tailor, (UNIX) or Tailor Registry entry (NT) when -maximum is
specified. This file specifies near maximum table sizes but does not change any
other option file parameter settings. Only use this qualifier if the current table
sizes are inadequate. The -noimage_file and -option_file qualifiers should
always be used in conjunction with this qualifier—it makes no sense to output the
enormous configuration that is produced by -maximum, but it does make sense to
use -maximum to get past size restrictions in order to build a properly sized option
file so that a properly sized character set image can be built with a subsequent
pmdf chbuild invocation.

-option_file[=file-spec]
-nooption_file
pmdf chbuild can optionally produce an option file that contains correct table
sizes to hold the character set conversion tables which were just compiled (plus a
little room for growth). The -option_file qualifier causes this file to be output.
By default, this file is the file named by the PMDF_CHARSET_OPTION_FILE
option of the PMDF tailor file, /etc/pmdf_tailor, (UNIX) or Tailor Registry
entry (NT). The value on the -option_file qualifier may be used to specify an
alternate file name. If the -nooption_file qualifier is given, then no option file
will be output.

pmdf chbuild always reads any option file (i.e., the file named by the PMDF_
OPTION_FILE option of the PMDF tailor file or Tailor key in the NT Registry)
that is already present; use of this qualifier will not alter this behavior. However,
use of the -maximum qualifier causes pmdf chbuild to read options from
maximum_charset.dat in addition to PMDF_CHARSET_OPTION_FILE. This
file specifies near maximum table sizes. Only use this qualifier if the current
table sizes are inadequate, and only use it to create a new option file. The -
noimage_file qualifier should always be specified when -maximum is specified
since a maximum-size image would be truly enormous and extremely wasteful.

-remove
Remove any existant compiled character set conversion table; i.e., remove the
file named by the PMDF_CHARSET_DATA option of the PMDF tailor file,
/etc/pmdf_tailor, (UNIX) or Tailor Registry entry (NT).

-sizes
-nosizes (default)
The -sizes qualifier instructs pmdf chbuild to output information on the sizes
of the uncompiled character set tables.

-statistics
-nostatistics (default)
The -statistics qualifier instructs pmdf chbuild to output information on the
compiled conversion tables. These numbers give a rough measurement of the
efficiency of the compilation, and may indicate whether or not an additional rebuild
with the -option_file qualifier is needed.

30–10

Utilities on UNIX
chbuild

EXAMPLES

The standard command used on UNIX to compile character set conversion tables
is:

pmdf chbuild

or on NT:

C:\> pmdf chbuild

30–11

Utilities on UNIX
clbuild

clbuild—Command definition compiler

Compile a PMDF command definition file and load the resulting image file into shared
memory.

SYNTAX pmdf clbuild cld-file-spec

Command Qualifiers Defaults

-debug -nodebug
-image_file=file-spec -noimage_file
-maximum -nomaximum
-option_file=file-spec -nooption_file
-remove None
-sizes -nosizes
-statistics -nostatistics

restrictions Must have superuser privileges (UNIX) or be logged in as Administrator (NT) in
order to use this utility.

PARAMETERS

cld-file-spec
The file specification of a PMDF command definition file to read as input; e.g., on
UNIX /pmdf/lib/pmdf.cld or on NT C:\pmdf\lib\pmdf.cld.

DESCRIPTION

The pmdf clbuild utility compiles a command line definition file and loads
the resulting file into shared memory.

PMDF ships with a pre-compiled command line definition image so it is not
normally necessary to run this utility.

COMMAND
QUALIFIERS

-debug
-nodebug (default)
The -debug qualifier causes pmdf clbuild to output debug information regarding
its operation.

-image_file=file-spec
-noimage_file (default)
By default, pmdf clbuild does not produce a compiled command definition file.
In order to produce a compiled command definition file, the file to produce must

30–12

Utilities on UNIX
clbuild

be specified using the -image_file qualifier. Note that the PMDF tailor file
option PMDF_COMMAND_DATA may be specified as the file-spec, if the goal
is to produce a compiled version of the main PMDF command definition file,
/pmdf/lib/pmdf.cld.

-maximum
-nomaximum (default)
The file /pmdf/table/maximum_command.dat is read when -maximum is speci-
fied. This file specifies near maximum table sizes but does not change any other
command option file parameter settings. Only use this qualifier if the current table
sizes are inadequate. The -noimage_file and -option_file qualifiers should
always be used in conjunction with this qualifier—it makes no sense to output the
enormous command definition image that is produced by -maximum, but it does
make sense to use -maximum to get past size restrictions in order to build a prop-
erly sized command option file so that a properly sized command definition image
can be built with a subsequent pmdf clbuild invocation.

-option_file[=file-spec]
-nooption_file (default)
pmdf clbuild can optionally produce a command option file that contains correct
table sizes to hold the command definitions which were just compiled (plus a
little room for growth). The -option_file qualifier causes this file to read
as input and a new such option file created as output. If -option_file is
specified with no value, then the file written will have the same name as the
input command definition file, but with the file extension .cop; for instance, if
the file /pmdf/lib/pmdf.cld was the input parameter, then the default name
for the output command option file would be /pmdf/lib/pmdf.cop. If the -
nooption_file qualifier is specified (the default), then no option file will be
output.

Note that use of the -maximum qualifier causes pmdf clbuild to read options from
maximum_command.dat in addition to any command option file. This file specifies
near maximum table sizes. Only use this qualifier if the current table sizes are
inadequate, and only use it to create a new option file. The -noimage_file
qualifier should always be specified when -maximum is specified since a maximum-
size image would be truly enormous and extremely wasteful.

-remove
Remove an existant compiled command definition image. Note that the PMDF_
COMMAND_DATA name may be used to cause removal of the basic PMDF
compiled command definition image, as referenced by this PMDF tailor file option
(UNIX) or PMDF Tailor Registry key (NT).

-sizes
-nosizes (default)
The -sizes qualifier instructs pmdf clbuild to output information on the sizes
of the uncompiled command definitions.

-statistics
-nostatistics (default)
The -statistics qualifier instructs pmdf clbuild to output information on the
compiled command definition image. These numbers give a rough measurement
of the efficiency of the compilation, and may indicate whether or not an additional
rebuild with the -option_file qualifier is needed.

30–13

Utilities on UNIX
clbuild

EXAMPLES

The standard command used to compile the basic PMDF command definition file is
on UNIX:

pmdf clbuild -option_file -image_file=PMDF_COMMAND_DATA /pmdf/lib/pmdf.cld

or on NT:

C:\> pmdf clbuild -option_file -image_file=PMDF_COMMAND_DATA C:\pmdf\lib\pmdf.cld

30–14

Utilities on UNIX
cnbuild

cnbuild—Configuration compiler

Compile the PMDF configuration, alias, mapping, conversion, security, system wide
filter, circuit check, and option files and load the resulting file into shared memory.

SYNTAX pmdf cnbuild

Command Qualifiers Defaults

-image_file=file-spec -image_file=PMDF_CONFIG_DATA
-maximum -nomaximum
-option_file=file-spec -option_file=PMDF_OPTION_FILE
-remove None
-sizes -nosizes
-statistics -nostatistics

restrictions Must have superuser privileges (UNIX) or be logged in as Administrator (NT) in
order to use this utility.

PARAMETERS None.

DESCRIPTION

The cnbuild utility compiles the textual configuration, option, mapping,
conversion, security, system wide filter, circuit check, and alias files, and loads
the resulting file into shared memory. The resulting image is the file named by
the PMDF_CONFIG_DATA option of the PMDF tailor file, /etc/pmdf_tailor,
(usually /pmdf/lib/config_data).

Whenever a component of PMDF (e.g., a channel program) must read any
possibly compiled configuration component, it first checks to see whether the file
named by the PMDF tailor file option PMDF_CONFIG_DATA is loaded into shared
memory; if this compiled image exists but is not loaded, PMDF loads it into shared
memory. If PMDF finds (or not finding, is able to load itself) a mapped section file
in shared memory, the running program uses the information in that file. There
are four exceptions to this rule. The first is pmdf cnbuild itself, which for obvious
reasons always reads the text files and never tries to use an image form of the
configuration data. The remaining two exceptions are pmdf test -rewrite and
pmdf test -mapping, which can all be instructed with the -image_file qualifier
to use a different compiled configuration file. This facility in pmdf test -rewrite
is useful for testing changes prior to compiling them.

The reason for compiling configuration information is simple: performance.
The only penalty paid for compilation is the need to recompile and reload the
image any time the configuration or alias files are edited. Also, be sure to restart
any programs or channels which load the configuration data only once when they
start up, e.g., the PMDF multithreaded TCP SMTP server.

30–15

Utilities on UNIX
cnbuild

Once you begin to use a compiled configuration, it will be necessary to
recompile the configuration every time changes are made to any of the following
files: the PMDF configuration file (or any files referenced by it), the PMDF
system alias file, the PMDF mapping file, the PMDF option file, the PMDF
conversion file, the PMDF security configuration file, the system wide filter file,
or the circuit check configuration file. Specifically, these are the files pointed
at the PMDF tailor file options (UNIX) or PMDF Tailor Registry keys (NT)
PMDF_CONFIG_FILE, PMDF_ALIAS_FILE, PMDF_MAPPING_FILE, PMDF_
OPTION_FILE, PMDF_CONVERSION_FILE, and PMDF_SECURITY_CONFIG_
FILE, respectively, which usually point on UNIX to

/pmdf/table/pmdf.cnf,
/pmdf/table/aliases,
/pmdf/table/mappings,
/pmdf/table/option.dat,
/pmdf/table/conversions, and
/pmdf/table/security.cnf,

or on NT to

C:\pmdf\table\pmdf.cnf,
C:\pmdf\table\aliases,
C:\pmdf\table\mappings,
C:\pmdf\table\option.dat,
C:\pmdf\table\conversions, and
C:\pmdf\table\security.cnf.

as well as the files /pmdf/table/pmdf.filter and
/pmdf/table/circuitcheck.cnf (UNIX) or C:\pmdf\table\pmdf.filter and
C:\pmdf\table\circuitcheck.cnf (NT). Until such time as the configuration
is rebuilt, changes to any of these files will not be visible to the running PMDF
system.

See Chapter 8 for further details on the use of compiled configurations.

COMMAND
QUALIFIERS

-image_file[=file-spec]
-noimage_file
By default, pmdf cnbuild creates as output the image file named by the PMDF_
CONFIG_DATA option of the PMDF tailor file, /etc/pmdf_tailor, (UNIX) or
PMDF Tailor Registry key (NT). With the -image_file qualifier, an alternate
file name may be specified.

When the -noimage_file qualifier is specified, pmdf cnbuild does not produce
an output file. This qualifier is used in conjunction with the -option_file
qualifier to produce as output an option file which specifies table sizes adequate
to hold the configuration required by the processed input files.

30–16

Utilities on UNIX
cnbuild

-maximum
-nomaximum (default)
When -maximum is specified, the file /pmdf/table/maximum.dat is read in
addition to the file named by the PMDF_OPTION_FILE option in the PMDF
tailor file, /etc/pmdf_tailor, (UNIX) or PMDF Tailor Registry key (NT). This
file specifies near maximum table sizes but does not change any other option
file parameter settings. Only use this qualifier if the current table sizes are
inadequate. The -noimage_file and -option_file qualifiers should always be
used in conjunction with this qualifier—it makes no sense to output the enormous
configuration that is produced by -maximum, but it does make sense to use
-maximum to get past size restrictions in order to build a properly sized option
file so that a properly sized configuration can be built with a subsequent pmdf
cnbuild invocation.

-option_file[=file-spec]
-nooption_file (default)
pmdf cnbuild can optionally produce an option file that contains correct table
sizes to hold the configuration that was just compiled (plus a little room for growth).
The -option_file qualifier causes this file to be output. By default, this file
is the file named by the PMDF_OPTION_FILE option in the PMDF tailor file,
/etc/pmdf_tailor, (UNIX) or PMDF Tailor Registry key (NT). The value on the
-option_file qualifier may be used to specify an alternate file name. If the
-nooption_file qualifier is given, then no option file will be output.

pmdf cnbuild always reads any option file that is already present via the PMDF_
OPTION_FILE option of the PMDF tailor file, /etc/pmdf_tailor, (UNIX) or
PMDF Tailor Registry key (NT); use of this qualifier will not alter this behavior.
However, use of the -maximum qualifier causes pmdf cnbuild to read PMDF
options from the file maximum.dat in the PMDF table directory in addition to
reading the file named by PMDF_OPTION_FILE. This file specifies near maximum
table sizes. Only use this qualifier if the current table sizes are inadequate, and
only use it to create a new option file. The -noimage_file qualifier should always
be specified when -maximum is specified since a maximum-size image would be
truly enormous and extremely wasteful.

-remove
Remove any existant compiled configuration; i.e., remove the file named by
the PMDF_CONFIG_DATA option of the PMDF tailor file, /etc/pmdf_tailor,
(UNIX) or PMDF Tailor Registry key (NT).

-sizes
-nosizes (default)
The -sizes qualifier instructs pmdf cnbuild to output information on the sizes
of uncompiled PMDF tables.

-statistics
-nostatistics (default)
The -statistics qualifier instructs pmdf cnbuild to output information on how
much of the various tables in the compiled configuration were actually used to
store data. These numbers give a rough measurement of the efficiency of the
compilation, and may indicate whether or not an additional rebuild with the
-option_file qualifier is needed.

30–17

Utilities on UNIX
cnbuild

EXAMPLES

1 # pmdf cnbuild

This is the standard command used on UNIX to regenerate a compiled configuration.
After compiling the configuration, restart any programs which may need to reload the
new configuration; e.g., the TCP SMTP server should be restarted.

2 # pmdf cnbuild -noimage_file -option_file -maximum
pmdf cnbuild

Use these two UNIX commands when you encounter the infamous ‘‘No room in table’’
error message.

3 C:\> pmdf cnbuild

This is the standard command used on NT to regenerate a compiled configuration. After
compiling the configuration, restart any programs which may need to reload the new
configuration; e.g., the Dispatcher should be restarted.

4 C:\> pmdf cnbuild -noimage_file -option_file -maximum
C:\> pmdf cnbuild

Use these two NT commands when you encounter the infamous ‘‘No room in table’’ error
message.

30–18

Utilities on UNIX
configure

configure—Create PMDF configuration file

Create a basic PMDF configuration file and alias file on UNIX.

SYNTAX pmdf configure product-or-component-name

restrictions Must have superuser privileges in order to use this utility. This utility is not
available on NT; on NT, use the web-based configuration utility.

PARAMETERS

product-or-component-name
The product name, i.e., mta, access, firewall, lan, or component name, i.e.,
dispatcher or mailbox_servers.

DESCRIPTION

pmdf configure is an interactive command line utility for creating basic
PMDF configuration files. Note that there is also a newer, web-based configuration
utility for generating PMDF-MTA (including mailbox servers) configurations; see
the PMDF Installation Guide for additional details.

Most fundamentally, it is used to generate a basic PMDF configuration file,
alias file, mappings file, and security configuration file, usually
/pmdf/table/pmdf.cnf, /pmdf/table/aliases, /pmdf/table/mappings, and
/pmdf/table/security.cnf, respectively. The utility prompts for answers to
questions regarding a site’s node names and network connectivity, and then cre-
ates the basic files in accord with the answers to those questions.

The utility is also used to configure optional PMDF layered products, and to
configure various PMDF components.

This utility is usually run when PMDF is first installed. It may also
be convenient to run this utility, rather than manually editing the PMDF
configuration file, after changes in a site’s network configuration, such as the
addition or removal of nodes, or a change in the status of a site’s access to a
larger network. Although by default this utility writes ‘‘live’’ files, overwriting any
existing configuration and alias file, different file names may be specified, which
can be useful for comparison or testing purposes. Note that since this utility does
not take into account any pre-existing configuration file and alias file, any manual
changes made to such files must be re-entered into the new files.

For a complete description and examples of using this utility to create
configuration files for PMDF products, see the PMDF Installation Guide. For a
description of using this utility to create a PMDF Service Dispatcher configuration

30–19

Utilities on UNIX
configure

file, see Chapter 11. For a description of using this utility to configure the PMDF
POP3 and IMAP servers, see Chapter 13.

30–20

Utilities on UNIX
convertdb

convertdb—Convert a V6.0-V6.4 PMDF crdb
database to a V6.5 or later PMDF crdb
database

Convert the contents of a V6.0 to V6.4 PMDF for UNIX crdb database (a Berkeley
DB / SleepyCat database) to a V6.5 or later PMDF crdb database (a PBL database).

SYNTAX pmdf convertdb input-database-spec
output-database-spec

Command Qualifiers Defaults

None. None.

restrictions This utility will not convert databases from versions of PMDF prior to V6.0. If you
are upgrading from V5.2 or earlier, you must first upgrade to a version of PMDF
between V6.0 and V6.4 and convert your database to Berkeley DB (SleepyCat)
format, and then upgrade to V6.5 or later and convert the Berkeley DB (SleepyCat)
formatted databases to PBL. Alternatively, you can rebuild your databases from
sources instead of converting them.

The defragment channel database (/pmdf/table/defragment_cache.*)
is not supported for conversion. It does not need to be converted since the
defragment channel rebuilds it based on the messages in its queue cache directory
the first time the channel runs.

PARAMETERS

input-database-spec
The name of the PMDF database from which to read entries. This must be a Berke-
ley DB (SleepyCat) formatted database, such as one created by PMDF versions
V6.0 through V6.4. Special keywords such as PMDF_ALIAS_DATABASE, PMDF_
REVERSE_DATABASE, PMDF_FORWARD_DATABASE, PMDF_GENERAL_DATABASE,
PMDF_DOMAIN_DATABASE, and PMDF_PIPE_DATABASE are supported; the
use of such a special keyword tells PMDF to convert the database specified by the
corresponding PMDF tailor file option.

output-database-spec
The name of the V6.5 or later PMDF database to which to write the entries
stored in the input PMDF database. Special keywords such as PMDF_ALIAS_
DATABASE, PMDF_REVERSE_DATABASE, PMDF_FORWARD_DATABASE, PMDF_
GENERAL_DATABASE, PMDF_DOMAIN_DATABASE, and PMDF_PIPE_DATABASE
are supported; the use of such a special keyword tells PMDF to write the database
specified by the corresponding PMDF tailor file option.

30–21

Utilities on UNIX
convertdb

DESCRIPTION

The format of PMDF crdb databases has changed with PMDF version V6.5.
The convertdb utility reads the entries in a V6.0 through V6.4 PMDF crdb
database (which is in Berkeley DB / SleepyCat format) and writes out the entries
to a current format (PMDF V6.5 or later) PMDF crdb database.

EXAMPLES

1 # pmdf convertdb PMDF_ALIAS_DATABASE PMDF_ALIAS_DATABASE

This example shows converting a PMDF for UNIX alias database to the most current
format. The input database would be a PMDF alias database in Berkeley DB
(SleepyCat) format, being converted to PMDF V6.5 or later format.

30–22

Utilities on UNIX
counters -clear

counters -clear

Clear the in-memory cache of channel counters.

SYNTAX pmdf counters -clear

Command Qualifiers Defaults

None. None.

restrictions On UNIX platforms, the process must have the same UID as either the root or
pmdf accounts.

PARAMETERS None.

DESCRIPTION

To zero the in-memory channel counters, issue a pmdf counters -clear
command.

The pmdf counters -clear command will create a new memory section, if
one does not already exist. The values in the in-memory section will be set to zero,
and then the stored messages, recipients, and volumes fields will be set from the
values currently in the PMDF queue cache database.

Since some initial values will be set based on entries in the PMDF queue cache
database, you may want to issue the UNIX command

pmdf cache -synchronize

or the NT command

C:\> pmdf cache -synchronize

before clearing the counters, to ensure that the queue cache database entries are
current.

30–23

Utilities on UNIX
counters -show

counters -show

Display the contents of the in-memory cache of channel counters.

SYNTAX pmdf counters -show

Command Qualifiers Defaults

-associations -associations
-channels -channels
-headers -headers
-output=file-spec None
-today -today

restrictions On UNIX, normally none, but if a new in-memory section must be created then
privileges sufficient to create such a section are required.

DESCRIPTION

The contents of the in-memory cache of channel counters may be displayed
with the pmdf counters -show command.

A new in-memory section will be created if one does not already exist. Note
that if a new in-memory section must be created, the initial values for the number
of messages stored, number of recipients, and message volumes will be set based
on the entries in the PMDF queue cache database.

COMMAND
QUALIFIERS

-associations (default)
-noassociations
This qualifier specifies whether to show the in-memory cache of association
counters.

-channels (default)
-nochannels
This qualifier specifies whether to show the in-memory cache of channel counters.

-headers (default)
-noheaders
Controls whether or not a header line describing each column in the table of
counters is output.

-output=file-spec
Direct the output to the specified file. By default the output appears on your
display.

30–24

Utilities on UNIX
counters -show

-today (default)
-notoday
This qualifier specifies whether to show PMDF’s count for the number of messages
processed this day. Note that the ‘‘today’’ count, like all counters counts, is a
‘‘lightweight’’ count; in case of any problems updating the counter, PMDF skips
the update and keeps on processing. So

EXAMPLES

This UNIX example shows displaying the counters for all channels and associations.

pmdf counters -show
4263 messages processed so far today
30000 messages per day are permitted by your license

Channel Messages Recipients Blocks
------------------------ ---------- ---------- ----------
l

Received 3863 3881 25786
Stored 89 89 460
Delivered 3876 3894 26018 (3859 first time)
Submitted 99 114 1611
Attempted 17 17 25
Rejected 0 0 0
Failed 1 1 6

Queue time/count 29794837/3877 = 7.68502E3
Queue first time/count 18904343/3860 = 4.8975E3

tcp_local
Received 208 217 4153
Stored 3 3 9
Delivered 200 212 2461 (197 first time)
Submitted 4053 4078 25919
Attempted 7 7 0
Rejected 46 68 0
Failed 14 14 1695

Queue time/count 1106266/211 = 5.24297E3
Queue first time/count 455897/208 = 2.19181E3

Current In Assocs 127
Total In Assocs 1056
Total Out Assocs 132
Rejected Out Assocs 11
Failed Out Assocs 1

Channel Timestamp Association
------------ ------------ ---
tcp_local 01-Feb 00:27 TCP|192.160.253.70|25|192.160.253.66|3465
tcp_local 25-Jan 00:31 TCP|192.160.253.70|25|192.160.253.66|3496
tcp_local 26-Jan 14:50 TCP|192.160.253.70|25|192.160.253.66|2086
tcp_local 05-Feb 12:23 TCP|192.160.253.70|25|192.160.253.66|3593
tcp_local 01-Feb 00:34 TCP|192.160.253.70|25|192.160.253.66|3581

...

#

30–25

Utilities on UNIX
counters -today

counters -today—Display number of messages
processed today

Display PMDF’s count of the number of messages processed so far today.

SYNTAX pmdf counters -today

Command Qualifiers Defaults

None. None.

restrictions None.

PARAMETERS None.

DESCRIPTION

PMDF’s count of the number of messages processed so far today may be
displayed with the pmdf counters -today command.

Note that the ‘‘today’’ count, like all counters counts, is a ‘‘lightweight’’ count;
in case of any problems updating the counter, PMDF skips the update and keeps
on processing. So

EXAMPLES

pmdf counters -today
4263 messages processed so far today
30000 messages per day are permitted by your license

This UNIX example shows displaying PMDF’s count of the number of messages
processed so far that particular day.

30–26

Utilities on UNIX
crdb

crdb—Create database

pmdf crdb is a utility used to create and update PMDF database files.

SYNTAX pmdf crdb input-file-spec output-database-spec

Command Qualifiers Defaults

-append -noappend
-count -count
-delete -nodelete
-dump See text
-duplicates -noduplicates
-exception_file=file-spec -noexception_file
-huge_records -huge_records
-long_records -nolong_records
-quoted -noquoted
-remove -noremove
-statistics -statistics
-strip_colons -nostrip_colons

restrictions None.

prompts Input file: input-file-spec
Output database: output-database-spec

PARAMETERS

input-file-spec
A text file containing the entries to be placed into the database. Each line of the
text file must correspond to a single entry.

output-database-spec
The initial name string of the file to which to write the database; the database
consists of several files named output-database-spec.*.

DESCRIPTION

pmdf crdb is a utility to create and or update PMDF database files. pmdf
crdb simply converts a plain text file into PMDF database records and from them
either creates a new database or updates the records in an existing database.

When run from the root account pmdf crdb will set the ownership of the
database it creates to the pmdf account.

30–27

Utilities on UNIX
crdb

In general, each line of the input file must consist of a left hand side and a
right hand side. The two sides are separated by one or more spaces or tabs. The
left hand side is limited to 32 characters in a short database (the default variety),
80 characters in a long database, or 252 characters in a huge database. The right
hand side is limited to 80 characters in a short database, 256 characters in a long
database, or 1024 characters in a huge database. Spaces and tabs may not appear
in the left hand side (but see the description of the -quoted qualifier below).

The format of the input file is described in the sections describing each
particular PMDF database. For instance, the format of the input file for an alias
database is described in Section 3.1.2; the format of the input file for the domain
database (rewrite rule database) is described in Section 2.2.9; the format of the
input file for the address reversal database is described in Section 3.3.2.

COMMAND
QUALIFIERS

-append
-noappend (default)
When the default, -noappend, qualifier is in effect, a new database is created,
overwriting any old database of that name. Use the -append qualifier to instruct
PMDF to instead add the new records to an existing database.

-count (default)
-nocount
Controls whether or not a count is output after each group of 100 input lines are
processed.

-delete
-nodelete (default)
Use the -delete qualifier to instruct PMDF to delete the specified records from
an existing database. The input file should contain one key value per line for the
entries to delete. The data portion of the line is ignored. If the database was
created with -duplicate, for multiple entries with the same key value, only the
first entry is deleted.

-dump
pmdf crdb -dump is a synonym for pmdf dumpdb. It is used to dump an existing
database to a flat text file – or to stdout if no output file is specified. The parameters
are interpreted as the input database specification, and optionally a flat text file to
which to write the output. No other qualifiers are valid when -dump is specified.

-duplicates
-noduplicates (default)
Controls whether or not duplicate records are allowed in the output files. Currently
duplicate records are of use only in the domain database (rewrite rules database)
and databases associated with the directory channel.

-exception_file=file-spec
-noexception_file (default)
pmdf crdb may encounter records that cannot be loaded into the database. This
usually means that these records had keys (left hand sides) that were duplicates
of other keys previously encountered in the input file. These exception records

30–28

Utilities on UNIX
crdb

can optionally be written to a separate output file for later examination; the -
exceptions_file qualifier controls the writing of this file. Note that the lines
in this file are not plain text; they are formatted as database entries.

-long_records
-nolong_records (default)
-huge_records
-nohuge_records
These qualifiers control the size of the output records. By default left hand sides
are limited to 32 characters and right hand sides are limited to 80 characters. If
-long_records is specified, the limits are changed to 80 and 256, respectively. If
-huge_records is specified, the limits are changed to 252 and 1024, respectively.
Currently, -huge_records databases are supported only for the alias database.

-quoted
-noquoted (default)
This qualifier controls the handling of quotes. Normally pmdf crdb pays no
particular attention to double quotes. If -quoted is specified, pmdf crdb matches
up double quotes in the process of determining the break between the left and
right hand sides of each input line. Spaces and tabs are then allowed in the left
hand side if they are within a matching pair of quotes. This is useful for certain
kinds of databases, where spaces may form a part of database keys. Note: The
quotes are not removed unless the -remove qualifier is also specified.

-remove
-noremove (default)
This qualifier controls the removal of quotes. If pmdf crdb is instructed to pay
attention to quotes, the quotes are normally retained. If -remove is specified,
pmdf crdb removes the outermost set of quotes from the left hand side of each
input line. Spaces and tabs are then allowed in the left hand side if they are
within a matching pair of quotes. This is useful for certain kinds of databases,
where spaces may form a part of database keys. Note: -remove is ignored if
-quoted is not in effect.

-statistics (default)
-nostatistics
Controls whether or not some simple statistics are output by pmdf crdb, including
the number of entries (lines) converted, the number of exceptions (usually duplicate
records) detected, and the number of entries that could not be converted because
they were too long to fit in the output database. -nostatistics suppresses
output of this information.

-strip_colons
-nostrip_colons (default)
The -strip_colons qualifier instructs pmdf crdb to strip a trailing colon from
the right end of the left hand side of each line it reads from the input file. This is
useful for turning alias file entries into an alias database.

EXAMPLES

1 # pmdf crdb -long_records /pmdf/table/aliases.txt PMDF_ALIAS_DATABASE

The above example shows UNIX commands that may be used to create an alias database
with ‘‘long’’ record entries.

30–29

Utilities on UNIX
crdb

2 C:\>pmdf crdb -long_records C:\pmdf\table\aliases.txt PMDF_ALIAS_DATABASE

The above example shows NT commands that may be used to create an alias database
with ‘‘long’’ record entries.

30–30

Utilities on UNIX
dumpdb

dumpdb—Dump contents of a PMDF crdb database
to a file

Dump contents of a PMDF crdb database to a file.

SYNTAX pmdf dumpdb input-database-spec [output-file-spec]

Command Qualifiers Defaults

None. None.

restrictions None.

PARAMETERS

input-database-spec
The name of the database from which to read entries. PMDF by default will looks
for a current format database of the given name; if none such exists, PMDF will
look for an old format database of the given name. Special keywords such as
PMDF_ALIAS_DATABASE, PMDF_REVERSE_DATABASE, PMDF_FORWARD_
DATABASE, PMDF_GENERAL_DATABASE, PMDF_DOMAIN_DATABASE, and
PMDF_PIPE_DATABASE (the symbolic names for PMDF databases) are sup-
ported; the use of such a special keyword tells PMDF to dump the database spec-
ified by the corresponding PMDF tailor file option.

output-file-spec
The name of the ASCII file to which to write the entries stored in the database. If
no output file is specified, the output is written to stdout.

DESCRIPTION

The dumpdb utility writes the entries in a PMDF crdb database to a flat
ASCII file. In particular, this utility may be used to write the contents of an old
style database (PMDF V5.2 or earlier) to a file from which a new style database
(PMDF V6.0 or later) may be built using the pmdf crdb utility.

EXAMPLES

The following commands may be used to dump the contents of an alias database to
a file, and then to recreate the alias database from that file:

pmdf dumpdb PMDF_ALIAS_DATABASE alias.tmp
pmdf crdb alias.tmp PMDF_ALIAS_DATABASE

30–31

Utilities on UNIX
edit

edit—Edit PMDF configuration files

Edit PMDF configuration files.

SYNTAX pmdf edit [filename [printer]]

Command Qualifiers Defaults

-P
-PT

restrictions This utility is only available on NT.

PARAMETERS

filename
A file name for which PMDF file to edit. This may be either a PMDF symbolic file
name, e.g., PMDF_CONFIG_FILE, PMDF_TABLE:PMDF.CNF, etc., or a normal
Windows file specification, e.g., C:\pmdf\table\pmdf.cnf.

printer
A Windows printer specification, e.g., \\bettyo\monster.

DESCRIPTION

The pmdf edit command launches a document editor similar to the Windows
Notepad application. Unlike Notepad, however, pmdf edit is geared towards
editing PMDF configuration files:

1. Allows multiple files to be edited simultaneously.

2. File Open and Save As operations default to the PMDF table directory.

3. Has printing features oriented towards printing configuration files (line
number display, automatic line wrapping, etc.).

The pmdf edit application is the executable \pmdf\bin\cedit.exe and may
be launched from the desktop by double-clicking on the executable or by double-
clicking on a .cnf file associated with the application. (This association will not
exist until the application has been run once.)

COMMAND
QUALIFIERS

30–32

Utilities on UNIX
edit

-P
Print the specified file on the default printer.

-PT
Print the specified file on the specified printer.

30–33

Utilities on UNIX
find

find—Find a version of a PMDF log file

Find specified version of a PMDF log file.

SYNTAX pmdf find file-pattern

Command Qualifiers Defaults

-f=offset-from-first None
-l=offset-from-last None

restrictions Must have read access to the requested file.

PARAMETERS

file-pattern
A file name pattern for which PMDF log file to find.

DESCRIPTION

The pmdf find utility may be used to find the precise file name of the specified
‘‘version’’ of a PMDF file. PMDF log files have a -uniqueid appended to the file
name to allow for the creation of multiple ‘‘versions’’ of the log file; on UNIX,
the -uniqueid is appended to the very end of the file name (the end of the file
extension), while on NT, the -uniqueid is appended to the end of the name part of
the file name, before the file extension. The pmdf find utility understands these
unique ids and can find the particular file name corresponding to the requested
‘‘version’’ of the file.

The default, if no offset qualifier is specified, is to find the most recent ‘‘version’’
of the file.

COMMAND
QUALIFIERS

-f=offset-from-first
This qualifier is used to specify finding the nth ‘‘version’’ of the file (starting
counting from 0). For instance, to find the earliest (oldest) ‘‘version’’ of the file,
specify -f=0

-l=offset-from-last
This qualifier is used to specify finding the nth from the last ‘‘version’’ of the file
(starting decrementing from 0 as the most recent version). For instance, to find
the most recent (newest) ‘‘version’’ of the file, specify -l=0

30–34

Utilities on UNIX
find

EXAMPLES

1 # pmdf find /pmdf/log/tcp_local_slave.log

This UNIX command will print out the file name of the
/pmdf/log/tcp_local_slave.log-uniqueid file most recently created.

2 # pmdf find /pmdf/log/tcp_bitnet_master.log -f=0

This UNIX command will display the file name of the oldest
/pmdf/log/tcp_bitnet_master.log-uniqueid file.

3 C:\> pmdf find C:\pmdf\log\tcp_local_slave.log

This NT command will print out the file name of the
C:\pmdf\log\tcp_local_slave-uniqueid.log file most recently created.

4 C:\> pmdf find \pmdf\log\tcp_bitnet_master.log -f=0

This NT command will display the file name of the oldest
C:\pmdf\log\tcp_bitnet_master-uniqueid.log file.

30–35

Utilities on UNIX
kill

kill—Kill the specified component

Kill the specified component.

SYNTAX pmdf kill [component]

Command Qualifiers Defaults

None. None.

restrictions On UNIX, must have the same process-id as the process to be killed, or be
superuser. This utility is not available on NT.

PARAMETERS

component
The PMDF component to be killed. Valid values are job_controller, dis-
patcher. If no parameter is specified, all components are killed.

DESCRIPTION The pmdf kill utility immediately and indiscriminately kills the specified process
(using kill -9), even if that process is in the middle of transferring e-mail. So use
of the pmdf shutdown utility, which performs an orderly shutdown, is generally
preferable.

30–36

Utilities on UNIX
license -verify

license -verify—Verify the validity of a PMDF license

On Solaris, Linux, and Windows, verify the validity of a PMDF license file.

SYNTAX pmdf license -verify [file-spec]

restrictions

PARAMETERS

file-spec
The PMDF license file to check. If no file is specified, then all PMDF license files in
the PMDF table directory (normally /pmdf/table on UNIX, or C:\pmdf\table
on NT) are checked.

DESCRIPTION The pmdf license -verify utility is available on Solaris, Linux, and Windows to
check the validity of the syntax, date, and checksum in a PMDF license file. If no
file is specified, then all PMDF license files in the PMDF table directory (normally
/pmdf/table on Solaris or Linux, or C:\pmdf\table on Windows) are checked.

EXAMPLES The following example shows checking a PMDF-MTA license file on a Solaris system:

pmdf license -verify /pmdf/table/PMDF-MTA-SUN.license
License file check ok

30–37

Utilities on UNIX
password

password—Set remote authentication password

Set password for remote authentication, e.g., POP client (APOP), IMAP client (CRAM),
or mailbox filter authentication.

SYNTAX pmdf password [password]

Command Qualifiers Defaults

-create -create
-delete -create
-service=keyword -service=DEFAULT
-show -create
-test -create
-user=username See text

restrictions On UNIX, all operations other than setting one’s own password require privileges.

prompts New password: password

PARAMETERS

password
The password to set. Note that APOP passwords are case sensitive.

DESCRIPTION

The pmdf password utility is used to create and modify PMDF password
database entries. This database may be used by POP clients issuing the
APOP command, by IMAP or POP clients using the CRAM-MD5 authentication
mechanism, or possibly by users authenticating themselves to modify their
personal mailbox filters.

Note that in general, just which source of password authentication informa-
tion is used—whether the PMDF password database, or some other source—is
controlled by the PMDF security configuration file; see Chapter 14. That is, a
connection comes in (POP, IMAP, or mailbox filtering) and is mapped to a security
rule set; the security rule set in the PMDF security configuration then controls
where and how authentication is performed for that connection.

For instance, the DEFAULT security rule set in PMDF’s implicit security
configuration (which applies if no security configuration file exists) checks first
for a PMDF popstore profile password, next for a PMDF password database entry,
and finally falls through to checking for a system password entry.

30–38

Utilities on UNIX
password

Note that APOP and CRAM-MD5 passwords cannot be stored in the system
password file. Therefore, in order to support use of the POP protocol’s APOP com-
mand or AUTH command with CRAM-MD5, or the IMAP protocol’s authenticate
command with CRAM-MD5, the user must have a password entry stored in an
authentication source other than (or in addition to) the system password file. The
PMDF password database can be that additional authentication source.

Thus for instance, for a POP or IMAP connection handled by the DEFAULT
security rule set, a user must either be a PMDF Message Store or PMDF popstore
user (in which case their PMDF user profile password is normally1 sufficient for
remote authentication), or if they are a legacy UNIX message store (Berkeley
mailbox) user then they must have a PMDF password database entry in addition
to their system password file entry.

For mailbox filter connections handled by the DEFAULT security rule set
of PMDF’s implicit security configuration, authentication will be performed
preferentially against the PMDF user profile, if the user has a PMDF user profile
entry, if not then against the PMDF password database, if the user has an entry
in it, and finally, only if the user has neither sort of entry, against the system
password file.

The above discussion regards whether the PMDF password database will
actually be used as the source of authentication information. When the PMDF
password database is used as the source of authentication information, then an
additional issue can arise, namely which of a user’s possibly multiple entries will
be checked for the authentication. That is, a user can have multiple entries in
the PMDF password database, one for each allowed -service value. The sort
of connection (assuming that the PMDF password database is even checked) will
control which -service entry is preferentially checked. Note that the sort of
-service entry checked has nothing to do with the PMDF security configuration
(which instead controlled whether or not the PMDF password database was
queried at all); the sort of -service entry checked when the PMDF password
database is queried has entirely to do with which component of PMDF is doing the
querying (what sort of connection this regards).

Queries by the POP server will first check a user’s -service=POP entry, but
if such an entry does not exist will fall through to the user’s -service=DEFAULT
entry. Queries by the IMAP server will first check a user’s -service=IMAP
entry, but if such an entry does not exist will fall through to the user’s
-service=DEFAULT entry.

Queries for mailbox filtering will check which channel a user matches. For
a user matching a msgstore channel, the mailbox filter query will preferentially
use the user’s -service=IMAP entry, but if such an entry does not exist will
fall through to the user’s -service=DEFAULT entry. For a user matching a
popstore channel, the mailbox filter query will preferentially use the user’s -
service=POP entry, but if such an entry does not exist will fall through to the
user’s -service=DEFAULT entry. For a user matching the local channel, the
mailbox filter query will use the user’s -service=DEFAULT entry.

1 The PMDF Message Store and PMDF popstore, however, have a PWD_ELSEWHERE flag to say that passwords are stored
elsewhere; if this is set, even a PMDF Message Store or PMDF popstore user might use a PMDF password database entry.

30–39

Utilities on UNIX
password

Most sites and users will not want to use -service specific password database
entries. Then each user has one entry, their -service=DEFAULT entry, used
whenever the PMDF password database is queried.

But for sites and users who do want to use -service specific password
database entries, while the above description of -service specific probes may
sound complicated, the goal is simply to query the ‘‘natural’’ password entry for
each case.

COMMAND
QUALIFIERS

-create
Create a PMDF password database entry. This qualifier is the default.

-delete
Delete a user/password entry pair from the PMDF password database.

-service=keyword
Specify for what service a particular password method and password value apply.
The default service keyword is DEFAULT; POP3 and IMAP are other possible
keywords.

-show
Show a user/service/password-method entry in the PMDF password database.
Note that this commmand does not show the password value.

-test
Compare a specified password against a password stored in the PMDF password
database.

-user=username
Set or show a password entry in the PMDF password database for the specified
user. To show all users’ entries specify the asterisk as a value.

EXAMPLES

To add a user jsmith with password secret to the database, use the UNIX command

pmdf password -user=jsmith secret

The user jsmith may change his own password, with prompting so that the password
is not printed on the screen, using the UNIX command

% pmdf password
Password:

To list all usernames that have an entry in the PMDF password database, use the
following command:

pmdf password -show -user="*"

30–40

Utilities on UNIX
password

ERROR MESSAGES

cannot open password file

The PMDF password database does not exist, or could not be opened.

no world privilege

Must be superuser or in the pmdf_world group in order to specify an entry for a user
other than oneself.

30–41

Utilities on UNIX
process

process—Show currently executing PMDF jobs

List currently executing PMDF jobs.

SYNTAX pmdf process

Command Qualifiers Defaults

None. None.

restrictions This utility is not available on NT.

PARAMETERS None.

DESCRIPTION

Show current PMDF processes. Normally, the PMDF Service Dispatcher and
PMDF Job Controller should always be present; additional processes may be
present if messages are currently being processed, or if certain additional PMDF
components are in use.

EXAMPLES

The following command shows current PMDF processes:

pmdf process
USER PID S VSZ RSS STIME TIME COMMAND
pmdf 26311 S 12264 2128 Mar_10 0:06 /pmdf/bin/dispatcher
pmdf 26323 S 17904 1640 Mar_10 0:21 /pmdf/bin/job_controller

30–42

Utilities on UNIX
purge

purge—Purge old log files

Purge PMDF log files.

SYNTAX pmdf purge [file-pattern]

Command Qualifiers Defaults

-day=value None
-hour=value None
-num=value -num=5

restrictions On UNIX, must have write access to the directory containing the file(s) to be
purged.

PARAMETERS

file-pattern
A file name pattern for which PMDF log files to purge. The default, if no file name
pattern is specified, is to purge all the files in the PMDF log directory. Note that
when specifying purging a particular sort of log file, the entire file path must be
specified.

DESCRIPTION

pmdf purge purges back older versions of PMDF log files. (pmdf purge can
tell which log files are older based on the uniqueid strings terminating PMDF
log file names.)

COMMAND
QUALIFIERS

-day=d
Specifying -day=d results in purging all but the last d days worth of log files. Note
that here ‘‘day’’ means a 24 hour period, rather than a calendar day (midnight to
midnight); i.e., all but the log files created in the last 24d hours will be purged.

-hour=h
Specifying -hour=h results in purging all but the last h hours worth of log files.

-num=n
Specifying -num=n results in purging all but the last n log files. The default is
-num=5.

30–43

Utilities on UNIX
purge

EXAMPLES

1 # pmdf purge

This UNIX command will purge all but the last five versions of each sort of log file in
the PMDF log directory, /pmdf/log.

2 # pmdf purge -num=10 /pmdf/log/tcp_local_master.log

This UNIX command will purge all but the last ten versions of any
/pmdf/log/tcp_local_master.log-* files.

3 C:\> pmdf purge

This NT command will purge all but the last five versions of each sort of log file in the
PMDF log directory, usually C:\pmdf\log.

4 C:\> pmdf purge -num=10 /pmdf/log/tcp_local_master.log

This NT command will purge all but the last ten versions of any tcp_local_master-
*.log files in the PMDF log directory.

30–44

Utilities on UNIX
qclean

qclean—Hold or delete matching messages from the
PMDF queue area

Hold or delete message files from the PMDF queue area that contain specified
substrings in their envelope From: address, Subject: header, or message content.

SYNTAX pmdf qclean [channel]

Command Qualifiers Defaults

-content=substring None
-database -database
-delete -hold
-directory_tree -database
-env_from=substring None
-hold -hold
-match=keyword -match=AND
-min_length=n -min_length=24
-subject=substring None
-threads=n -nothreads
-verbose -noverbose

restrictions On UNIX, privileges sufficient to read and delete files in the PMDF channel queue
directory tree, as well as read and update the PMDF queue cache database, are
required.

PARAMETERS

channel
Optional parameter which specifies a specific PMDF channel area to be searched
for matching messages. * or ? wildcard characters may be used in the channel
specification.

DESCRIPTION

Hold or delete message files containing specific substrings in their envelope
From: address, Subject: line, or content. By default, message files are held (-
hold). Specify -delete to instead delete matching message files. The -content,
-env_from, and -subject qualifiers are used to specify the substrings for which
to search.

Any combination of -content, -env_from, and -subject may be specified.
However, only one of each may be used. The -match qualifier controls whether
a message file must contain all (-match=AND, the default) or only one of (-
match=OR) the specified substrings in order to be held or deleted. The default
is -match=AND.

30–45

Utilities on UNIX
qclean

By default, each substring to be searched for must be at least 24 bytes long
(-min_length=24). This is a safety measure: the longer the substring, the less
likely the chance of false ‘‘hits’’. Use the -min_length qualifier to override this
limit. Also by default, only message files identified by the queue cache database
are searched (-database). Use the -directory_tree qualifier to instead search
all message files actually present in the channel queue directory tree.

The optional channel parameter restricts the search to message files in the
specified channel. The channel parameter may use * and ? wild cards.

The -threads qualifier may be used to accelerate searching on multiprocessor
systems by dividing the work amongst multiple, simultaneously running threads.
To run n simultaneous searching threads, specify -threads=n. The value n must
be in the range 1-8. The default is -nothreads.

COMMAND
QUALIFIERS

-content=substring
-env_from=substring
-subject=substring
The -content, -env_from, and -subject qualifiers are used to specify the
substrings for which to search. Any combination of -content, -env_from, and
-subject may be specified. However, only one of each may be used. When a
combination of such qualifiers is used, the -match qualifier controls whether the
qualifiers are interpreted as further restrictions (-match=AND), or as alternatives
(-match=OR).

-database (default)
-directory_tree
The -database qualifier, the default, specifies that only message files identified
by the queue cache database be searched. Use the -directory_tree qualifier to
instead search all message files actually present in the channel queue directory
tree.

-delete
-hold (default)
-hold is the default and means that matching message files will be held. Specify
-delete to instead delete matching message files.

-match=keyword
The default is -match=AND, meaning that any criteria specified by -content, -
env_from, and -subject qualifiers must all match in order for the current hold
or delete operation to be applied. Specifying -match=OR means that a message
will match as long as at least one such criterion matches.

-min_length=n
By default, each substring to be searched for must be at least 24 bytes long (-
min_length=24). This is a safety measure: the longer the substring, the less
likely the chance of false ‘‘hits’’. Use the -min_length qualifier to override this
limit.

30–46

Utilities on UNIX
qclean

-threads=n
-nothreads (defaults)
The -threads qualifier may be used to accelerate searching on multiprocessor
systems by dividing the work amongst multiple, simultaneously running threads.
To run n simultaneous searching threads, specify -threads=n. The value n must
be an integer in the range 1-8. The default is -nothreads.

-verbose
-noverbose (default)
The -verbose qualifier may be used to request that the utility print out
information about what it is doing as it operates.

EXAMPLES

1 # pmdf qclean -min_length=11 -subject="real estate"
-env_from="ownership.com"
%QM-I-QCLISTING, building a list of message files to scan

from the queue cache
%QM-I-SCANNING, scanning 72 message files
%QM-I-SCANNED, scanned 72 message files in 3.7500 seconds

(19.20 messages/second)
%QM-I-HELD, held 5 message files

The above UNIX example shows holding all message files in the PMDF queue area that
have the string ‘‘real estate’’ in the Subject: header and have the string ‘‘ownership.com’’
in the envelope From: address.

2 C:\> pmdf qclean -min_length=12 -subject="real estate"
-env_from="ownership.com"
%QM-I-QCLISTING, building a list of message files to scan from

the queue cache
%QM-I-SCANNING, scanning 72 message files
%QM-I-SCANNED, scanned 72 message files in 3.7500 seconds

(19.20 messages/second)
%QM-I-HELD, held 5 message files

The above NT example shows holding all message files in the PMDF queue area that
have the string ‘‘real estate’’ in the Subject: header and have the string ‘‘ownership.com’’
in the envelope From: address.

30–47

Utilities on UNIX
qtop

qtop—Display frequently occurring fields in PMDF
queue area messages

Display the most frequently occurring envelope From:, Subject:, or message content
fields found in message files in the channel queues.

SYNTAX pmdf qtop [channel]

Command Qualifiers Defaults

-content=offset-specifier None
-database -database
-directory_tree -database
-env_from=offset-specifier None
-min_count=n -min_count=2
-subject=offset-specifier -subject=(START=1,LENGTH=2147483647)
-threads=n -nothreads
-top=n -top=20
-verbose -noverbose

restrictions On UNIX, privileges sufficient to read files in the PMDF channel queue directory
tree, as well as read the PMDF queue cache database, are required.

PARAMETERS

channel
Optional parameter which specifies a specific PMDF channel area to be scanned
for string frequencies. * or ? wildcard characters may be used in the channel
specification.

DESCRIPTION Display the most frequently occurring envelope From:, Subject:, or message content
fields found in message files in the channel queues. By default, only Subject: fields
are shown (-subject). Use -env_from to display frequent envelope From: fields
or -content to display frequent message contents. Any combination of -content,
-env_from, and -subject may be specified. However, only one of each may be
used.

The optional channel parameter restricts the scan to message files in the
specified channel. The channel parameter may use * and ? wild cards.

By default, the top 20 most frequently occurring fields are shown (-top=20)
provided that they occur 2 or more times (-min_count=2). Use the -top and
-min_count qualifiers to alter this behavior. Also by default, only message files

30–48

Utilities on UNIX
qtop

identified by the queue cache database are scanned (-database). Use the -
directory_tree qualifier to instead scan all message files actually present in
the channel queue directory tree.

The -threads qualifier may be used to accelerate scanning on multiprocessor
systems by dividing the work amongst multiple, simultaneously running threads.
To run n simultaneous scanning threads, specify -threads=n. The value n must
be in the range 1-8. The default is -nothreads.

The -content, -env_from, and -subject qualifiers accept the optional
qualifiers start=n and length=n. These qualifiers indicate the starting offset
and number of bytes in the field to consider. The defaults are

-content=(START=1,LENGTH=256),
-env_from=(START=1,LENGTH=2147483647), and
-subject=(START=1,LENGTH=2147483647).

Use of these qualifiers is useful when, for example, trying to identify occurrences
of a spam message which uses random text at the start of the Subject: line.

COMMAND
QUALIFIERS

-content[=offset-specifier]
-env_from[=offset-specifier]
-subject[=offset-specifier]
The -content, -env_from, and -subject qualifiers are used to specify which
frequently occurring fields should be displayed. By default, only Subject: fields are
shown (-subject). Use -env_from to display frequent envelope From: fields or
-content to display frequent message contents. Any combination of -content,
-env_from, and -subject may be specified. However, only one of each may be
used.

The -content, -env_from, and -subject qualifiers accept the optional qualifiers
START=n and LENGTH=n. These qualifiers indicate the starting offset and number
of bytes in the field to consider. The defaults are

-content=(START=1,LENGTH=256),
-env_from=(START=1,LENGTH=2147483647), and
-subject=(START=1,LENGTH=2147483647).

Use of these qualifiers is useful when, for example, trying to identify occurrences
of a spam message which uses random text at the start of the Subject: line.

-database (default)
-directory_tree
The -database qualifier, the default, specifies that only message files identified
by the queue cache database be searched. Use the -directory_tree qualifier to
instead search all message files actually present in the channel queue directory
tree.

-min_count=n
By default, a string must occur at least 2 times, -min_count=2, in order to be
displayed.

30–49

Utilities on UNIX
qtop

-threads=n
-threads (default)
The -threads qualifier may be used to accelerate searching on multiprocessor
systems by dividing the work amongst multiple, simultaneously running threads.
To run n simultaneous searching threads, specify -threads=n. The value n must
be an integer in the range 1-8. The default is -nothreads.

-top=n
By default, the top 20 most frequently occurring fields are shown, (-top=20).

-verbose
-noverbose (default)
The -verbose qualifier may be used to request that the utility print out
information about what it is doing as it operates.

EXAMPLES

1 # pmdf qtop -subject -env_from
%QM-I-QCLISTING, building a list of message files to scan from

the queue cache
%QM-I-SCANNING, scanning 73 message files
%QM-I-SCANNED, scanned 73 message files in 0.5600 seconds

(130.36 messages/second)
Top 20 Envelope From: addresses which occur 2 or more times
Count Envelope From: address
====== ==

27
10 owner-ex-list@example.com
2 owner-test-list@example.com

Top 20 Subject: header lines which occur 2 or more times
Count Subject
====== ==

6 Re: your ex-list posting
2 Test posting to test-list

The above UNIX example shows displaying the most frequently occurring Subject: and
envelope From: addresses amongst messages in the PMDF queue area.

2 C:\> pmdf qtop -subject=START=12 -min_count=15
%QM-I-QCLISTING, building a list of message files to scan from

the queue cache
%QM-I-SCANNING, scanning 73 message files
%QM-I-SCANNED, scanned 73 message files in 0.5600 seconds

(130.36 messages/second)
Top 20 Subject: header lines which occur 15 or more times
Count Subject
====== ==

25 ake money fast $$$

The above NT example shows displaying the most frequently occuring Subject: lines
that occur 20 times or more, starting from 12 characters into the Subject: header value.
This may be useful when trying to spot spam that inserts random characters at the
beginning of the Subject: header value.

30–50

Utilities on UNIX
restart

restart—Restart PMDF jobs

Restart PMDF components.

SYNTAX pmdf restart [component]

Command Qualifiers Defaults

None. None.

restrictions On UNIX, must have superuser privileges in order to use this utility.

PARAMETERS

component
Optional parameter which specifies a specific PMDF component to be restarted. On
UNIX, the components which may be restarted with this utility are job_controller,
dispatcher, smtp, pop3, imap, http, and poppassd. Note that restarting the
PMDF Service Dispatcher, i.e., the dispatcher component, effectively restarts
all the service components it handles, which may include smtp, pop3 (the sys-
tem mailbox POP server), pop_server (the PMDF MessageStore POP server),
imap (the system mailbox IMAP server), imap_server (the PMDF MessageStore
IMAP server), http, and poppassd servers. If no component name is given, then
all active components will be restarted.

DESCRIPTION

Detached PMDF processes should be restarted whenever the PMDF config-
uration is altered—these processes load information from the configuration once
only and need to be restarted in order for configuration changes to become visible
to them. In addition to general PMDF configuration files such as the pmdf.cnf
file, note that components such as the Service Dispatcher have their own specific
configuration files, e.g., dispatcher.cnf, and should be restarted after changes
to any of these files.

If no component name is specified, then the pmdf restart utility stops
any old PMDF Job Controller or PMDF Service Dispatcher jobs that might be
running, and restarts the PMDF Job Controller and PMDF Service Dispatcher. If
a component parameter is specified, then only detached processes associated with
that component will be restarted.

On UNIX, the standard component names are:

30–51

Utilities on UNIX
restart

Component Description

circuit_check Detached process that monitors loopback message delivery.
dispatcher PMDF multithreaded Service Dispatcher handling services such as

SMTP, POP, IMAP, and HTTP servers.
http HTTP server processes.
imap This restarts IMAP server processes serving out PMDF MessageStore

mailboxes, and restarts IMAP server processes serving out system
mailboxes.

imap_server IMAP server processes serving out PMDF MessageStores mailboxes.
job_controller PMDF Job Controller.
pop_server PMDF MessageStore POP server processes (serving out PMDF

MessageStore mailboxes and PMDF popstore mailboxes).
pop3 This restarts PMDF MessageStore POP server processes (serving out

PMDF MessageStore mailboxes and PMDF popstore mailboxes), and
also restarts POP server processes serving out system mailboxes.

poppassd POPPASSD server processes.
smtp SMTP server processes.

EXAMPLES

1 # pmdf restart

The above UNIX command restarts the PMDF jobs.

2 C:\> pmdf restart

The above NT command restarts the PMDF jobs.

30–52

Utilities on UNIX
return

return—Return a mail message

Return (bounce) a mail message to its originator.

SYNTAX pmdf return message-file-spec

Command Qualifiers Defaults

None. None.

restrictions On UNIX, must have superuser privileges in order to use this utility.

PARAMETERS

message-file-spec
File specification of the message file to return. The specification may include
wildcards, but if so, the specification must be quoted.

DESCRIPTION

The pmdf return utility returns a message to the message’s originator.
The returned message is in two parts. The first part explains the reason why
the message is being returned; the text of the reason is contained in the file
return_bounced.txt file located in the PMDF language-specific directory. The
second part of the returned message contains the original message itself.

EXAMPLES

1 # pmdf return ’/pmdf/queue/l/*’

The above UNIX command will cause all of the messages currently in the local channel,
l, to be returned to their respective originators (i.e., ‘‘bounced’’).

2 C:\> pmdf return ’C:\pmdf\queue\tcp_local*’

The above NT command will cause all of the messages currently in the tcp_local channel
to be returned to their respective originators (i.e., ‘‘bounced’’).

30–53

Utilities on UNIX
run

run—Process messages in a specified channel

Process messages in a specified channel.

SYNTAX pmdf run channel [poll]

Command Qualifiers Defaults

None. None.

restrictions On UNIX, must have superuser privileges in order to use this utility.

PARAMETERS

channel
This parameter specifies the channel to be processed.

poll
If poll is not specified, the channel program will only attempt to run if there are
actually messages for that channel waiting to be processed.

DESCRIPTION

The pmdf run utility processes the messages in the channel specified by the
channel parameter. Output during processing will be displayed at your terminal,
which will be tied up for the duration of the operation of the utility.

See also the pmdf submit and pmdf submit_master utilities, which, unlike
pmdf run, will not tie up your terminal.

EXAMPLES

1 # pmdf run tcp_local poll

The above UNIX command may be used to process any messages in the tcp_local
channel.

2 C:\> pmdf run tcp_local poll

The above NT command may be used to process any messages in the tcp_local
channel.

30–54

Utilities on UNIX
shutdown

shutdown—Shut down PMDF jobs

Shut down PMDF components.

SYNTAX pmdf shutdown [component]

Command Qualifiers Defaults

None. None.

restrictions On UNIX, must have superuser privileges in order to use this utility.

PARAMETERS

component
Optional parameter which specifies a specific PMDF component to be shut down.
On UNIX, the components that may be specified are job_controller, dis-
patcher, smtp, pop_server (the PMDF MessageStore POP server), pop3 (the
system mailbox POP server), imap (the system mailbox IMAP server), imap_server
(the PMDF MessageStore IMAP server), http, poppassd, or circuit_check, or
indeed any specific Dispatcher service by name (as defined in the Dispatcher con-
figuration file). Note that shutting down the PMDF Service Dispatcher, i.e., the
dispatcher component, shuts down all the service components it handles, which
may include smtp, pop3, imap, http, and poppassd, and any other Dispatcher
services. If no component name is given then all active components will be shut-
down.

DESCRIPTION

The pmdf shutdown utility shuts down the PMDF Job Controller and the
PMDF Service Dispatcher. Note that shutting down the PMDF Service Dispatcher
shuts down all services (e.g., SMTP, POP3, POPPASSD, IMAP, and HTTP.

Note that on NT, an alternate way of shutting down the Dispatcher and Job
Controller is to go to the Services icon under the Control Panel, and then stop
them.

On UNIX, pmdf shutdown force can be used to shut down all PMDF
processes forcefully, and pmdf shutdown wait can be used to wait until all PMDF
processes have terminated on their own. Both of these commands must be used
with caution because normally server processes like IMAP will stay up as long as
there are active connections.

30–55

Utilities on UNIX
shutdown

EXAMPLES

1 # pmdf shutdown

The above UNIX command shuts down the PMDF jobs.

2 C:\> pmdf shutdown

The above NT command shuts down the PMDF jobs.

30–56

Utilities on UNIX
startup

startup—Start PMDF jobs

Start the PMDF Job Controller and the PMDF Service Dispatcher.

SYNTAX pmdf startup [component]

Command Qualifiers Defaults

None. None.

restrictions On UNIX, must have superuser privileges in order to use this utility.

PARAMETERS

component
Optional parameter which specifies a specific PMDF component to be started:
job_controller or dispatcher or circuit_check. If no component name
is given, then all active components will be started. Alternatively, post may be
specified to cause the PMDF periodic delivery job to be executed immediately, or
return may be specified to cause the PMDF periodic return job to be executed
immediately.

DESCRIPTION

The pmdf startup utility starts up detached PMDF processes. If no
component parameter is specified, then the PMDF Job Controller and PMDF
Service Dispatcher are started. Note that starting the Service Dispatcher starts
all services the Service Dispatcher is configured to handle, which may include, for
instance, SMTP, POP3, POP_SERVER, IMAP_SERVER, IMAP, and HTTP servers.
If a component parameter is specified, then only detached process associated with
that component will be started. The standard component names are

Component Description

circuit_check Detached loopback message monitor process.
dispatcher Multithreaded Service Dispatcher.
job_controller Job Controller handling PMDF processing jobs
post Run the PMDF periodic delivery job
return Run the PMDF periodic return job

Note the services handled by the PMDF multithreaded Service Dispatcher
must be started by starting the PMDF Service Dispatcher; only services not
being handled by the PMDF Service Dispatcher can be individually started via
the pmdf startup utility. The Service Dispatcher may be configured to handle
various services, e.g., the multithreaded SMTP, POP3, POP_SERVER, IMAP,
IMAP_SERVER, and HTTP servers. See Chapter 11 for details.

30–57

Utilities on UNIX
startup

EXAMPLES

1 # pmdf startup

The above UNIX command starts the PMDF Job Controller and PMDF Service
Dispatcher.

2 C:\> pmdf startup

The above NT command starts the PMDF Job Controller and PMDF Service Dispatcher.

30–58

Utilities on UNIX
submit

submit—Process messages in a specified channel

Process messages in a specified channel.

SYNTAX pmdf submit channel [poll]

Command Qualifiers Defaults

None. None.

restrictions On UNIX, must have superuser privileges in order to use this utility.

PARAMETERS

channel
This parameter specifies the channel to be processed.

poll
If poll is not specified, the channel program will only attempt to run if there are
actually messages for that channel waiting to be processed.

DESCRIPTION

The pmdf submit utility forks a process to process the messages in the channel
specified by the channel parameter.

See also the synonymous pmdf submit_master utility, and the pmdf run
utility, which runs at your terminal, rather than as a child process.

EXAMPLES

1 # pmdf submit tcp_local poll

The above UNIX command may be used to process any messages in the tcp_local
channel.

2 C:\> pmdf submit tcp_local poll

The above NT command may be used to process any messages in the tcp_local channel.

30–59

Utilities on UNIX
submit_master

submit_master—Process messages in a specified
channel

Process messages in a specified channel —a synonym for pmdf submit.

SYNTAX pmdf submit_master channel [poll]

Command Qualifiers Defaults

None. None.

restrictions On UNIX, must have superuser privileges in order to use this utility.

PARAMETERS

channel
This parameter specifies the channel to be processed.

poll
If poll is not specified, the channel program will only attempt to run if there are
actually messages for that channel waiting to be processed.

DESCRIPTION

pmdf submit_master is a synonym for pmdf submit.

The pmdf submit utility forks a process to process the messages in the channel
specified by the channel parameter.

See also the synonymous pmdf submit utility, and the pmdf run utility, which
runs at your terminal, rather than as a child process.

EXAMPLES

1 # pmdf submit_master tcp_local poll

The above UNIX command may be used to process any messages in the tcp_local
channel.

2 C:\> pmdf submit_master tcp_local poll

The above NT command may be used to process any messages in the tcp_local channel.

30–60

Utilities on UNIX
test -mapping

test -mapping—Test a mapping table

Test a mapping table in the mapping file.

SYNTAX pmdf test -mapping [input-string]

Command Qualifiers Defaults

-flags=list-of-characters -noflags
-image_file -image_file
-mapping_file=file-spec -mapping_file=PMDF_MAPPING_FILE
-option_file=file-spec -option_file=PMDF_OPTION_FILE
-table=table-name None

restrictions None.

prompts Enter table name: table-name

PARAMETERS

input-string
Optional input string to map.

DESCRIPTION

pmdf test -mapping may be used to test the behavior of a mapping table
in the mapping file. The string resulting from mapping an input string will be
output along with a list of any metacharacters specified in the output string.

If an input string is supplied on the command line, then only the result of
mapping that input string will be output. If no input string is specified pmdf test
-mapping will enter a loop, prompting for an input string, mapping that string,
and prompting again for another input string. pmdf test -mapping will exit
when a CTRL/D (UNIX) or CTRL/Z (NT) is entered.

COMMAND
QUALIFIERS

-flags=list-of-characters
-noflags
The -flags qualifier is used to specify particular flags to set during the mapping
testing; for instance, the E (envelope), B (header/body), or I (message id) flags
when testing a REVERSE mapping.

30–61

Utilities on UNIX
test -mapping

-image_file
-noimage_file
When the -image_file qualifier is specified (the default), PMDF will load
the compiled configuration file PMDF_CONFIG_DATA. When -noimage_file is
specified, pmdf test -mapping will unconditionally ignore any compiled mapping
information and instead read mapping information from the mapping file itself.

-mapping_file=filename
This qualifier instructs pmdf test -mapping to use the specified mapping file
rather than the default mapping file, PMDF_MAPPING_FILE.

This qualifier has no effect unless -noimage_file is specified or no compiled
configuration exists; use of any compiled configuration will preclude reading any
sort of mapping file.

-option_file=filename
-nooption_file
This qualifier instructs pmdf test -mapping to use the specified option file rather
than the default option file PMDF_OPTION_FILE.

This qualifier has no effect unless -noimage_file is specified or no compiled
configuration exists; use of any compiled configuration will preclude reading any
sort of option file.

Use of the qualifier -nooption_file will prevent the file PMDF_OPTION_FILE
from being read in when there is no compiled configuration.

-table=table-name
This qualifier specifies the name of the mapping table to test. If this qualifier is
not specified, then pmdf test -mapping will prompt for the name of a table to
use.

EXAMPLES

% pmdf test -mapping -noimage_file -mapping_file=/pmdf/table/pager_table.sample
Enter table name: PAGER
Input string: H|From: "Daniel C. Newman"
<dan@example.com> (Doof City)
Output string: H|F:dan
Output flags: [0, 1, 2, ’Y’ 89]
Input string: ^D
%

In the above UNIX example, the sample PAGER mapping is tested. The -mapping_file
qualifier is used to select the mapping file pager_table.sample instead of the default
mapping file.

30–62

Utilities on UNIX
test -mapping

C:\> pmdf test -mapping -noimage_file
-mapping_file=C:\pmdf\table\mac_mappings.sample
Enter table name: MAC-TO-MIME-CONTENT-TYPES
Input string: BINHEX|7344424e|4d535744|Test.doc
Output string: APPLICATION/MSWORD
Output flags: [0, ’Y’ (89)]
Input string: ^Z
C:\>

In the above NT example, the sample MAC-TO-MIME-CONTENT-TYPES mapping is
tested. The -mapping_file qualifier is used to select the mapping file
mac_mappings.sample instead of the default mapping file.

30–63

Utilities on UNIX
test -match

test -match—Test a mapping wildcard pattern

Test a mapping wildcard pattern.

SYNTAX pmdf test -match

Command Qualifiers Defaults

None. None.

restrictions None.

prompts Pattern: mapping-pattern
Target: target-string

PARAMETERS None.

DESCRIPTION

pmdf test -match may be used to test a mapping pattern, particularly, to
test wildcard and glob matching.

When invoked, pmdf test -match prompts for a pattern and then for a target
string to compare against the pattern, and will output whether or not the target
string matched and if it did match, which characters in the target string matched
which wildcard or glob of the pattern. pmdf test -match will loop, prompting for
input, until exitted with a CTRL/D (UNIX) or CTRL/Z (NT).

EXAMPLES

30–64

Utilities on UNIX
test -match

% pmdf test -match
Pattern: $[ax1]*@*.example.com
[1S] cglob [1ax]
[2] "@"
[3S] glob, req 109, reps 2
[4] "."
[5] "a"
[6] "c"
[7] "m"
[8] "e"
[9] "."
[10] "c"
[11] "o"
[12] "m"

Target: xx11a@sys1.example.com
Match.
0 - xx11a
1 - sys1
Pattern: $[ax1]*@*.example.com
[1S] cglob [1ax]
[2] "@"
[3S] glob, req 109, reps 2
[4] "."
[5] "a"
[6] "c"
[7] "m"
[8] "e"
[9] "."
[10] "c"
[11] "o"
[12] "m"

Target: 12a@node.example.com
No match.
Pattern: $[ax1]*@*.example.com
[1S] cglob [1ax]
[2] "@"
[3S] glob, req 109, reps 2
[4] "."
[5] "a"
[6] "c"
[7] "m"
[8] "e"
[9] "."
[10] "c"
[11] "o"
[12] "m"

Target: 1xa@node.example.com
Match.
0 - 1xa
1 - node
Pattern: ^D
%

In the above UNIX example, the sample mapping pattern $[ax1]*@*.example.com
is tested for several sample target strings.

30–65

Utilities on UNIX
test -match

C:\> pmdf test -match
Pattern: $(1.2.3.0/24)
[1S] ipv4 [1.2.3.0/255.255.255.0]

Target: 1.2.3.4
Match.
0 - 1.2.3.4
Pattern: $(1.2.3.0/24)
[1S] ipv4 [1.2.3.0/255.255.255.0]

Target: 1.2.8.0
No match.
Pattern: ^Z
C:\>

In the above NT example, the sample mapping pattern $(1.2.3.0/24) is tested or
two sample target strings.

30–66

Utilities on UNIX
test -rewrite

test -rewrite—Test address rewriting

Test address rewriting specified by a PMDF configuration.

SYNTAX pmdf test -rewrite [test-address]

Command Qualifiers Defaults

-alias_file=file-spec -alias_file=PMDF_ALIAS_FILE
-channel -channel
-check_expansions -nocheck_expansions
-configuration_file=file-spec -configuration_file=PMDF_CONFIG_FILE
-database=database-list See text
-debug -nodebug
-delivery_receipt See text
-destination_channel=channel None
-filter -nofilter
-from=address -from=postmaster@localhost
-grey=setting -grey=0
-image_file -image_file
-input=input-file-spec -input=stdin
-local_alias=value -nolocal_alias
-mapping_file=file-spec -mapping_file=PMDF_MAPPING_FILE
-option_file=file-spec -option_file=PMDF_OPTION_FILE
-output=output-file-spec output=stdout
-read_receipt See text
-reprocessing -reprocessing
-restricted=setting -restricted=0
-source_channel=channel -source_channel=l

restrictions None.

prompts Address: test-address

PARAMETERS

test-address
Optional parameter specifying one or more addresses to rewrite.

DESCRIPTION

pmdf test -rewrite provides a straightforward test facility for examining
PMDF’s address rewriting and channel mapping process without actually sending
any message. Various qualifiers can be used to control whether pmdf test

30–67

Utilities on UNIX
test -rewrite

-rewrite uses the configuration text files or the compiled configuration (if
present), the amount of output produced, and so on.

If a test address is specified on the command line, pmdf test -rewrite
applies PMDF address rewriting to that address, reports the results, and exits.
If no test address is specified, pmdf test -rewrite will enter a loop, prompting
for an address, rewriting it, and prompting again for another address. pmdf test
-rewrite will exit when CTRL/D (UNIX) or CTRL/Z (NT) is entered.

When testing an alias corresponding to a mailing list which has an AUTH_
or CANT_ type of named parameter controlling who may post to the list, or
when testing rewriting when SEND_ACCESS or related mapping tables are in
effect, note that by default pmdf test -rewrite uses as the posting address the
return address of the local postmaster as specified by the PMDF option RETURN_
ADDRESS. To specify a different posting address for the rewriting process, use
the -from qualifier.

Must be run as superuser or by a user in the pmdf_world group.

COMMAND
QUALIFIERS

-alias_file=filename
pmdf test -rewrite normally consults the default alias file named by the PMDF_
ALIAS_FILE option of the PMDF tailor file (UNIX) or PMDF Tailor Registry
entry (NT) during the rewriting process. The -alias_file qualifier specifies
an alternate file for pmdf test -rewrite to use.

This qualifier has no effect unless -noimage_file is specified or no compiled
configuration exists; use of any compiled configuration precludes reading any sort
of alias file.

-channel (default)
-nochannel
This qualifier controls whether the utility outputs detailed information, e.g.,
channel flags, regarding the channel an address matches.

-check_expansions
-nocheck_expansions (default)
This qualifier controls checking of alias address expansion. Normally PMDF
considers the expansion of an alias to have been successful if any of the addresses
to which the alias expands are legal. The -check_expansions qualifier causes a
much stricter policy to be applied: pmdf test -rewrite -check_expansions
checks each expanded address in detail and reports a list of any addresses,
expanded or otherwise, that fail to rewrite properly. For addresses that match
the L channel, PMDF also performs validity checks.

-configuration_file=filename
pmdf test rewrite normally consults the default configuration file named by
the PMDF_CONFIG_FILE option of the PMDF tailor file (UNIX) or PMDF Tailor
Registry entry (NT) during the rewriting process. The -configuration_file

30–68

Utilities on UNIX
test -rewrite

qualifier specifies an alternate file to use in place of the file named by PMDF_
CONFIG_FILE.

This qualifier has no effect unless -noimage_file is specified or no compiled
configuration exists; use of any compiled configuration will preclude reading any
sort of configuration file.

-database=database-list
pmdf test -rewrite normally consults the usual PMDF databases during its
operation. This qualifier is used to either disable references to various databases
or to redirect the database paths to nonstandard locations.

The allowed list items are alias, noalias, personal_alias, nopersonal_alias,
domain, nodomain, forward, noforward, general, nogeneral, reverse, and
noreverse. The list items beginning with ‘‘no’’ disable use of the corresponding
database. The remaining items require an associated value, which is taken to be
the name of that database.

-debug
-nodebug (default)
The address rewriting process is capable of producing additional, detailed expla-
nations of what actions are taken and why. The -debug qualifier enables this
output; it is disabled by default.

-delivery_receipt
-nodelivery_receipt
The -delivery_receipt and -nodelivery_receipt qualifiers, which explic-
itly set the corresponding receipt request flags, can be useful when testing the
handling of receipt requests when rewriting forwarded addresses or mailing lists.

-filter
-nofilter (default)
The -filter qualifier may be used to have pmdf test -rewrite output any
filters (personal mailbox, channel, or system) applying for the address in question.

-destination_channel= channel
The -destination_channel qualifier controls for which destination or target
channel pmdf test -rewrite rewrites addresses. Some address rewriting
is destination channel specific; this qualifier allows control of the assumed
destination channel.

-from=address
-nofrom
The -from qualifier controls what envelope From: address is used for access
control probes and mailing list access probes. If this qualifier is omitted, the
postmaster return address is used for such probes. Specifying -nofrom tells PMDF
to use an empty envelope From: address for access probes.

-grey=setting
This qualifier controls the setting of the Grey Book flag. By default, this flag has
value 0. When set to 1, -grey=1, the Grey Book flag will be set on and addresses
will be rewritten using the Grey Book format.

This flag is used to force rewriting of address in accordance with the JANET
(Grey Book) specifications. The most significant effect is that domain specifications

30–69

Utilities on UNIX
test -rewrite

appear in reverse order, e.g., edu.claremont.ymir and not ymir.claremont.edu. See
Section 2.3.4.83 for further details.

Grey Book address formats are not currently used in PMDF, so this qualifier’s
usefulness is problematic at best.

-image_file (default)
-noimage_file
When the -image_file qualifier is specified (the default), pmdf test -rewrite
will load the compiled configuration from the file named by the PMDF_CONFIG_
DATA option in the PMDF tailor file (UNIX) or PMDF Tailor Registry entry (NT).
PMDF_CONFIG_DATA is usually /pmdf/lib/config_data on UNIX, and usu-
ally C:\pmdf\lib\config_data on NT. When -noimage_file is specified, pmdf
test -rewrite unconditionally ignores any previously compiled configuration and
instead reads configuration information from the various text files.

-input=input-file-spec
By default, pmdf test -rewrite takes input from stdin. The -input qualifier
may be used to specify a different source for input.

-local_alias=value
-nolocal_alias (default)
This qualifier controls the setting of an alias for the local host. PMDF supports
multiple ‘‘identities’’ for the local host; the local host may have a different identity
on each channel. This qualifier may be used to set the local host alias to the
specified value; appearances of the local host in rewritten addresses will be
replaced by this value.

-mapping_file[=file-spec]
-nomapping_file
This qualifier instructs pmdf test -rewrite to use the specified mapping file
rather than the default mapping file named by the PMDF_MAPPING_FILE option
in the PMDF tailor file (UNIX) or PMDF Tailor Registry entry (NT). PMDF_
MAPPING_FILE usually points to the file /pmdf/table/mappings (UNIX) or
C:\pmdf\table\mappings (NT).

This qualifier has no effect unless -noimage_file was specified or no compiled
configuration exists; use of any compiled configuration will preclude reading the
mappings file.

Use of the -nomapping_file qualifier will prevent the PMDF_MAPPING_FILE
file from being read in when there is no compiled configuration.

-option_file[=filename]
-nooption_file
This qualifier instructs pmdf test -rewrite to use the specified option file
rather than the default option file named by the PMDF_OPTION_FILE option
in the PMDF tailor file (UNIX) or PMDF Tailor Registry entry (NT). PMDF_
OPTION_FILE usually points to the file /pmdf/table/options (UNIX) or
C:\pmdf\table\options (NT).

This qualifier has no effect unless -noimage_file is specified or no compiled
configuration exists; use of any compiled configuration will preclude reading any

30–70

Utilities on UNIX
test -rewrite

sort of option file.

Use of the -nooption_file qualifier will prevent the PMDF_OPTION_FILE file
from being read in when there is no compiled configuration.

-output=output_file_spec
By default, pmdf test -rewrite writes output to stdout. The -output qualifier
may be used to direct the output of pmdf test -rewrite elsewhere.

-read_receipt
-noread_receipt
The -read_receipt and -noread_receipt qualifiers, which explicitly set the
corresponding receipt request flags, can be useful when testing the handling of
receipt requests when rewriting forwarded addresses or mailing lists.

-reprocessing (default)
-noreprocessing
This flag allows the utility to display the contents of a mailing list which uses the
[REPROCESS] named parameter in its alias definition.

-restricted=setting
This qualifier controls the setting of the restricted flag. By default, this flag
has value 0. When set to 1, -restricted=1, the restricted flag will be set
on and addresses will be rewritten using the restricted mailbox encoding format
recommended by RFC 1137.

This flag is used to force rewriting of address mailbox names in accordance with
the RFC 1137 specifications; see Section 2.3.4.57 for further details.

-source_channel=channel
The -source_channel qualifier controls for which source channel to rewrite
addresses. Some address rewriting is source channel specific; pmdf test
-rewrite normally pretends that the channel source for which it is rewriting
is the local channel, l on UNIX or usually msgstore on NT.

EXAMPLES

This UNIX example shows typical output generated by pmdf test -rewrite
Perhaps the single most important piece of information generated by pmdf test -
rewrite is displayed on the last few lines of the output, &, which shows the channel
to which pmdf test -rewrite would submit a message with the specified test address
and the form in which the test address would be rewritten for that channel. This output
is invaluable when debugging configuration problems.

30–71

Utilities on UNIX
test -rewrite

% pmdf test -rewrite DAN@EXAMPLE.COM
! channel = tcp_local

channel description =
channel filter =

" channel flags #0 = BIDIRECTIONAL SINGLE_SYSTEM IMMNORMAL NOSERVICEALL
channel flags #1 = SMTP_LF MX
channel flags #2 = POSTHEADBODY HEADERINC NOEXPROUTE
channel flags #3 = LOGGING NOGREY RESTRICTED
channel flags #4 = EIGHTNEGOTIATE NOHEADERTRIM NOHEADERREAD RULES
channel flags #5 =
channel flags #6 = LOCALUSER REPORTHEADER
channel flags #7 = ALLOWSWITCHCHANNEL NOREMOTEHOST DATEFOUR DAYOFWEEK
channel flags #8 = NODEFRAGMENT EXQUOTA REVERSE NOCONVERT_OCTET_STREAM
channel flags #9 = NOTHURMAN INTERPRETENCODING INCLUDEFINAL RECEIVEDFROM
linelength = 998
ddrsperfile = 127
channel envelope address type = SOURCEROUTE
channel header address type = SOURCEROUTE

channel official host = TCP-DAEMON
channel local alias =
channel queue name =
channel daemon name =
channel user name =
urgentnotices =
normalnotices =
nonurgentnotices =

$ channel group ids =
% backward channel = tcp_local

header To: address = DAN@EXAMPLE.COM
header From: address = DAN@EXAMPLE.COM
envelope To: address = DAN@EXAMPLE.COM (route (TCP-DAEMON,TCP-DAEMON))
envelope From: address = DAN@EXAMPLE.COM
name =
mbox = DAN

Extracted address action list:
DAN@EXAMPLE.COM

Extracted 733 address action list:
DAN@EXAMPLE.COM

Address list expansion:
0 expansion total.
Expanded address:

DAN@EXAMPLE.COM
& Submitted address list:

tcp_local
DAN@EXAMPLE.COM (EXAMPLE.COM) *NOTIFY FAILURES* *NOTIFY DELAYS*

' Submitted notifications list:

! The channel to which, after rewriting as an envelope To: address, the address is
mapped.

" The flags set for the channel indicated in !. These flags are controlled by the
channel keywords on the first line of the channel control block for the specified
channel. Any unknown keywords—keywords which may have been mistyped—will
be interpreted as group ids and will appear on the line $.

The channel’s official host name as specified on the second line of the channel control
block for the channel indicated in !.

30–72

Utilities on UNIX
test -rewrite

$ Any items appearing on the first line of the channel block which were not channel
keywords are interpreted as group ids. Any group ids so specified for the channel
are listed on this line.

% The channel which the address would match if rewritten as an envelope From:
address.

& The channel to which a message with the address DAN@EXAMPLE.COM would
be queued and the envelope To: address which would be used. Here, the
message would be submitted to the TCP/IP channel, tcp_local, using the address
DAN@EXAMPLE.COM. Other information appearing here might include an explicit
Errors-to: address, which, if present, appears enclosed in square brackets; or
notations such as *RR* or *NRR*, indicating whether or not the message is flagged
for read receipts, or notations such as *NOTIFY FAILURES*, *NOTIFY DELAYS*,
NOTIFY SUCCESSES, etc., indicating the message’s delivery receipt mechanism
and flagging.

' Notification addresses (reserved for future use).

ERROR MESSAGES

Usually errors reported by pmdf test -rewrite are not actually errors regarding
pmdf test -rewrite in particular, but rather are the utility warning of an underlying
configuration problem. For instance, ‘‘Error in mm_init: ...’’ sorts of errors; see
Section 34.3 for a discussion of many such general error messages.

Insufficient privileges to run test -rewrite

Must be run as superuser or by a user in the pmdf_world group.

Address list error -- unknown host or domain:

The domain name in the specified address did not rewrite to any PMDF channel. Check
that the domain name was correctly spelled. If the domain name was correct, then most
likely you need a new (or changed) rewrite rule in the PMDF configuration file to handle
that domain name; see Section 2.2.

Unknown group identifier ... found on channel ...

You do not have the specified group identifier. Check that it is truly intended to be
present as a group identifier, rather than simply being a misspelled channel keyword.

30–73

Utilities on UNIX
test -url

test -url—Test LDAP query URL

Test an LDAP query URL.

SYNTAX pmdf test -url [ldap-url]

Command Qualifiers Defaults

-debug -nodebug

restrictions None.

prompts _URL: ldap-url

PARAMETERS

ldap-url
LDAP URL to try resolving.

DESCRIPTION Test an LDAP query URL.

Note that the LDAP server to query is controlled by the setting of the PMDF
options LDAP_HOST and LDAP_PORT in the PMDF option file; see Section 7.3.2.

COMMAND
QUALIFIERS

-debug
-nodebug (default)
The testing process is capable of producing additional debug output. The -debug
qualifier enables this output; it is disabled by default.

EXAMPLES

This example shows a sample query for a site example.com that has set the LDAP_
HOST and LDAP_PORT options in the PMDF option file to point to an LDAP server
containing e-mail addresses in a mail attribute.

% pmdf test -url "’ldap:///dc=example,dc=com?mail?sub?sn=doe’"
URL> Jane.Doe@example.com
URL> John.Doe@example.com

30–74

Utilities on UNIX
version

version—Print PMDF version number

Print PMDF version number.

SYNTAX pmdf version

Command Qualifiers Defaults

None. None.

restrictions None.

PARAMETERS None.

DESCRIPTION

pmdf version prints out the PMDF version number, and displays the system’s
name, operating system release number and version, and hardware type.

EXAMPLES

% pmdf version
PMDF version is PMDF V6.6
libpmdf.so version V6.6; linked 10:43:51, Feb 4 2012
SunOS nodea.example.com 5.10 Generic_105181-39 sun4u sparc SUNW,Ultra-60

The above UNIX example shows PMDF version information for a Solaris system running
PMDF V6.6.

C:\> pmdf version
PMDF version is PMDF V6.6
libpmdf.dll version V6.6; linked 18:17:32, Feb 4 2012
Microsoft Windows 2003 Professional version 5.2 Service Pack 1 (Build 195)

The above Windows 2000 example shows PMDF version information for a Windows
2000 system running PMDF V6.6.

30–75

Utilities on UNIX
view

view—Display the specified version of a PMDF log
file

Display the contents of the specified ‘‘version’’ of a PMDF log file.

SYNTAX pmdf view file-pattern

Command Qualifiers Defaults

-f=offset-from-first None
-l=offset-from-last None

restrictions On UNIX, must have read access to the requested file.

PARAMETERS

file-pattern
A file name pattern for which PMDF log file to display.

DESCRIPTION

The pmdf view utility may be used to display a specified ‘‘version’’ of a PMDF
log file. PMDF log files have a -uniqueid appended to the file name to allow
for the creation of multiple ‘‘versions’’ of the log file; on UNIX, the -uniqueid is
appended to the very end of the file name (the end of the file extension), while
on NT, the -uniqueid is appended to the end of the name part of the file name,
before the file extension. The pmdf view utility understands these unique ids
and can display the contents of the particular file corresponding to the requested
‘‘version’’ of the file.

The default, if no offset qualifier is specified, is to display the most recent
‘‘version’’ of the file.

COMMAND
QUALIFIERS

-f=offset-from-first
This qualifier is used to specify displaying the nth ‘‘version’’ of the file (starting
counting from 0). For instance, to display the earliest (oldest) ‘‘version’’ of the file,
specify -f=0

-l=offset-from-last
This qualifier is used to specify displaying the nth from the last ‘‘version’’ of the
file (starting decrementing from 0 as the most recent version). For instance, to
display the most recent (newest) ‘‘version’’ of the file, specify -l=0

30–76

Utilities on UNIX
Interactive Utilities

30.2 Interactive Utilities

PMDF has the interactive command line pmdf qm utility, described in Section 30.2.2,
The pmdf popstore, pmdf movein, and pmdf msgstore utilities are described in the
PMDF popstore & MessageStore Manager’s Guide.

On UNIX, PMDF also has the interactive pmdf profile utility, described in
Section 30.2.1, the command line pmdf configure utility, further details on whose use
may be found in the appropriate edition of the PMDF Installation Guide, and the pmdf
db utility, described in the PMDF User’s Guide, UNIX Edition.

30.2.1 PMDF Profile: Delivery Method Utility (UNIX)

The pmdf profile utility sets PMDF user profile database entries. It may be used
by the PMDF system manager to define delivery methods for local users, and to set the
delivery method for a specific user or to set a default delivery method for local users, and
may also be used by users to select among the defined delivery methods.

To create a PMDF profile database, issue a command such as

su pmdf -c "pmdf crdb /dev/null PMDF_USER_PROFILE_DATABASE"

Then to run the pmdf profile utility, issue the command

pmdf profile

Use the exit or quit command to exit pmdf profile. The commands accepted by
this utility are summarized in Table 30–2 and described in detail subsequently.

Table 30–2 Summary of pmdf profile commands

set method Define a delivery method

show method Show the definition of a delivery method

delete method Delete a delivery method definition

set delivery Select a delivery method

show delivery Show what delivery method is currently selected

delete delivery Clear a delivery method selection

30–77

pmdf profile commands
delete delivery

delete delivery

Clear a delivery method selection.

SYNTAX delete delivery

Command Qualifiers Defaults

-default See text
-user=username See text

restrictions Must be superuser in order to delete another user’s choice of delivery method, or
to delete the default delivery method selection.

PARAMETERS None.

DESCRIPTION

This utility is used to delete (clear) a previous delivery method selection from
the PMDF user profile database. A user may only delete their own delivery method
choice. Superuser can delete the delivery method for another user with the -user
qualifier, or may delete the default delivery method, used for all users who have
not specified an explicit delivery method choice, with the -default qualifier.

COMMAND
QUALIFIERS

-default
Clear the default selection of delivery method.

-user=username
Clear the delivery method selection for user username.

EXAMPLES

Below is an example of deleting a delivery method.

pmdf profile
profile> show delivery -default
The default delivery selection is BSD

profile> delete delivery -default
profile> exit

30–78

pmdf profile commands
delete method

delete method

Delete a delivery method definition.

SYNTAX delete method method-name

Command Qualifiers Defaults

None. None.

restrictions Must be superuser in order to delete a delivery method definition.

PARAMETERS

method-name
The name of a delivery method previously defined via the pmdf profile set
method command.

DESCRIPTION

This utility is used to delete a delivery method definition from the PMDF user
profile database. (Users who had previously selected this delivery method with
the pmdf profile set delivery command will get the default delivery method
until they select another currently defined delivery method.)

EXAMPLES

Below is an example of deleting a delivery method.

pmdf profile
profile> show method -all
Delivery method(s) defined:

BSD /var/spool/mail/%s
DMW |/usr/bin/inetgrecv %s
MIME +/var/spool/mail/%s

profile> delete method MIME
profile> exit

30–79

pmdf profile commands
set delivery

set delivery

Select a delivery method.

SYNTAX set delivery method

Command Qualifiers Defaults

-default See text
-user=username See text

restrictions Must be superuser in order to define a delivery method for a user other than
oneself, or to set a default delivery method.

PARAMETERS

method
A delivery method previously defined via the pmdf profile set method com-
mand.

DESCRIPTION

This utility is used to select a delivery method in the PMDF user profile
database. A user may only select a delivery method for themself. Superuser can
select a delivery method for another user with the -user qualifier, or may select
a default delivery method for all users who have not specified a delivery method
choice with the -default qualifier.

EXAMPLES

Below is an example of setting the default delivery method to DMW, and the delivery
method for the PMDF system manager to BSD.

pmdf profile
profile> show method -all
Method BSD is defined as: /var/spool/mail/%s
Method DMW is defined as: |/usr/bin/inetgrecv %s
Method MIME is defined as: +/var/spool/mail/%s
profile> set delivery DMW -default
profile> set delivery BSD
profile> exit

30–80

pmdf profile commands
set method

set method

Define a delivery method in the PMDF user profile database.

SYNTAX set method method-name method-command

Command Qualifiers Defaults

None. None.

restrictions Must be superuser in order to define a delivery method.

PARAMETERS

method-name
The name to be used for the delivery method being defined. This string is not
case-sensitive.

method-command
The command, in .forward file format, corresponding to the delivery method
being defined, where the string %s may be used to indicate the username of the
user on whose behalf the command is executed. The substitution string %+ may
be used to indicate the username plus subaddress of the user on whose behalf
the command is executed. The substitution string %d may be used to indicate the
default directory of the user on whose behalf the command is executed.

DESCRIPTION

This utility is used to define a delivery method in the PMDF user profile
database. The PMDF system manager and local users will then be able to select
this delivery method for delivery of their messages.

EXAMPLES

Below is an example of defining a method named Teamlinks to correspond to
delivery to DEC MailWorks.

pmdf profile
profile> set method Teamlinks "|/usr/bin/inetgrecv %s"
profile> show method Teamlinks
Method Teamlinks is defined as: |/usr/bin/inetgrecv %s
profile> exit

30–81

pmdf profile commands
show delivery

show delivery

Show a delivery method.

SYNTAX show delivery

Command Qualifiers Defaults

-all See text
-default See text
-user=username See text

restrictions Must be superuser in order to show a delivery method for a user other than oneself,
or to show the default delivery method, or to show the delivery method selected
by each user.

PARAMETERS None.

DESCRIPTION

This utility is used to show a delivery method in the PMDF user profile
database. A user may only show their own selected delivery method. Superuser
may show the delivery method selected by any particular user with the -user
qualifier, may show the default delivery method for all users who have not specified
a delivery method choice with the -default qualifier, or may show the delivery
method each and every user has selected with the -all qualifier.

EXAMPLES

Below is an example of showing the default delivery method, and the delivery method
selected for the root account.

pmdf profile
profile> show delivery -default
The default delivery selection is not currently set
profile> show delivery -user=root
User root delivery selection is currently set to DMW
profile> exit

30–82

pmdf profile commands
show method

show method

Show a delivery method definition.

SYNTAX show method [method-name]

Command Qualifiers Defaults

-all See text

restrictions None.

PARAMETERS

method-name
An optional parameter, which if specified must be the name of a previously defined
delivery method.

DESCRIPTION

This command is used to show the definitions of delivery methods in the PMDF
user profile database. This command may be used to show the definition of a
particular delivery method, by specifying the method parameter, or may be used
to show the definitions of all the currently defined delivery methods by instead
specifying the -all qualifier.

COMMAND
QUALIFIERS

-all
Show the definitions of all delivery methods.

EXAMPLES

Below is an example of showing all defined delivery methods.

pmdf profile
profile> show method -all
Method BSD is defined as: /var/spool/mail/%s
Method DMW is defined as: |/usr/bin/inetgrecv %s
Method MIME is defined as: +/var/spool/mail/%s
profile> exit

30–83

Utilities on UNIX
show method

30.2.2 qm: Queue Management Utility

pmdf qm is a utility program which allows inspection and manipulation of queued
messages. pmdf qm has two modes: maintenance mode and user mode. Maintenance
mode can be used to inspect and manipulate the channel queue directories and the
messages contained in them. Privileges sufficient to read, create, and delete files in the
channel queue directory tree as well as read and update the queue cache database are
required to use maintenance mode. User mode is a very restricted version of maintenance
mode which allows unprivileged users to read their own messages from the queues and
to return them (bounce them) back to their originator if desired. Users’ own messages
are messages which they themselves have sent or were posted to a list they own. They
are not messages destined for the user. User mode is documented in the PMDF User’s
Guide, UNIX Edition.

To run pmdf qm in maintenance mode, issue the UNIX command

pmdf qm -maintenance

or the NT command

C:\> pmdf qm -maintenance

Use the exit or quit command to exit pmdf qm. The commands accepted by this utility
in maintenance mode are summarized in Table 30–3 below.

Table 30–3 Summary of pmdf qm maintenance mode commands

clean Hold or delete message files matching specified criteria
counters Control aspects of the channel counter caches and database
date Show current date and time
delete Irrevocably delete the specified messages
directory List currently queued messages
exit Exit the utility
held List messages which have been marked as held
help Obtain help
history Display message delivery history information
hold Mark a message as held
quit Exit the utility
read Display message envelope and header information
release Release held message
return Return a message to its originator
run Execute commands from the specified file
summarize Display a summary listing of message files
top Display frequently occurring strings from PMDF queue area message files
view Control whether the channel queue directory tree or queue cache database is

viewed

The command recall and editing capabilities are provided by the open source software
libedit (also known as editline). By default, the standard "vi" key bindings are
defined. You can change various elements of the editing environment, such as using
"Emacs" key bindings instead of "vi", by creating in your home directory a file called
.editrc. See the editrc manpage for more information.

30–84

Utilities on UNIX
show method

30–85

pmdf qm commands
clean

clean

Hold or delete message files from the PMDF queue area that contain specified
substrings in their envelope From: address, Subject: header, or message content.

SYNTAX clean [channel]

Command Qualifiers Defaults

-content=substring None
-database See text
-delete -hold
-directory_tree See text
-env_from=substring None
-hold -hold
-match=keyword -match=AND
-min_length=n -min_length=24
-subject=substring None
-threads=n -nothreads
-verbose -noverbose

PARAMETERS

channel
Optional parameter which specifies a specific PMDF channel area to be searched
for matching messages. * or ? wildcard characters may be used in the channel
specification.

DESCRIPTION

Hold or delete message files containing specific substrings in their envelope
From: address, Subject: line, or content. By default, message files are held (-
hold). Specify -delete to instead delete matching message files. The -content,
-env_from, and -subject qualifiers are used to specify the substrings for which
to search.

Any combination of -content, -env_from, and -subject may be specified.
However, only one of each may be used. The -match qualifier controls whether
a message file must contain all (-match=AND, the default) or only one of (-
match=OR) the specified substrings in order to be held or deleted. The default
is -match=AND.

By default, each substring to be searched for must be at least 24 bytes long (-
min_length=24). This is a safety measure: the longer the substring, the less
likely the chance of false ‘‘hits’’. Use the -min_length qualifier to override
this limit. The message files searched may be either all those present in the
channel queue directory tree, -directory_tree, or only those files with entries

30–86

pmdf qm commands
clean

in the queue cache database, -database. Use either the view command or the
-directory_tree or -database qualifier to control which files are searched.

The optional channel parameter restricts the search to message files in the
specified channel. The channel parameter may use * and ? wild cards.

The -threads qualifier may be used to accelerate searching on multiprocessor
systems by dividing the work amongst multiple, simultaneously running threads.
To run n simultaneous searching threads, specify -threads=n. The value n must
be in the range 1-8. The default is -nothreads.

COMMAND
QUALIFIERS

-content=substring
-env_from=substring
-subject=substring
The -content, -env_from, and -subject qualifiers are used to specify the
substrings for which to search. Any combination of -content, -env_from, and
-subject may be specified. However, only one of each may be used. When a
combination of such qualifiers is used, the -match qualifier controls whether the
qualifiers are interpreted as further restrictions (-match=AND), or as alternatives
(-match=OR).

-database
-directory_tree
Controls whether the message files searched are only those with entries in the
queue cache database, -database, or all message files actually present in the
channel queue directory tree, -directory_tree.

When neither -database nor -directory_tree is specified, then the ‘‘view’’
selected with the view command will be used. If no view command has been
issued, then -directory_tree is assumed.

-delete
-hold (default)
-hold is the default and means that matching message files will be held. Specify
-delete to instead delete matching message files.

-match=keyword
The default is -match=AND, meaning that any criteria specified by -content, -
env_from, and -subject qualifiers must all match in order for the current hold
or delete operation to be applied. Specifying -match=OR means that a message
will match as long as at least one such criterion matches.

-min_length=n
By default, each substring to be searched for must be at least 24 bytes long (-
min_length=24). This is a safety measure: the longer the substring, the less
likely the chance of false ‘‘hits’’. Use the -min_length qualifier to override this
limit.

30–87

pmdf qm commands
clean

-threads=n
-nothreads (defaults)
The -threads qualifier may be used to accelerate searching on multiprocessor
systems by dividing the work amongst multiple, simultaneously running threads.
To run n simultaneous searching threads, specify -threads=n. The value n must
be an integer in the range 1-8. The default is -nothreads.

-verbose
-noverbose (default)
The -verbose qualifier may be used to request that the utility print out
information about what it is doing as it operates.

EXAMPLES

The following example shows holding all message files in the PMDF queue area that
have the string ‘‘real estate’’ in the Subject: header and have the string ‘‘ownership.com’’
in the envelope From: address.

qm.maint> clean -min_length=11 -subject="real estate"
env_from="ownership.com"
%QM-I-QCLISTING, building a list of message files to scan from the queue cache
%QM-I-SCANNING, scanning 72 message files
%QM-I-SCANNED, scanned 72 message files in 3.7500 seconds (19.20 messages/second
)
%QM-I-HELD, held 5 message files

30–88

pmdf qm commands
counters clear

counters clear

Clear the node-specific, in-memory cache of counters.

SYNTAX counters clear

Command Qualifiers Defaults

-associations -associations
-channels -channels

PARAMETERS None.

DESCRIPTION

To clear (zero) the counters in the in-memory cache, issue the counters
clear command. The command creates the in-memory section of association and
channel counters if it does not already exist. Then it zeros all fields in the in-
memory section. Finally, the fields in the in-memory section for numbers of stored
messages, message recipients, and message volumes are set based on the entries
in the PMDF queue cache database.

Either the association counters, or channel counters, or both, may be cleared.
The default is to clear both association and channel counters.

COMMAND
QUALIFIERS

-associations (default)
-noassociations
This qualifier specifies whether to clear the in-memory cache of association
counters.

-channels (default)
-nochannels
This qualifier specifies whether to clear the in-memory cache of channel counters.

30–89

pmdf qm commands
counters show

counters show

Display the contents of the in-memory section of channel counters.

SYNTAX counters show [channel]

Command Qualifiers Defaults

-header -header
-output=file-spec None

PARAMETERS

channel
Optional channel name indicating the channel(s) for which to show counters. May
contain wildcards.

DESCRIPTION

The contents of the in-memory channel counter section may be displayed with
the counters show command.

Note that the output of the pmdf qm utility’s counters show command is
currently not as detailed as the output of the shell level pmdf counters -show
command.

COMMAND
QUALIFIERS

-header (default)
-noheader
Controls whether or not a header line describing each column in the table of
counters is output.

-output=file-spec
Direct the output to the specified file. By default the output appears on your
display.

EXAMPLES

To display the counters information for all TCP/IP channels, use the command

30–90

pmdf qm commands
counters show

qm.maint> counters show tcp_*
Channel Messages Recipients Blocks
------------------------ ---------- ---------- ----------
tcp_local

Received 33 41 95
Stored 0 0 0
Delivered 33 41 95
Submitted 1 1 3

tcp_internal
Received 632 758 1453
Stored 1 2 10
Delivered 631 756 1443
Submitted 3 6 12

qm.maint>

30–91

pmdf qm commands
counters today

counters today

Display PMDF’s count of the number of messages processed so far today.

SYNTAX counters today

Command Qualifiers Defaults

None. None.

DESCRIPTION

PMDF’s count of the number of messages processed so far today may be
displayed with the counters today command.

EXAMPLES

This example illustrates displaying PMDF’s count of the number of messages
processed so far today.

qm.maint> counters today
4263 messages processed so far today
30000 messages per day are permitted by your license
qm.maint>

30–92

pmdf qm commands
date

date

Show the current date and time.

SYNTAX date

Command Qualifiers Defaults

None. None.

PARAMETERS None.

DESCRIPTION

The date command may be used to show the current date and time, in RFC
822 and RFC 1123 format. It is useful for placing time stamps in log files for
command scripts which periodically run pmdf qm to check on PMDF’s channel
queues.

EXAMPLES

qm.maint> date
Fri, 15 Nov 2012 22:52:37 -0700 (PDT)
qm.maint>

30–93

pmdf qm commands
delete

delete

Delete one or more messages from the channel queue directory.

SYNTAX delete [message-id[,...]]

Command Qualifiers Defaults

-all -noall
-channel=name None
-confirm -noconfirm
-log -log

PARAMETERS

message-id[,...]
A comma separated list of one or more message identification number or numbers
shown by a previous directory command. Ranges are allowed.

DESCRIPTION

The delete command is used to delete one or more messages from the
channel queue directories. The messages to be deleted are specified by their
message identification numbers shown by the most recent directory command.
That number appears in the leftmost column of the directory command listing.
Ambiguous message numbers must be qualified by the proper channel name with
the -channel qualifier.

Note that the delete command irrevocably deletes each message it is
instructed to delete: the messages are not returned to their originators nor will
any further attempts to be made to deliver them to their recipients. The messages
are permanently deleted. Often, it is preferable to use the return command so as
to return the message to its originator, (e.g., bounce it back to the sender).

QUALIFIERS

-all
-noall (default)
Delete all messages shown by the last directory command. When used in
conjunction with the -channel qualifier, only those messages shown by the last
directory command for the specified channel will be deleted.

Unless -noconfirm is specified with -all, you will be required to confirm any
delete -all operation.

30–94

pmdf qm commands
delete

-channel=name
Specifies the name of the channel from which to delete messages. Wildcards are
not permitted.

-confirm
-noconfirm (default)
When -confirm is specified, you will be prompted to confirm each message delete
operation.

-log (default)
-nolog
Specifies whether informational messages for each message delete operation are
generated.

EXAMPLES

In the following example, the directory command is used to list the messages in
the local, l, channel. Then, the delete command is used to delete messages 1, 3, 20,
21, and 22. A range specification, 20-22, is used to specify message numbers 20, 21,
and 22.

qm.maint> directory l
Fri, 15 Nov 2012 13:43:39 -0800 (PST)
Data gathered from the queue directory tree

Channel: l Size Queued since
--

1 ZZ01HNP17LSUWY9D4DNR.00 4 15-NOV-2012 01:10:23
2 ZZ01HNP1RP3B6G9D4DNR.00 10 15-NOV-2012 01:10:24
3 ZZ01HNP42MAMAI9D4DNR.00 3 15-NOV-2012 01:10:24
4 ZZ01HNP4MEWC8G9D4DNR.00 8 15-NOV-2012 06:18:57
...

24 ZZ01HNP90X63ZG9D4DNR.00 6 15-NOV-2012 13:21:14
--
Total size: 108

24 total messages queued
qm.maint> delete 1,3,20-22
%QM-I-DELETED, deleted the message file /pmdf/queue/l/ZZ01HNP17LSUWY9D4DNR.00
%QM-I-DELETED, deleted the message file /pmdf/queue/l/ZZ01HNP42MAMAI9D4DNR.00
%QM-I-DELETED, deleted the message file /pmdf/queue/l/ZZ01HNP76RTGHY9D4DNR.00
%QM-I-DELETED, deleted the message file /pmdf/queue/l/ZZ01HNP82HTXYB9D4DNR.00
%QM-I-DELETED, deleted the message file /pmdf/queue/l/ZZ01HNP83JPOCV9D4DNR.00
qm.maint>

30–95

pmdf qm commands
directory

directory

List currently queued messages.

SYNTAX directory [channel-name]

Command Qualifiers Defaults

-database See text
-directory_tree See text
-envelope -noenvelope
-file_info -file_info
-from See text
-held -noheld
-match See text
-owner See text
-to See text
-total See text

PARAMETERS

channel-name
An optional parameter specifying the channel for which to obtain a directory
listing. Wildcards are permitted.

DESCRIPTION

The directory command is used to show the currently queued message files
in either all channel queues or a particular channel queue. In the listing, message
identification numbers will appear to the left of each message file name. These
numbers may be used with the delete, history, hold, read, release, and
return commands so as to identify which message to operate on.

The directory command produces its listing by looking at either the actual
queue directory tree on disk, or by looking at the queue cache database. Use
either the view command or the -directory_tree or -database or qualifiers
to control the source of information used. Note that when -directory_tree or
view directory_tree or is used, the ‘‘queued since’’ dates are the date and time
that the message file was created; when -database or view database or is used,
the queued since dates are the date and time that the message was enqueued and
may pre-date the actual creation date for the message file itself.

QUALIFIERS

30–96

pmdf qm commands
directory

-database
-directory_tree
Controls whether the information presented is gathered from the queue cache
database, -database, or by looking at the actual directory tree containing the
channel queues, -directory_tree.

When neither -database or -directory_tree or is specified, then the ‘‘view’’
selected with the view command will be used. If no view command has been
issued, then -directory_tree is assumed.

-envelope
-noenvelope (default)
Use the -envelope qualifier to generate a directory listing including the envelope
From: address and the list of envelope To: recipients for each listed message. By
default, envelope information is not displayed as it involves opening each message
file and reading through its envelope.

-file_info (default)
-nofile_info
By default, message file size and creation date information is gathered. However,
this requires accessing each message file. Specify -nofile_info if you want to
avoid that overhead.

-from=address
This qualifier may be used to request showing only those messages with the
specified envelope From: address. This qualifier implies -envelope. To specify
an empty (blank) envelope From: address, use -from=<>.

-held
-noheld (default)
Show information only for those channels with held messages.

-match=keyword
This qualifier controls the interpretation of the -from and -to qualifiers. Valid
keywords are AND and OR.

-owner=username
This qualifier may be used to request showing only those message ‘‘owned’’ by
the specified username. This qualifier implies -database. Note that messages
submitted via SMTP with authentication (SMTP AUTH) will be considered to
be owned by the username that authenticated, prefixed with the asterisk, *,
character. For instance, if user jdoe submits a message from an IMAP client
that successfully performs SMTP authentication, then PMDF QM will consider
the owner of the message to be *jdoe, and to see such messages one would use
the command

qm.maint> dir -owner=*jdoe

-to=address
This qualifier may be used to request showing only those messages with the
specified envelope To: address. This qualifier implies -envelope.

-total
This qualifier may be used to request showing only the total number of messages,
rather than listing each individual message as is the default.

30–97

pmdf qm commands
directory

EXAMPLES

1 qm.maint> directory tcp_*
Fri, 15 Nov 2012 14:53:39 -0800 (PST)
Data gathered from the queue directory tree

Channel: tcp_local Size Queued since
--

1 ZL01HNM78RMBP496VPJS.00 4 12-Nov-2012 09:12:29.53
2 ZM01HNMEDX5T8E96VQDN.00 10 12-Nov-2012 12:36:41.35
3 ZX01HNP9IO1ZAM96W55R.00 6 15-Nov-2012 13:50:06.89
4 ZY01HNP9HTAO9696W55R.00 5 15-Nov-2012 13:49:25.61
5 ZY01HNPBGF8JVI96W55R.00 6 15-Nov-2012 14:45:34.33
6 ZZ01HNPBFPQ4LG96W55R.00 5 15-Nov-2012 14:45:00.01
7 ZZ01HNPBFQ4BS896W55R.00 5 15-Nov-2012 14:45:00.53
8 ZZ01HNPBFR5KG296W55R.00 5 15-Nov-2012 14:45:01.92
9 ZZ01HNPBFRD2IC96W55R.00 5 15-Nov-2012 14:45:02.19
10 ZZ01HNPBFS7VP896W55R.00 5 15-Nov-2012 14:45:03.36
11 ZZ01HNPBFTM8YY96W55R.00 5 15-Nov-2012 14:45:05.23
12 ZZ01HNPBFY7JYU96W55R.00 5 15-Nov-2012 14:45:11.41
13 ZZ01HNPBGL2BYC96W55R.00 5 15-Nov-2012 14:45:42.10

--
Total size: 71

Channel: tcp_gateway Size Queued since
--

1 ZY01HNP9HYJ0QK96W55R.00 6 15-Nov-2012 13:49:32.60
2 ZY01HNP9ID452296W55R.00 6 15-Nov-2012 13:49:52.18
3 ZZ01HNPBFT1MAC96W55R.00 5 15-Nov-2012 14:45:04.47
4 ZZ01HNPBGH5OAM96W55R.00 5 15-Nov-2012 14:45:36.85
5 ZZ01HNPBGZO97C96W55R.00 5 15-Nov-2012 14:46:01.73

--
Total size: 27

Grand total size: 98
28 total messages queued
qm.maint>

This example shows how to use the directory command to list the messages queued
to all channels whose names match the pattern ‘‘tcp_*’’; i.e., all TCP/IP channels.

2 qm.maint> directory -held
Fri, 15 Nov 2012 13:45:18 -0800 (PST)
Data gathered from the queue directory tree

Channel: tcp_local Size Queued since
--

1 ZZG01HNM78RMBP496VPJS.HELD 10 12-NOV-2012 23:31:18.34
2 ZZM01HNMEDX5T8E96VQDN.HELD 8 8-NOV-2012 13:36:14.89
3 ZZX01HNP9IO1ZAM96W55R.HELD 23 29-OCT-2012 07:27:49.01

--
Total size: 41

Grand total size: 41
3 total held messages queued
qm.maint>

In this example, the -held qualifier is used to check for held messages.

30–98

pmdf qm commands
exit

exit

Exit the pmdf qm utility.

SYNTAX exit

Command Qualifiers Defaults

None. None.

PARAMETERS None.

DESCRIPTION

The exit and quit commands exit the pmdf qm utility.

30–99

pmdf qm commands
held

held

List currently queued messages which have been marked as held.

SYNTAX held [channel-name]

Command Qualifiers Defaults

-database See text
-directory_tree See text
-envelope See text
-file_info -file_info
-held -held

PARAMETERS

channel-name
An optional parameter specifying the channel for which to obtain a directory
listing. Wildcards are permitted.

DESCRIPTION

The held command is a synonym for the directory -held command. See
the description of the directory command for further information.

QUALIFIERS

-database
-directory_tree
Controls whether the information presented is gathered from the queue cache
database, -database, or by looking at the actual directory tree containing the
channel queues, -directory_tree.

When neither -database or -directory_tree or is specified, then the ‘‘view’’
selected with the view command will be used. If no view command has been
issued, then -directory_tree is assumed.

-envelope
Display envelope To: and From: for the held messages listed.

-file_info (default)
-nofile_info
By default, message file size and creation date information is gathered. However,
this requires accessing each message file. Specify -nofile_info if you want to
avoid that overhead.

30–100

pmdf qm commands
held

-held (default)
-noheld
Show information only for those channels with held messages.

30–101

pmdf qm commands
help

help

Obtain help on the use of pmdf qm.

SYNTAX help [topic]

Command Qualifiers Defaults

None. None.

PARAMETERS

topic
Optional topic to obtain help on.

DESCRIPTION

The help command may be used to obtain information on pmdf qm commands.
To obtain information on all of the pmdf qm commands, use the command

qm.maint> help

To obtain information on individual commands or topics use the command

qm.maint> help topic

where topic is the name of the command or topic of interest.

30–102

pmdf qm commands
history

history

Display message history information.

SYNTAX history [message-id[,...]]

Command Qualifiers Defaults

-all -noall
-channel=name None
-confirm -noconfirm

PARAMETERS

message-id[,...]
A comma separated list of one or more message identification numbers shown with
a previous directory command. Ranges are allowed.

DESCRIPTION

For many channels, delivery history information is appended to the end of
each message file after an unsuccessful delivery attempt has been made. With the
history command, this information can be displayed.

The messages to show histories for are specified by their message identification
numbers shown by the most recent directory command. That number appears
in the leftmost column of the directory command listing. Ambiguous message
numbers must be qualified by the proper channel name with the -channel
qualifier.

Note that history information is not recorded by some channels.

QUALIFIERS

-all
-noall (default)
Display history information for all messages shown with the last directory
command. When used in conjunction with the -channel qualifier, only histories of
those messages shown with the last directory command for the specified channel
will be shown.

-channel=name
Specifies the name of the channel for which to show message histories. Wild cards
are not permitted.

30–103

pmdf qm commands
history

-confirm
-noconfirm (default)
When -confirm is specified, you will be prompted to confirm whether or not to
display the history for each selected message.

30–104

pmdf qm commands
hold

hold

Mark one or more messages as being held.

SYNTAX hold [message-id[,...]]

Command Qualifiers Defaults

-all -noall
-channel=name None
-confirm -noconfirm
-log -log

PARAMETERS

message-id[,...]
A comma separated list of one or more message identification numbers shown with
a previous directory command. Ranges are allowed.

DESCRIPTION

Use the hold command to mark as held any messages which should temporar-
ily be placed on ‘‘hold’’. PMDF will not attempt to deliver any messages which are
marked as held. To resume processing of a held message, use the release com-
mand. Messages which have been held can be listed with the directory -held
command.

The messages to be held are specified by their message identification numbers
shown by the most recent directory command. That number appears in the
leftmost column of the directory command listing. Ambiguous message numbers
must be qualified by the proper channel name with the -channel qualifier.

QUALIFIERS

-all
-noall (default)
Hold all messages shown by the last directory command. When used in
conjunction with the -channel qualifier, only those messages shown by the last
directory command for the specified channel will be held.

Unless -noconfirm is specified with -all, you will be required to confirm any
hold -all, operation.

-channel=name
Specifies the name of the channel from which to hold messages. Wildcards are not
permitted.

30–105

pmdf qm commands
hold

-confirm
-noconfirm (default)
When -confirm is specified, you will be prompted to confirm each message hold
operation.

-log (default)
-nolog
Specifies whether informational messages for each message hold operation are
generated.

EXAMPLES

In the following example, the directory command is used to list the messages in
the local, l, channel. Then, the hold command is used to hold messages 1, 3, 20, 21,
and 22. A range specification, 20-22, is used to specify message numbers 20, 21, and
22.

qm.maint> directory l
Fri, 15 Nov 2012 13:43:39 -0800 (PST)
Data gathered from the queue directory tree

Channel: l Size Queued since
--

1 ZZ01HNP17LSUWY9D4DNR.00 4 15-Nov-2012 01:10:23
2 ZZ01HNP1RP3B6G9D4DNR.00 10 15-Nov-2012 01:10:24
3 ZZ01HNP42MAMAI9D4DNR.00 3 15-Nov-2012 01:10:24
4 ZZ01HNP4MEWC8G9D4DNR.00 8 15-Nov-2012 06:18:57
...

24 ZZ01HNP90X63ZG9D4DNR.00 6 15-Nov-2012 13:21:14
--

24 total messages queued
qm.maint> hold 1,3,20-22
%QM-I-HELD, held the message file /pmdf/queue/l/ZZ01HNP17LSUWY9D4DNR.00
%QM-I-HELD, held the message file /pmdf/queue/l/ZZ01HNP42MAMAI9D4DNR.00
%QM-I-HELD, held the message file /pmdf/queue/l/ZZ01HNP76RTGHY9D4DNR.00
%QM-I-HELD, held the message file /pmdf/queue/l/ZZ01HNP82HTXYB9D4DNR.00
%QM-I-HELD, held the message file /pmdf/queue/l/ZZ01HNP83JPOCV9D4DNR.00
qm.maint>

30–106

pmdf qm commands
quit

quit

Exit the pmdf qm utility.

SYNTAX quit

Command Qualifiers Defaults

None. None.

PARAMETERS None.

DESCRIPTION

The exit and quit commands exit the pmdf qm utility.

30–107

pmdf qm commands
read

read

Display message envelope and header information.

SYNTAX read [message-id[,...]]

Command Qualifiers Defaults

-all -noall
-channel=name None
-confirm -noconfirm
-content -nocontent

PARAMETERS

message-id[,...]
A comma separated list of one or more message identification numbers shown with
a previous directory command. Ranges are allowed.

DESCRIPTION

The read command may be used to display envelope and header information
for one or more queued messages. To also view the message content, use the
-content qualifier.

The messages to display are specified by their message identification numbers
shown by the most recent directory command. Those number appear in the
leftmost column of the directory command listing. Ambiguous message numbers
must be qualified by the proper channel name with the -channel qualifier.

QUALIFIERS

-all
-noall (default)
Display all messages shown with the last directory command. When used in
conjunction with the -channel qualifier, only those messages shown with the last
directory command for the specified channel will be shown.

-channel=name
Specifies the name of the channel from which to display messages. Wildcards are
not permitted.

-confirm
-noconfirm (default)
When -confirm is specified, you will be prompted to confirm whether or not to
display each selected message.

30–108

pmdf qm commands
read

-content
-nocontent (default)
When -content is specified, the content of the message will also be shown.

EXAMPLES

In the following example, the envelope and header information for message number
1 is displayed.

qm.maint> read 1
Filename: /pmdf/queue/l/ZZ01HNPFR2FUN89D4GAS.00

Message id: 1
Transport layer information:
--
Envelope From: address: fresnel@example.com
Envelope To: addresses: bernoulli

Message header:
--
Received: from EXAMPLE.COM by EXAMPLE.COM (PMDF V5.0-1 #8790)
id <01HNPFR0P5OW9D4GAS@EXAMPLE.COM> for BERNOULLI@EXAMPLE.COM; Fri,
03 Jul 2012 16:48:41 -0700 (PDT)
Date: Fri, 03 Jul 2012 16:48:40 -0700 (PDT)
From: Fresnel the tabby cat <fresnel@example.com>
To: bernoulli@example.com
Subject: catnip and catnaps
Message-id: <01HNPFR12JYA9D4GAS@EXAMPLE.COM>
MIME-version: 1.0
Content-type: TEXT/PLAIN; CHARSET=US-ASCII
Content-transfer-encoding: 7BIT

qm.maint>

30–109

pmdf qm commands
release

release

Release one or more held messages.

SYNTAX release [message-id[,...]]

Command Qualifiers Defaults

-all -noall
-channel=name None
-confirm -noconfirm
-log -log

PARAMETERS

message-id[,...]
A comma separated list of one or more message identification numbers shown with
a previous directory -held command. Ranges are allowed.

DESCRIPTION

Use the release command to release any messages previously marked as
held, re-enter them in the queue cache database, and run the associated channel
so the message can be processed. Messages which have been held can be listed
with the directory -held command.

The messages to be released are specified by their message identification
numbers shown by the most recent directory command. That number appears
in the leftmost column of the directory command listing. Ambiguous message
numbers must be qualified by the proper channel name with the -channel
qualifier.

QUALIFIERS

-all
-noall (default)
Release all messages shown by the last directory -held command. When used
in conjunction with the -channel qualifier, only those messages shown by the last
directory -held command for the specified channel will be released.

Unless -noconfirm is specified with -all, you will be required to confirm any
release -all operation.

-channel=name
Specifies the name of the channel from which to release messages. Wildcards are
not permitted.

30–110

pmdf qm commands
release

-confirm
-noconfirm (default)
When -confirm is specified, you will be prompted to confirm each message release
operation.

-log (default)
-nolog
Specifies whether informational messages for each message release operation are
generated.

EXAMPLES

In the following example, the directory -held command is used to list held
messages in the tcp_local channel. Then, the release command is used to release all
of the held messages from that channel.

qm.maint> directory -held tcp_local
Fri, 15 Nov 2012 13:43:39 -0800 (PST)
Data gathered from the queue directory tree

Channel: tcp_local Size Queued since
--

1 ZZ01HNP17LSUWY9D4DNR.HELD 4 15-Nov-2012 03:12:00
2 ZZ01HNP1RP3B6G9D4DNR.HELD 10 15-Nov-2012 11:46:23
3 ZZ01HNP42MAMAI9D4DNR.HELD 5 15-Nov-2012 18:17:01

--
Total size: 19

3 total messages queued
qm.maint> release -all
Release all message files (Y/N, default is N)? YES
%QM-I-RELEASED, released the message file

/pmdf/queue/tcp_local/ZZ01HNP17LSUWY9D4DNR.HELD
%QM-I-RELEASED, released the message file

/pmdf/queue/tcp_local/ZZ01HNP1RP3B6G9D4DNR.HELD
%QM-I-RELEASED, released the message file

/pmdf/queue/tcp_local/ZZ01HNP42MAMAI9D4DNR.HELD
qm.maint>

30–111

pmdf qm commands
return

return

Return a message to its sender.

SYNTAX return [message-id[,...]]

Command Qualifiers Defaults

-all -noall
-channel=name None
-confirm -noconfirm
-log -log

PARAMETERS

message-id[,...]
A comma separated list of one or more message identification numbers shown with
a previous directory command. Ranges are allowed.

DESCRIPTION

Queued messages may be returned to their originator with the return com-
mand. The messages to be returned are specified by their message identification
numbers shown by the most recent directory command. That number appears
in the leftmost column of the directory command listing. Ambiguous message
numbers must be qualified by the proper channel name with the -channel qual-
ifier.

The returned message is in two parts. The first part explains the reason
why the message is being returned; the text of the reason is contained in the file
return_bounced.txt file located in the PMDF language-specific directory. The
second part of the returned message contains the original message itself.

QUALIFIERS

-all
-noall (default)
Return all messages shown by the last directory command. When used in
conjunction with the -channel qualifier, only those messages shown by the last
directory command for the specified channel will be returned.

Unless -noconfirm is specified with -all, you will be required to confirm any
return -all operation.

30–112

pmdf qm commands
return

-channel=name
Specifies the name of the channel from which to return messages. Wildcards are
not permitted.

-confirm
-noconfirm (default)
When -confirm is specified, you will be prompted to confirm each message return
operation.

-log (default)
-nolog
Specifies whether informational messages for each message return operation are
generated.

30–113

pmdf qm commands
run

run

Execute commands from a file.

SYNTAX run file-spec

Command Qualifiers Defaults

-ignore -noignore
-log -log

restrictions Must be able to access the file and execute the commands.

PARAMETERS

file-spec
Required parameter specifying the file to execute.

DESCRIPTION

The run command causes PMDF to open the specified file and read and execute
each line from it. Unless -ignore is specified, command execution will be aborted
should one of the commands generate an error. By default each command is echoed
to the terminal before being executed; specify -nolog to suppress this echo.

QUALIFIERS

-ignore
-noignore (default)
By default, command execution will be aborted should one of the commands
generate an error. Specify -ignore if you want execution to continue even if
an error occurs.

-log (default)
-nolog
Specifies whether commands are echoed to the display before they are executed.

30–114

pmdf qm commands
summarize

summarize

Display a summary listing of message files.

SYNTAX summarize

Command Qualifiers Defaults

-database See text
-directory_tree See text
-heading -heading
-held -noheld
-trailing -trailing

PARAMETERS None.

DESCRIPTION

Display a summary listing of message files.

COMMAND
QUALIFIERS

-database
-directory_tree
Controls whether the information presented is gathered from the queue cache
database, -database, or by looking at the actual directory tree containing the
channel queues, -directory_tree.

When neither -database nor -directory_tree is specified, then the ‘‘view’’
selected with the view command will be used. If no view command has been
issued, then -directory_tree is assumed.

-heading (default)
-noheading
Controls whether or not a heading line describing each column of output is
displayed at the start of the summary listing.

-held
-noheld (default)
Controls whether or not to include counts of .HELD messages in the output.

-trailing (default)
-notrailing
Controls whether or not a trailing line with totals is displayed at the end of the
summary.

30–115

pmdf qm commands
summarize

EXAMPLES

1 qm.maint> summarize
Messages

Channel Queued Size (Kb) Oldest
-------------------------------- -------- ----------- -----------------

cc_local 0 0.00
circuitcheck 4 7.51 8 Jun, 10:19:20
conversion 0 0.00

l 0 0.00
mailserv 0 0.00

mime_to_x400 0 0.00
popstore 0 0.00
process 0 0.00

reprocess 0 0.00
tcp_internal 15 51.47 2 Jun, 12:10:03

tcp_local 0 0.00
wpo_local 0 0.00
x400_local 0 0.00

x400_to_mime 0 0.00
-------------------------------- -------- ----------- -----------------

Totals 19 58.98

qm.maint>

The above UNIX example shows displaying a summary listing of message files.

2 qm.maint> summarize
Messages

Channel Queued Size (Kb) Oldest
-------------------------------- -------- ----------- -----------------

cc_local 0 0.00
circuitcheck 4 7.51 8 Jun, 10:19:20
conversion 0 0.00
mailserv 0 0.00
msgstore 0 0.00
process 0 0.00

reprocess 0 0.00
tcp_internal 15 51.47 2 Jun, 12:10:03

tcp_local 0 0.00
wpo_local 0 0.00

-------------------------------- -------- ----------- -----------------
Totals 19 58.98

qm.maint>

The above NT example shows displaying a summary listing of message files.

30–116

pmdf qm commands
top

top

Display the most frequently occurring envelope From:, Subject:, or message content
fields found in message files in the channel queues.

SYNTAX top [channel]

Command Qualifiers Defaults

-content=offset-specifier None
-database See text
-directory_tree See text
-env_from=offset-specifier None
-min_count=n -min_count=2
-subject=offset-specifier -subject=(START=1,LENGTH=2147483647)
-threads=n -nothreads
-top=n -top=20
-verbose -noverbose

PARAMETERS

channel
Optional parameter which specifies a specific PMDF channel area to be scanned
for string frequencies. * or ? wildcard characters may be used in the channel
specification.

DESCRIPTION

Display the most frequently occurring envelope From:, Subject:, or message
content fields found in message files in the channel queues. By default, only
Subject: fields are shown (-subject). Use -env_from to display frequent
envelope From: fields or -content to display frequent message contents. Any
combination of -content, -env_from, and -subject may be specified. However,
only one of each may be used.

The optional channel parameter restricts the scan to message files in the
specified channel. The channel parameter may use * and ? wild cards.

By default, the top 20 most frequently occurring fields are shown (-top=20)
provided that they occur 2 or more times (-min_count=2). Use the -top and
-min_count qualifiers to alter this behavior. The message files scanned may be
either all those present in the channel queue directory tree, or only those files
with entries in the queue cache database. Use either the view command or the
-directory_tree or -database qualifier to control which files are scanned.

30–117

pmdf qm commands
top

The -threads qualifier may be used to accelerate scanning on multiprocessor
systems by dividing the work amongst multiple, simultaneously running threads.
To run n simultaneous scanning threads, specify -threads=n. The value n must
be in the range 1-8. The default is -nothreads.

The -content, -env_from, and -subject qualifiers accept the optional
qualifiers start=n and length=n. These qualifiers indicate the starting offset
and number of bytes in the field to consider. The defaults are

-content=(START=1,LENGTH=256),
-env_from=(START=1,LENGTH=2147483647), and
-subject=(START=1,LENGTH=2147483647).

Use of these qualifiers is useful when, for example, trying to identify occurrences
of a spam message which uses random text at the start of the Subject: line.

COMMAND
QUALIFIERS

-content[=offset-specifier]
-env_from[=offset-specifier]
-subject[=offset-specifier]
The -content, -env_from, and -subject qualifiers are used to specify which
frequently occurring fields should be displayed. By default, only Subject: fields are
shown (-subject). Use -env_from to display frequent envelope From: fields or
-content to display frequent message contents. Any combination of -content,
-env_from, and -subject may be specified. However, only one of each may be
used.

The -content, -env_from, and -subject qualifiers accept the optional qualifiers
START=n and LENGTH=n. These qualifiers indicate the starting offset and number
of bytes in the field to consider. The defaults are

-content=(START=1,LENGTH=256),
-env_from=(START=1,LENGTH=2147483647), and
-subject=(START=1,LENGTH=2147483647).

Use of these qualifiers is useful when, for example, trying to identify occurrences
of a spam message which uses random text at the start of the Subject: line.

-database
-directory_tree
Controls whether the message files scanned are only those with entries in the
queue cache database, -database, or all message files actually present in the
channel queue directory tree, -directory_tree.

When neither -database nor -directory_tree is specified, then the ‘‘view’’
selected with the view command will be used. If no view command has been
issued, then -directory_tree is assumed.

-min_count=n
By default, a string must occur at least 2 times, -min_count=2, in order to be
displayed.

30–118

pmdf qm commands
top

-threads=n
-threads (default)
The -threads qualifier may be used to accelerate searching on multiprocessor
systems by dividing the work amongst multiple, simultaneously running threads.
To run n simultaneous searching threads, specify -threads=n. The value n must
be an integer in the range 1-8. The default is -nothreads.

-top=n
By default, the top 20 most frequently occurring fields are shown, (-top=20).

-verbose
-noverbose (default)
The -verbose qualifier may be used to request that the utility print out
information about what it is doing as it operates.

EXAMPLES

1 qm.maint> top -subject -env_from
%QM-I-QCLISTING, building a list of message files to scan from the queue cache
%QM-I-SCANNING, scanning 73 message files
%QM-I-SCANNED, scanned 73 message files in 0.5600 seconds (130.36 messages/secon
d)
Top 20 Envelope From: addresses which occur 2 or more times
Count Envelope From: address
====== ==

27
10 owner-ex-list@example.com
2 owner-test-list@example.com

Top 20 Subject: header lines which occur 2 or more times
Count Subject
====== ==

6 Re: your ex-list posting
2 Test posting to test-list

The above UNIX example shows displaying the most frequently occurring Subject: and
envelope From: addresses amongst messages in the PMDF queue area.

2 qm.maint> top -subject=START=12 -min_count=15
%QM-I-QCLISTING, building a list of message files to scan from the queue cache
%QM-I-SCANNING, scanning 73 message files
%QM-I-SCANNED, scanned 73 message files in 0.5600 seconds (130.36 messages/secon
d)
Top 20 Subject: header lines which occur 15 or more times
Count Subject
====== ==

25 ake money fast $$$

The above NT example shows displaying the most frequently occuring Subject: lines
that occur 20 times or more, starting from 12 characters into the Subject: header value.
This may be useful when trying to spot spam that inserts random characters at the
beginning of the Subject: header value.

30–119

pmdf qm commands
view

view

Control whether the directory command shows the channel queue directory tree or
the queue cache database.

SYNTAX view type

Command Qualifiers Defaults

None. None.

PARAMETERS

type
The type of view to use: directory_tree or database.

DESCRIPTION

The directory command produces its listing by looking at either the actual
channel queue directory tree on disk, or by looking at the queue cache database.
The view command controls which is used. By default, the view is the channel
queue directory tree. Issue the command,

qm.maint> view database
qm.maint>

to switch to viewing the queue cache database. The command

qm.maint> view directory_tree
qm.maint>

will switch you back to viewing the channel queue directory tree. Issuing the
view command without any parameter will restore the default behavior and is
thus equivalent to the view directory_tree command.

30–120

Utilities on UNIX
view

30–121

31Monitoring

For monitoring PMDF, usually the best place to start is with PMDF’s optional logging
of message traffic; from this basic information, sites may gather statistics such as how
many messages are passing through PMDF, and answering other questions on message
traffic. See Section 31.1 below which provides an overview of logging, and examples on
interpreting log entries.

The web-based QM utility, if enabled, may be used for tasks such as scanning what
messages are present in the PMDF queue area; see Section 31.2. Alternatively, the
command line utility PMDF QM (OpenVMS) or pmdf qm (UNIX and NT) may be used
to scan what messages are present in the PMDF queue area; see Section 29.2.1 or
Section 30.2.2, respectively, for additional details.

The PMDF message circuit check facility may be used to monitor the health of the
mail system, using loopback messages (messages that travel out from and then back
to the circuit check facility) to monitor that connectivity to and from remote systems is
available and to monitor the speed of delivery of such messages. See Section 31.3 which
discusses configuring and using this facility.

PMDF also has facilities to collect and monitor channel counters based upon the
Mail Monitoring MIB, RFC 1566. Note that counters are intended for providing real-time
‘‘snap-shots’’ of PMDF behavior, rather than for gathering the sort of statistics instead
available from the log files. For a description of the PMDF counters, see Section 31.4
below.

PMDF provides utilities to display the counters directly; on OpenVMS see the PMDF
COUNTERS and PMDF QM utilities, described in Chapter 29, or on UNIX or NT see
the pmdf counters and pmdf qm utilities, described in Chapter 30.

PMDF also provides a web-based monitoring interface that can display, among other
things, PMDF channel counter information; see Section 31.7 below.

On OpenVMS, sites running the HP-supplied HP Commander monitoring package
(also known as Enterprise Mail Monitor, EMM, or PolyCenter MAILbus Monitor,
PMM) can monitor PMDF using the PMM scanning module supplied with PMDF; see
Section 31.5 below.

VMS
On OpenVMS, the Process Software TCPware TCP/IP package has an SNMPv2

subagent support; sites running this TCP/IP package can therefore serve out the PMDF
counters via SNMP. See Section 31.6 below.

31–1

Monitoring
Logging

31.1 Logging

PMDF’s optional logging of message traffic is enabled via the logging channel
keyword, as described in Section 2.3.4.84. Enabling logging causes PMDF to write
an entry to a mail.log* file each time a message passes through a PMDF channel.
Such log entries can be useful if you want to get statistics on how many messages are
passing through PMDF (or through particular channels), or when investigating other
questions such as whether and when a message was sent or delivered.

If you are only interested in gathering statistics on the number of messages passing
through a few particular PMDF channels, then you may want to enable the logging
channel keyword on just those PMDF channels of main interest. But more generally,
many sites prefer to enable logging on all PMDF channels; in particular, if you are
trying to track down problems, the first step in diagnosing some problems is to notice
that messages are not going to the channel you expected or intended, and having logging
enabled for all channels can help you spot such issues. See Section 2.3.4.84 for details
on enabling logging.

In addition to the basic information always provided when logging is enabled,
additional, optional information fields may also be logged in the mail.log files,
controlled via various LOG_* PMDF options; see Section 7.3.6. Particularly likely
to be of interest are the LOG_MESSAGE_ID, LOG_FILENAME, LOG_CONNECTION, and
LOG_PROCESS options. Enabling LOG_MESSAGE_ID allows correlation of which entries
relate to which message. Enabling LOG_FILENAME makes it easier to immediately
spot how many times delivery of a particular message file has been retried, and
can be useful in understanding when PMDF does or does not split a message to
multiple recipients into separate message file copies on disk. Enabling LOG_CONNECTION
causes PMDF to log TCP/IP connections, as well as message traffic, to the mail.log
files by default; alternatively, the SEPARATE_CONNECTION_LOG option may be used to
specify that connection log entries instead be written to connection.log files. When
using LOG_CONNECTION to cause generation of TCP/IP connection entries, additionally
enabling LOG_PROCESS allows correlation of which connection entries correspond to
which message entries.

On UNIX and NT, mail.log and connection.log entries may optionally be
duplicated to syslog (UNIX) or to the event log (NT) via the LOG_MESSAGES_SYSLOG
and LOG_CONNECTIONS_SYSLOG options.

The exact information of interest in the mail.log files tends to vary substantially
from site to site. Pointers to site written freeware utilities for analyzing the PMDF log
files, which you may find a useful starting point, can be found at the Process Software
web site:

http://www.process.com

31–2

Monitoring
Logging

31.1.1 Managing the Log Files

When the logging keyword is enabled, all message log entries are made to the file
mail.log_current in the PMDF log directory, (i.e., PMDF_LOG:mail.log_current
on OpenVMS or /pmdf/log/mail.log_current on UNIX) or, if PMDF is installed on
drive C:, C:\pmdf\log\mail.log_current on NT). If connection logging is enabled via
the LOG_CONNECTION option, connection log entries are also by default written to the
mail.log_current file, but if SEPARATE_CONNECTION_LOG=1 has been set, then
the connection log entries will instead be written to the connection.log_current
file. The message return job, which by default runs every night around midnight,
appends any existing mail.log_yesterday to the cumulative log file, mail.log,
renames the current mail.log_current file to mail.log_yesterday, and then begins
a new mail.log_current file. It also performs the analogous operations for any
connection.log* files. Note that the setting of the RETURN_UNITS PMDF option,
see Section 7.3.4, affects when the log file rollover is performed.

Note that PMDF itself never does anything to the cumulative mail.log file; it is up
to each site to manage that log file however they choose, whether by periodically saving
it to backup tape, deleting it, truncating it, or the like.

When considering how to manage the log files, note that the PMDF periodic
return job will execute a site-supplied PMDF_COM:daily_cleanup.com (OpenVMS)
or /pmdf/bin/daily_cleanup (UNIX) or C:\pmdf\bin\daily_cleanup.bat (NT)
procedure, if one exists. Thus some sites may choose to supply their own daily_cleanup
that, for instance, renames the old mail.log file once a week (or once a month), etc.

31.1.2 Log Entry Format

The format of the log file is subject to change. Currently, by default, each log file
entry contains eight or nine fields,1 e.g.,

19-Jan-2012 19:16:57.64 l tcp_local E 1 adam@acme.com rfc822;marlowe@examplex.com marlowe@examplex.com

! " # $ % & ' ()

These fields are:

! The date and time when the entry was made, written in standard OpenVMS date
and time format.

" The channel name for the source channel. (For the Printer channel, the first 32
characters of the print queue name are logged.)

The channel name for the destination channel. (For SMTP channels when
LOG_CONNECTION is enabled, a plus, +, indicates inbound to the SMTP server; a
minus, -, indicates outbound via the SMTP client.)

$ The type of entry; see Table 31–1.

1 The pager and MAILSERV channels, having different information to log, use an extended logging format. See
Section 26.4.3 for details on pager channel log entries. See Section 4.3.9 for details on MAILSERV channel log entries.

31–3

Monitoring
Logging

% The size of the message. This is expressed in kilobytes by default, although this
default can be changed by using the BLOCK_SIZE keyword in the PMDF option file.
(For the Printer channel, the size field displays the job entry number on OpenVMS,
and is always 0 on UNIX. For the MAILSERV channel, the size field is always 0. For
the Pager channel, the size field is the number of pages sent.)

& The envelope From: address. Note that for messages with an empty envelope From:
address, such as notification messages, this field will be blank.

' The original form of the envelope To: address.

(The active (current) form of the envelope To: address.

) The delivery status (SMTP channels only).

Table 31–1 Logging Entry Codes

Entry Description

General

D Successful dequeue

DA Successful dequeue with SASL (authentication)

DS Successful dequeue with TLS (security)

DSA Successful dequeue with TLS and SASL (security and authentication)

E Enqueue

EA Successful enqueue with SASL (authentication)

ES Successful enqueue with TLS (security)

ESA Successful enqueue with TLS and SASL (security and authentication)

J Rejection of attempted enqueue (rejection by slave channel program)

K Used instead of R or W when a warning, failure, or bounce message should be generated, but
the sender asked not to be notified of such events.

Q Temporary failure to dequeue

R Recipient address rejected on attempted dequeue (rejection by master channel program), or
generation of a failure/bounce message

W Warning message generated regarding a not-yet-delivered message

Z Some successful recipients, but this recipient was temporarily unsuccessful; the original
message file of all recipients was dequeued, and in its place a new message file for this and
other unsuccessful recipients will be immediately reenqueued

SMTP channels’ LOG_CONNECTION + or - entries

C Connection closed

O Connection opened

X Connection rejected

Y Connection try failed before being established

I ETRN command received

31–4

Monitoring
Logging

Table 31–1 (Cont.) Logging Entry Codes

Entry Description

IMAP, POP, and POPPASSD server connection entries

A Authentication attempt failed

O Login phase completed (either successful login or aborted connection)

C Connection closed cleanly

X Connection aborted (by either end)†

MAILSERV channel

F Error processing command; command not executed

S Command successfully executed

Printer channel

A Print request failed

S Print request succeeded

Pager channel

A Aborted (permanent error)

F Temporary failure

R Page rejected (permanent error)

S Success

PMDF-FAX G3_TO_FAX and FAX_TO_DATA channels

A Delivery attempt aborted, message requeued (temporary error)

F Delivery failed (permanent error)

M Maximum number of delivery attempts exceeded, message not requeued (permanent error)

S Success

†Some IMAP/POP clients close the connection without sending a LOGOUT/QUIT command, so an
‘‘X’’ entry can happen in normal operation with such clients.

PMDF may optionally be configured to log additional information to the log file; see
the LOG_* PMDF options described in Section 7.2. With
LOG_CONNECTION, LOG_FILENAME, LOG_MESSAGE_ID, LOG_NODE, LOG_NOTARY,
LOG_PROCESS, and LOG_USERNAME all enabled, the format becomes as follows. (Note
that the sample log entry line has been wrapped for typographic reasons; the actual log
entry would appear on one physical line.)

19-Jan-2012 13:13:27.10 NODEA 2e2d.1 tcp_local l E 1 service@examplex.com rfc822;adam@acme.com

! +> +? " # $ % & '
adam 276 PMDF_QUEUE:[l]ZZ01IWFY9ELGWM00094D.00;1 <01IWFVYLGTS499EC9Y@examplex.com> SYSTEM

(+@ +A +B +C
examplex.com (examplex.com [192.168.253.66])

+D)

Where the additional fields, beyond those already discussed above, are:

31–5

Monitoring
Logging

+> The name of the node on which the channel process is running.

+? The process id (expressed in hexadecimal), followed by a period (dot) character and a
count. If this had been a multithreaded channel entry (e.g., a tcp_* channel entry),
there would also be a thread id present between the process id and the count.

+@ The NOTARY (delivery receipt request) flags for the message, expressed as an integer.

+A The file name in the PMDF queue area.

+B The message id.

+C The username of the executing process. Note that in the case of Dispatcher services
such as the SMTP server, this will be the username of the last person to startup the
Dispatcher.

+D This connection information consists of the sending system or channel name, such as
the name presented by the sending system on the HELO/EHLO line (for incoming
SMTP messages), or the enqueuing channel’s official host name (for other sorts of
channels). In the case of TCP/IP channels, the sending system’s ‘‘real’’ name, that is,
the symbolic name as reported by a DNS reverse lookup and/or the IP address, can
also be reported within parentheses as controlled by the ident* channel keywords;
see Section 2.3.4.40. This sample assumes use of one of these keywords, for instance
us of the default identnone keyword, that selects display of both the name found
from the DNS and IP address.

31.1.3 log_condense Utility

The log_condense utility scans mail.log format files and produces a condensed
report file with one entry for each message that has passed through PMDF. This
condensed log file may be used to analyze PMDF message traffic, for example by
importing it into a Microsoft Excel spreadsheet or using a site-written script. Most sites
will want to run log_condense against mail.log_yesterday to generate a condensed
log file for the previous day’s mail.

To run the log_condense utility:

For UNIX:

/pmdf/bin/log_condense input_log_file condensed_output_file

For VMS:

$ log_condense :== $PMDF_EXE:LOG_CONDENSE.EXE
$ log_condense input_log_file condensed_output_file

For Windows:

C:\pmdf\bin> log_condense input_log_file condensed_output_file

31–6

Monitoring
Logging

The entries generated by the log_condense utility have the following fields
(wrapped for typographic reasons):

18-Jul-2012 10:16:35.45 18-Jul-2012 10:16:38.02 <01KK8H2E31XG8WW0JF@otherco>
! " #

john.doe@otherco.com rfc822;jane.doe@example.com jane.doe@naples.example.com
$ % &

naples.example.com 4 4 E,tcp_local,tcp_internal,D 250
' () +> +?

! The date and time the message was accepted.

" The date and time the message was delivered.

The unique message ID.

$ The envelope From: address.

% The original To: address.

& The destination address after rewrites, aliases, and mappings have been applied.

' The host name of the system the message is being delivered to.

(The size of the message in blocks when it was accepted.

) The size of the message in blocks when it was delivered.

+> A comma-separated list of every channel that the message passed through. The
status code of the accepting channel is prepended to the list, while the status code of
the delivering channel is appended to the list.

+? The SMTP status code returned by the system the message was delivered to.

Any field of the entry that cannot be determined from the input log file will contain
a hyphen.

Note: The following options must be set in option.dat for log_condense to operate properly.

LOG_MESSAGEID=1
LOG_HEADER=0
LOG_FORMAT=1 or 2
SEPARATE_CONNECTION_LOG=1

Any log files generated without these options set as indicated cannot be analyzed by
log_condense.

31.1.4 Examples of Message Logging

The exact field format and list of fields logged in the PMDF message logging files
will vary according to exactly what logging options a site sets; see Section 2.3.4.84 for
a description of the basic fields, and see the discussion of the various LOG_* options
in Section 7.3.6 for descriptions of additional, optional fields. But there are general
principles for understanding such log entries; this section will show a few examples of
interpreting typical sorts of log entries.

31–7

Monitoring
Logging

Note: For typographic reasons, log file entries will be shown folded onto multiple lines—actual
log file entries are one line per entry.

When looking over a logging file, keep in mind that on a typical system many
messages are being handled at once. Typically, the entries relating to a particular
message will be interspersed among entries relating to other message being processed
during that same time. The basic logging information is suitable for gathering a sense of
the overall numbers of messages moving through PMDF. However, if you want to correlate
particular entries relating to the same message to the same recipient(s), you will probably
want to enable LOG_MESSAGE_ID. And if you want to correlate particular messages with
particular files in the PMDF queue area, or to see from the entries how many times a
particular not-yet-successfully-dequeued message has had delivery reattempted, you will
probably want to enable LOG_FILENAME. For SMTP messages (handled via a TCP/IP
channel), if you want to correlate TCP connections to and from remote systems with
the messages sent, you will probably want to enable LOG_PROCESS and some level of
LOG_CONNECTION.

31–8

Monitoring
Logging

Figure 31–1 Logging: A Local User Sends an Outgoing Message

15-Nov-2012 19:16:57.64 l tcp_local E 1 !

adam@example.com rfc822;marlowe@example.com marlowe@example.com "

15-Nov-2012 19:17:01.16 tcp_local D 1 #

adam@example.com rfc822;marlowe@example.com marlowe@example.com $
dns;thor.example.com (TCP|206.184.139.12|2788|192.160.253.66|25) %
(THOR.EXAMPLE.COM -- Server ESMTP [PMDF V5.1-10 #8694]) &
smtp;250 2.1.5 marlowe@example.com and options OK. '

The above entries show a basic example of the sorts of log entries one might see if
a local user sends a message out an outgoing TCP/IP channel, e.g., to the Internet. The
lines marked with ! and " are one entry—they would appear on one physical line in
an actual log file. Similarly, the lines marked with #–' are one entry and would appear
on one physical line.

! This line shows the date and time of an enqueue (E) from the L channel to the tcp_
local channel of a one (1) block message.

" This is part of the same physical line of the log file as !, presented here as a separate
line for typographical convenience. It shows the envelope From: address, in this case
adam@example.com, and the original version and current version of the envelope To:
address, in this case marlowe@example.com.

This shows the date and time of a dequeue (D) from the tcp_local channel of a
one (1) block message—that is, a successful send by the tcp_local channel to some
remote SMTP server.

$ This shows the envelope From: address, the original envelope To: address, and the
current form of the envelope To: address.

% This shows that the actual system to which the connection was made is named
thor.example.com in the DNS, that the local sending system has IP address
206.184.139.12 and is sending from port 2788, that the remote destination system
has IP address 192.160.253.66 and the connection port on the remote destination
system is port 25.

& This shows the SMTP banner line of the remote SMTP server.

' This shows the SMTP status code returned for this address; 250 is the basic SMTP
success code and in addition, this remote SMTP server responds with extended SMTP
status codes and some additional text.

Figure 31–2 Logging: Including Optional Logging Fields

15-Nov-2012 19:16:57.64 l tcp_local E 1
adam@example.com rfc822;marlowe@example.com marlowe@example.com
PMDF_QUEUE:[tcp_local]ZZ01ISKLSKLZLI90N15M.00;1 <01ISKLSKC2QC90N15M@example.com> !

Figure 31–2 Cont’d on next page

31–9

Monitoring
Logging

Figure 31–2 (Cont.) Logging: Including Optional Logging Fields

15-Nov-2012 19:17:01.16 tcp_local D 1
adam@example.com rfc822;marlowe@example.com marlowe@example.com
PMDF_QUEUE:[tcp_local]ZZ01ISKLSKLZLI90N15M.00 <01ISKLSKC2QC90N15M@example.com> "
dns;thor.example.com (TCP|206.184.139.12|2788|192.160.253.66|25)
(THOR.EXAMPLE.COM -- Server ESMTP [PMDF V5.1-10 #8694])
smtp;250 2.1.5 marlowe@example.com and options OK.

This example is similar to that shown in Figure 31–1, but with the additional
information logged by setting LOG_FILENAME=1 and LOG_MESSAGE_ID=1 showing the
filename and message-id; see ! and ". The message-id in particular can be used to
correlate which entries relate to which message.

Figure 31–3 Logging: Sending to a List

15-Nov-2012 20:01:44.10 l l E 1
adam@example.com rfc822;test-list@example.com bob
PMDF_QUEUE:[l]ZZ01ISKND3DE1K90N15M.00;1 <01ISKND2H8MS90N15M@example.com>

15-Nov-2012 20:01:44.81 l tcp_local E 1
adam@example.com rfc822;test-list@example.com carol@otherco.com
PMDF_QUEUE:[tcp_local]ZZ01ISKND2WS1I90N15M.00;1 <01ISKND2H8MS90N15M@example.com>

15-Nov-2012 20:01:44.81 l tcp_local E 1
adam@example.com rfc822;test-list@example.com david@otherco.com
PMDF_QUEUE:[tcp_local]ZZ01ISKND2WS1I90N15M.00;1 <01ISKND2H8MS90N15M@example.com>

15-Nov-2012 20:01:50.69 l D 1
adam@example.com rfc822;test-list@example.com bob
PMDF_QUEUE:[l]ZZ01ISKND3DE1K90N15M.00 <01ISKND2H8MS90N15M@example.com>

15-Nov-2012 20:01:57.36 tcp_local D 1
adam@example.com rfc822;test-list@example.com carol@otherco.com
PMDF_QUEUE:[tcp_local]ZZ01ISKND2WS1I90N15M.00 <01ISKND2H8MS90N15M@example.com>
dns;gw.otherco.com (TCP|206.184.139.12|2788|192.160.253.66|25)
(gw.otherco.com -- SMTP Sendmail)
smtp;250 OK.

15-Nov-2012 20:02:06.14 tcp_local D 1
adam@example.com rfc822;test-list@example.com david@otherco.com
PMDF_QUEUE:[tcp_local]ZZ01ISKND2WS1I90N15M.00 <01ISKND2H8MS90N15M@example.com>
dns;gw.otherco.com (TCP|206.184.139.12|2788|192.160.253.66|25)
(gw.otherco.com -- SMTP Sendmail)
smtp;250 OK.

The preceding entries illustrate sending to multiple recipients with LOG_FILENAME=1
and LOG_MESSAGE_ID=1 enabled. Here user adam@example.com has sent to the PMDF
mailing list test-list@example.com, which expanded to bob@example.com, carol@otherco.com,
and david@otherco.com. Note that the original envelope To: address is test-list@example.com
for each recipient, though the current envelope To: address is each respective address.
Note how the message-id is the same throughout, though two separate files (one for the
L channel and one going out the tcp_local channel) are involved.

31–10

Monitoring
Logging

Figure 31–4 Logging: Sending to a non-existent Domain

15-Nov-2012 20:49:04 l tcp_local E 1
adam@example.com rfc822;user@very.bogus.com user@very.bogus.com
PMDF_QUEUE:[tcp_local]ZZ01ISKP0S0LVQ94DU0K.00;1 <01ISKP0RYMAS94DU0K@EXAMPLE.COM>

15-Nov-2012 20:49:33 tcp_local process E 1 !

rfc822;adam@example.com adam@example.com "
PMDF_QUEUE:[process]ZZ01ISKP0S0LVQ94DTZB.00
<01ISKP22MW8894DTAS@EXAMPLE.COM>,<01ISKP0RYMAS94DU0K@EXAMPLE.COM> #

15-Nov-2012 20:49:33 tcp_local process E 1 $
rfc822;postmaster@example.com postmaster@example.com
PMDF_QUEUE:[process]ZZ01ISKP0S0LVQ94DTZB.00
<01ISKP22MW8894DTAS@EXAMPLE.COM>,<01ISKP0RYMAS94DU0K@EXAMPLE.COM>

15-Nov-2012 20:50:07 tcp_local R 1 %
adam@example.com rfc822;user@very.bogus.com user@very.bogus.com
PMDF_QUEUE:[tcp_local]ZZ01ISKP0S0LVQ94DU0K.00 <01ISKP0RYMAS94DU0K@EXAMPLE.COM>
Illegal host/domain name found &

15-Nov-2012 20:50:08 process l E 3 '
rfc822;adam@example.com adam (
PMDF_QUEUE:[l]ZZ01ISKP23BUQS94DTYL.00;1 <01ISKP22MW8894DTAS@EXAMPLE.COM>

15-Nov-2012 20:50:08 process l E 3
rfc822:postmaster@example.com postmaster
PMDF_QUEUE:[l]ZZ01ISKP23BUQS94DTYL.00;1 <01ISKP22MW8894DTAS@EXAMPLE.COM>

15-Nov-2012 20:50:12 l D 3
rfc822;adam@example.com adam
PMDF_QUEUE:[l]ZZ01ISKP23BUQS94DTYL.00 <01ISKP22MW8894DTAS@EXAMPLE.COM>

15-Nov-2012 20:50:12 l D 3
rfc822;postmaster@example.com postmaster
PMDF_QUEUE:[l]ZZ01ISKP23BUQS94DTYL.00 <01ISKP22MW8894DTAS@EXAMPLE.COM>

The above entries illustrate an attempt to send to a non-existent pseudodomain (here
very.bogus.com); that is, sending to a pseudodomain name that is not noticed as illegal
by PMDF’s rewrite rules and which PMDF matches to an outgoing TCP/IP channel. This
example assumes PMDF option settings of LOG_FILENAME=1 and LOG_MESSAGE_
ID=1.

When the TCP/IP channel runs and checks for the pseudodomain name in the DNS,
the DNS returns an error that no such name exists. Note the ‘‘rejection’’ entry (R), as
seen in %, with the DNS returning an error that this is not a legal domain name, as seen
in &. Since the address is rejected after the message has been submitted, PMDF has
to generate a bounce message back to the original sender. Note that PMDF enqueues
the new rejection message to the original sender, !, and (depending on how PMDF is
configured regarding bounce copies to the postmaster, as discussed in Section 2.3.4.21)
copied to the postmaster, see #, before deleting the original outbound message (the R
entry shown in %). Note that notification messages, such as bounce messages, have an
empty envelope From: address—as seen, for instance, in " and (in which the envelope
From: field is shown as an empty space. Note that the initial enqueue of a bounce
message generated by PMDF shows the message-id for the new notification message

Figure 31–4 Cont’d on next page

31–11

Monitoring
Logging

Figure 31–4 (Cont.) Logging: Sending to a non-existent Domain

followed by the message-id for the original message, #. (Such information is not always
available to PMDF, but when it is available to be logged it allows correlation of the log
entries corresponding to the outbound failed message with the log entries corresponding
to the resulting notification message.) Such notification messages are enqueued to the
process channel, which in turn enqueues them to an appropriate destination channel, '.

Figure 31–5 Logging: Sending to a non-existent Remote User

15-Nov-2012 13:11:05 l tcp_local E 1
adam@example.com rfc822;nonesuch@example.com nonesuch@example.com
PMDF_QUEUE:[tcp_local]ZZ01ISLNBB1JOE94DUWH.00;1 <01ISLNBAWV3094DUWH@example.com>

15-Nov-2012 13:11:08 tcp_local process E 1
rfc822;adam@example.com adam@example.com
PMDF_QUEUE:[process]ZZ01ISLNBB1JOE94DSGB.00;1
<01ISLNBFKIDS94DUJ8@example.com>,<01ISLNBAWV3094DUWH@example.com>

15-Nov-2012 13:11:08 tcp_local process E 1
rfc822;postmaster@example.com postmaster@example.com
PMDF_QUEUE:[process]ZZ01ISLNBB1JOE94DSGB.00;1
<01ISLNBFKIDS94DUJ8@example.com>,<01ISLNBAWV3094DUWH@example.com>

15-Nov-2012 13:11:11 tcp_local R 1 !
adam@.example.com rfc822;nonesuch@example.com nonesuch@example.com
PMDF_QUEUE:[tcp_local]ZZ01ISLNBB1JOE94DUWH.00 <01ISLNBAWV3094DUWH@example.com>
dns;thor.example.com (TCP|206.184.139.12|2788|192.160.253.66|25) "
(THOR.EXAMPLE.COM -- Server ESMTP [PMDF V5.1-10 #8694])
smtp; 553 unknown or illegal user: nonesuch@example.com #

15-Nov-2012 13:11:12 process l E 3
rfc822;adam@example PMDF_QUEUE:[l]ZZ01ISLNBGND1094DQDP.00;1
<01ISLNBFKIDS94DUJ8@example.com>

15-Nov-2012 13:11:12 process l E 3
rfc822;postmaster@example.com postmaster
PMDF_QUEUE:[l]ZZ01ISLNBGND1094DQDP.00;1 <01ISLNBFKIDS94DUJ8@example.com>

15-Nov-2012 13:11:13 l D 3
rfc822;adam@example.com adam@example.com
PMDF_QUEUE:[l]ZZ01ISLNBGND1094DQDP.00 <01ISLNBFKIDS94DUJ8@example.com>

15-Nov-2012 13:11:13 l D 3
rfc822;postmaster@example.com postmaster@example.com
PMDF_QUEUE:[l]ZZ01ISLNBGND1094DQDP.00 <01ISLNBFKIDS94DUJ8@example.com>

The above entries illustrate an attempt to send to a bad address on a remote
system. This example assumes PMDF option settings of LOG_FILENAME=1 and
LOG_MESSAGE_ID=1, and channel option settings of LOG_BANNER=1 and LOG_
TRANSPORTINFO=1. Note the rejection entry (R), seen in !. But in contrast to the
rejection entry in Figure 31–4, note that the rejection entry here shows that a connection
to a remote system was made, and shows the SMTP error code issued by the remote

Figure 31–5 Cont’d on next page

31–12

Monitoring
Logging

Figure 31–5 (Cont.) Logging: Sending to a non-existent Remote User

SMTP server, " and #. The inclusion of the information shown in " is due to setting
the channel options LOG_BANNER=1 and LOG_TRANSPORTINFO=1

Figure 31–6 Logging: Rejecting a Remote Side’s Attempt to Submit a Message

15-Nov-2012 12:02:23 tcp_local J 0 !

harold@hotmail.com rfc822; alan@very.bogus.com "
550 5.7.1 Relaying not permitted: alan@very.bogus.com #

The above entry illustrates the sort of log file entry resulting when PMDF rejects a
remote side’s attempt to submit a message. (This example assumes that no optional LOG_
* options are enabled, so only the basic fields are logged in the entry. Note that enabling
the LOG_CONNECTION option, in particular, would result in additional informative
fields in such J entries.) In this case, the example is for a site has set up SMTP relay
blocking (see Section 16.1.6) with an ORIG_SEND_ACCESS mapping including

ORIG_SEND_ACCESS

! ...numerous entries omitted...
!
tcp_local|*|tcp_local|* $NRelaying$ not$ permitted

and where alan@very.bogus.com is not an internal address. Hence the attempt of the
remote user harold@hotmail.com to relay through the PMDF system to the remote user
alan@very.bogus.com is rejected.

! This shows the date and time of PMDF rejecting a remote side’s attempt to submit
a message. Note that as opposed to cases where a PMDF channel is attempting to
send a message which is rejected (indicated by R records, as in Figure 31–4 and
Figure 31–5 above), this case of PMDF rejecting a message submission attempt is
indicated by a J record.

" The attempted envelope From: and To: addresses are shown. In this case, no original
envelope To: information was available so that field is empty.

The entry includes the SMTP error message PMDF issued to the remote (attempted
sender) side.

Figure 31–7 Logging: Multiple Delivery Attempts

15-Nov-2012 10:31:05.18 tcp_internal tcp_local E 3 !
adam@sample.example.com rfc822;user@some.org user@some.org
PMDF_QUEUE:[tcp_local]ZZ01IS3D2ZP7FQ9UN54R.00 <01IRUD7SVA3Q9UN2D4@example.com>

15-Nov-2012 10:31:10.37 tcp_local Q 0 "
adam@sample.example.com rfc822;user@some.org user@some.org
PMDF_QUEUE:[tcp_local]ZZ01IS3D2ZP7FQ9UN54R.00 <01IRUD7SVA3Q9UN2D4@example.com> #

TCP active open: Failed connect() Error: no route to host $

Figure 31–7 Cont’d on next page

31–13

Monitoring
Logging

Figure 31–7 (Cont.) Logging: Multiple Delivery Attempts

...several hours worth of entries...

15-Nov-2012 12:45:39.48 tcp_local Q 0 %
adam@sample.example.com rfc822;user@some.org user@some.org
PMDF_QUEUE:[tcp_local]ZY01IS3D2ZP7FQ9UN54R.00 <01IRUD7SVA3Q9UN2D4@example.com> &
TCP active open: Failed connect() Error: no route to host

...several hours worth of entries...

15-Nov-2012 16:45:24.72 tcp_local Q 0
adam@sample.example.com rfc822;user@some.org user@some.org
PMDF_QUEUE:[tcp_local]ZX01IS67NY4RRK9UN7GP.00 <01IRUD7SVA3Q9UN2D4@example.com> '

TCP active open: Failed connect() Error: connection refused (

...several hours worth of entries...

15-Nov-2012 20:45:51.55 tcp_local D 3)
adam@sample.example.com rfc822;user@some.org user@some.org
PMDF_QUEUE:[tcp_local]ZX01IS67NY4RRK9UN7GP.00 <01IRUD7SVA3Q9UN2D4@example.com>
dns;host.some.org (TCP|206.184.139.12|2788|192.1.1.1|25)
(All set, fire away)
smtp; 250 Ok

The above entries illustrate the sort of log file entries resulting when a message
can not be delivered upon the first attempt, so that PMDF has to retry sending it
several times. This example assumes option settings of LOG_FILENAME=1 and LOG_
MESSAGE_ID=1.

! The message comes in the tcp_internal channel—perhaps from a POP or IMAP client,
or perhaps from another host within the organization using PMDF as an SMTP
relay—and PMDF enqueues it to the outgoing tcp_local channel.

" The first delivery attempt fails—this is a Q entry—and note that message size is
shown as 0 for such unsuccessful dequeue attempts.

That this is a first delivery attempt can be seen from the ZZ* filename.

$ This delivery attempt failed when the TCP/IP package could not find a route to the
remote side. Note that, as opposed to Figure 31–4, the DNS did not object to the
destination domain name, some.org; rather, the ‘‘no route to host’’ error indicates
that there is some network problem between the sending and receiving side.

% The next time the PMDF periodic job runs it reattempts delivery, again unsuccess-
fully.

& Note that the file name is now ZY*, indicating that this is a second attempt.

' Note that the file name is ZX* for this third unsuccessful attempt.

(And again the next time the periodic job reattempts delivery the delivery fails, though
this time the TCP/IP package is not complaining that it cannot get through to the
remote SMTP server, but rather the remote SMTP server is not accepting connections.
(Perhaps the remote side fixed their network problem, but has not yet brought their
SMTP server back up—or their SMTP server is swamped handling other messages
and hence was not accepting connections at the moment PMDF tried to connect.)

Figure 31–7 Cont’d on next page

31–14

Monitoring
Logging

Figure 31–7 (Cont.) Logging: Multiple Delivery Attempts

) Finally the message is dequeued.

Figure 31–8 Logging: Z Entries

15-Nov-2012 20:56:43 l tcp_local E 1 !
adam@example.com rfc822;barbara@else.where.com barbara@else.where.com
PMDF_QUEUE:[tcp_local]ZZ01IT1GSE6O069AMK60.00;1 <01IT1GSE4VYC9AMK60@EXAMPLE.COM>

15-Nov-2012 20:56:43 l tcp_local E 1 "
adam@example.com rfc822;carl@else.where.com carl@else.where.com
PMDF_QUEUE:[tcp_local]ZZ01IT1GSE6O069AMK60.00;1 <01IT1GSE4VYC9AMK60@EXAMPLE.COM>

15-Nov-2012 20:56:48 l tcp_local E 1 #
adam@example.com rfc822;barbara@else.where.com barbara@else.where.com
PMDF_QUEUE:[tcp_local]ZZ01IT1GTR1SS69AMJBD.00;1 <01IT1GSE4VYC9AMK60@EXAMPLE.COM> $

15-Nov-2012 20:56:48 tcp_local Z 1 %
adam@example.com rfc822;barbara@else.where.com barbara@else.where.com
PMDF_QUEUE:[tcp_local]ZZ01IT1GSE6O069AMK60.00 <01IT1GSE4VYC9AMK60@EXAMPLE.COM>
smtp;422 user over quota; cannot receive new mail: barbara@else.where.com

15-Nov-2012 20:56:48 tcp_local D 1 &
adam@example.com rfc822;carl@else.where.com carl@else.where.com
PMDF_QUEUE:[tcp_local]ZZ01IT1GSE6O069AMK60.00 <01IT1GSE4VYC9AMK60@EXAMPLE.COM>
smtp;250 2.1.5 carl@else.where.com and options OK.

15-Nov-2012 20:56:50 tcp_local Q 1 '
adam@example.com rfc822;barbara@else.where.com barbara@else.where.com
PMDF_QUEUE:[tcp_local]ZZ01IT1GTR1SS69AMJBD.00 <01IT1GSE4VYC9AMK60@EXAMPLE.COM>
barbara@else.where.com:
smtp;422 user over quota; cannot receive new mail: barbara@else.where.com (

...several hours of entries...

15-Nov-2012 23:20:14 tcp_local D 1)
adam@example.com rfc822;barbara@else.where.com barbara@else.where.com
PMDF_QUEUE:[tcp_local]ZZY1IT1GTR1SS69AMJBD.00 <01IT1GSE4VYC9AMK60@EXAMPLE.COM>
smtp;250 OK.

The above entries illustrate the case of a message file including multiple recipients
for which one recipient succeeds and another recipient gets a temporary failure; this
example assumes option settings of LOG_FILENAME=1 and LOG_MESSAGE_ID=1.
This is a less common case—it can only arise with certain protocols, for instance,
SMTP and DECnet MAIL-11, that allow both for multiple recipients per transaction
and for temporary failures. When a temporary failure occurs on a message file which
had other, successful recipients, PMDF must make a new message file containing only
the unsuccessful recipient(s). The original message file (containing all recipients) is
deleted. PMDF then immediately retries delivery to the unsuccessful recipient(s) since
such temporary errors may be due simply to the remote side not wanting to accept
that many recipients all at once. Thus in the above entries, adam@example.com is

Figure 31–8 Cont’d on next page

31–15

Monitoring
Logging

Figure 31–8 (Cont.) Logging: Z Entries

trying to send to two recipients at the same remote site, barbara@else.where.com, and
carl@else.where.com.

! We see the initial enqueue to the first recipient...

" ...and the initial enqueue to the second recipient; note that the message id is the
same, since it is the same message to both recipients, and indeed the file name is the
same meaning both recipients will be attempted in the same SMTP transaction.

Here we see PMDF reenqueuing a new message file containing only the unsuccessful
message recipient. The entry showing the unsuccessful dequeue attempt is written
later, in %—PMDF cannot delete the original message file until the new message file
is written, so this reenqueue operation is completed and its log entry written before
the unsuccessful dequeue attempt log entry can be written.

$ Note that the message id for the reenqueue is the same (this is the same message
content) as in the original enqueue shown in !, but the file name is different (it is a
different file since this new file contains only barbara@else.where.com as a recipient).

% For the barbara@else.where.com recipient address, the remote side issued a tem-
porary error. PMDF does not delete (dequeue) the original message file (con-
taining both recipients) until after the new message file (containing only the bar-
bara@else.where.com recipient) has been written (reenqueued); that is why the #

log entry for the reenqueue for the barbara@else.where.com recipient appears before
the % and & log entries for the dequeue of the original message file.

& The carl@else.where.com recipient address was accepted by the remote side.

' Since the failure on the barbara@else.where.com recipient was a temporary failure on
a message where another recipient was accepted, PMDF immediately retries delivery
to the unsuccessful recipient.

(This immediate retry is again unsuccessful, (as indicated by being a ‘‘Q’’ record '),
with an error message as shown here. So the message will await retry by the next
periodic delivery job.

) This example shows a case where the remote barbara@else.where.com user appar-
ently cleared out some disk space; the next retry succeeded.

31–16

Monitoring
Logging

Figure 31–9 Logging: Incoming SMTP Message Routed Through the Conversion Channel

15-Nov-2012 00:06:26.72 tcp_local conversion E 9 !
amy@example.com rfc822;bert@example.com bert@example.com
PMDF_QUEUE:[conversion]ZZ01IT5UAMZ4QW98518O.00;1 <01IT5UALL14498518O@state.edu>

15-Nov-2012 00:06:29.06 conversion l E 9 "
amy@sample.com rfc822;bert@example.com bert
PMDF_QUEUE:[l]ZZ01IT5UAOXLDW98509E.00;1 <01IT5STUMUFO984Z8L@sample.com>

15-Nov-2012 00:06:29.31 conversion D 9 #
amy@sample.com rfc822;bert@example.com bert
PMDF_QUEUE:[conversion]ZZ01IT5UAMZ4QW98518O.00 <01IT5UALL14498518O@sample.com>

15-Nov-2012 00:06:32.62 l D 9 $
amy@sample.com rfc822;bert@example.com bert
PMDF_QUEUE:[l]ZZ01IT5UAOXLDW98509E.00 <01IT5STUMUFO984Z8L@sample.com>

The above entries illustrate the case of a message routed through the conversion
channel. That is, this is an example where the site is assumed to have a CONVERSION
mapping table along the lines of

CONVERSIONS

IN-CHAN=tcp_local;OUT-CHAN=l;CONVERT Yes

This example assumes option settings of LOG_FILENAME=1 and LOG_MESSAGE_ID=1.

! The message from external user amy@sample.com comes in addressed to the L
channel recipient bert@example.com. The CONVERSIONS mapping entry, however,
causes the message to be initially enqueued to the conversion channel (rather than
directly to the L channel).

" The conversion channel runs and enqueues the message to the L channel.

Then the conversion channel can dequeue the message (delete the old message
file).

$ And finally the L channel dequeues (delivers) the message.

Figure 31–10 Logging: Outbound Connection Logging

15-Nov-2012 10:52:05.41 1e488.0 l tcp_local E 1
adam@example.com rfc822;bobby@sample.example.com bobby@sample.example.com
PMDF_QUEUE:[tcp_local]ZZ01ITRF7BO388000FCN.00;1 <01ITRF7BDHS6000FCN@EXAMPLE.COM> !

15-Nov-2012 10:52:05.41 1e488.0 l tcp_local E 1
adam@example.com rfc822;carl@sample.example.com carl@sample.example.com
PMDF_QUEUE:[tcp_local]ZZ01ITRF7BO388000FCN.00;1 <01ITRF7BDHS6000FCN@EXAMPLE.COM> "

15-Nov-2012 10:52:05.74 1e488.1 l tcp_local E 1
adam@example.com rfc822;dave@milan.example.com dave@milan.example.com
PMDF_QUEUE:[tcp_local]ZZ01ITRF7C11FU000FCN.00;1 <01ITRF7BDHS6000FCN@EXAMPLE.COM> #

Figure 31–10 Cont’d on next page

31–17

Monitoring
Logging

Figure 31–10 (Cont.) Logging: Outbound Connection Logging

15-Nov-2012 10:52:10.79 1f625.2.0 tcp_local - O $
TCP|206.184.139.12|5900|206.184.139.66|25
SMTP/milan.example.com/mailhub.example.com %

15-Nov-2012 10:52:10.87 1f625.3.0 tcp_local - O &
TCP|206.184.139.12|5901|206.184.139.70|25
SMTP/sample.example.com/sample.example.com '

15-Nov-2012 10:52:12.28 1f625.3.1 tcp_local D 1
adam@example.com rfc822;bobby@sample.example.com bobby@sample.example.com
PMDF_QUEUE:[tcp_local]ZZ01ITRF7BO388000FCN.00 <01ITRF7BDHS6000FCN@EXAMPLE.COM>
sample.example.com dns;sample.example.com (
(TCP|206.184.139.12|5901|206.184.139.70|25)
(sample.example.com -- Server ESMTP [PMDF V5.1-9 #8790])
(TCP|206.184.139.12|5901|206.184.139.70|25)
smtp;250 2.1.5 bobby@sample.example.com and options OK.

15-Nov-2012 10:52:12.28 1f625.3.1 tcp_local D 1
adam@example.com rfc822;carl@sample.example.com carl@sample.example.com
PMDF_QUEUE:[tcp_local]ZZ01ITRF7BO388000FCN.00 <01ITRF7BDHS6000FCN@EXAMPLE.COM>
sample.example.com dns;sample.example.com
(TCP|206.184.139.12|5901|206.184.139.70|25)
(sample.example.com -- Server ESMTP [PMDF V5.1-9 #8790])
(TCP|206.184.139.12|5901|206.184.139.70|25)
smtp;250 2.1.5 carl@sample.example.com and options OK.

15-Nov-2012 10:52:12.40 1f625.3.2 tcp_local - C)
TCP|206.184.139.12|5901|206.184.139.70|25
SMTP/sample.example.com/sample.example.com

15-Nov-2012 10:52:13.01 1f625.2.1 tcp_local D 1
adam@example.com rfc822;dave@milan.example.com dave@milan.example.com
PMDF_QUEUE:[tcp_local]ZZ01ITRF7C11FU000FCN.00 <01ITRF7BDHS6000FCN@EXAMPLE.COM>
mailhub.example.com dns;mailhub.example.com
(TCP|206.184.139.12|5900|206.184.139.66|25)
(MAILHUB.EXAMPLE.COM -- Server ESMTP [PMDF V5.1-7 #8694])
(TCP|206.184.139.12|5900|206.184.139.66|25)
smtp;250 2.1.5 dave@milan.example.com and options OK.

15-Nov-2012 10:52:13.05 1f625.2.2 tcp_local - C +>
TCP|206.184.139.12|5900|206.184.139.66|25
SMTP/milan.example.com/mailhub.example.com

The above entries illustrate log output for an outgoing message when connection
logging is enabled, via LOG_CONNECTION=3. LOG_PROCESS=1, LOG_MESSAGE_ID=1,
and LOG_FILENAME=1 are also assumed in this example. The example shows the
case of user adam@example.com sending the same message (note that the message
ID is the same for each message copy) to three recipients, bobby@sample.example.com,
carl@sample.example.com, and dave@milan.example.com. This example assumes that
the message is going out a tcp_local channel marked (as such channels usually are)
with the single_sys channel keyword. Therefore, a separate message file on disk will
be created for each set of recipients to a separate host name, as seen in !, ", and
#, where the bobby@sample.example.com and carl@sample.example.com recipients are

Figure 31–10 Cont’d on next page

31–18

Monitoring
Logging

Figure 31–10 (Cont.) Logging: Outbound Connection Logging

stored in the same message file, but the dave@milan.example.com recipient is stored in
a different message file.

! The message is enqueued to the first recipient...

" ...and to the second recipient...

...and to the third recipient.

$ Having LOG_CONNECTION=3 set causes PMDF to write this entry. The minus,-,
indicates that this entry refers to an outgoing connection. The O means that this
entry corresponds to the opening of the connection. Also note that the process id here
is the same, 1f625, as in &, since the same process is used for the multithreaded
TCP/IP channel for these separate connection opens, though this open is being
performed by thread 2 vs. thread 3 for &.

% As there are two separate remote systems to which to connect, the multithreaded
SMTP client in separate threads opens up a connection to each – the first in this
entry, and the second shown in '. This part of the entry shows the sending and
destination IP numbers and port numbers, and shows both the initial host name,
and the host name found by doing a DNS lookup. That is, in the SMTP/initial-
host/dns-host clauses, note the display of both the initial host name, and that used
after performing a DNS MX record lookup on the initial host name: the system
milan.example.com is apparently MXed to mailhub.example.com.

& The multithreaded SMTP client opens up a connection to the second system in a
separate thread (though the same process).

' As there are two separate remote systems to which to connect, the multithreaded
SMTP client in separate threads opens up a connection to each – the second in this
entry, and the first shown above in %. This part of the entry shows the sending and
destination IP numbers and port numbers, and shows both the initial host name,
and the host name found by doing a DNS lookup. In this example, the system
sample.example.com apparently receives mail directly itself.

(Besides resulting in specific connection entries, LOG_CONNECTION=3 also causes
inclusion of connection related information in the regular message entries, as seen
here for instance.

) Having LOG_CONNECTION=3 causes PMDF to write this entry. After any messages
are dequeued, (the bobby and carl messages in this example), the connection is closed,
as indicated by the C in this entry.

+> Having LOG_CONNECTION=3 causes PMDF to write this entry. After any messages
are dequeued, (the dave message in this example), the connection is closed, as
indicated by the C in this entry.

Figure 31–11 Logging: Inbound Connection Logging

Figure 31–11 Cont’d on next page

31–19

Monitoring
Logging

Figure 31–11 (Cont.) Logging: Inbound Connection Logging

15-Nov-2012 17:02:08.70 tcp_local + O !

TCP|206.184.139.12|25|192.160.253.66|1244 SMTP "

15-Nov-2012 17:02:26.65 tcp_local l E 1
service@example.com rfc822;adam@example.com adam
THOR.EXAMPLE.COM (THOR.EXAMPLE.COM [108.165.158.93]) #

15-Nov-2012 17:02:27.05 tcp_local + C $
TCP|206.184.139.12|25|192.160.253.66|1244 SMTP

15-Nov-2012 17:02:31.73 l D 1
service@example.com rfc822;adam@example.com adam

The above entries illustrate log output for an incoming SMTP message when
connection logging is enabled, via LOG_CONNECTION=3.

! The remote system opens a connection. The O character indicates that this entry
regards the ‘‘O’’pening of a connection; the + character indicates that this entry
regards an incoming connection.

" The IP numbers and ports for the connection are shown. In this entry, the receiving
system (the system making the log file entry) has IP address 206.184.139.12 and
the connection is being made to port 25; the sending system has IP address
192.160.253.66 and is sending from port 1244.

In the entry for the enqueue of the message from the incoming TCP/IP channel (tcp_
local) to the L channel recipient, note that information beyond the default is included
since LOG_CONNECTION=3 is enabled. Specifically, the name that the sending
system claimed on its HELO or EHLO line, the sending system’s name as found
by a DNS reverse lookup on the connection IP number, and the sending system’s
IP address are all logged; see Section 2.3.4.40 for a discussion of channel keywords
affecting this behavior.

$ The inbound connection is closed. The C character indicates that this entry regards
the ‘‘C’’losing of a connection; the + character indicates that this entry regards an
incoming connection.

31.2 Web-based QM Utility

The web-based QM utility is a facility for managing the PMDF message queues. It
allows inspection and manipulation of queued messages. In these capabilities the web-
based QM utility is comparable to the command line PMDF QM (see Section 29.2.1)
(OpenVMS) or pmdf qm (see Section 30.2.2) (UNIX and NT) utility. However, the
web-based QM utility also allows for stopping or running PMDF processing jobs.

31–20

Monitoring
Web-based QM Utility

31.2.1 Accessing the Web-based QM Utility

In order for the web-based QM utility to be available and accessible the following
items are necessary:

1. The PMDF Dispatcher must be configured to run the PMDF HTTP server.

2. The PMDF HTTP server must be configured to know about the QM CGI.

3. An HTTP_ACCESS mapping table allowing access to the QM utility must be present
in the PMDF mappings file.

The best way to achieve the above configuration items is to run the web-based PMDF
configuration utility or the command line Dispatcher configuration utility to generate the
needed files. For manual configuration, see Chapter 11 and Chapter 12.

If enabled, the web-based QM utility is available via the URL:

http://hostname:7633/qm/

where hostname is the TCP/IP name of your PMDF system.

In order to use the web-based QM utility, you will need to authenticate yourself as
one of: the SYSTEM or PMDF account on OpenVMS, the root or pmdf account on UNIX,
or the Administrator account on NT.

31.2.2 Examples of the Web-based QM Utility’s Web Page Displays

This section shows examples of the web-based QM utility’s web page displays on a
sample system. Figure 31–12 shows the initial page displayed at

http://hostname:7633/qm/

From this initial page, you may request either a full or quick listing of message files
currently in PMDF channel queues. The requested listing will not be displayed unless
and until you have authenticated yourself as a PMDF manager (that is, as SYSTEM or
PMDF on OpenVMS, or as root or pmdf on UNIX, or as Administrator on NT).

31–21

Monitoring
Web-based QM Utility

Figure 31–12 Web-based QM Home Page

31–22

Monitoring
Web-based QM Utility

Figure 31–13 shows a sample of a quick listing, as displayed by selecting the ‘‘Quick
Listing’’ button from Figure 31–12.

Figure 31–13 Web-based QM Quick Listing Page

31–23

Monitoring
Web-based QM Utility

Figure 31–14 shows a sample of an advanced options page, as displayed by selecting
the ‘‘Advanced Options’’ button from Figure 31–13. Scrolling further down such a page
past the point visible in this figure, you would be presented with buttons for each channel
for displaying the messages queued for that channel, for submitting a processing job for
that channel, or for stopping that channel from running any new processing jobs.

31–24

Monitoring
Web-based QM Utility

Figure 31–14 Web-based QM Advanced Options Page

31–25

Monitoring
Web-based QM Utility

Figure 31–15 shows a sample of the filter_discard channel display page,
as displayed by clicking on the filter_discard channel from the quick listing page,
Figure 31–13, or by selecting the List button from the advanced options page.

Figure 31–15 Web-based QM l Channel Page

31–26

Monitoring
Web-based QM Utility

Figure 31–16 shows a sample of the Qtop page, as displayed by clicking on ‘‘Qtop’’
from Figure 31–13 or Figure 31–14. Qtop may be used to see what strings or addresses
are frequently appearing in messages currently in the PMDF queue area. This can be
particularly useful for spotting flurries of unsolicited bulk e-mail (spam) or chain letters.
Figure 31–16 shows an example where there are numerous messages in the PMDF queue
area whose Subject: header field is ‘‘Relay test’’.

31–27

Monitoring
Web-based QM Utility

Figure 31–16 Web-based QM Qtop Page

31–28

Monitoring
Web-based QM Utility

The web-based QM utility also has links on the listing and advanced options pages
to the Dispatcher statistics display, such as the sample display shown in Figure 11–5.

31.3 Message Circuit Checking

The PMDF message circuit checking facility may be used to monitor the health of the
PMDF system and of other e-mail connected systems, by periodically looping messages
through (back to the circuit check facility) and monitoring on the delivery time for the
loop to complete.

The PMDF manager configures the facility to periodically send messages to loopback
addresses (addresses that will loop through PMDF channels or remote systems and come
back to the circuit checking facility). The sizes and other aspects of such messages may be
controlled. A circuit check detached process runs, that wakes up periodically and sends
out circuit messages and looks for which circuit messages have arrived back. And the
facility maintains binned counters for the lengths of time the messages take to complete
their circuit. Thus the components are:

• The circuit check configuration file, controlling what sorts of messages are sent where
and when.

• A circuit check channel definition in the PMDF configuration file, and an alias
pointing to the circuit check channel address.

• The circuit check detached process.

• The database of circuit completion counters.

• The PMDF CIRCUIT_CHECK/SHOW (OpenVMS) or pmdf circuit_check -show
(UNIX or NT) utility which may be used to display the values in the circuit completion
counters database.

These components will be discussed further in the subsections below.

31.3.1 Configuring the Message Circuit Check Facility

The first step in installing the message circuit check facility is to insert the channel
definition in the PMDF configuration file. The channel definition should have the form:

circuitcheck slave
CIRCUITCHECK-DAEMON

Note that such a channel should always be marked with the slave keyword. (Indeed,
there is no actual channel program executed, not even a slave channel program; all the
actual circuit check operation is performed by the circuit check detached process.)

An alias entry should also be added to the PMDF alias file. Pick a name, e.g.
‘‘circuitcheck’’, that is otherwise unused on your system, and then add an entry such
as:

31–29

Monitoring
Message Circuit Checking

circuitcheck: circuitcheck@CIRCUITCHECK-DAEMON

This will set up the address circuitcheck@your-local-domain, where your-local-domain
is the official host name of the local channel, to be the loopback address—the eventual
destination address to use when sending circuit check messages.

An option file can also be specified, if desired. This file should be located in
the PMDF table directory and named circuitcheck_option. on OpenVMS or
circuitcheck_option on UNIX or NT. One available option is:

INTERVAL (60 <= integer <= 3600)

This option specifies in seconds how frequently the circuit check detached process should
‘‘wake up’’ to look for received circuit check messages and, if an appropriate interval has
elapsed, send new circuit check messages. The default if this option is not specified is
240, corresponding to four minutes.

Once the channel and alias are set up, the next step is to configure the message
circuits and timings of your choice in the circuit check configuration file, described below
in Section 31.3.1.1.

Note: Make sure you do not have the routelocal channel keyword on the channels used for
the systems you want to monitor using the circuit check facility.

31.3.1.1 The Circuit Check Configuration File

The actual circuit messages sent by the circuit check facility are controlled by rules in
the circuit check configuration file. This file must be located in the PMDF table directory
and named circuitcheck.cnf.

Note that the circuit check configuration file is part of a compiled configuration, so
if using a compiled PMDF configuration you must recompile (and on OpenVMS reinstall
the compiled configuration) after changes to the file. The circuit check detached process
will not see changes to its configuration file until it is restarted via a command such
as PMDF RESTART CIRCUIT_CHECK (OpenVMS) or pmdf restart circuit_check
(UNIX and Windows).

The circuit check configuration file is a text file containing entries in a format
similar to the conversion file format (described in Section 22.1.3). Namely, an entry
consists of one or more lines grouped together, with each line containing one or more
‘‘parameter=value;’’ clauses. Every line except the last must end with a semicolon.
Entries are terminated by either a line that does not end in a semicolon, one or more
blank lines, or both.

Each circuit check entry must specify a NAME parameter, providing a name or
‘‘handle’’ for a particular circuit, a DESTINATION parameter, specifying the loopback
address used for this circuit, and a RECURRENCE parameter, specifying a recurrence rule
describing how often to send messages on this circuit. Additional parameters may also be
included, to specify things like the size and priority of messages to send on this circuit,
or to establish thresholds relating to circuit completion timings or circuit completion
failures and commands to execute upon such threshholds being exceeded.

31–30

Monitoring
Message Circuit Checking

Each time the circuit check facility executes (each time it ‘‘wakes up’’, as controlled
by its INTERVAL option), it will send out new messages, plus take any special actions
regarding completion or lack thereof of previous circuits, according to the entries in its
configuration file.

For instance, the circuit check configuration file for a sample site domain.com shown
in Example 31–1 establishes two circuits, one named ‘‘domain-alpha’’ that loops through a
system alpha.domain.com, and another named ‘‘domain-beta’’ that loops through another
system beta.domain.com. The ‘‘domain-alpha’’ circuit sends out a new message every five
minutes; the ‘‘domain-beta’’ circuit sends out a new message every 10 minutes.

Example 31–1 Sample Circuit Check Configuration File

name=domain-alpha;
destination="circuitcheck%domain.com@alpha.domain.com";
recurrence=MI5;

name=domain-beta;
destination="circuitcheck%domain.com@beta.domain.com";
recurrence=MI10;

Due to the parser used, circuit check configuration file parameter values must
conform to MIME conventions for Content-type: header line parameters. In particular,
this means that destination values (since they contain an @ character) must be quoted.

31.3.1.1.1 Available Circuit Check Parameters

The circuit check parameters currently available are summarized in Table 31–2 and
then described individually in more detail below.

Table 31–2 Available Circuit Check Parameters

Parameter Meaning

Required parameters

NAME Name (handle) for this circuit

DESTINATION Destination address for this circuit’s messages

RECURRENCE A recurrence rule specifying how often to send messages on this
circuit

31–31

Monitoring
Message Circuit Checking

Table 31–2 (Cont.) Available Circuit Check Parameters

Parameter Meaning

Optional parameters

AVERAGE_THRESHOLD A threshold value for the average circuit completion time

AVERAGE_THRESHOLD_
COMMAND

Command to execute when the AVERAGE_THRESHOLD value is
exceeded

OBSOLETE_COMMAND Command to execute when obsolete circuit message files are seen

EXPIRY An ISO 8601 P specification of a time after which to consider
messages expired

EXPIRY_COMMAND Command to execute when an expired message is received

FAILED_COMMAND Command to execute when messages fail

MAXIMUM_THRESHHOLD A threshold value for the maximum circuit completion time

MAXIMUM_THRESHHOLD_
COMMAND

Command to execute when the MAXIMUM_THRESHOLD value is
exceeded

OUTSTANDING_COMMAND Command to execute when the OUTSTANDING_MAX value is
exceeded

OUTSTANDING_MAX The maximum number of outstanding messages to permit; when
there are more than this number of outstanding messages, then
additional new circuit messages will not be generated and sent

PRIORITY Priority of generated messages

SIZE Size of generated messages

AVERAGE_THRESHOLD (real number)

This parameter takes a value in seconds. If the average circuit completion time for
messages in this circuit exceeds this value, PMDF will execute the command speci-
fied by the AVERAGE_THRESHOLD_COMMAND parameter value. Note that once a AVER-
AGE_THRESHOLD value has been exceeded, the average completion time must drop back
down below AVERAGE_THRESHOLD before another execution of
AVERAGE_THRESHOLD_COMMAND will be performed. That is, the message circuit check fa-
cility performs the AVERAGE_THRESHOLD_COMMAND upon AVERAGE_THRESHOLD first be-
ing exceeded—or upon any subsequent occasion when, after having been below
AVERAGE_THRESHOLD, the average time again crosses over AVERAGE_THRESHOLD. During
a sustained interval of being over AVERAGE_THRESHOLD, the
AVERAGE_THRESHOLD_COMMAND will not be repeatedly executed.

AVERAGE_THRESHOLD_COMMAND (shell command)

This option specifies a command (a DCL command on OpenVMS or shell command on
UNIX or NT) to be executed if the average circuit completion time for messages in the
defined circuit exceeds the circuit’s AVERAGE_THRESHOLD value.

DESTINATION (address within quotes)

The DESTINATION parameter is required in each entry. Its value must be an address,
and more specifically should consist of the circuit check’s own loopback address embedded
within explicit routing to route the message through some channels or remote system(s).
(Due to the presence of the @ character, the address must be enclosed in quotes.)

31–32

Monitoring
Message Circuit Checking

EXPIRY (ISO 8601 P time period)

The EXPIRY option may be used to specify a time after which a returning message
(completing a circuit) should be ignored. ISO 8601 P format is, e.g.,

PyearYmonthMweekWdayDThourHminuteMsecondS

where the values year, month, etc., are integer values specifying an offset (delta) from
the current time. The initial P is required; other fields may be omitted, though the T is
required if any time values are specified.

EXPIRY_COMMAND (shell command)

This option specifies a command (a DCL command on OpenVMS or shell command on
UNIX or NT) to be executed if a message returns in greater than the EXPIRY parameter
time value. An EXPIRY parameter value is often set on the assumption that any messages
that are older than the specified time should be assumed to be lost and will never return;
in such a case, a site may want to be notified or have other special action taken if an
expired message does, in fact, return.

FAILED_COMMAND (shell command)

This option specifies a command (a DCL command on OpenVMS or shell command on
UNIX or NT) to be executed if a message returns to the message circuit check facility
due to being bounced while on its circuit, rather than returning normally by completing
its circuit.

MAXIMUM_THRESHOLD (integer)

This parameter takes a value in seconds. If the circuit completion time for messages in
this circuit exceeds this value, PMDF will execute the command specified by the MAX-
IMUM_THRESHOLD_COMMAND parameter value. Note that once a MAXIMUM_THRESHOLD
value has been exceeded, the completion time must drop back down below MAXI-
MUM_THRESHOLD before another execution of MAXIMUM_THRESHOLD_COMMAND will be per-
formed. That is, the message circuit check facility performs MAXIMUM_THRESHOLD_COMMAND
upon MAXIMUM_THRESHOLD first being exceeded—or upon any subsequent occasion when,
after having been below MAXIMUM_THRESHOLD, the time again crosses over MAXI-
MUM_THRESHOLD. During a sustained interval of being over MAXIMUM_THRESHOLD, the
MAXIMUM_THRESHOLD_COMMAND will not be repeatedly executed.

MAXIMUM_THRESHOLD_COMMAND (shell command)

This option specifies a command (a DCL command on OpenVMS or shell command on
UNIX or NT) to be executed if the circuit completion time for messages in the defined
circuit exceeds the circuit’s MAXIMUM_THRESHOLD value.

NAME (string)

The NAME parameter is required in each entry. Its value must be a string. It should
be a descriptive name describing the circuit, as this is the name that, for instance, will
be displayed by the PMDF CIRCUIT_CHECK/SHOW (OpenVMS) or pmdf circuit_check
-show (UNIX or NT) utility.

OBSOLETE_COMMAND (shell command)

This option specifies a command (a DCL command on OpenVMS or a shell command on
UNIX or NT) to be executed if obsolete message files are seen in the queue for the circuit
check facility. See Section 31.3.3 below for a discussion of obsolete circuit check message
files.

31–33

Monitoring
Message Circuit Checking

OUTSTANDING_COMMAND (shell command)

This option specifies a command (a DCL command on OpenVMS or a shell command on
UNIX or NT) to be executed if the message circuit check facility is awaiting the return
of more than OUTSTANDING_MAX messages.

OUTSTANDING_MAX (integer)

If more than the specified number of messages are outstanding, then the message circuit
check facility will not send out any more messages until the number of outstanding
messages drops below this value.

PRIORITY (string)

This option may be used to specify the Priority: of message to send on this circuit, e.g.,
Urgent, Normal, Non-urgent.

RECURRENCE (versit vCalendar recurrence specification)

The RECURRENCE parameter is required in each entry. Its value must be a vCalendar
recurrence string. This option specifies how often the entry should be executed; i.e., how
often the sort of message defined in the entry should be sent. The general form for a
recurrence value for this option is

Uj

where j is an integer and U is a code letter (or two letters) specifying the units: Y for
year, M for month, W for week, D for day, H for hour, or MI for minutes. For instance,
H1 means to recur every hour from this moment forward; MI45 means to recur every 45
minutes from this moment forward.

Note that there is no point in using a recurrence value smaller than the circuit check
facility’s INTERVAL option.

SIZE (integer)

This option may be used to specify the size of message to send on this circuit. By default,
messages of size 0 are sent; that is, messages with just headers and no message body.

31.3.2 Controlling the Circuit Check Facility

Once configured, the circuit check facility must be started up with the PMDF
STARTUP CIRCUIT_CHECK (OpenVMS) or pmdf startup circuit_check (UNIX or NT)
command. On OpenVMS, such a command should be inserted into your system startup
procedure if you want the circuit check facility to begin running automatically after
system reboots.

To restart the circuit check facility after configuration changes, use the PMDF
RESTART CIRCUIT_CHECK (OpenVMS) or pmdf restart circuit_check (UNIX or NT)
command.

To shut down the circuit check facility, use the PMDF SHUTDOWN CIRCUIT_CHECK
(OpenVMS) or pmdf shutdown circuit_check (UNIX or NT) command.

31–34

Monitoring
Message Circuit Checking

31.3.3 Interpreting the Circuit Check Counters

The PMDF CIRCUIT_CHECK/SHOW (OpenVMS) or pmdf circuit_check -show
(UNIX or NT) utility may be used to display the current circuit check counters. These
counters are stored in an on-disk database, circuitcheck_results_nodename.dat
(OpenVMS) or circuitcheck_results.* (UNIX or NT), located in the PMDF table
directory. This database is cumulative and persists across restarts of the circuit check
facility; you may delete the database if you want to clear the circuit check counters.

The counters track a number of variables.

• Sent messages. This is the total number of messages sent out on this circuit since
the circuit check counters were last cleared (i.e., since any old circuit check database
was deleted and a new circuit check database created).

• Outstanding messages. This is the number of sent messages minus the number of
completed or expired messages. It is common to configure the message circuit check
facility to stop sending additional circuit check messages whenever the number of
outstanding messages exceeds a specified value. That is, when the e-mail system
appears to be having some delivery problem, as evidenced by a large number of
message circuit check messages that have not returned since the last restart of the
circuit check process, do not add further to the load by sending additional message
circuit check messages.

• Completed messages. Besides counting the total number of messages that have com-
pleted the circuit (arrived back at the circuit check facility), the message circuit check
facility also keeps track of how long the messages took to complete their circuits.
Binned counts of completion time are maintained; the CIRCUITCHECK_COMPLETED_BINS
PMDF option, Section 7.3.6, controls the bin sizes. Note that since the message check
facility only wakes up periodically to check for the arrival of completed messages,
the actual delivery completion times will typically be a bit less than the reported
values—the reported values are intended to indicate trends rather than be precise
accountings of the completion time for an individual message.

• Minimum/average/maximum completion time values. The message circuit check
facility keeps a running average of the time for message circuit completion for
messages on each circuit, as well as tracking the minimum and maximum (less than
EXPIRY) times seen for completion of the circuit. Note that since the message check
facility only wakes up periodically to check for the arrival of completed messages,
the actual delivery completion times will typically be a bit less than the reported
values—the reported values are intended to indicate trends rather than be precise
accountings of the completion time for an individual message.

• Expired messages. The message circuit check facility may be configured to consider
messages to expire if they do not return within a specified amount of time. That is, if
a message has not returned from a local system within, say, a day, one might want to
consider the message effectively lost—perhaps the message was deleted manually or
in some other way abnormally removed from the mail system. Specifying an expiry
time ensures that messages that are lost, or messages that take an abnormally long
time to return due to special factors, e.g., manual sidelining on a remote system,
do not unduly influence the reported average and maximum completion times for
messages that complete a circuit ‘‘normally’’.

• Failed messages. When a circuit check message is bounced at some point on the
circuit, rather than returning normally, it is accounted as a failed message.

31–35

Monitoring
Message Circuit Checking

• Obsolete message files. When the message circuit check facility is restarted
after having been previously running, there may be files corresponding to as yet
unprocessed messages that have completed a circuit waiting in the queue for
processing by the circuit check facility. When the circuit check facility is restarted,
such message files—those generated by a previous instantiation of the circuit check
facility—become obsolete. The ‘‘obsolete’’ row in the PMDF CIRCUIT_CHECK/SHOW
(OpenVMS) or pmdf circuit_check -show (UNIX or NT) output refers to such
left-over message files.

• Abandoned message files.

Example 31–2 shows a sample of PMDF CIRCUIT_CHECK/SHOW output on an
OpenVMS system domain.com. The domain.com site is assumed to have a circuit check
configuration file with five circuits defined, one through another internal domain.com
system beta.domain.com !, one that goes through two additional internal systems
gamma.domain.com and then delta.domain.com ", one through Message Router #, one
through a remote X.400 MTA $, and one through Lotus Notes via a PMDF-LAN LN
channel %.

Example 31–2 Sample of PMDF CIRCUIT_CHECK/SHOW Output

$ PMDF CIRCUIT_CHECK/SHOW
2 5 15 30 60 120 240 480

beta (circuitcheck%domain.com@beta.domain.com) !
Sent 2193
Completed 2193 294 1864 18 9 6 2
Min/Ave/Max 1.03333/2.32877/148.367
Obsolete 1
gamma-delta (circuitcheck%domain.com%delta.domain.com@gamma.domain.com) "
Sent 2170
Completed 2170 2127 6 19 8 4 4 2
Min/Ave/Max 1.01667/1.60402/127.483
Obsolete 1
mr (circuitcheck%domain.com%PMDF@mr.domain.com) #
Sent 1813
Completed 1813 1784 5 6 8 9 1
Min/Ave/Max 1.03333/1.48306/127.483
Obsolete 1
x400 (/C=US/ADMD=TELCO/PRMD=DOMAIN/S=circuitcheck/@x400.domain.com) $
Sent 304
Completed 304 298 2 2 1 1
Min/Ave/Max 1.03333/1.76897/127.483
lotus-notes (circuitcheck%domain.com%PMDF@lnotes.domain.com) %
Sent 202
Completed 168 145 3 4 6
Min/Ave/Max 1.03333/80.6514/1.41568E3
Obsolete 36
Abandoned 34

31–36

Monitoring
Message Circuit Checking

31.3.4 Loopback Addresses for Circuit Checking

In order to set up a circuit check message path, you must specify an address that will
cause a message to be routed in a loop. This may be done by sending to a remote address
that is configured to then forward back to the circuit check address. Or a method that may
be more convenient in some cases is to specify a form of the circuit check facility’s own
address that embeds the circuit check address within some explicit routing components,
where the explicit routing components will cause routing along the desired path. For
instance:

• When routing through an SMTP host (that allows relaying—note that many SMTP
hosts will not allow general relaying), a %-hack address form may be used, as in !

or " in Example 31–2 above.

• To send into and back out of Message Router, you may send to the circuit check
address at the PMDF MRMAN mailbox at the PMDF-MR domain name, as in # in
Example 31–2 above.

• To send into and back out of ALL-IN-1 or MailWorks when connected to by PMDF-
MR as an MR TS replacement, you should set up an ALL-IN-1 or MailWorks account
that is configured to auto-forward back to the circuit check facility and then send to
that special account.

• To send a message to an X.400 MTA that the X.400 MTA should then immediately
send back to PMDF and the circuit check facility, send to PMDF-X400’s own X.400
ORname stem, plus /S=circuitcheck, at the PMDF-X400 pseudodomain name, as in
$ in Example 31–2 above.

• To loop a message through a PC-LAN mailer, use explicit routing to specify the PMDF
system domain name within the PC mailer name space.

• With cc:Mail, specify

circuitcheckaddress%PMDFcc:mailpostoffice@cc_local-domain

E.g., circuitcheck%domain.com%PMDF@ccmail.domain.com.

• With Lotus Notes, specify

circuitcheckaddress%PMDFlotusdomain@ln_local-domain

E.g., circuitcheck%domain.com@PMDF@lnotes.domon.com.

• With Microsoft Mail, specify

PMDFdomain/PMDFpo/circuitcheck@ff_local-domain

• With GroupWise, specify

PMDFwpodomain.PMDFwpopo.circuitcheckaddress@wpo_local-domain

• With Novell MHS, specify

circuitcheck%PMDFmhsworkgroup@mhs_local-domain

31–37

Monitoring
Channel Statistics Counters

31.4 Channel Statistics Counters

PMDF has facilities to collect and monitor channel counters based upon the Mail
Monitoring MIB, RFC 1566. These counters tabulate on a per channel basis the twelve
items described in Table 31–3.

Table 31–3 Channel Counters

Field name Description

RECEIVED_MESSAGES The number of messages enqueued to the channel
SUBMITTED_MESSAGES The number of messages enqueued by the channel
STORED_MESSAGES The total number of messages currently stored for the channel
DELIVERED_MESSAGES The number of messages dequeued by the channel
RECEIVED_VOLUME The volume of messages enqueued to the channel as measured in

PMDF blocks
SUBMITTED_VOLUME The volume of messages enqueued by the channel as measured in

PMDF blocks
STORED_VOLUME The volume of messages currently stored for the channel as

measured in PMDF blocks
DELIVERED_VOLUME The volume of messages dequeued by the channel as measured in

PMDF blocks
RECEIVED_RECIPIENTS The total number of recipients specified in all messages enqueued to

the channel
SUBMITTED_RECIPIENTS The total number of recipients specified in all messages enqueued

by the channel
STORED_RECIPIENTS The total number of recipients specified in all messages currently

stored for the channel
DELIVERED_RECIPIENTS The total number of recipients specified in all messages dequeued

by the channel

A PMDF block is, by default, 1024 bytes. However, this size may vary from system to system. The
size of a PMDF block is controlled with the BLOCK_SIZE PMDF option.

It is important to note that these counters generally need to be looked at over time
noting the minimum values seen. The minimums may actually be negative for some
channels. Such a negative value merely means that there were messages queued for
a channel at the time that its counters were zeroed (e.g., the cluster-wide database of
counters created). When those messages were dequeued, the associated counters for the
channel were decremented therefore leading to a negative minimum. For such a counter,
the correct ‘‘absolute’’ value is the current value less the minimum value that counter
has ever held since being initialized.

31.4.1 Purpose and Use of Counters

PMDF channel counters are intended for indicating the trend and health of your
e-mail system. PMDF channel counters are not designed nor intended to provide an
accurate accounting of message traffic; for precise accounting, instead see PMDF logging
as discussed above in Section 31.1. The lack of accuracy in PMDF’s channel counters in
an inherent aspect of their design; it is not a bug. Specifically, PMDF’s channel counters
adhere to what Marshall Rose calls the fundamental axiom of management, which is

31–38

Monitoring
Channel Statistics Counters

that management must itself not interfere with proper system and network operation by
consuming anything but the tiniest amount of resource.

Therefore PMDF’s channel counters are implemented using the lightest weight
mechanisms available, namely a shared memory section on each system (that is
periodically synchronized to a disk database on OpenVMS). Channel counters do not
try harder: if an attempt to map the section fails, no information is recorded; if one
of the locks in the section cannot be obtained almost immediately, no information is
recorded; when a system is shut down, the information contained in the in-memory
section is lost forever. Section 31.4.2 and Section 31.4.3 provide further discussion of the
implementation of counters.

31.4.1.1 Example of Counters Interpretation

Example 31–3 shows a sample excerpt of counters data, as might be seen using
the PMDF COUNTERS/SHOW (OpenVMS) or pmdf counters -show (UNIX and NT)
utility.

Example 31–3 Sample of Counters Data

Channel Messages Recipients Blocks
------------------------ ---------- ---------- ----------
directory

Received 6523 9042 69694 !
Stored 4 4 149 "
Delivered 6519 9038 69545 (6500 first time) #
Submitted 6811 9019 71123 $
Attempted 21 25 287 %
Rejected 0 0 0 &
Failed 0 0 0 '

Queue time/count 100020/6519 = 15.34 (
Queue first time/count 31525/6500 = 4.85)

In this example:

! The ‘‘Received’’ value represents a count of messages coming from any channel to the
channel named directory; that is, messages enqueued (‘‘E’’ records in the mail.log*
file) to the directory channel by any other channel.

" The ‘‘Stored’’ value represents a count of messages stored in the channel queue to be
delivered. This will generally correspond to the number of entries currently stored
for the channel in the PMDF queue cache database.

The ‘‘Delivered’’ value represents a count of messages which have been processed
(dequeued) by the channel directory, i.e., ‘‘D’’ records in the mail.log* file. A
dequeue operation may either correspond to a successful ‘‘delivery’’ (that is, an
enqueue to another channel), or to a dequeue due to the message being returned
to the sender. This will generally correspond to the number Received minus the
number Stored. PMDF also keeps track of how many of the messages dequeued were
dequeued upon first attempt; this number is shown in parentheses.

31–39

Monitoring
Channel Statistics Counters

$ The ‘‘Submitted’’ value represents a count of messages which have been enqueued
(‘‘E’’ records in the mail.log* file) from the channel directory to any other channel.

% The ‘‘Attempted’’ value represents a count of messages which have experienced
temporary problems in dequeuing, i.e., ‘‘Q’’ or ‘‘Z’’ records in the mail.log* file.

& The ‘‘Rejected’’ value represents a count of attempted enqueues to the channel which
have been rejected, i.e., ‘‘J’’ records in the mail.log* file.

' The ‘‘Failed’’ value represents a count of attempted dequeues which have failed, i.e.,
‘‘R’’ records in the mail.log* file.

(The ‘‘Queue time/count’’ represents the average time-spent-in-queue for the delivered
messages. This includes both the messages delivered upon the first attempt—see)—
and the messages that required additional delivery attempts (hence typically spent
noticeable time waiting fallow in the queue).

) The ‘‘Queue first time/count’’ represents the average time-spent-in-queue for the
messages delivered upon the first attempt.

Note that in this example, the number of messages Submitted is greater than the
number delivered. This is often the case, since each message the channel dequeues
(delivers) will result in at least one new message enqueued (submitted) but possibly more
than one. For example, if a message has two recipients reached via different channels,
then two enqueues will be required. Or if a message bounces, a copy will go back to
the sender and another copy may be sent to the postmaster. Usually that will be two
submissions (unless both are reached through the same channel).

When interpreting counters values, keep in mind the discussion of Section 31.4.1:
counters are neither intended nor expected to be to-the-message accurate. Rather,
counters are intended to give a general idea of current message traffic trends, while
causing as little impact as possible on actual operation; and counter information will be
discarded rather than recorded whenever recording it would be burdensome for operation.

31.4.2 Implementation on OpenVMS

For performance reasons, each node running PMDF keeps a cache of channel
counters in memory using a permanent, global, writeable page-file section. As a process
on a node enqueues and dequeues messages, it updates the counters in its own in-
memory cache. The DCL command PMDF COUNTERS/SYNCHRONIZE or the PMDF QM
command COUNTERS SYNCHRONIZE may be used to cause each node in the cluster to
merge its node specific, in-memory cache with the cluster-wide, on-disk database of
channel counters, PMDF_TABLE:counters.dat. The synchronization is accomplished
through a combination of light-weight detached process running on each node and cluster-
wide resource locks. The synchronization command signals each detached process on each
node. Upon being signalled, each detached process adds the values of its in-memory
counters to those in the cluster-wide, on-disk database and then zeroes its own in-
memory counters if the update was successful. SYSLCK privilege is required to perform
a synchronization.

31–40

Monitoring
Channel Statistics Counters

The DCL command PMDF COUNTERS/SHOW or the PMDF QM command COUNTERS
SHOW may be used to show the values of the cluster-wide counters as stored in the on-
disk database. Note that these commands will automatically perform a synchronization
of the node-specific caches with the cluster-wide database. The PMDF counters may also
be viewed via a web interface; see Section 31.7.

The DCL command PMDF COUNTERS/CLEAR or the PMDF QM command COUNTERS
CLEAR may be used to reset the counters to zero.

When the command procedure SYS$STARTUP:pmdf_startup.com is executed, it
starts running the single detached process used to perform synchronizations for that
node. The process, upon starting, will create the global section representing the in-
memory cache and ensure that the cluster-wide database of channel counters exists.2

After performing these two steps it will trim its working set and hibernate, waiting for
synchronization commands. SYSGBL and PRMGLB privileges are required to create the
global section. To prevent the detached processes from being started, define the logical
PMDF_NOCOUNTERS prior to executing pmdf_startup.com.

By default, the counters synchronization process automatically synchronizes the
in-memory cache values to the on-disk database every thirty minutes. This time
interval may be changed by defining a PMDF_COUNTER_INTERVAL logical. If defined,
PMDF_COUNTER_INTERVAL should be a system-level logical definition, equating to an
OpenVMS delta time, e.g.,

$ DEFINE/SYSTEM PMDF_COUNTER_INTERVAL "0 00:15:00"

Note that SYS$BINTIM requires an initial day value; be sure to specify the leading 0
for the day value.

The PMDF RESTART and SHUTDOWN commands may be used to restart or shutdown
the detached process on all nodes. However, there should be no need to do this. Note
that the processes are not affected by changes to the PMDF configuration.

31.4.3 Implementation on UNIX and NT

For performance reasons, a node running PMDF keeps a cache of channel counters
in memory using a shared memory section (UNIX) or shared file-mapping object (NT).
As processes on the node enqueue and dequeue messages, they update the counters in
this in-memory cache. If the in-memory section does not exist when a channel runs,
the section will be created automatically. (The pmdf startup command also creates the
in-memory section, if it does not exist.)

The command pmdf counters -show or the pmdf qm command counters show
may be used to show the values of the counters. The PMDF counters may also be viewed
via a web interface; see Section 31.7.

The command pmdf counters -clear or the pmdf qm command counters clear
may be used to reset the counters to zero.

2 On OpenVMS systems a $MGBLSC call is used to create a system-wide, writeable global section. That section is then
turned into a permanent, writeable, global page-file section via a call to $CRMPSC.

31–41

Monitoring
Channel Statistics Counters

31.5 HP Commander scanning module (OpenVMS and Tru64 UNIX
only)

Sites running the HP-supplied HP Commander monitoring package (also known as
Enterprise Mail Monitor, EMM, or PolyCenter MAILbus Monitor (PMM)), can monitor
PMDF using the PMM scanning module supplied with PMDF. The scanning module sends
to PMM software version, time zone, queue, job, and monitor records. The contents of
each of these records is described in Section 31.5.3. Note that PMDF channel counters
are sent in the monitor records.

31.5.1 Required Software

In order to use the PMDF PMM scanning module, sites must be running HP’s
Polycenter MAILbus Monitor V2.0 or MAILbus Monitor V2.1 for OpenVMS VAX, or
OpenVMS Alpha.

31.5.2 Configuration

To configure PMM to scan PMDF, it is necessary to add an entry for the PMDF
scanning module to the PMM namon$server.ini file. The entry on OpenVMS should
be

[Entity PMDF]
Command="RUN PMDF_EXE:pmm_scanner.exe"
FullName=PMDF e-mail Interconnect
MaxRun=1200

Once that entry has been made, restart the NAMON$SERVER process so that the change
to the file will be seen; e.g., on OpenVMS

$ @SYS$STARTUP:namon$shutdown.com
$ @SYS$STARTUP:namon$startup.com

After the server has restarted, you should then be able to see PMDF appear as one of
the scannable services in the PMM workstation display.

31.5.3 Operation

Each time PMM scans PMDF, it activates the PMDF scanning module. This module
initializes PMDF. If PMDF cannot be initialized, either because PMDF has not been
started or because of a serious configuration error, a fatal error is signalled back to
PMM. If PMDF is running, the module ‘‘scans’’ PMDF and transmits back to PMM five
different types of scanning records:

31–42

Monitoring
HP Commander scanning module (OpenVMS and Tru64 UNIX only)

Software version

The software version record gives the version and link time of the PMDF shareable
image, PMDF_SHARE_LIBRARY (OpenVMS) or libpmdf.so (UNIX). This is the single
most critical image in PMDF and contains the core PMDF library routines. If this
information cannot be obtained, an error is signalled to PMM.

Time zone

The time zone records show the numerical offset from Greenwich mean time (GMT) as
well as the mnemonic time zone code (e.g., EST for Eastern Standard Time). If this
information cannot be obtained, an error is signalled to PMM.

Queue (OpenVMS only)

A queue record containing current queue status information is sent for the MAIL$BATCH
queue as well as each queue cited in the PMDF configuration file. If a queue cannot be
located or information about it obtained, an error is signalled to PMM. If the queue is
stalled, stopping, or stopped, a warning is signalled to PMM.

Job (OpenVMS only)

For each job queued to a PMDF processing queue, a job record is sent to PMM. Errors
will be signalled if the periodic delivery or message bouncer jobs are missing from the
MAIL$BATCH queue.

NCL

The PMDF channel counters for each channel are sent in twelve records; each record
containing the value of a particular counter in its ‘‘Counter Value’’ field. For each set of
twelve records, the name of the channel is given in the ‘‘Object Name’’ field. Each of the
twelve records is distinguished by the value of the ‘‘Identifier’’ field in the record. The
different values of that field and their interpretation are given in the table below.

Identifier Description

† Received messages Cumulative count of the messages enqueued to the channel
† Enqueued messages Cumulative count of the messages enqueued (sent) by the

channel
† Stored messages Current count of the messages held by the channel and waiting

to be processed
† Dequeued messages Cumulative count of the messages processed by the channel

Received recipients Cumulative count of the message recipients enqeued to the
channel

Enqueued recipients Cumulative count of the message recipients enqueued (sent) by
the channel

Stored recipients Current count of the message recipients held by the channel
and waiting to be processed

Dequeued recipients Cumulative count of the message recipients processed by the
channel

Received volume Cumulative size of the messages enqueued to the channel
Enqueued volume Cumulative size of the messages enqueued (sent) by the

channel
Stored volume Current size of the messages held by the channel and awaiting

processing
Dequeued volume Current size of the messages processed by the channel

†For these counters, the rate of change (message/hour) and tendency (messages/hour/hour) are also
reported, respectively, in the ‘‘Counter Derivative’’ and ‘‘Counter Tendency’’ fields.

31–43

Monitoring
HP Commander scanning module (OpenVMS and Tru64 UNIX only)

If the channel counters cannot be obtained, an error is signalled to PMM.

Once all of these records have been transmitted back to PMM, the scanning module
exits, awaiting a subsequent invocation by PMM.

31.6 SNMP Support on OpenVMS

SNMP subagents are available to serve out the PMDF channel counters using the
Mail and Directory Management (MADMAN) SNMP MIB described in RFCs 1565 and
1566. Presently, SNMP subagents are available for use with Process Software TCPware
V5.1 and later.

An SNMP subagent for TCPware is available from Process Software. Directions
for configuring TCPware to use the subagent are provided in Section 31.6.3. Note
that you must be running TCPware V5.1-4 or later. If you are running V5.1-4, then
you will also need to apply a patch kit to the TCPware SNMP agent. The kit is
available via FTP from ftp.process.com as a BACKUP saveset. For OpenVMS Alpha, it
is the file /support/51_4/snmpd_v514a_axp.inc; for OpenVMS VAX it is the file
/support/51_4/snmpd_v514a_vax.inc.

31.6.1 Operation

In order for the SNMP subagents to properly operate, the PMDF detached coun-
ters processes must be running on each cluster node with PMDF. Those detached pro-
cesses are automatically started at system boot time by the PMDF startup procedure,
SYS$STARTUP:pmdf_startup.com. They may be restarted with the command

$ PMDF RESTART COUNTERS

and shutdown with the command

$ PMDF SHUTDOWN COUNTERS

Note that the PMDF RESTART command will only restart an already running detached
counters process; it will not start a detached process when none are running. To start a
detached process, issue the command

$ @PMDF_COM:start_synch_counters.com

31.6.2 MIB Variables Served

The subagents serve out selected variables from the MADMAN MIBs.3 Specifically,
those variables from the applicationTable, mtaTable, and mtaGroupTable tables as shown
in Table 31–4.

3 See RFCs 1565 and 1566 for the specification of those MIBs. Copies of those RFCs may be found in the directory
pmdf_root:[doc.rfc].

31–44

Monitoring
SNMP Support on OpenVMS

Table 31–4 Supported MIB Variables

applicationTable variables

Variable name OID Syntax

applName mib-2.27.1.1.2 String
applVersion mib-2.27.1.1.4 String

mtaTable variables

Variable name OID Syntax

mtaReceivedMessages mib-2.28.1.1.1 Counter32
mtaStoredMessages mib-2.28.1.1.2 Gauge32
mtaTransmittedMessages mib-2.28.1.1.3 Counter32
mtaReceivedVolume mib-2.28.1.1.4 Counter32
mtaStoredVolume mib-2.28.1.1.5 Gauge32
mtaTransmittedVolume mib-2.28.1.1.6 Counter32
mtaReceivedRecipients mib-2.28.1.1.7 Counter32
mtaStoredRecipients mib-2.28.1.1.8 Gauge32
mtaTransmittedRecipients mib-2.28.1.1.9 Counter32

mtaGroupTable variables

Variable name OID Syntax

mtaGroupReceivedMessages mib-2.28.2.1.2 Counter32
mtaGroupStoredMessages mib-2.28.2.1.4 Gauge32
mtaGroupTransmittedMessages mib-2.28.2.1.5 Counter32
mtaGroupReceivedVolume mib-2.28.2.1.6 Counter32
mtaGroupStoredVolume mib-2.28.2.1.7 Gauge32
mtaGroupTransmittedVolume mib-2.28.2.1.8 Counter32
mtaGroupReceivedRecipients mib-2.28.2.1.9 Counter32
mtaGroupStoredRecipients mib-2.28.2.1.10 Gauge32
mtaGroupTransmittedRecipients mib-2.28.2.1.11 Counter32
mtaGroupName mib-2.28.2.1.25 String

Note: the OID for mib-2 is 1.3.6.1.2.1.

Each PMDF channel is identified with with an MTA group. Thus, for each channel,
there will be a row in the mtaGroupTable. For example, if there are M channels, the
OID mib-2.28.2.1.25.n gives the name of the channel associated with the nth row in the
table where n satisfies 1�n�M .

Only one application and MTA is recognized by the subagent and consequently there
is only one row in the applicationTable and mtaTable tables. The only valid instance
identifier for those two tables is thus ‘‘.1’’; i.e., for either table, the OID for an instance
of a variable is formed by taking the OID of the variable and appending ‘‘.1’’ to it. For
example, a get operation on mib-2.27.1.1.4.1 would return the version number of PMDF.

Each row of the mtaGroupTable table corresponds to a set of PMDF channel counters
maintained by PMDF. A description of each variable is given in Table 31–5. These
counters may be directly manipulated on OpenVMS PMDF systems with either the PMDF
COUNTERS utility or the PMDF QM/MAINTENANCE utility. Refer to the Section 31.4 for
further information on the PMDF channel counters.

31–45

Monitoring
SNMP Support on OpenVMS

Table 31–5 Variable Descriptions

mtaGroupTable variable PMDF counter Description

mtaGroupReceivedMessages RECEIVED_MESSAGES Count of messages enqueued to the channel.
mtaGroupStoredMessages STORED_MESSAGES Count of messages enqueued to the channel

but not yet delivered.
mtaGroupTransmittedMessages DELIVERED_MESSAGES Count of messages delivered (dequeued) by

the channel.
mtaGroupReceivedVolume RECEIVED_VOLUME Volume of messages enqueued to the channel

as measured in Kbytes = 1024 bytes.
mtaGroupStoredVolume STORED_VOLUME Volume of messages enqueued to the channel

but not yet delivered as measured in Kbytes.
mtaGroupTransmittedVolume DELIVERED_VOLUME Volume of messages which have been

delivered (dequeued) by the channel as
measured in Kbytes.

mtaGroupReceivedRecipients RECEIVED_RECIPIENTS Volume of messages enqueued to the channel
as measured by the total number of envelope
recipient addresses.

mtaGroupStoredRecipients STORED_RECIPIENTS Volume of messages enqueued to the channel
but not yet delivered as measured by the total
number of envelope recipient addresses.

mtaGroupTransmittedRecipients DELIVERED_RECIPIENTS Volume of messages which have been
delivered (dequeued) by the channel as
measured by the total number of envelope
recipient addresses.

mtaGroupName Name of the channel.

The values in the mtaTable correspond to the column sums of the mtaGroupTable;
e.g., mtaReceivedMessages is the sum over all rows of the mtaGroupTable column
mtaGroupReceivedMessages.

Note: The underlying PMDF channel counters may take on negative values. However, the
corresponding MIB variables must be non-negative. To reconcile this difference, the
subagent tracks the minimum value seen for each channel counter and then uses that
minimum to adjust the MIB variable such that it has a minimum of zero. This is done by
subtracting the minimum value from the counter when that minimum is less than zero.
For this reason, the values of the counters displayed with the PMDF COUNTERS command
may differ from those displayed from an SNMP client.

31.6.3 Configuring the TCPware Subagent

In order to have TCPware’s SNMP agent serve out PMDF’s channel counters, you
must configure TCPware to know of the PMDF SNMP subagent. This is done with the
TCPware command:

$ @TCPWARE:cnfnet.com SNMP

As it runs, that procedure will ask several questions including:

1. Do you want to activate the SNMP agent on this host [YES]:
Answer YES to this question in order to activate the TCPware SNMP agent.

31–46

Monitoring
SNMP Support on OpenVMS

2. Do you want to configure subagent(s) on this host[NO]:
Answer YES to this question in order to enable the PMDF SNMP subagent.

3. Enter the name of the shareable image without .EXE:
Answer PMDF_EXE:PMDF_SNMP_TCPWARE to this question. If you have additional
subagents, enter their names in response to the additional prompts. When there are
no other subagent names to supply, enter a blank line.

4. Do you want to restart the SNMP Agent [NO]:
Answer YES so as to start or restart the TCPware SNMP agent.

Configuring and starting the TCPware SNMP agent completes the configuration of
the PMDF SNMP subagent. All operation of the subagent is automatically handled by
the TCPware SNMP agent. Once the agent is configured and restarted, you can query
the MIB variables described in Table 31–4 from an SNMP client.

Operation of the subagent is handled by TCPware. Consult the TCPware SNMP
Services Management chapter of the TCPware for OpenVMS Management Guide for
details.

31.7 Web-based Counter Monitoring

The following section documents the web-based monitoring facilities available in
PMDF. These facilities require both TCP/IP support and a web client in order to use.

Web-based monitoring of PMDF is accomplished through an HTTP CGI (Common
Gateway Interface). This interface is reached through the PMDF HTTP server and
accepts URL-encoded commands via either HTTP GET or POST requests.

Presently, the CGI only provides passive monitoring of PMDF; active management
is not supported but planned for future releases. Basic PMDF information, channel
counters and derived statistics, and the presence of .HELD message files may be
monitored. Additionally, on OpenVMS systems, PMDF processing queues and jobs may
be monitored.

Section 31.7.1 describes how to use the default monitoring configuration. Note that
this configuration is merely an example, albeit a fairly useful one. Sites with HTML
experience can change the layouts, navigation, and choices or presentation of monitored
data. Sites familiar with HTML scripting languages such as Java or JavaScript can add
intelligence to how their web clients analyze the monitoring data available through the
CGI. See Section 31.7.3 for complete details.

31–47

Monitoring
Web-based Counter Monitoring

31.7.1 Using the Sample Monitoring Configuration

To use the monitoring CGI, you must first configure the PMDF Service Dispatcher
and PMDF HTTP server. That is done by running the Dispatcher configuration utility
as described in the PMDF Installation Guide. If you have not configured the Dispatcher,
then do so now.

Before connecting to the monitoring CGI, ensure that your web browser supports
HTML tables and frames. Moreover, if you intend to use the JavaScript enhanced
monitoring, also check that your browser supports JavaScript and that the JavaScript
interpreter is enabled.4

To connect to the monitoring CGI with your web browser, open the URL

http://host:7633/monitor/

In place of host, use the actual IP host name of the system running the PMDF HTTP
server. If you chose to run the PMDF HTTP server on a port other than port 7633, then
specify that port number in place of 7633 in the above URL.

After opening the above URL, you will be presented with an initial explanatory page.
From the bottom of that page, select either the JavaScript enhanced monitoring link or
the normal monitoring link. Note that you may only see the normal monitoring link; if
so, then your browser does not support JavaScript.

After you select the style of monitoring to perform, your browser window will split
into multiple frames.

When monitoring OpenVMS PMDF platforms, five frames will appear,

+---------+---------+
| Frame 1 | Frame 2 |
+---------+---------+
| Frame 3 | Frame 4 |
+---------+---------+
| Frame 5 |
+---------+---------+

When monitoring UNIX PMDF platforms, three frames will appear,

+-------------+
| Frame 3 |
+-------------+
| Frame 4 |
+-------------+
| Frame 5 |
+-------------+

The contents of the frames are as follows:

4 Do not confuse JavaScript with Java; they are two completely different scripting languages. Morever, if using Netscape
Navigator, then you must use Navigator 3.0 or later; if using Microsoft Internet Explorer, then you must use Internet
Explorer 3.0 or later.

31–48

Monitoring
Web-based Counter Monitoring

Frame 1: All OpenVMS processing queues used by PMDF throughout the cluster.

Frame 2: When you click on a link in Frame 1, the results appear in Frame 2.

Frame 3: Channel counters for all your PMDF channels; cluster-wide on OpenVMS.

Frame 4: When you click on a link in Frame 3, the results appear in Frame 4.

Frame 5: Warning about .HELD messages; this frame only appears when using JavaScript
enhanced monitoring.

The contents of Frames 1 through 4 will be updated once every two minutes; the contents
of Frame 5 will be updated only once every thirty minutes.5

When JavaScript enhanced monitoring is used, the background colors of the
individual frames will indicate whether or not a problem has been detected. For each
frame, the background will be green when no problems are detected. When a problem
is detected, the frame background will be red and the problem indicated in flashing text
and called out with a burning trash can. Frame-by-frame, the problem criteria are as
follows:

Frame 1: Red background if a queue is closed, disconnected, stalled, stopped, stopping, or has a
stop pending, or if the periodic delivery job or message bouncer job is missing from the
queues.

Frame 2: Red background if a queue is closed, disconnected, stalled, stopped, stopping, or has a
stop pending.

Frame 3: Red background if the count of stored messages in a channel exceeds the threshold
specified in the monitoring option file. See Section 31.7.2 for details.

Frame 4: Red background if the count of stored messages in a channel exceeds the threshold
specified in the monitoring option file. See Section 31.7.2 for details.

Frame 5: Red background if .HELD message files are detected.

Figure 31–17 shows a sample of the web monitor display on OpenVMS.

31.7.2 The Monitoring Option File

An option file may be used to specify alarm thresholds for stored message counts.
These thresholds may be used by intelligent monitoring clients to determine when
a channel has suspiciously too many stored (i.e., queued) messages. The sample
monitoring configuration described in Section 31.7.1 uses these thresholds for the
JavaScript enhanced monitoring.

5 Owing to some Netscape Navigator 3.0 bugs, you may find that the frames are not actually updated. It’s possible to get
Navigator into a mode whereby it incorrectly updates frames from a client cache rather then from the remote server. For
instance, resizing the frames can lead to this state. To correct this situation, clear Navigator’s in-memory and on-disk
caches with the Options, Network Preferences..., Cache menu. After clearing the caches, reload each frame one by one:
select a frame and then select the View, Reload Frame menu item; repeat for the other frames. Do not reload the entire
window as that will undo any adjustments made to the relative frame sizes.

31–49

Monitoring
Web-based Counter Monitoring

Figure 31–17 Sample Web Monitor Display on OpenVMS

The option file is called PMDF_TABLE:monitor_option. (OpenVMS) or
/pmdf/table/monitor_option (UNIX) or C:\pmdf\table\monitor_option
(NT).

By default, the threshold level is 1500 messages; that is, the value reported for the
%counter_stored_messages_threshold is 1500, by default. To specify a different
default threshold level, in the option file specify

STORED_THRESHOLD=value

where value is the desired value. To set a threshold for a specific channel, specify the
option

channel-name_STORED_THRESHOLD=value

where channel-name is the name of the channel for which to set the threshold.

The sample option file shown below, sets a default threshold of 200 messages and
thresholds of 500 messages for the local and tcp_local channels:

STORED_THRESHOLD=200
L_STORED_THRESHOLD=500
TCP_LOCAL_STORED_THRESHOLD=500

31–50

Monitoring
Web-based Counter Monitoring

31.7.3 Monitoring Customization

In order to customize the monitoring interface, it is first necessary to understand
how the monitoring CGI processes HTTP requests and formulates HTTP responses.
This is described in Section 31.7.3.1 and Section 31.7.3.2. Following those descriptions,
Section 31.7.3.3 describes the individual commands which can be embedded in those
requests.

31.7.3.1 Processing HTTP Requests

The CGI interface responds to HTTP GET and POST requests by parsing the request
for a monitoring command and generating the appropriate response. The commands take
the general form

command=command-name¶meter-name-1=parameter-value-1&
...¶meter-name-N=parameter-value-N

(In the above, the line has been wrapped for typographic reasons.) The allowed command
names and associated parameters are described in Section 31.7.3.3.

In the case of GET requests, commands are embedded in the URL to retrieve as
follows:

http://host:7633/monitor/?command=command-name¶meter-name-1=
parameter-value-1&...¶meter-name-N=parameter-value-N

And in POST requests the content of the request contains the command in URL-encoded
form:

command=command-name¶meter-name-1=
parameter-value-1&...¶meter-name-N=parameter-value-N

If the command cannot be extracted from the request, an HTTP 5yz error response
is sent back to the client. If the command can be extracted but cannot be parsed or
successfully executed, a successful HTTP 200 response is sent back; the content of the
HTTP response will be formatted as per the error formatting directions specified in the
monitoring command. If those directions could not be extracted from the command, then
an HTTP 500 error response is returned. See Section 31.7.3.2 for further details.

31.7.3.2 Generating HTTP Responses

After processing an HTTP request from a client, the result of processing the
monitoring command is sent back as an HTTP response to the client. The format of the
response is governed by formatting files specified in the command from the client. That
is, the request from the client includes the names of formatting files on the CGI server
system that are to be used to format the response sent back to the client. On OpenVMS
systems, these files must reside in the pmdf_root:[www.monitor] directory; on UNIX
systems, these files must reside in the /pmdf/www/monitor/ directory or a subdirectory
thereof.

31–51

Monitoring
Web-based Counter Monitoring

The formatting files may contain text to be copied verbatim into the HTTP response
as well as directives to substitute in values associated with the monitoring information
collected by the CGI. There are three basic types of formatting files: success, error, and
command-specific files.

After the CGI parses a request and executes it, the results of the operation are sent
back to the HTTP client using the following formatting steps:

1. The command-specific formatting files are used to format the data collected by the
monitoring command. The files will be consulted once for each instance of the entity
to be monitored. In the case of generic PMDF information and .HELD message files,
the formatting files are consulted only once. In the case of channel counters and
processing queues, the files are consulted once for each channel or queue monitored.
The command-specific formatting files are described in the sections describing the
specific commands.

2. If the preceding step is successful, the content of the success formatting file is used
as the response to the client. Each line of the file is copied to the content of the HTTP
response. Any line beginning with %s is replaced with the formatted data generated
in the first step. The HTTP response sent back to the client will have an HTTP 200
status code.

3. If the first step failed, the content of the error formatting file is sent as the response
to the client. Each line of the file is copied to the content of the HTTP response. Any
line beginning with %s is replaced with the output, if any, of the first step as well as
any error messages. The HTTP response sent back to the client will have an HTTP
200 status code.

In the command-specific formatting files, command-specific substitution strings may
appear. These strings all begin with the percent character, %. When such a string is
encountered, the value it references is substituted into the HTTP response. For instance,
the formatting file

%first{<TABLE>}
%first{<TR><TH>Channel<TH>Queued messages}
<TR><TD>%counter_channel<TD>%counter_stored_messages
%last{</TABLE>}

might be used in conjunction with the show_counters command to produce an HTML
table of the PMDF channels and the number of messages queued to each channel; e.g.,

<TABLE>
<TR><TH>Channel<TH>Queued Messages
<TR><TD>conversion<TD>3
<TR><TD>l<TD>29
<TR><TD>tcp_local<TD>88
</TABLE>

In the tables describing each substitution string, the type of data associated with
the substitution string is stated. These types are:

Type Description

int Signed integer

31–52

Monitoring
Web-based Counter Monitoring

Type Description

string ASCII text string

uint Unsigned integer

In addition, the default formatting string used to format the data is also shown in
the tables. The formatting strings follow the C programming language convention
for formatting strings passed to the sprintf() C run-time library routine. Alternate
formatting strings may be used by enclosing them in braces, {}, and appending them to
the substitution string. For instance,

%counter_delivered_volume{%.1f} Kbyte%s

might be used to limit the %counter_delivered_volume to a single digit of precision
after the decimal point.

Five substitution strings, %first, %last, %!first, %!last, and %none, deserve
special attention. These first four strings substitute into the output specific text when
formatting, respectively, the first, the last, not the first, or not the last instance of the data
to be formatted. The text to be substituted in must be enclosed in braces, {}, following
the substitution string.6 For example, suppose that counters for several channels are to
be formatted using the following formatting file:

%first{<TABLE>}
%counter_channel
%last{</TABLE>}

In that case, when information for the first channel is formatted, the text <TABLE> will
be output followed by the channel name (%counter_channel). When information for
the last channel is formatted, the text </TABLE> will be output following the channel
name.

The %none substitution string supplies text to output when there are no instances of
the monitored data to display. For example, when there are no jobs in a queue to display.

31.7.3.3 Monitoring Commands

As described in Section 31.7.3.1, monitoring commands take the general form

command=command-name¶meter-name-1=parameter-value-1&
...¶meter-name-N=parameter-value-N

In the above, command-name gives the name of the monitoring command to execute.
It is then followed by two or more parameters which provide supplemental information
relevant to the operation to be performed.

6 At present, substitution strings appearing within the text to be substituted are ignored and treated as literal text.

31–53

Monitoring
Web-based Counter Monitoring

The valid command names are listed in the table below and described in the following
subsections.

Command name Section Description

show_counters 31.7.3.3.1 Show channel counters

show_held 31.7.3.3.2 Determine if there are any .HELD message files

show_pmdf 31.7.3.3.3 Show generic information about the PMDF configuration

show_queue 31.7.3.3.4 Show information about OpenVMS processing queues

31.7.3.3.1 Channel Counters: command=show_counters

The show_counters command displays channel counters and derived statistics for
one or more channels. Parameter names and their values accepted by the command are
listed in the table below.

Parameter Description

counter_format=file-spec Required Name of the formatting file to use to format channel
counter information. The recognized substitution
strings for this command are listed in Table 31–6
and Table 31–7.

channel_name=name Optional Name of the channel to display information for.
Wildcards are permitted. If this option is not
specified, * is assumed and information for all
channels will be displayed.

success_format=file-spec Required Name of the formatting file to use to format the
results when the command is successful.

error_format=file-spec Required Name of the formatting file to use to format the
results when the command fails.

Each of the file-spec file specifications must be relative file paths specifying files
in the pmdf_root:[www.monitor] directory (OpenVMS) or the /pmdf/www/monitor/
directory (UNIX).

For each channel matching the channel name pattern, the counter format file will
be used to format the information for that channel. If the command is successful, the
results are then formatted as per the success format file; otherwise, the error format file
will be used to generate an error response.

An example URL for a GET command might be

31–54

Monitoring
Web-based Counter Monitoring

http://host:7633/monitor/?command=show_counters&channel_name=tcp*&
counter_format=counters.txt&success_format=csuccess.txt&
error_format=cerror.txt

Table 31–6 General Substitution Strings

Substitution string Type Format Description

%last string %s Text string to display if this is the last formatting pass.

%none string %s Text string to display if there is no information to format.

%first string %s Text string to display if this is the first formatting pass.

%!first string %s Text string to display if this is not the first formatting pass.

%!last string %s Text string to display if this is not the last formatting pass.

%S char %s Output an S if the previously displayed numeric value had a
non-singular value.

%s char %s Output an s if the previously displayed numeric value had a
non-singular value.

%host string %s Display the TCP/IP host name of the node on which the
monitoring data was collected.

%image_ident string %s PMDF version number as recorded in the PMDF shared library.

%image_link_date string %s Date and time the PMDF shared library was linked.

%node string %s Display the DECnet node name (VMS) or TCP/IP host name
(UNIX) of the node on which the monitoring data was collected.

%time string %s Display the date and time at which the monitoring data was
collected.

%time_zone_name string %s Display the name for the time zone under which the monitoring
data was collected.

%time_zone_offset int %+04d Display the numeric time zone offset, in minutes, for the time
zone under which the monitoring data was collected.

%time_zone_offset_hm int %s Display the numeric time zone offset, in hhmm format, for the
time zone under which the monitoring data was collected.

Table 31–7 Substitution Strings for Use with the show_counters Command

Substitution string Type Format Description

%counter_channel string %s The channel’s name.

%counter_delivered_messages int %d Total cumulative count of messages
processed (dequeued) by the channel.

31–55

Monitoring
Web-based Counter Monitoring

Table 31–7 (Cont.) Substitution Strings for Use with the show_counters Command

Substitution string Type Format Description

%counter_delivered_messages_rate_5 float
%counter_delivered_messages_rate_5_min
%counter_delivered_messages_rate_5_max
%counter_delivered_messages_acc_5
%counter_delivered_messages_acc_5_min
%counter_delivered_messages_acc_5_max
%counter_delivered_messages_rate_15
%counter_delivered_messages_rate_15_min
%counter_delivered_messages_rate_15_max
%counter_delivered_messages_acc_15
%counter_delivered_messages_acc_15_min
%counter_delivered_messages_acc_15_max
%counter_delivered_messages_rate_60
%counter_delivered_messages_rate_60_min
%counter_delivered_messages_rate_60_max
%counter_delivered_messages_acc_60
%counter_delivered_messages_acc_60_min
%counter_delivered_messages_acc_60_max

%.2f Rate of change (_rate_) and acceleration
(_acc_), measured in messages per minute
and messages per minute per minute,
averaged over the past 5, 15, and 60
minutes. Also, the minimum and maximum
values for these values.

%counter_delivered_recipients int %d Total cumulative count of message recipients
processed (dequeued) by the channel.

%counter_delivered_volume_b
%counter_delivered_volume_k
%counter_delivered_volume_m
%counter_delivered_volume_g

float %.2f Total cumulative count of message volume
processed (dequeued) by then channel as
measured in bytes, kilobytes, megabytes,
and gigabytes.

%counter_received_messages int %d Total cumulative count of messages sent
to the channel (messages enqueued to the
channel).

%counter_received_messages_rate_5 float
%counter_received_messages_rate_5_min
%counter_received_messages_rate_5_max
%counter_received_messages_acc_5
%counter_received_messages_acc_5_min
%counter_received_messages_acc_5_max
%counter_received_messages_rate_15
%counter_received_messages_rate_15_min
%counter_received_messages_rate_15_max
%counter_received_messages_acc_15
%counter_received_messages_acc_15_min
%counter_received_messages_acc_15_max
%counter_received_messages_rate_60
%counter_received_messages_rate_60_min
%counter_received_messages_rate_60_max
%counter_received_messages_acc_60
%counter_received_messages_acc_60_min
%counter_received_messages_acc_60_max

%.2f Rate of change (_rate_) and acceleration
(_acc_), measured in messages per minute
and messages per minute per minute,
averaged over the past 5, 15, and 60
minutes. Also, the minimum and maximum
values for these values.

%counter_received_recipients int %d Total cumulative count of message recipients
sent to the channel (recipients enqueued to
the channel).

31–56

Monitoring
Web-based Counter Monitoring

Table 31–7 (Cont.) Substitution Strings for Use with the show_counters Command

Substitution string Type Format Description

%counter_received_volume_b
%counter_received_volume_k
%counter_received_volume_m
%counter_received_volume_g

float %.2f Total cumulative count of message volume
sent to the channel (enqueued to the
channel) as measured in bytes, kilobytes,
megabytes, and gigabytes.

%counter_stored_messages
%counter_stored_messages_min
%counter_stored_messages_max

int %d Count of messages currently enqueued to
the channel as well as the minimum and
maximum recorded counts for these values.

%counter_stored_messages_avg_5 float
%counter_stored_messages_avg_5_min
%counter_stored_messages_avg_5_max
%counter_stored_messages_avg_15
%counter_stored_messages_avg_15_min
%counter_stored_messages_avg_15_max
%counter_stored_messages_avg_60
%counter_stored_messages_avg_60_min
%counter_stored_messages_avg_60_max

%.2f The averages over the past 5, 15, and 60
minutes of the counts of messages currently
enqueued to the channel

%counter_stored_messages_rate_5 float
%counter_stored_messages_rate_5_min
%counter_stored_messages_rate_5_max
%counter_stored_messages_acc_5
%counter_stored_messages_acc_5_min
%counter_stored_messages_acc_5_max
%counter_stored_messages_rate_15
%counter_stored_messages_rate_15_min
%counter_stored_messages_rate_15_max
%counter_stored_messages_acc_15
%counter_stored_messages_acc_15_min
%counter_stored_messages_acc_15_max
%counter_stored_messages_rate_60
%counter_stored_messages_rate_60_min
%counter_stored_messages_rate_60_max
%counter_stored_messages_acc_60
%counter_stored_messages_acc_60_min
%counter_stored_messages_acc_60_max

%.2f Rate of change (_rate_) and acceleration
(_acc_), measured in messages per minute
and messages per minute per minute,
averaged over the past 5, 15, and 60
minutes. Also, the minimum and maximum
values for these values.

%counter_stored_messages_threshold int %d Stored message alarm threshold set for the
channel in the option file.

%counter_stored_recipients
%counter_stored_recipients_min
%counter_stored_recipients_max

int %d Count of recipients currently enqueued to
the channel and the minimum and maximum
recorded counts.

31–57

Monitoring
Web-based Counter Monitoring

Table 31–7 (Cont.) Substitution Strings for Use with the show_counters Command

Substitution string Type Format Description

%counter_stored_volume_b
%counter_stored_volume_min_b
%counter_stored_volume_max_b
%counter_stored_volume_k
%counter_stored_volume_min_k
%counter_stored_volume_max_k
%counter_stored_volume_m
%counter_stored_volume_min_m
%counter_stored_volume_max_m
%counter_stored_volume_g
%counter_stored_volume_min_g
%counter_stored_volume_max_g

float %.2f Count of volume currently enqueued to the
channel as measured in bytes, kilobytes,
megabytes, and gigabytes. Also, the
minimum and maximum values recorded
for these values.

%counter_submitted_messages int %d Total cumulative count of messages sent by
the channel (enqueued by the channel).

%counter_submitted_messages_rate_5 float
%counter_submitted_messages_rate_5_min
%counter_submitted_messages_rate_5_max
%counter_submitted_messages_acc_5
%counter_submitted_messages_acc_5_min
%counter_submitted_messages_acc_5_max
%counter_submitted_messages_rate_15
%counter_submitted_messages_rate_15_min
%counter_submitted_messages_rate_15_max
%counter_submitted_messages_acc_15
%counter_submitted_messages_acc_15_min
%counter_submitted_messages_acc_15_max
%counter_submitted_messages_rate_60
%counter_submitted_messages_rate_60_min
%counter_submitted_messages_rate_60_max
%counter_submitted_messages_acc_60
%counter_submitted_messages_acc_60_min
%counter_submitted_messages_acc_60_max

%.2f Rate of change (_rate_) and acceleration
(_acc_), measured in messages per minute
and messages per minute per minute,
averaged over the past 5, 15, and 60
minutes. Also, the minimum and maximum
values for these values.

%counter_submitted_recipients int %d Total cumulative count of message recipients
sent to by the channel (enqueued to by the
channel).

%counter_submitted_volume_b
%counter_submitted_volume_k
%counter_submitted_volume_m
%counter_submitted_volume_g

float %.2f Total cumulative count of message volume
sent by the channel (enqueued by the
channel) as measured in bytes, kilobytes,
megabytes, and gigabytes.

31.7.3.3.2 .HELD messages: command=show_held

The show_held command may be used to determine whether or not there are .HELD
message files. This command merely determines whether or not such files exist; it does
not return a count of how many such files there are. On systems which have large
volumes of queued messages, this command may take a while to execute. Parameters
which may be supplied in conjunction with the command are listed in the following table.

31–58

Monitoring
Web-based Counter Monitoring

Parameter Description

held_format=file-spec Required Name of the formatting file to use to format .HELD
message information. The recognized substitution
strings for this command are listed in Table 31–6
and Table 31–8.

success_format=file-spec Required Name of the formatting file to use to format the
results when the command is successful.

error_format=file-spec Required Name of the formatting file to use to format the
results when the command fails.

Each of the file-spec file specifications must be relative file paths specifying files
in the pmdf_root:[www.monitor] directory (OpenVMS) or the /pmdf/www/monitor/
directory (UNIX).

An example URL for a GET command might be

http://host:7633/monitor/?command=show_held&success_format=hsuccess.txt&
error_format=herror.txt

Table 31–8 Substitutions Strings for Use with the show_held Command

Substitution string Type Format Description

%held_messages int %d Has value 0 when there are no .HELD message files
and the value 1 when there are .HELD message files.

31.7.3.3.3 General Information: command=show_pmdf

The show_pmdf command displays general information about PMDF. Parameters
which may be used with the command are listed below.

Parameter Description

pmdf_format=file-spec Required Name of the formatting file to use to format PMDF
information. The recognized substitution strings for
this command are listed in Table 31–6.

success_format=file-spec Required Name of the formatting file to use to format the
results when the command is successful.

error_format=file-spec Required Name of the formatting file to use to format the
results when the command fails.

Each of the file-spec file specifications must be relative file paths specifying files
in the pmdf_root:[www.monitor] directory (OpenVMS) or the /pmdf/www/monitor/
directory (UNIX).

An example URL for a GET command might be

http://host:7633/monitor/?command=show_pmdf&pmdf=pmdf.txt&
success_format=psuccess.txt&error_format=perror.txt

31–59

Monitoring
Web-based Counter Monitoring

31.7.3.3.4 Processing Queues: command=show_queue

The show_queue command displays information about OpenVMS processing queues
and jobs. This command is only available on OpenVMS PMDF systems. The parameters
recognized by the command are listed below.

Parameter Description

queue_format=file-spec Required Name of the formatting file to use to format
processing queue information. The recognized
substitution strings for this command are listed in
Table 31–6 and Table 31–9.

job_format=file-spec Optional Name of the formatting file to use to format
processing job information. The recognized
substitution strings for this command are listed
in Table 31–6 and Table 31–10.

queue_name=name Optional Name of the processing queue to display information
for. Wildcards are permitted. If this option is not
specified, each processing queue used by PMDF
will be scanned.

success_format=file-spec Required Name of the formatting file to use to format the
results when the command is successful.

error_format=file-spec Required Name of the formatting file to use to format the
results when the command fails.

Each of the file-spec file specifications must be relative file paths specifying files
in the pmdf_root:[www.monitor] directory (OpenVMS) or the /pmdf/www/monitor/
directory (UNIX).

For each queue matching the queue name pattern, the queue file and optional job
format file will be used to format the information for that queue. It is important to
note that the %first, %last, %!first, and %!last formatting strings are handled in
a special way when both queue and job formatting files are specified. In that case, the
first flag is only true for the first queue entry formatted by the queue file. It is not true
while the job information is being formatted. The last flag is never true while the queue
information is being formatted. It is only true when the last job of the last queue is being
formatted.

An example URL for a GET command might be

http://host:7633/monitor/?command=show_queue&queue_format=queue.txt&
job_format=job.txt&success_format=qsuccess.txt&error_format=qerror.txt&
queue_name=MAIL$BATCH

31–60

Monitoring
Web-based Counter Monitoring

Table 31–9 Queue Substitution Strings for Use with the show_queue Command

Substitution string Type Format Description

%queue_assigned_name string %s Name of the execution queue
associated with the logical queue
name.

%queue_base_priority uint %u The priority at which at which
batch jobs submitted to the queue
are initiated or the priority of a
symbiont process that controls
output execution queues for the
queue.

%queue_cpu_default_s
%queue_cpu_default_m
%queue_cpu_default_h
%queue_cpu_default_d

uint %.2f The default CPU time limit,
displayed in units of seconds,
minutes, hours, or days, for jobs
submitted to the queue.

%queue_cpu_default_dhms uint %u %02u:%02u:%02u The default CPU time limit,
displayed in ‘‘dd hh:mm:ss’’
format, for jobs submitted to the
queue.

%queue_cpu_limit_s
%queue_cpu_limit_m
%queue_cpu_limit_h
%queue_cpu_limit_s

uint %.2f The maximum CPU time limit,
displayed in units of seconds,
minutes, hours, or days, for jobs
submitted to the queue.

%queue_cpu_limit_dhms uint %u %02u:%02u:%02u The maximum CPU time limit,
displayed in ‘‘DD HH:MM:SS’’
format, for jobs submitted to the
queue.

%queue_default_form_name string %s The name of the default form
associated with the queue.

%queue_default_form_stock string %s The name of the default paper
stock associated with the queue.

%queue_description string %s Description associated with the
queue.

%queue_device_name string %s The name of the device on which
the specified output execution
queue is located.

%queue_executing_job_count uint %u Count of jobs currently being
executed in the queue.

%queue_flags uint %s Queue processing flags.

%queue_form_name string %s Form name associated with the
queue.

%queue_form_stock string %s Paper stock associated with the
queue.

%queue_generic_target string %s The names of the execution
queues which are enabled to
accept from the queue.

31–61

Monitoring
Web-based Counter Monitoring

Table 31–9 (Cont.) Queue Substitution Strings for Use with the show_queue Command

Substitution string Type Format Description

%queue_holding_job_count uint %u The count of jobs being held in the
queue until explicitly released for
execution.

%queue_job_limit uint %u The number of jobs which can
execute simultaneously in the
queue.

%queue_job_reset_modules string %s The names of the text modules
that are to be extracted from the
device control library and copied to
the printer prior to each print job.

%queue_job_size_maximum uint %u The maximum number of disk
blocks that a print job initiated
from the queue may contain.

%queue_job_size_minimum uint %u The minimum number of disk
blocks that a print job initiated
from the queue may contain.

%queue_library_specification string %s The name of the device control
library for the queue.

%queue_name string %s The name of the queue.

%queue_owner_uic uint %s The UIC of the owner of the
queue.

%queue_pending_job_block_count uint %u The total number of blocks for all
pending jobs in the queue. Applies
only to execution queues.

%queue_pending_job_count uint %u The total number of jobs pending
execution in the queue.

%queue_processor string %s The name of the symbiont image
associated with the queue.

%queue_protection uint %s The protection mask associated
with the queue.

%queue_retained_job_count uint %u The number of jobs in the queue
retained after execution.

%queue_scsnode_name string %s The name of the node on which
the queue is located. Applies only
to execution queues.

%queue_status uint %s The status of the queue.

%queue_timed_release_job_count uint %u The number of jobs in the queue
on hold until a specified time.

%queue_type uint %s A text string describing the type of
queue.

%queue_wsdefault uint %u The default working set size for
jobs run in the queue. Applies only
to batch and execution queues.

31–62

Monitoring
Web-based Counter Monitoring

Table 31–9 (Cont.) Queue Substitution Strings for Use with the show_queue Command

Substitution string Type Format Description

%queue_wsextent uint %u The default working set extent for
jobs run in the queue. Applies only
to batch and execution queues.

%queue_wsquota uint %u The default working set quota for
jobs run in the queue. Applies only
to batch and execution queues.

Table 31–10 Job Substitution Strings for Use with the show_queue Command

Substitution string Type Format Description

%job_account_name string %s Account name of the owner of the job.

%job_after_time string %s Date and time when the job is scheduled to
be released to run (/AFTER).

%job_checkpoint_data string %s Job’s checkpoint data stored in the
BATCH$RESTART DCL symbol.

%job_cli string %s The command language interpreter to be
used to execute the job (/CLI).

%job_completed_blocks uint %u Blocks completed so far by the symbiont for
the job. Applies only to print jobs.

%job_completion_queue string %s Name of the queue in which the job was
executed.

%job_completion_time string %s Date and time at which the job finished
executing.

%job_condition_vector uint %u Final completion status code for the job.

%job_copies uint %u Number of copies to be printed by the print
job (/COPIES). Applies only to print jobs.

%job_copies_done uint %u Copies printed so far by the symbiont for the
job. Applies only to print jobs.

%job_cpu_limit_s
%job_cpu_limit_m
%job_cpu_limit_h
%job_cpu_limit_d

float %.2f CPU time limit allowed for the job displayed
in seconds, minutes, hours, or days
(/CPUTIME).

%job_cpu_limit_dhms uint %u %02u:%02u:%02u CPU time limit allowed for the job displayed
in ‘‘DD HH:MM:SS’’ format (/CPUTIME).

%job_entry_number uint %u Queue entry number assigned to the job.

%job_file_count uint %u Count of files submitted for the job.

%job_flags uint %s Job processing flags.

%job_form_name string %s Name of the print form associated with the
job or queue (/FORM=). Applies only to print
jobs.

%job_form_stock string %s Name of the paper stock associated with
to be used for the job. Applies only to print
jobs.

31–63

Monitoring
Web-based Counter Monitoring

Table 31–10 (Cont.) Job Substitution Strings for Use with the show_queue Command

Substitution string Type Format Description

%job_log_queue string %s Name of the print queue to which the log
for the job is to be submitted for printing
(/PRINTER).

%job_log_specification string %s File specification for the job’s log file (/LOG).

%job_name string %s Name associated with the job (/NAME).

%job_note string %s Note associated with the job (/NOTE).

%job_operator_request string %s Request to be sent to the operator before the
job begins execution (/OPERATOR).

%job_parameter_1
%job_parameter_2
%job_parameter_3
%job_parameter_4
%job_parameter_5
%job_parameter_6
%job_parameter_7
%job_parameter_8

string %s Parameters P1 through P8 associated with
the job (/PARAMETER).

%job_pending_reason uint %s Reason for why the job is pending execution.

%job_pid uint %08x Process identifier of the process executing
the job request.

%job_priority uint %u Job processing priority (/PRIORITY).

%job_queue_name string %s Name of the queue that contains the job
(/QUEUE).

%job_requeue_queue_name string %s Name of the queue to which the job has
been reassigned.

%job_restart_queue_name string %s Name of the queue to submit the job to
should the job be restarted.

%job_retention_time string %s The time until which the job should be
retained in the queue.

%job_size uint %u Size of the job as measured in 512 byte
blocks (e.g., size of the command procedure
to be executed or the size of the file to be
printed).

%job_status uint %s Job status information.

%job_submission_time string %s Date and time when the job was submitted to
the queue.

%job_uic uint %s UIC of the account under which the job was
submitted.

%job_username string %s Username of the account under which the
job was submitted (/USER).

%job_wsdefault uint %u Job’s working set default (/WSDEFAULT).

%job_wsextent uint %u Job’s working set extent (/WSEXTENT).

%job_wsquota uint %u Job’s working set quota (/WSQUOTA).

31–64

Monitoring
Web-based Counter Monitoring

31.7.3.3.5 HTML SUBMIT Buttons: noop=label

The noop=label pair is provided as an aid to processing HTTP POST requests
generated with HTML forms. The need for this command relates to a shortcoming of
HTML. In HTML, the form submit operation is realized through the following HTML
tag:

<INPUT TYPE="SUBMIT" NAME="command" VALUE="y">

That tag generates the URL-encoded command command=y when the button labelled y

is activated. But here’s the rub: the label which appears on the button must be the same
as the command to be submitted. So as to prevent HTML authors from having to label
buttons to match the CGI’s command names, the noop command is provided. It is used
as follows

<INPUT TYPE="HIDDEN" NAME="command" VALUE="command-name">
<INPUT TYPE="SUBMIT" NAME="noop" VALUE="button-label">

The above allows whatever text label is desired to be placed on the submission button.
When the submission button is generated a URL-encoded command of the form

noop=button-label&command=command-name¶meter-name-1=parameter-value-1...

is sent to the CGI. The CGI ignores the noop= button-label pair and processes the
remainder of the URL encoded command.

31.7.3.4 An HTTP GET Example

The following example illustrates three formatting files—command-specific, success,
and error—which might be used to display information about the PMDF channel
counters. An HTTP request using these files might issue an HTTP GET for the URL

http://host:7633/monitor/?command=show_channels&counters_format=counters.txt
&success_format=success.txt&error_format=error.txt

The command-specific formatting file is shown in Example 31–4. The file builds a
table displaying each channel name (%counter_channel) and the count of messages
currently enqueued to the channel (%counter_stored_messages). In addition, the cu-
mulative count of messages enqueued to (%counter_received_messages), dequeued by
(%counter_delivered_messages), and enqueued by (%counter_submitted_messages)
the channel are also shown. The values for each PMDF channel are substituted into the
HTML in place of the substitution strings which begin with %. The %first and %last
substitution strings are used to generate HTML for the start and end of the table.

Once information for each channel is formatted, the success formatting file of
Example 31–5 is then used to produce the final content of the HTTP response to be
sent back to the client. Sample HTML output is shown in Example 31–7; that output
builds a table appearing similar to the one shown below:

31–65

Monitoring
Web-based Counter Monitoring

PMDF channel counters

Current Messages Cummulative Messages
Enqueued to Enqueued to Dequeued by Enqueued by

conversion 1 2300 2299 0
l 23 18021 17998 19473
tcp_local 147 13522 13375 321

Should an error occur, the error formatting file of Example 31–6 will instead be used to
format the response sent back to the client.

Example 31–4 show_channels example: channels.txt formatting file

%first{<TABLE BORDER><TR><TH><TH>Current Messages<TH COLSPAN=3>}
%first{Cummulative Messages<TR ALIGN="right"><TH><TH>Enqueued to}
%first{<TH>Enqueued to<TH>Dequeued by<TH>Enqueued by}
<TR ALIGN="right"><TD ALIGN="left">%counter_channel
<TD>%counter_stored_messages<TD>%counter_received_messages
<TD>%counter_delivered_messages<TD>%counter_submitted_messages
%last{</TABLE>}

Example 31–5 show_channels example: success.txt formatting file

<HTML>
<HEAD>
<META HTTP-EQUIV="Refresh" CONTENT="60">
<TITLE>PMDF channel counters</TITLE>
</HEAD>
<BODY>
PMDF channel counters
<P>
%s
</BODY>
</HTML>

31–66

Monitoring
Web-based Counter Monitoring

Example 31–6 show_channels example: error.txt formatting file

<META HTTP-EQUIV="Refresh" CONTENT="60">
<HTML>
<HEAD>PMDF Channel Counters</HEAD>
<BODY>

Unable to obtain information on the PMDF channels. Output from the server is
shown below

<P>
<HR>
<P>
%s
<P>
<HR>
</BODY>
</HTML>

Example 31–7 show_channels example: the resulting HTML output

<HTML>
<HEAD>
<META HTTP-EQUIV="Refresh" CONTENT="60">
<TITLE>PMDF channel counters</TITLE>
</HEAD>
<BODY>
PMDF channel counters
<P>
<TABLE BORDER><TR><TH><TH>Current Messages<TH COLSPAN=3>
Cummulative Messages<TR ALIGN="right"><TH><TH>Enqueued to
<TH>Enqueued to<TH>Dequeued by<TH>Enqueued by
<TR ALIGN="right"><TD ALIGN="left">conversion
<TD>1<TD>2300
<TD>2299<TD>0
<TR ALIGN="right"><TD ALIGN="left">l
<TD>23<TD>18021
<TD>17998<TD>19473
<TR ALIGN="right"><TD ALIGN="left">tcp_local
<TD>147<TD>13522
<TD>13375<TD>321
</TABLE>
</BODY>
</HTML>

31–67

32Performance Tuning

There are a variety of things which can be done to improve PMDF’s performance.
However, before trying to tune PMDF you should first feel comfortable with PMDF:
have a basic understanding of how it works, be familiar with your configuration, and be
able to recognize when PMDF isn’t working on your system. In addition, it is important
that you spend some time identifying what the bottlenecks are on your system: CPU
resources, disk speed, memory, network speed or latencies, etc. Without a clear idea of
where the bottlenecks are, any tuning you do is likely to be ineffective.

32.1 Basics

It is important that you understand some of the basics of how PMDF works. This
section attempts to present a very basic overview.

When PMDF receives a message, PMDF writes the message as one or more disk
files in the PMDF queue directories. These files represent copies of the message: at least
one copy for each channel to which the message must be enqueued. It is crucial that the
received message be written to a non-volatile medium such as a magnetic disk file: were
the system to crash before the message could be sent on to its final destination, then the
message might be lost. For this reason, PMDF always writes received messages to disk
before giving a positive acknowledgement of receipt to the transmitter of the message.
After a message is received, an entry is made in the queue cache database.

Once PMDF has received a message, it attempts to deliver it. This is done by
submitting a processing job for each channel to which the message is enqueued. These
jobs attempt to send the message to wherever it is next bound (as determined by PMDF’s
domain rewriting rules). If a job is successful, then the message copy it was handling
is deleted and the corresponding entry removed from the queue cache database. If not
successful, then the message copy is left on disk for a subsequent delivery attempt.

So, the normal mode of operation is: A message is received, it is written to a file, a
record is added to the queue cache database, a processing job is started, the job reads
the message file, the job then deletes the file, the record is removed from the queue
cache database.

Given this basic scenario, several things should be clear:

• Increased throughput can be realized by:

+ decreasing disk write and read times,

+ increasing the internal memory buffer size for processing jobs to decrease the
use of temporary buffer files for large messages,

+ increasing the number of simultaneous processing jobs and any resources they
might require,

32–1

Performance Tuning
Basics

+ decreasing processing job overhead,

+ decreasing per message processing job overhead by increasing the number of
messages handled per job,

+ ensuring that the number of SMTP server processes available for accepting
incoming SMTP over TCP/IP messages is appropriate for the level of message
traffic,

+ for general SMTP over TCP/IP channels, used to send SMTP messages to
multiple different destinations, decreasing per connection overhead for outgoing
SMTP over TCP/IP messages by collecting and sending messages to the same
destination host in one connection,

+ for daemon SMTP over TCP/IP channels, commonly used to send SMTP messages
to single specific relay systems such as mailhubs or firewalls, using multiple
threads for outgoing connections, and

+ tuning the queue cache database.

• Using a virtual RAM disk for the message store is a very bad idea. Should your
system crash, mail can be lost or corrupted.1

• Keeping the message store on a shadowed disk can hurt performance: whereas
shadowset reads are on the average faster, writes are on the average slower. Since
usually only one read will be required, the decreased read time will not be sufficient
to compensate for the increased write time.

The suggestions in the first bullet item above, as well as several others, are explored in
the remainder of this chapter.

VMS
On OpenVMS, note that the queue cache database is an RMS keyed, indexed file. As

such, it can be tuned using any of the standard RMS tuning tools. Should you want to
tune it differently from the FDL parameters in the file PMDF_COM:queue_cache.fdl,
you might first consult with Process Software.

32.2 CPU and Resources

First off, if you have not begun to use a compiled configuration, then begin doing
so. This will noticeably reduce the startup time of PMDF processing jobs (and on
OpenVMS, the startup time for PMDF MAIL) as well as reduce the time spent waiting
for a response the first time your users use a PMDF handled address in their user agent,
such as send a message from Pine (or on OpenVMS, send to an IN% address in VMS
MAIL). See Section 8.1 for instructions on how to generate a compiled configuration.

Consider establishing processing queues (OpenVMS) or Job Controller queues
(UNIX and NT) for specific channels which you want to ensure always have processing
slots. For instance, set up a separate queue for your pager channel so that delivery jobs
for urgent pages do not get held up waiting in the MAIL$BATCH queue (OpenVMS)

1 With certain provisos, however, storing the queue cache database on a virtual RAM disk can be safe enough — see the
discussion later in this chapter. And a reliable, battery-backed, solid-state RAM disk can be safe enough for the message
store.

32–2

Performance Tuning
CPU and Resources

or DEFAULT queue (UNIX and NT). Then use the queue keyword to direct particular
channels to run in particular queues; see Section 2.3.4.18 for more details on the queue
keyword, and Section 32.4 for a further discussion of directing channels to run in specific
queues.

Busy channels — channels which usually have immediate jobs processing in the
queues — are likely to achieve greater overall throughput in exchange for slightly
increased latency by use of the after channel keyword with a (typically small) delta
time value. By specifying a delta time value that, while not introducing too much of a
delay for new messages, does allow PMDF to ‘‘collect’’ multiple messages to be handled
by one channel job, the overhead of image activation or expensive protocol connections
can be reduced. For a busy channel, this can lead to a substantial increase in overall
throughput. Channels such as multithreaded TCP/IP channels, or on OpenVMS also
the L channel or MR channels, are often candidates. Multithreaded TCP/IP channels,
for instance, sort messages to different hosts into different threads; when given multiple
messages to deliver to a single host, those messages can then be delivered during a
single SMTP connection session. See Section 2.3.4.18 for more details on the after
keyword.

If your system has the memory to spare, increasing the size of message that
processing jobs can buffer internally can reduce use of temporary buffer files on
disk when receiving or processing large messages. See the discussion of the MAX_
INTERNAL_BLOCKS PMDF option in Section 7.3.5. On OpenVMS, make sure that
the account under which PMDF jobs are operating (normally the SYSTEM account)
has sufficient memory quotas; PGFLQUOTA, WSDEF, WSQUO, and WSEXTENT are
particularly relevant.

The PMDF Dispatcher controls the creation and use of multithreaded SMTP
server processes. If, as is typical, incoming SMTP over TCP/IP messages are a major
component of e-mail traffic at your site, monitor how many simultaneous incoming
SMTP connections you tend to have, and the pacing at which such connections come
in. Tuning of Dispatcher configuration options controlling the number of SMTP server
processes, the number of connections each can handle, the threshold at which new
server processes are created, etc., can be beneficial if your site’s incoming SMTP over
TCP/IP traffic is unusually high or low.

For typical SMTP over TCP/IP channels, used to send to multiple different remote
systems, the PMDF multithreaded TCP/IP channel’s default behavior of sorting messages
to different destinations into different threads and then handling all messages to a single
host in a single thread is desirable for performance. However, for a daemon TCP/IP
channel, one dedicated to sending to a specific system, if the receiving system supports
multiple simultaneous connections it can be preferable to force PMDF to split the
outgoing messages into separate threads, by using a combination of the threaddepth
keyword set for some appropriate value and the MAX_CLIENT_THREADS channel
option; see Section 2.3.4.29 and Section 21.1.2.2.

VMS To make better utilization of your CPU resources, consider making MAIL$BATCH
a generic queue feeding specific queues across your cluster. If you do this, keep in mind
that those channels which use software available on only a few systems must do their
processing on those systems. For instance, if you only run Jnet on one system, then
you must process your bit_ channels on that system. Use the queue channel keyword
to designate which queues a channel should use for its processing. By default, channels

32–3

Performance Tuning
CPU and Resources

will use MAIL$BATCH; thus, you need only specify this keyword on those channels
which should use a separate queue. See 2.3.4.18 for information on the queue keyword.

On OpenVMS, if you are not already using the Process Symbiont, then consider
using it. By default, MAIL$BATCH is a batch queue. Thus, PMDF’s processing jobs
are by default batch jobs: each processing job must be created and go through the
LOGINOUT procedure. The Process Symbiont reduces this overhead by instead using
a pool of detached processes for PMDF processing. When PMDF needs to launch a
processing job, one of the idle detached processes is used. This avoids the overhead of
creating and logging in a new process for each processing task. Use of Process Symbiont
queues also reduces the creation of unnecessary log files. The Process Symbiont is a
multi-threaded server symbiont. You can control how many detached processes it runs
and how long they are allowed to remain idle before being deleted. As with batch jobs,
you can create a generic Process Symbiont queue which feeds specific queues spread
across your cluster. See Section 9.1 for instructions on how to configure the Process
Symbiont.

On OpenVMS, installing as known images channel programs for often used channels
will reduce processing job overhead. For local delivery, you do not need to do anything:
the requisite images, SYS$SYSTEM:mail.exe and PMDF_SHARE_LIBRARY, are
already installed. Sites with large volumes of outgoing SMTP messages should consider
installing the PMDF_EXE:tcp_smtp_client.exe image (using the DCL INSTALL
utility’s /OPEN/HEADER/SHARED qualifiers).

32.3 Disks and Files

The most common bottleneck in PMDF is disk I/O. PMDF does a lot of it. Try to
keep the disks with PMDF’s message store below 66% capacity so that the operating
system can efficiently manage file create and delete cycles. This is especially important
on OpenVMS where the file system begins to become very inefficient once the disk gets
over 66% capacity. Also, use disk striping or other aggregate disk spindle techniques
that help both read and writes. Avoid disk shadowing if possible. Disk is cheap these
days: spend money on multiple spindles and sufficient free space.

By using symbolic links under the /pmdf directory (UNIX), by redefining the PMDF_
QUEUE and PMDF_LOG logicals (OpenVMS), or by redefining the PMDF_QUEUE and
PMDF_LOG registry entries (Windows) you can redirect where PMDF keeps its message
store and log files. PMDF’s command, executable, and table directories2 can also be
separated if absolutely necessary.

The location for PMDF temporary files can also be moved. PMDF_SCRATCH controls
the location of temporary unnamed files (such as those used to buffer incoming large
SMTP messages or incoming large messages submitted by local users); PMDF_TMP
controls the location of temporary named files (such as those used by the conversion
channel). On UNIX, both values default to /pmdf/tmp if not explicitly pointed elsewhere
in the PMDF tailor file. Similarly on Windows, both values default to C:\pmdf\tmp

2 On OpenVMS, these are PMDF_COM:, PMDF_EXE:, and PMDF_TABLE:, respectively; on UNIX, these are
/pmdf/lib, /pmdf/bin, and /pmdf/table, respectively; on Windows, these are pointed to by the registry
entries PMDF_COM, PMDF_EXE, and PMDF_TABLE respectively.

32–4

Performance Tuning
Disks and Files

if not explicitly pointed elsewhere by in the Windows registry. On OpenVMS, if
PMDF_SCRATCH and PMDF_TMP logicals are not defined then temporary unnamed
files default to SYS$SCRATCH (next SYS$DISK, next SYS$LOGIN) and temporary
named files default to PMDF_QUEUE:[000000]. Note that if explicitly defining PMDF_
SCRATCH it is important to point it to a device on which any user can create files.

On OpenVMS only, the location for files usually put into PMDF_TMP can be broken
up. If the logical name PMDF_IMAP_TMP is defined, then the legacy IMAP server
will put its temporary files in the directory named by that logical, rather than in PMDF_
TMP. If the logical name PMDF_SPEC_TMP is defined, then channels who create special
temporary files (such as the conversion, script, and pipe channels) will put their
temporary files in the directory named by that logical rather than in PMDF_TMP.

By default, the messages for a given channel are stored in a single, channel-
specific directory under PMDF_QUEUE: (OpenVMS) or /pmdf/queue/ (UNIX) or usually
C:\pmdf\queue\ (Windows). File system performance degrades rapidly for directories
with more than a couple thousand files; this can present a problem for channels which
see heavy message traffic — especially when the network associated with that channel
is down and messages begin to queue up. Use the subdirs channel keyword to indicate
that a channel should uniformly spread its messages across several subdirectories. For
Internet sites with heavy traffic loads, this should be done for their outgoing TCP/IP
channel, usually tcp_local.

By changing the PMDF_QUEUE_CACHE_DATABASE logical (OpenVMS only), you
can move the queue cache database to an alternate location. After moving it, be sure to
issue the OpenVMS commands

$ PMDF CACHE/CLOSE
$ PMDF CACHE/SYNCH

so as to ensure that all PMDF processing jobs close the old database and begin using the
new, relocated database.

It is safe to keep the queue cache database on a virtual RAM disk provided that:

1. You periodically copy the queue cache database to a regular disk. (On OpenVMS, use
BACKUP/IGNORE=INTERLOCK to make a copy of the queue cache database on a
running system.)

2. You resynchronize the queue cache database each time you reboot your system. On
OpenVMS, use the command PMDF CACHE/SYNCHRONIZE. The cache resynchro-
nization should be performed after executing the pmdf_startup.com procedure (on
OpenVMS) and before starting your networks or PMDF processing queues.

High volume sites that have enabled the logging channel keyword to log message
traffic, as well as the LOG_CONNECTION PMDF option to log connections, can want to
enable the SEPARATE_CONNECTION_LOG option to direct the connection log entries
to a separate file from the message traffic log entries; see Section 7.3.6. On OpenVMS,
busy sites that have enabled the logging keyword can also find it beneficial to increase
the LOG_ALQ and LOG_DEQ options, also discussed in Section 7.3.6, to use larger file
extents for the underlying file allocation.

32–5

Performance Tuning
Disks and Files

UNIX and Windows sites can consider whether for their use it is acceptable to set
the PMDF option FSYNC=0. Doing so improves performance, but at the cost that if a
UNIX or Windows system crashes at just the wrong moment, messages not yet synched
to disk could be lost. See Section 7.3.8.

32.4 Planning for Network Speed and Latency

While you can not be able to speed up your network links or reduce network latencies,
you can at least arrange your message processing so as to recognize these issues. For
instance, Internet sites can want to have two separate outbound TCP/IP channels: one
for intra-domain traffic and the other for inter-domain traffic. Suppose, for instance,
that your domain is claremont.edu. Then you might set up a new PMDF_SMTP_
CLAREMENT generic or execution queue (OpenVMS) or Job Controller queue (UNIX
and NT). Next add the rewrite rule

.claremont.edu $U%$H$D@TCP-CLAREMONT

and the channel definition

tcp_claremont smtp single_sys nox_env_to mx queue PMDF_SMTP_CLAREMONT
TCP-CLAREMONT

to your PMDF configuration. This will cause all mail to other hosts in the claremont.edu
domain to go out through the tcp_claremont channel. Processing jobs will run in the
PMDF_SMTP_CLAREMONT processing queue. Internet mail for other domains will
continue to go out the tcp_local channel and use the MAIL$BATCH queue (OpenVMS)
or DEFAULT Job Controller queue (UNIX and NT).

You can apply this concept to other networks and channels. Indeed, you might find it
useful to use separate processing queues for each of your outbound channels. This way,
when one network is particularly slow, its processing jobs do not hold up jobs from other
channels which can be waiting for the next available processing slot in the processing
queue.

32.5 Differential Handling of Large or Low Priority Messages

For some sites, processing all messages, of whatever sort, as quickly as possible is
the major goal, and issues of message size or message priority are not a concern.

Other sites can want to treat messages over some site-specified size as deserving of
lower priority or delayed processing, as compared with messages of a more ‘‘normal’’ size.

PMDF by default pays attention to message priority when processing more than
one message (as for a PMDF periodic delivery job) and will automatically try to send
messages of greater priority before trying to send messages of lower priority.

32–6

Performance Tuning
Differential Handling of Large or Low Priority Messages

On OpenVMS, to get generally different handling of messages of differing priority,
the nonurgentqueue, normalqueue, and urgentqueue channel keywords can be used
to cause messages of differing priority to be processed in different processing queues;
see Section 2.3.4.18. Such different processing queues might have different resources
devoted to them, for instance, different job limits as to how many simultaneous jobs can
run at once; or a processing queue used for processing non-urgent messages might be set
up to run only at off-hours.

PMDF can be configured to treat messages over site-specified sizes as having an
effectively lower processing priority via the nonurgentblocklimit, normalblock-
limit, and urgentblocklimit channel keywords, or the NON_URGENT_BLOCK_
LIMIT, NORMAL_BLOCK_LIMIT, and URGENT_BLOCK_LIMIT PMDF options; see
Section 2.3.4.10 or Section 7.3.5, respectively. In conjunction with differential priority
handling, as described above, this can provide for differential handling of messages of
varying sizes.

32–7

33Maintenance and Troubleshooting on OpenVMS

Under normal conditions PMDF accepts, processes, and promptly delivers messages.
If a message can not be delivered immediately, PMDF will periodically retry the delivery.
Intervention by a system or network manager is generally not required, as PMDF
is designed to perform its functions unattended as much as possible. It is a good
idea, however, to periodically inspect the PMDF queue directories. System or network
problems over which PMDF has no control can adversely affect normal operation. In
addition, unusual behavior from PMDF can often point out network problems which can
otherwise go unnoticed.

See also Chapter 31, which discusses monitoring PMDF activity. A baseline for what
normal PMDF activity looks like at your site can be helpful when questions arise.

33.1 Background on PMDF Operation

In order to diagnose and repair PMDF message delivery problems, you need some
understanding of the steps that PMDF goes through to process and deliver a message.
Each time a message is handed to PMDF, a file is created in the appropriate message
queue subdirectory. Each channel has a corresponding subdirectory. The subdirectory
into which the message is placed is that of the destination channel which will handle
the message next. For example, a message coming in from any source to be delivered to
a local user will be placed in the subdirectory corresponding to the local, or L, channel.
A message coming in sent by a local user’s POP or IMAP client to be routed on through
SMTP over TCP will be placed in the subdirectory for the outbound TCP/IP channel,
such as tcp_local.

Once the message is stored in the appropriate queue subdirectory, a PMDF
processing job is usually submitted to the appropriate batch or server queue. This step
is omitted for channels marked with the periodic keyword. The processing job will
attempt to deliver the message. If it cannot be delivered and the failure is judged to be
a permanent condition, the message is returned to the sender and the local postmaster.
If the failure is a temporary error condition, the message is left in the message queue to
be retried later.

Note that messages are processed by jobs submitted through the OpenVMS batch
and print queue subsystem. PMDF jobs can be executed as batch jobs through standard
OpenVMS batch queues or as detached processes through the PMDF Process Symbiont
described in Chapter 9. Either way, you can use standard OpenVMS utilities such as
SHOW QUEUE to monitor message processing.

For additional discussion of PMDF operation, see also Chapter 1.

33–1

Maintenance and Troubleshooting on OpenVMS
Standard Maintenance Procedures

33.2 Standard Maintenance Procedures

In tracking down problems with PMDF you should first determine whether the
problem occurs before or after a message is entered into the message queue. If messages
do not get placed in a queue directory at all, then such messages were never accepted:
configuration problems, or environmental problems (e.g., disk space or quota problems),
or the absence of PMDF servers (such as the Dispatcher and its services) can prevent
PMDF from accepting messages; or network connectivity or routing problems could mean
that the messages are stuck or misdirected on a remote system. If messages are accepted
but get put into the wrong queue directory, you probably have a configuration problem.

To track an errant mail message, you can start by examining each step of the process
for errors. The subsections below discuss investigating these processing steps.

33.2.1 Check the PMDF Configuration

Use the PMDF TEST/REWRITE utility, described in Chapter 29, to test the response
of your configuration to addresses. Certain basic sorts of problems in the PMDF
configuration, such as clear syntax errors in the PMDF configuration, will cause the
utility to issue an error message. Otherwise, the utility will show address rewrites that
will be applied as well as the channel to which messages would ultimately be queued. If
the output is not what you expect, you can need to modify your configuration.

33.2.2 Check Message Queue Directories

Check whether messages are present under the PMDF message queue directory,
PMDF_QUEUE:. DCL commands such as DIRECTORY or the PMDF QM/MAINT utility’s
DIRECTORY command can be used to check for the presence of expected message files
under the PMDF message queue directory.

If the PMDF TEST/REWRITE output looks correct but messages are not placed in
the PMDF message queue directory, you can have a problem with disk quotas on the
device holding your PMDF directories. Verify that disk quotas are disabled or sufficient
quota has been allocated to the [SYSTEM] or [PMDF] UIC’s. Check that the disk has not
exhausted free space or file headers. Problems can also be due to an improper installation
or startup of PMDF. Verify that SYS$STARTUP:pmdf_startup.com has been executed
such that PMDF logical names are defined in the SYSTEM table in EXECUTIVE mode,
and appropriate PMDF images have been installed as known files.

33–2

Maintenance and Troubleshooting on OpenVMS
Standard Maintenance Procedures

33.2.3 Check the Ownership of Critical Files

If you have a PMDF server account, usually called PMDF1 and created during
installation of PMDF, the PMDF queue and log directories and all subdirectories
thereof and files contained therein must be owned by the PMDF server account. The
PMDF queue and log directories are referenced via the logical names PMDF_QUEUE
and PMDF_LOG, respectively, and are usually PMDF_ROOT:[000000]queue.dir and
PMDF_ROOT:[000000]log.dir, respectively.

The queue cache database, PMDF_TABLE:queue_cache.dat, should also be owned
by that same account. If the protection and ownership are not correct for the queue cache
database, messages can not be entered into the queue cache, and the queue cache will
become desynchronized. The proper protection of these files should be:

Directory PMDF_ROOT:[000000]

QUEUE.DIR;1 [PMDF] (RWED,RWED,,)
LOG.DIR;1 [PMDF] (RWED,RWED,,)

Directory PMDF_ROOT:[TABLE]

QUEUE_CACHE.DAT;1 [PMDF] (RWED,RWED,,)

If you do not have the PMDF server account, these files should have the same
protection as above, but they should be owned by SYSTEM.

33.2.4 Check that the PMDF Dispatcher and Servers Are Present

Some PMDF channels, such as PMDF’s multithreaded TCP/IP channels or Lotus
Notes channels, include resident server processes that process incoming messages—such
servers handle the slave (incoming) direction for the channel. In addition, remote clients
using protocols such as POP and IMAP download their messages by connecting to PMDF’s
POP or IMAP servers.

The PMDF Dispatcher handles the creation of such PMDF servers. Dispatcher
configuration options control whether such servers are available at all, and if available,
how many such servers are created and when, and how many connections each server
can handle. Most sites, for instance, will choose to have the Dispatcher always keep at
least one SMTP server process resident.

The PMDF PROCESS utility can be used to show current PMDF processes, including
PMDF server processes as well as currently executing PMDF channel jobs. Or the DCL
command SHOW SYSTEM/NET can be used to show network processes, which will include
such PMDF servers, as in the sample output shown in Figure 33–1. Except for PMDF
sites that do not use any Dispatcher services, for all other PMDF sites the Dispatcher,
indicated in the figure as !, should always be present during normal operation of PMDF.

1 The PMDF server account is referenced by the PMDF_SERVER_USERNAME logical name.

33–3

Maintenance and Troubleshooting on OpenVMS
Standard Maintenance Procedures

Figure 33–1 Output of SHOW SYSTEM/NET

OpenVMS V6.2-1H2 on node THOR 15-NOV-2012 15:24:03.22 Uptime 5 08:31:23
Pid Process Name State Pri I/O CPU Page flts Pages

22A01A23 <DISPATCHER-01> HIB 6 201411 0 00:03:33.05 103992 389 N !
22A0271A <POP3-01> HIB 6 9207 0 00:00:08.55 21729 389 N "
22A01A69 <LNMASTER-02> HIB 6 9736 0 00:00:05.81 9918 296 N #
22A01FE2 <LNSLAVE-01> HIB 6 5917 0 00:00:08.23 1545 606 N
22A02691 <IMAP-01> HIB 6 57475 0 00:01:45.56 2940 1033 N $
22A025D1 <IMAP-02> HIB 6 67728 0 00:01:30.59 1859 1278 N
22A029A1 <SNADS-02> HIB 6 146 0 00:00:00.79 5849 76 N %
22A029A2 <HTTP-02> HIB 6 12367 0 00:00:03.36 6135 83 N &
22A024A3 <WEB500-02> HIB 6 156 0 00:00:00.75 6181 82 N '
22A028A5 <SMTP-01> HIB 6 35128 0 00:01:03.10 22624 501 N (

! The Dispatcher should, at most PMDF sites, always be present. It controls the
creation of PMDF server processes.

" One or more POP3 server processes can be present at sites using the PMDF POP3
server.

Sites using PMDF-LAN Lotus Notes channels should have one LN master and one
LN slave process present per Lotus Notes channel.

$ One or more IMAP server processes can be present at sites using the PMDF IMAP
server.

% Sites that are using the PMDF HTTP server to serve out PMDF documentation or
PMDF monitoring information can have an HTTP server process present.

& Sites that are using the PMDF Web500 server to provide web browser access to an
X.500 directory can have a Web500 server process present.

' Sites using the PMDF multithreaded TCP SMTP channel can have an SMTP server
process present. Indeed, most such sites will want the Dispatcher configured so that
there is always at least one SMTP server process present.

If the PMDF Dispatcher has been configured but is not present, it can be started
with the command

$ PMDF STARTUP DISPATCHER

If the PMDF Dispatcher is present but some expected server is not present, check
whether the Dispatcher has been configured to handle that service and if so, what the
MIN_PROCS option value is for that service. For services with a MIN_PROCS value of 0,
the server will only be created and present at times when a local client or remote site
actually has a connection open; but for services with a MIN_PROCS value greater than or
equal to 1, there should always be at least one such server process present.

See also Section 11.7 for a discussion of monitoring what connections are currently
active to the Dispatcher.

33–4

Maintenance and Troubleshooting on OpenVMS
Standard Maintenance Procedures

33.2.5 Check that processing Jobs Start

If messages are enqueued correctly (received into the PMDF_QUEUE: area) but not
delivered, you should first check that processing jobs are being submitted and executed
on the correct batch or Process Symbiont queue.

Channel jobs by default are submitted to the MAIL$BATCH queue; most sites choose
to configure the MAIL$BATCH queue as a generic queue feeding several execution queues.
(Some sites can also choose to use alternate queues in addition to MAIL$BATCH. So
normally, you should expect to see channel jobs executing in MAIL$BATCH, or its execution
queues if MAIL$BATCH is a generic queue, and perhaps additional channel jobs pending in
MAIL$BATCH if all queue processing slots are already occupied processing other channel
jobs. And if you are using additional queues, you should expect to see channel jobs
moving through those other queues as well.

The DCL SHOW QUEUE command can be used to show any currently processing jobs in
execution queues, or the PMDF PROCESS utility will also show currently executing PMDF
jobs (as well as resident PMDF server processes, as discussed in Section 33.2.4 above).

When a message is moving through PMDF, you can stop a processing queue with a
command such as

$ STOP/QUEUE/NEXT MAIL$BATCH

and then look to see if the correct job has been submitted. If a job has not been submitted
or the job exits immediately without attempting delivery, then verify that the queue name
matches that listed by PMDF TEST/REWRITE. If accounting is enabled on your system,
then you can use the ACCOUNTING utility to display the exit status of the batch job.
Problems can be due to improper definition of PMDF logical names or incorrect ownership
of the PMDF_LOG: directory. The directory should be owned by the PMDF account, if you
have one, or the SYSTEM account if you do not.

33.2.6 Check Processing Log and Debug Log Files

If batch or Process Symbiont jobs are submitted and execute properly but the
message stays in the message queue directory, you can examine the log files to see what
is happening. All log files are created in the directory PMDF_LOG:. Log file name formats
for various PMDF processing jobs are shown in Table 33–1.

33–5

Maintenance and Troubleshooting on OpenVMS
Standard Maintenance Procedures

Table 33–1 PMDF Log Files on OpenVMS

File name Log file contains

channel-name_master.log Output of master program (usually client) for channel-
name

channel-name_slave.log Output of slave program (usually server) for channel-
name

dispatcher.log Dispatcher logging if the Dispatcher DEBUG option has
been set

server-name_server.log Server process errors for server-name

server-name_thread.log Per thread errors for server-name

task_server_procsmb-
queue.log

Errors encountered by the procsmb-queue Process
Symbiont queue

post.log Log output for the periodic PMDF delivery job

return.log Log output for the periodic PMDF message bouncer job

Channel log files are not created unless an error occurs or unless debugging output
is enabled for the channel with the master_debug channel keyword or slave_debug
channel keyword. See Section 2.3.4.85 for more information. Server log files are created
when a new server process is created; if no error occurs they will contain merely normal
OpenVMS login/out type information. Process Symbiont log files are created when a
Process Symbiont queue is started; if no error occurs they will contain merely normal
OpenVMS login/out information.

Note that version limits must not be set on files in the PMDF_ROOT: tree and
particularly must not be set on files in the PMDF_LOG: directory. PMDF will take care of
purging back old versions of log files itself, as one of its periodic housekeeping tasks, so
there is no need for version limits—and version limits will cause a variety of problems.

33.2.7 Running a Channel Program Manually

While diagnosing a PMDF delivery problem it can be useful to run a PMDF delivery
job by hand, particularly after enabling debugging output for one or more channels; see
Section 2.3.4.85 for details on enabling debugging. The command

$ @PMDF_COM:submit_master channel-name

will submit a batch or Process Symbiont job to attempt outbound delivery for the channel
channel-name. This is the same submit logic used when messages are accepted from
VMS MAIL by PMDF for immediate delivery. If debugging is enabled for the channel in
question, then submit_master.com will create a log file in PMDF_LOG: as described in
Table 33–1.

The command

33–6

Maintenance and Troubleshooting on OpenVMS
Standard Maintenance Procedures

$ @PMDF_COM:master channel-name

will perform outbound delivery for the channel channel-name in the currently active
process, with output directed to your terminal. This can be more convenient than
submitting a job, particularly if you suspect problems with job submission itself.

In addition to channel-name, both master.com and submit_master.com will
accept several other parameters:

$ @PMDF_COM:master channel-name [poll [since-time]]

$ @PMDF_COM:submit_master channel-name [poll [queue-name [since-time]]]

where the parameters are as listed in Table 33–2.

Table 33–2 master.com and submit_master.com parameters

channel-name Required parameter specifying the channel. This determines which
messages will be attempted and what channel master program will be
executed. Channels known to your PMDF configuration appear as channel
block names in your pmdf.cnf file.

poll Optional parameter is a keyword specifying either poll, nopoll, or
ignore. nopoll is the default and avoids executing the channel program
if there are no messages awaiting outbound delivery. If the channel supports
it, poll will execute the channel master program to pick up messages from
a remote slave. ignore is used only by the G3_TO_FAX channel and
causes time stamp checking to be bypassed.

queue-name Optional parameter specifying the queue for submission. Applies to
submit_master.com only.

since-time Optional parameter specifying an OpenVMS date/time. Only messages
queued after this date/time will be processed.

33.2.8 Checking that Periodic Jobs Are Present

In addition to immediate channel jobs created automatically when messages are
first submitted into PMDF, or to manually created delivery jobs as described above in
Section 33.2.7, PMDF also has periodic jobs that perform clean up tasks, and retry
delivery of previously undelivered messages.

The command

$ SHOW QUEUE/ALL MAIL$BATCH

lists all jobs pending and executing in the default PMDF processing queue, MAIL$BATCH.
Under idle conditions the command should result in output similar to that seen in Fig-
ure 33–2 or Figure 33–3.

33–7

Maintenance and Troubleshooting on OpenVMS
Standard Maintenance Procedures

Figure 33–2 Output of SHOW QUEUE/ALL MAIL$BATCH on a Basic PMDF System

$ SHOW QUEUE/ALL MAIL$BATCH

Generic server queue MAIL$BATCH

Entry Jobname Username Blocks Status
----- ------- -------- ------ ------
153 PMDF delivery SYSTEM 11 Holding until 18-NOV-2012 15:13 !
56 PMDF message bouncer

SYSTEM 12 Holding until 19-NOV-2012 00:30 "

Figure 33–3 Output of SHOW QUEUE/ALL MAIL$BATCH on a System With Optional Jobs

$ show queu/all mail$batch
Generic server queue MAIL$BATCH

Entry Jobname Username Blocks Status
----- ------- -------- ------ ------

95 PMDF delivery SYSTEM 14 Holding until 18-NOV-2012 15:52:00 !
810 PMDF message bouncer

SYSTEM 14 Holding until 19-NOV-2012 00:30:00 "
399 PMDF PC Post SYSTEM 8 Holding until 18-NOV-2012 13:05:03 #
811 PMDF popstore message bouncer

SYSTEM 5 Holding until 19-NOV-2012 00:30:00 $

The two holding jobs indicated in the figures as ! and " should always be present
during normal operation of PMDF. They run periodically and resubmit themselves
automatically. If you are using the PMDF popstore, you should also see a popstore return
job, $, either holding or running (perhaps in an execution queue, if MAIL$BATCH is
a generic queue). If you are using PMDF-LAN channels, then depending on just how
you have configured it you can also see an additional job, the PMDF PC post job, #; if
you are using DECUS UUCP and have defined the PMDF_DO_RETURN_VN logical so that
pmdf_submit_jobs.com also submits the DECUS UUCP message bouncer job, then
you should see that job as well.

! The ‘‘PMDF delivery’’ job is responsible for scanning the message queues and retrying
delivery of messages waiting in the queues. The period defaults to four hours and
can be changed with the PMDF_POST_INTERVAL logical name.

If the PMDF delivery job is lost, messages that are not immediately deliverable will
tend to collect in the queue and never be retried. In addition, channels marked with
the periodic channel keyword, which defers immediate delivery, will not function
reliably.

" The ‘‘PMDF message bouncer’’ job checks the message queues for messages which do
not appear to get through in a timely fashion and generates warning messages to
the sender as well as the Postmaster. If such a message sits long enough, the PMDF
message bouncer will eventually return the message to the sender and remove it
from the message queue. This job usually runs once a day at 12:30 AM. If PMDF is
configured for an hourly return interval (see Section 1.4.4) then the PMDF message
bouncer will run every hour. The number of intervals between warnings is controlled
by the notices channel keyword.

If the PMDF message bouncer job is not running, messages that cannot be delivered
will sit in the message queue indefinitely and no notification will be sent to either
the sender or the local Postmaster.

33–8

Maintenance and Troubleshooting on OpenVMS
Standard Maintenance Procedures

The ‘‘PMDF PC Post’’ job is responsible for periodically polling for incoming messages
from PC-LAN mail systems such as cc:Mail, Microsoft Mail, GroupWise (WordPerfect
Office), and Novell MHS mail systems through PMDF-LAN channels, as well
as for re-trying delivery of messages to those mail systems. Some PMDF-LAN
configurations will use such a job; some will manage the running of PMDF-LAN
channel jobs using other mechanisms.

$ The ‘‘PMDF popstore message bouncer’’ job deletes old, stored PMDF popstore
messages which have exceeded their alloted storage time, and sends notification
messages back to the senders of messages which were never downloaded by their
recipients. The job usually runs once a day around midnight. See the PMDF popstore
& MessageStore Manager’s Guide for full details.

If one or both of the PMDF delivery job and the PMDF message bouncer job is not
present in the queue, (or if one of the other periodic jobs that your site uses is missing),
it should be resubmitted using the pmdf_submit_jobs.com procedure

$ @SYS$STARTUP:pmdf_submit_jobs.com

The procedure is safe to run at any time, as it will not submit a job that is already present.
As indicated in the OpenVMS Edition of the PMDF Installation Guide, Process Software
recommends that pmdf_submit_jobs.com be executed as part of your normal system
startup procedure to ensure that the basic PMDF periodic jobs are properly submitted
and holding.

33.3 General Error Messages

There are a number of general sorts of issues that can interfere with the running
of a variety of PMDF components; such issues include general syntax errors in a PMDF
configuration, or license problems, or disk/quota problems leading to trouble writing files.
The following sections describe some of the more common general error messages.

Note that the PMDF TEST/REWRITE utility will give warnings of many such
common issues and with more detailed error messages than some other components
of PMDF can display. So PMDF TEST/REWRITE can be a useful diagnostic tool: see if
it is getting an error and if so, what.

Specific PMDF components can also issue other error messages, specific to that
component. So when you an encounter an error not described below, see also the
documentation on the PMDF component in question.

33.3.1 Errors in mm_init, such as ‘‘No room in ...’’ Errors

An ‘‘Error in mm_init’’ error generally indicates a PMDF configuration problem. Thus
the PMDF TEST/REWRITE utility, which is often used to test the health of a PMDF
configuration, can return such an error, as can other utilities such as PMDF CNBUILD.
PMDF channels or servers can also return such errors, as can user agents attempting to
submit messages to PMDF.

33–9

Maintenance and Troubleshooting on OpenVMS
General Error Messages

In particular, one of the more commonly encountered sorts of mm_init errors is a
‘‘No room in table’’ error or similar ‘‘No room in ...’’ sort of error. Generally, ‘‘no room in’’
errors are an indication that your current PMDF configuration has not set internal table
sizes sufficient for the size of your PMDF configuration, and that it is time to have PMDF
resize its internal tables, as described in Section 8.1.4.2 However, some particular such
‘‘no room in ...’’ error messages can have alternate causes, and such cases are called out
below. Any other ‘‘no room in’’ errors not explicitly mentioned are most likely simply an
indication of a need to resize internal tables.

Rather than manually calculating and setting table sizes, you should use the PMDF
CNBUILD utility to automatically resize the tables for you. See Section 8.1.4 for exact
instructions on doing this.

If you use a compiled configuration, then be sure to recompile your configuration and
reinstall it after resizing the tables.

If you’re using the PMDF multithreaded SMTP server, the PMDF-LAN Lotus Notes
channel, or any other services running under the Dispatcher that need to be made aware
of the change, be sure to restart such services using the PMDF RESTART utility.

Following are some of the more commonly encountered mm_init errors.

bad equivalence for alias ...

The right hand side of an alias file entry is improperly formatted.

cannot open alias include file...

A file included into the alias file cannot be opened. This typically indicates a protection
problem with a file referenced by the file include operator, <. Note that such included
files (like the alias file itself) must be world readable.

duplicate alias(es) found ...

Two alias file entries have the same left hand side; you will need to find and eliminate
the duplication.

duplicate host in channel table ...

In its literal meaning, this error says that you have two channel definitions in the
PMDF configuration that both have the same official host name (line two of the channel
definition); see Section 2.3.2. But note that an extraneous blank line in the rewrite
rules (upper portion) of your PMDF configuration file causes PMDF to interpret the
remainder of the configuration file as channel definitions, and as there are often multiple
rewrite rules with the same pattern (left hand side), this then causes PMDF to think it
is seeing channel definitions with non-unique official host names. So check your PMDF
configuration both for any channel definitions with duplicate official host names, and for
any improper blank lines in the upper (rewrite rules) portion of the file.

duplicate mapping name found ...

This error literally means that two mapping tables have the same name, and one of the
‘‘duplicates’’ needs to be removed. However, note that formatting errors in the mapping
file can cause PMDF to interpret something not intended as a mapping table name as a
mapping table name; for instance, failure to properly indent a mapping table entry will

2 Note that PMDF stores configuration information in internal tables in memory. To prevent unnecessary use of excessive
amounts of virtual memory, these tables are allocated with fixed sizes. The sizes of the tables are controlled by values in
the PMDF option file. See Chapter 7 for details on PMDF options.

33–10

Maintenance and Troubleshooting on OpenVMS
General Error Messages

cause PMDF to think that the left hand side of the entry is actually a mapping table
name. So check your mapping file for general format, as well as checking the mapping
table names.

error initializing ch_ facility: ...

Note that such errors should not occur in normal operation; only sites that have
customized PMDF character set material, or have had installation problems, are likely
to encounter such errors. The next two items describe sorts of ch_ facility errors that
are simple to resolve; other sorts of ch_ errors, however, often indicate that required
PMDF files have not been properly installed or have been unintentionally deleted or
otherwise corrupted, and a re-installation of PMDF can be necessary to get the required
files properly installed. Contact Process Software if you have questions regarding such
an error.

error initializing ch_ facility: compiled character set version mismatch

Such an error generally means that you need to recompile and reinstall your compiled
character set tables via the commands:

$ PMDF CHBUILD
$ INSTALL REPLACE PMDF_CHARSET_DATA

See the documentation for PMDF CHBUILD in Chapter 29 for additional details.

error initializing ch_ facility: no room in ...

Such an error likely means that you need to resize your PMDF character set internal
tables and then rebuild the compiled character set tables via the commands

$ PMDF CHBUILD/NOIMAGE/MAXIMUM/OPTION
$ PMDF CHBUILD
$ INSTALL REPLACE PMDF_CHARSET_DATA

See the documentation for PMDF CHBUILD in Chapter 29 for additional details.

local host alias or proper name too long for system ...

This error literally means that a local host alias or proper name (the optional right hand
side in the second or subsequent names in a channel block) is too long. However, note that
certain syntax errors earlier in the PMDF configuration file (an extraneous blank line in
the rewrite rules, for instance) can cause PMDF to interpret something not intended as
a channel definition as a channel definition. So besides checking the indicated line of the
configuration file, also check above that line for other syntax errors and in particular, if
the line on which PMDF issues this error is intended as a rewrite rule, then be sure to
check for extraneous blank lines above it.

mapping name is too long ...

This error literally means that a mapping table name is too long and needs to be
shortened. However, note that formatting errors in the mapping file can cause PMDF to
interpret something not intended as a mapping table name as a mapping table name; for
instance, failure to properly indent a mapping table entry will cause PMDF to think that
the left hand side of the entry is actually a mapping table name. So check your mapping
file for general format, as well as checking the mapping table names.

no equivalence addresses for alias ...

An entry in the alias file is missing a right hand side (translation value).

33–11

Maintenance and Troubleshooting on OpenVMS
General Error Messages

no official host name for channel ...

This error indicates that a channel definition block is missing the required second line
(the official host name line). See Section 2.3.2 for a discussion of the format of channel
definition blocks. In particular, note that a blank line is required before and after each
channel definition block, but a blank line must not be present between the channel name
and official host name lines of the channel definition; also note that blank lines are not
permitted in the rewrite rules portion of the PMDF configuration file.

no room in ...

Generally, ‘‘no room in’’ errors are an indication that your current PMDF configuration
has not set internal table sizes sufficient for the size of your PMDF configuration, and that
it is time to have PMDF resize its internal tables, as described in Section 8.1.4. However,
some particular such ‘‘no room in ...’’ error messages can have alternate causes, and such
cases are called out below. Any other ‘‘no room in’’ errors not explicitly mentioned are
most likely simply an indication of a need to resize internal tables.

no room in channel host table for ...

This error indicates that your configuration’s current PMDF internal table sizes are not
large enough for the number of host names listed in your channel definitions. However,
note that an extraneous blank line in the rewrite rules (upper portion) of your PMDF
configuration file causes PMDF to interpret the remainder of the configuration file as
channel definitions; with just one such extraneous blank line, PMDF sees just one extra
channel but with a lot (all the rest of the rewrite rules) as host names on that channel.
So check the line of the file that the error is complaining about—if it is not truly intended
as a host name on a channel definition but rather is a line in the rewrite rules section of
your configuration file, then check for an extraneous blank line above it.

no room in channel table for ...

This error indicates that your configuration’s current PMDF internal table sizes are
not large enough for the number of channels defined in your PMDF configuration. See
Section 8.1.4.

no room in table for alias ...

This error says that the current PMDF internal table sizes are too small for the number
of aliases in the aliases file. This can be resolved either by resizing PMDF’s internal
table sizes—see Section 8.1.4—or in some cases can be an indication that it would be
wise to begin using the PMDF alias database to store some of the aliases currently in
the aliases file—see Section 3.1.2.

no room in table for mapping named ...

In its literal meaning, this error says that your configuration’s current PMDF internal
table sizes are not large enough for your current number of mapping tables. Internal
PMDF table sizes can be increased to match your current configuration side—see
Section 8.1.4. However, also note that formatting errors in the PMDF mapping file
can cause PMDF to think that you have more mapping tables than you really have; for
instance, check that mapping table entries are all properly indented.

official host is too long

The official host name for a channel (second line of the channel definition block) is limited
to forty characters in length. So if you were trying to use a longer official host name on
a channel, shorten it to a ‘‘placeholder’’ name and then use a rewrite rule to match the
longer name to the short official host name. Note, however, that certain syntax errors
earlier in the PMDF configuration file (an extraneous blank line in the rewrite rules, for
instance) can cause PMDF to interpret something not intended as a channel definition
as a channel definition; that could result in an intended rewrite rule being interpreted
as an official host name. So besides checking the indicated line of the configuration file,

33–12

Maintenance and Troubleshooting on OpenVMS
General Error Messages

also check above that line for other syntax errors and in particular, if the line on which
PMDF issues this error is intended as a rewrite rule, then be sure to check for extraneous
blank lines above it.

33.3.2 Compiled Configuration Version Mismatch

One of the functions of the PMDF CNBUILD utility is to compile PMDF configuration
information into an image or file that can be loaded quickly.

The compiled format is quite rigidly defined and often changes substantially between
different versions of PMDF. Minor changes can also occur as part of mid-version releases.

When such changes occur, an internal version field is also changed so that
incompatible formats can be detected. When an incompatible format is detected, PMDF
components will halt with a ‘‘Compiled configuration version mismatch’’ error.

The solution to this problem is simply to generate a new compiled configuration with
the OpenVMS commands,

$ PMDF CNBUILD/OPTION
$ INSTALL REPLACE PMDF_CONFIG_DATA

The OpenVMS INSTALL command must be repeated on every cluster node that runs
PMDF.

It is also a good idea to use the PMDF RESTART command to restart any resident
PMDF server processes so they can obtain updated configuration information.

33.3.3 File Open or Create Errors

In order to send a message, PMDF needs to read configuration files and create
message files in the PMDF message queue directories. Configuration files must be
readable to the user, which generally implies world read access on the files in the PMDF
table directory. During installation, proper protections are assigned to these files. PMDF
utilities and procedures which create configuration files also assign proper protections. If
the files are reprotected by the system manager or other privileged user or through some
site-specific procedure, PMDF can not be able to read configuration information. This will
result in ‘‘File open’’ errors or unpredictable behavior. The PMDF TEST/REWRITE utility
will report additional information when it encounters problems reading configuration
files. See Chapter 29 for information on using this utility.

If PMDF appears to function from privileged accounts but not from unprivileged
accounts, then file protections in the PMDF table directory are likely to blame. Check
the protections on configuration files and their directories. The only files that should be
protected against world read access in the table directory are the queue cache database
and certain channel specific files such as PhoneNet script files or other channel option
files which can contain password information.

33–13

Maintenance and Troubleshooting on OpenVMS
General Error Messages

‘‘File create’’ errors usually indicate a problem while creating a message file in a
PMDF message queue directory. See Section 33.2.2 for procedures to aid in diagnosing
file creation problems. Note that on OpenVMS, PMDF uses a protected shareable image
to control the creation of files in the PMDF queue directories. This allows unprivileged
users to create such files where they would not normally be allowed access. Make sure
that PMDF has been properly started, as the pmdf_startup.com procedures installs
required known images and defines required logical names in the proper modes. If, for
example, the PMDF startup procedure is run by an account with insufficient privileges,
an environment can be created which precludes proper operation of the PMDF protected
shareable image. In particular, most PMDF logical names must be defined in executive
mode.

On OpenVMS, use of the undocumented SET WATCH FILE/CLASS=MAJOR com-
mand in DCL can prove an immense help in determining which file or file operation is
causing a problem. Use /CLASS=ALL to obtain a verbose amount of information from
the XQP; use /CLASS=NOALL to disable the WATCH output.

33.3.4 Illegal Host/domain Errors

Such an error can be returned immediately in response to an address provided to
PMDF through a user agent, or the error can be deferred and returned as part of an error
return mail message. In all cases, such an error message indicates that PMDF is not
able to deliver mail to the specified host. Before diagnosing such problems any further,
verify that the address in question is indeed correct and is not misspelled, transcribed
incorrectly, or using the name of a host or domain which no longer exists.

Try running the address in question through the PMDF TEST/REWRITE utility. If
this utility also returns an ‘‘illegal host/domain’’ error on the address, then PMDF has no
rules in its configuration file, pmdf.cnf and related files, to handle the address. Verify
that you have configured PMDF correctly, that you answered all configuration questions
appropriately, and that you have kept your configuration information up to date.

Otherwise, if PMDF TEST/REWRITE does not encounter an error on the address,
then PMDF was able to determine how to handle the address, but the network transport
would not accept it. You can examine the appropriate log files from the delivery attempt
for additional details. Transient network routing or name service errors should not result
in returned error messages, though it is possible for badly misconfigured domain name
servers to cause such problems.

If you are on the Internet, then check that you have properly configured your TCP/IP
channel to support MX record lookups. Many domain addresses are not directly accessible
on the Internet and require that your mail system correctly resolve MX entries. If you
are on the Internet and you are using a TCP/IP package that PMDF supports for MX
lookups, you should have allowed the PMDF configuration utility to enable MX support.
If your TCP/IP package is not configured to support MX record lookups, then you will
not be able to reach MX-only domains.

33–14

Maintenance and Troubleshooting on OpenVMS
General Error Messages

33.3.5 Errors in SMTP Channels: os_smtp_* Errors

os_smtp_* errors, e.g., os_smtp_open, os_smtp_read, or os_smtp_write errors, are
not PMDF errors per se: they correspond to PMDF reporting back about a problem
encountered at the network layer. For instance, an os_smtp_open error means that
the network connection to the remote side could not be opened, which can be due
to addressing errors or channel configuration errors (PMDF configured to attempt to
connect to the ‘‘wrong’’ system), but is more commonly due to DNS problems or network
connectivity problems (particularly if this is a channel or address that was previously
working). os_smtp_read or os_smtp_write errors are usually an indication that the
connection was aborted (either by the other side or due to network problems).

Note that network and DNS problems are often transient in nature. It is normal to
occasionally see such problems. Indeed, for connections to troublesome systems, it can
even be common. So the occasional such error is usually nothing to be concerned about.
However, if you are consistently seeing such errors on most messages on a channel, or
seeing such errors on most messages to or from a particular remote system, then the
errors can be an indication of an underlying network problem.

If you need more information about an os_smtp_* error, enable debugging on the
channel in question and get a debug channel log file showing details of the attempted
SMTP dialogue; see Section 2.3.4.85. In particular, the timing of exactly when a network
problem occurred during the SMTP dialogue tends to be suggestive as to what sort of
network or remote side issue might be involved. In some cases, you can also want to do
network level debugging (e.g., TCP/IP packet tracing) to see what was sent or received
over the wire.

33.3.6 Error Activating Transport IN

If an attempt to send mail using the PMDF foreign protocol prefix in VMS MAIL
results in the message

%MAIL-E-ERRACTRNS, error activating transport IN

then it is likely that PMDF has not been started on the system. Check to see that
the system is properly licensed for PMDF and, if so, that the PMDF startup command
procedure has been run. Additional message text can accompany the above error
indicating problems such as failure to install protected shareable images. If PMDF
images are not getting installed as known files, you should check that INSTALL has
not run out of GBLPAGES or GBLSECTIONS.

If you are trying to send to PMDF from a non-PMDF node in a cluster and are
encountering this error, check whether the OpenVMS MAIL$SYSTEM_FLAGS logical has
been defined, and specifically been defined to have an odd value (bit 0 set).

33–15

Maintenance and Troubleshooting on OpenVMS
General Error Messages

33.3.7 No License Error

If the error message

%SYSTEM-F-NOLICENSE, operation requires software license

is reported when attempting to send mail with PMDF, then the PMDF license is not
properly loaded. Either the PMDF license PAKs need to be loaded, or the license needs
to be enabled by PMDF. First check to see if the PMDF license is loaded by issuing the
command:

$ SHOW LICENSE PMDF-product

If the PAKs have not been loaded, then load them. After the PAKs are loaded, if the
license is for PMDF, then issue a PMDF LICENSE LOAD command.

If the license does shows up properly and if the license is for PMDF, then make sure
PMDF’s license units have been loaded by issuing the following command:

$ PMDF LICENSE LOAD

If PMDF reports that you have insufficient license units and you feel that this
is incorrect, then make sure that unlicensed cluster nodes are not executing the
pmdf_startup.com command procedure.

Note that if your license is for PMDF, then PMDF LICENSE LOAD should respond
with an informational message either to the effect that the units are loaded, or to the
effect that they were already loaded.

33.3.8 Error in qu_init: Usage Level Requires PMDF-MTA Service

If the error message ‘‘Usage level requires PMDF-MTA service’’ is reported by PMDF
components, then a PMDF-ACCESS license is loaded on a system that has a PMDF-
MTA configuration, that is, a configuration including channels not allowed on a PMDF-
ACCESS system.

If this system is supposed to be a PMDF-ACCESS system, then the problem is that
the PMDF configuration has non-ACCESS, disallowed components in it. Either manually
modify the PMDF configuration file to remove non-ACCESS channels, or use the PMDF
CONFIGURE ACCESS utility to generate a new PMDF-ACCESS configuration.

If this system is supposed to be a PMDF-MTA system rather than a PMDF-ACCESS
system, then the problem is that a PMDF-ACCESS license has been loaded instead
of or in addition to a PMDF-MTA license. Note that the (lesser functionality) PMDF-
ACCESS license will override the PMDF-MTA license; you must remove the PMDF-
ACCESS license in order for the PMDF-MTA license to take effect. The

$ PMDF LICENSE UNLOAD

command should be used to ensure that PMDF’s own bundle license accounting is not
counting this system as a PMDF-ACCESS node. Then the DCL LICENSE command
should also be used to ensure that the PMDF-ACCESS license has not been loaded

33–16

Maintenance and Troubleshooting on OpenVMS
General Error Messages

by OpenVMS’ own license accounting; note that the LICENSE MODIFY/EXCLUDE or
LICENSE MODIFY/INCLUDE commands are useful in a cluster setup to ensure that
the proper licenses are loaded only on the proper nodes.

33.3.9 Line too Long Error on MAIL-11 Channels

There is a limitation in VMS MAIL which prevents a foreign protocol transport, such
as PMDF, from sending through VMS MAIL over DECnet to a remote VMS MAIL using
block mode I/O. This restriction manifests itself as a problem when PMDF tries to deliver
a message which contains very long records through a MAIL_ (MAIL-11) or D (DECnet)
channel, or even through the L (local) channel if the recipient address has used MAIL-11
forwarding to forward their messages to another DECnet node.

If you find messages stuck in the message queue for the D channel, check the
corresponding log file, e.g., d_master.log, for an error of the form

$ MAIL/PROTOCOL=PMDF_SHARE_LIBRARY
%RMS-W-RTB, 397 byte record too large for user’s buffer

The only solution to this problem is to mark your D channel with the linelength
keyword to force PMDF to soft-wrap (by encoding) lines which exceed 255 characters.
For example

d logging 733 linelength 255
DECNET-MAIL

See Section 2.3.4 for details on the linelength keyword.

If you see such an error for messages stuck for the L (local) channel, check whether
the recipient has MAIL-11 forwarding set to another DECnet node. If so, encourage
the recipient user to use PMDF style forwarding instead – forwarding that will route
through PMDF and thence through a D channel marked with the linelength keyword
as described above. It is also possible to mark the L channel itself with the linelength
keyword—but that will impact all your L channel users, not just those who forward their
messages to other DECnet nodes. By having such users forward through PMDF and a D
channel instead, you can restrict the cases where PMDF has to perform (encoding based)
soft line wrapping to only those cases where it is strictly required.

33.4 Common Problems and Solutions

The following section lists some of the more common problems encountered during
PMDF installation, configuration, and operations.

33–17

Maintenance and Troubleshooting on OpenVMS
Common Problems and Solutions

33.4.1 Changes to Configuration Files or PMDF Databases Do Not
Take Effect

If changes to your configuration, mapping, conversion, security, option, or alias files
or to PMDF databases do not seem to be taking effect, check to see if you have a compiled
configuration, and that you have exited and restarted your mail user agent (e.g., Pine,
PMDF MAIL, VMS MAIL, DECwindows MAIL) session, and that you have restarted
any PMDF components that need to be made aware of the change. See Section 8.2 for
additional discussion.

33.4.2 PMDF Sends Outgoing Mail, but Does Not Receive Incoming
Mail

Most PMDF channels depend upon a slave, or server, channel program to receive
incoming messages. For most transports supported by PMDF, in particular TCP/IP, you
need to make sure that the transport activates the PMDF slave program rather than its
standard server.

For PMDF’s multithreaded TCP/IP channel this means you need to disable the
TCP/IP package’s native SMTP server and run the PMDF SMTP server instead; see
Section 21.1.3.

If the TCP/IP package is correctly configured to allow the PMDF SMTP server to run,
then check that the PMDF SMTP server is indeed running. For the multithreaded SMTP
server, this is controlled via the PMDF Dispatcher. The PMDF Dispatcher controls the
starting up of an SMTP server or servers, according to your Dispatcher configuration. If
the Dispatcher is configured to use a MIN_PROCS value greater than or equal to one for
the SMTP service, then there should always be at least one SMTP server process running
(and potentially more, according to the MAX_PROCS value for the SMTP service). The
DCL command SHOW SYSTEM/NET or the PMDF PROCESS command can be used to
check for the presence of SMTP server processes; see Section 33.2.4. Also, the Dispatcher
statistics web page can be viewed to check just what connections SMTP processes are
currently handling.

33.4.3 POP and IMAP Clients Time Out

The first thing to check is whether the clients are timing out when they try to
connect, or when they try to send mail. If the trouble is when users try to connect to
read messages, then you need to investigate the POP or IMAP server, according to which
sort of client is having difficulties. But note that POP and IMAP clients send mail out
using SMTP and the SMTP port, so if the trouble is when users try to connect to send
messages, then you need to investigate the SMTP server.

The POP, IMAP, and SMTP servers are controlled by the PMDF Dispatcher. For
the server in question, check the Dispatcher configuration for the maximum number of
servers allowed for that service (MAX_PROCS), and the maximum number of connections
each individual server can handle (MAX_CONNECTIONS). Then check how many such
server processes are actually running. If you have more than MAX_PROCS*MAX_
CONNECTIONS users trying to connect simultaneously, then you can want to increase

33–18

Maintenance and Troubleshooting on OpenVMS
Common Problems and Solutions

the total number of servers allowed, or perhaps the number of connections each server
can handle—though note that allowing too many connections per server tends to degrade
the performance for each particular connection.

Additionally, general system resource and quota problems will of course impact the
servers. See, for instance, Section 33.4.4.

33.4.4 Time Outs on Incoming SMTP Connections

Timeouts on incoming SMTP connections are most often related to system resources
and the allocation thereof.

Check how many simultaneous incoming SMTP connections you allow. This is
controlled by the MAX_PROCS and MAX_CONNECTIONS Dispatcher settings for the
SMTP service; the number of simultaneous connections allowed is MAX_PROCS*MAX_
CONNECTIONS. If you can afford the system resources, consider raising this number if
it is too low for your usage.

Try putting the slave_debug keyword on the channels handling incoming SMTP
over TCP/IP mail, usually tcp_local. Then look at the resulting tcp_local_slave.log
log files and try to spot any particular characteristics of the messages that time out. For
instance, if incoming messages with large numbers of recipients are timing out, consider
using the expandlimit keyword on the channel.

Of course, if your system is extremely overloaded and overextended, time outs will
be difficult to avoid entirely.

33.4.5 Outgoing TCP/IP Messages Sit in Queue

Errors encountered during TCP/IP delivery are quite often transient in nature and
PMDF will generally retain messages when problems are encountered and retry them
periodically. It is quite normal on very large networks to experience periodic outages to
certain hosts while other host connections work fine. You can examine the log files for
errors relating to delivery attempts. You can see error messages such as ‘‘Fatal error from
smtp_open’’. Such errors are not uncommon and are usually associated with a transient
network problem. Your TCP/IP package can contain tools such as ping, traceroute, and
nslookup to aid in debugging TCP/IP network problems.

One thing to check in your PMDF configuration is that the TCP/IP channel in
question has been correctly configured to perform host lookups, according to your needs.
If the channel is one that delivers to Internet systems, then it must perform MX lookups
using the DNS (nameservers); make sure that your TCP/IP package has been configured
to allow MX lookups, and that the TCP/IP channel in question has been marked with
a keyword such as mx or randommx, meaning that MX lookups will be performed. If
the TCP/IP channel is one delivering to a private network and you want to use local
host table lookups rather than consulting a nameserver, make sure that the channel has

33–19

Maintenance and Troubleshooting on OpenVMS
Common Problems and Solutions

been marked nodns, meaning that local host table lookups will be performed rather than
nameserver lookups.

Example 33–1 shows the steps you might use to see why a message is sitting in
the queue awaiting delivery to xtel.co.uk. This example assumes you are using Process
Software’s MultiNet. The basic idea is to duplicate the steps PMDF uses to deliver SMTP
mail on TCP/IP.

If you are using some other TCP/IP package, check with your vendor to see what
diagnostics tools are available.

Example 33–1 Tracing TCP/IP Mail Delivery

$ MULTINET NSLOOKUP/TYPE=MX XTEL.CO.UK !

Server: LOCALHOST
Address: 127.0.0.1

Non-authoritative answer:
XTEL.CO.UK preference = 10, mail exchanger = nsfnet-relay.ac.uk "

$ MULTINET PING NSFNET-RELAY.AC.UK #
PING NSFNET-RELAY.AC.UK (128.86.8.6): 56 data bytes
64 bytes from 128.86.8.6: icmp_seq=0 time=490 ms
CANCEL

$ TELNET/PORT=25 NSFNET-RELAY.AC.UK $
Trying... [128.86.8.6] %MULTINET-F-ECONNREFUSED, Connection refused

! First use the NSLOOKUP utility to see what MX records, if any, exist for this host.
If no MX records exist, then you should try connecting directly to the host. If MX
records do exist, then you must test by connecting to the designated MX relays since
PMDF is required to honor MX information preferentially.

" In this example, the Domain Name Service returned the name of the designated MX
relay for xtel.co.uk. This is the host that PMDF will actually connect to. If more
than one MX relay is listed, PMDF would try each in succession.

A simple way to test connectivity to the host is with a PING utility. If no response is
received, then you have a network routing or configuration problem. If the problem
is on some router over which you have no control, there is not anything you can do
except to wait until it is fixed.

$ If you do have connectivity to the remote host, the next step is to see if it is accepting
inbound SMTP connections by using TELNET to the SMTP server port, port 25.
If you use TELNET without specifying the port, you can merely discover that the
remote host accepts normal TELNET connections. This by no means indicates that
it accepts SMTP connections: many systems can accept regular TELNET connections
but refuse SMTP connections or vice versa. Thus, you should always do your testing
against the SMTP port.

In this example, the remote host is currently refusing connections to the SMTP port.
This is undoubtedly why PMDF fails to deliver the message. The connection can

33–20

Maintenance and Troubleshooting on OpenVMS
Common Problems and Solutions

be refused due to a misconfiguration of the remote host or some sort of resource
exhaustion, again, on the remote host. There is absolutely nothing you can do locally
to solve the problem. Typically, you should just let PMDF continue to retry the
message.

If you are running on a TCP/IP network which does not use the Domain Name
Service, then you can skip steps ! and " and use PING and TELNET directly to the
host in question. Be careful to use precisely the host name that PMDF would use, which
can be ascertained by examination of the relevant log file from PMDF’s last attempt.

Note that if you test connectivity to a TCP/IP host and encounter no problems using
interactive tests, it is quite likely that the problem has simply been resolved since PMDF
last tried delivering the message. This is not an indication of a problem with PMDF.

33.4.6 PMDF Messages are not Delivered

In addition to message transport problems, there are three other common issues
which can lead to messages sitting around unprocessed—or temporarily unprocessed—in
the message queues:

1. The message has a low priority. By default, PMDF pays attention to Priority: headers
in scheduling message delivery jobs: only messages of normal or urgent Priority: get
an immediate delivery attempt, while messages of non-urgent Priority: wait until
the next run of the PMDF periodic delivery job.

2. The queue cache database is not synchronized with the messages in the queue
directories.

Message files in the PMDF queue subdirectories which are awaiting delivery
are entered into the queue cache database. When channel programs run in order to
deliver messages in their queues, they consult the queue cache to determine what
messages to process. There are circumstances which can lead to message files in
the queue that do not have a corresponding queue cache entry: for example, if the
queue cache database has incorrect ownership and protection; see Section 33.2.3.
Channel programs will ignore queued messages which do not have a cache entry. On
OpenVMS, you can use the DUMP/RECORD command on the queue cache database
to check if a particular file is in the queue cache; if it is not, then the queue cache
needs to be synchronized.

The queue cache is normally resynchronized daily. If required, you can manually
resynchronize the cache using the OpenVMS command

$ PMDF CACHE/SYNCHRONIZE

Once resynchronized, upon the next running of the PMDF periodic delivery job the
channel programs should process all messages in their queue.

On OpenVMS, if you are having trouble with the queue cache which is not remedied
by a resynchronization, there is an additional command you should use to try to
mollify the database:

33–21

Maintenance and Troubleshooting on OpenVMS
Common Problems and Solutions

$ @PMDF_COM:convert_cache.com

There is a more drastic step, rebuilding the queue cache database, which should only
be performed as a last resort, e.g., if disk problems have corrupted your queue cache
database, as it will cause loss of some information from the queue cache database.
(The sort of information lost includes, but is not limited to, message creation dates,
message deferral dates, message expiration dates, and the original message owner
information used by the PMDF QM/USER utility to allow users to bounce their own
messages.) You can want to consult Process Software before taking this step.

To rebuild the queue cache database, use the OpenVMS commands

$ PMDF CACHE/REBUILD
$ PMDF CACHE/CLOSE
$ PMDF CACHE/SYNCHRONIZE

3. Channel processing programs fail to run because they cannot create their execution
log file (e.g., batch log file).

Check the access permissions, disk space and quotas, and that there are no
version limits set on the PMDF log directory and that none of the files therein have
reached a version number of 32,767.

33.4.6.1 Checking Version Limits and Numbers

PMDF log files, when created, are placed in the PMDF_LOG: directory. After a period
of time which is dependent on the level of PMDF activity on your system, the file version
number on one or more log files can reach the RMS version number limit of 32,767.
At this point PMDF will be unable to create a new log file and will no longer deliver
messages on the associated channel.

PMDF will detect that log file version numbers are getting high and try to shuffle
them back down to a safe level. If it is unable to do so, then warning messages will
be sent to the postmaster. Certain situations, however, can prevent the warning from
getting through. In any case, if you have detected a situation where log file version
numbers are getting too high and PMDF has not fixed them for you, you should delete
all versions of the log files in question. After that, new logs with the same name will
start over from version 1.

Additional version limit problems will occur if version limits are set on the PMDF log
directory. Consider the following scenario: A message is enqueued and a delivery job is
started, but delivery processing takes an unusually long time due to network congestion.
As this first job runs other messages are enqueued and dequeued from the channel,
their delivery jobs producing additional log files. Now, if a version limit is ever reached,
subsequent jobs will not be able to run because the log file associated with the first job is
still open and cannot be purged. The resulting failures in turn lead to significant delivery
delays.

The inevitable outcome here is that file version limits cannot be used as a means
to control the number of PMDF log files that are created. For this reason, PMDF
incorporates facilities to automatically purge accumulated log files back to the limit set
by the PMDF_VERSION_LIMIT logical. (The default is 5 if this logical is not set.) Version
limits are therefore unnecessary and must not be imposed on the PMDF log directory.

33–22

Maintenance and Troubleshooting on OpenVMS
Common Problems and Solutions

33.4.7 Message Queues Contain .HELD Files

Mail messages in the PMDF message queue directories generally have a two-digit
file extension. If PMDF detects a message that is looping, it will rename the file so
that it has an extension of .HELD. Message files with such a file extension will not be
processed by PMDF channel programs and therefore will not be delivered. This is a
safety mechanism to prevent messages from looping indefinitely. Looping messages are
detected by having a large number of Received: headers lines.

33.4.7.1 Diagnosing .HELD Files

One possible cause of message loops is user error: a user forwards their messages
on system A to system B, and has system B set up to forward back to system A. The
solution is for the user to fix their forwarding definitions.

Another common cause of messages loops is PMDF receiving a message that was
addressed to your host with a network name that PMDF does not recognize as one of
the host’s own names. For example, imagine a host which is known to the TCP/IP
domain name system and to other hosts and users as example.com, but whose PMDF
configuration does not know that. A message is sent to joe@example.com and is accepted
by the network and delivered to this host. Since PMDF does not know itself as
example.com, it will likely assume that example.com is elsewhere and direct the message
back out to the network and unwittingly loop the message back to itself. This loop will
continue until PMDF detects the loop and puts the message on hold.

If you detect such a situation, you should try to determine by examination of the
message file whether there is a name you should add to your PMDF configuration as a
synonym for your official local host name. The Received: lines should show the path the
message travels through the loop.

! Rewrite rules for first cluster member to official local host.

" Rewrite rules for second cluster member to official local host.

We have added this rule so example.com is recognized.

$ The host name on the L channel (local channel) is always the official local host.

In Example 33–2 we have added example.com as another name for the cluster
consisting of milan.example.com and naples.example.com, where the official local host
name has been milan.example.com. Mail addressed to joe@example.com will now be
properly recognized and locally delivered.

If you do not believe that the name in question should be directed to your host,
then you can have to address the problem with a network configuration change or by
changing the behavior of a remote mailer.

33–23

Maintenance and Troubleshooting on OpenVMS
Common Problems and Solutions

Example 33–2 pmdf.cnf For milan.example.com

! pmdf.cnf - PMDF configuration file for milan.example.com
! Written by SYSTEM, 19-AUG-2012 21:23
! This file was created by the PMDF configuration generator.
!
! Rewrite rules for the local host/cluster
!
milan $u@milan.example.com !
milan.example.com $u@milan.example.com
naples $u@milan.example.com "
naples.example.com $u@milan.example.com
example.com $u@milan.example.com #
!
! Rewrite rules for the Internet

.

.

.

l nox_env_to
milan.example.com $

.

.

.

33.4.7.2 Cleaning Up .HELD Files

After diagnosing and fixing the cause of the loop, .HELD files should be renamed to
.00; e.g., issue the command:

$ RENAME PMDF_QUEUE:[tcp_local...]*.HELD *.00

Then synchronize the queue cache with the command

$ PMDF CACHE/SYNCHRONIZE

(Alternatively, the PMDF QM/MAINT utility’s RELEASE command can be used to
cause message files to cease to be .HELD and the PMDF queue cache database to be
synchronized.)

Then release the pending ‘‘PMDF delivery’’ job which is holding in the MAIL$BATCH
queue. Now, after the resulting jobs have run, look around to see if there are new .HELD
files. There can very well be some. If there are still .HELD files in the original queue
directory, then you can not have solved the looping problem. However, you can also
find .HELD files in other queue directories such as the local channel (L channel) queue
directory. This is because PMDF marks a message .HELD when it has too many Received:
lines in which the local host appears. As the message moved from the original directory
to another directory (i.e., moved from one channel to another), PMDF again saw too
many Received: lines in the message’s header and again marked it .HELD. This is to be
expected. Simply repeat the process of renaming the .HELD files to .00, synchronizing
the queue cache, and again releasing the pending PMDF delivery job. Repeat this process
until there are no more .HELD files in any of the channel queue directories.

33–24

Maintenance and Troubleshooting on OpenVMS
Common Problems and Solutions

33.4.8 Messages are Looping

If PMDF detects that a message is looping, that message will be sidelined as a .HELD
file; see Section 33.4.7 for a discussion. But certain cases can lead to message loops which
PMDF can not detect. Some of the more common cases include:

1. A postmaster address is broken.

2. Stripping of Received: headers is preventing PMDF from detecting the message loop.

3. Incorrect handling of notification messages by other mail systems, that are generating
reencapsulated messages in response to notification messages.

The first step in dealing with looping messages is to determine why the messages
are looping. Useful things to look at are a copy of the problem message file while
it is in the PMDF queue area, PMDF mail log entries (if you have the logging
channel keyword enabled in your PMDF configuration file for the channels in question)
relating to the problem message, and PMDF channel debug log files for the channels in
question. Determining the From: and To: addresses for the problem message, seeing
the Received: headers, and seeing the message structure (type of encapsulation of
the message contents), can all help pinpoint which sort of message loop case you are
encountering.

For case (1), note that mail systems such as PMDF require that the postmaster
address be a functioning address that can receive e-mail. If a message to the postmaster
is looping, check that your configuration has a proper postmaster address pointing to an
account that can receive messages.

For case (2), note that normal detection of message loops is based on various
Received: headers. If Received: headers are being stripped—either explicitly on the
PMDF system itself, or more likely on some other system such as a firewall—that
interferes with proper detection of message loops. There will likely be two issues to
resolve: check that no undesired stripping of Received: headers is occurring so that if a
loop does occur it can be short-circuited, and check for the underlying reason why the
messages were looping. Possible underlying reasons for the occurrence of the message
loop in the first place include: a problem in the assignment of system names or a
system not configured to recognize a variant of its own name, a DNS problem, a lack
of authoritative addressing information on the system(s) in question, or a user address
forwarding error.

For case (3), note that Internet standards require that notification messages (reports
of messages being delivered, or messages bouncing) have an empty envelope From:
address to prevent message loops. However, some mail systems do not correctly handle
such notification messages; such mail systems can, when forwarding or bouncing such a
notification message, insert a new envelope From: address of their own. This can then
lead to message loops. The solution is to fix the mail system that is incorrectly handling
the notification messages.

33–25

Maintenance and Troubleshooting on OpenVMS
Common Problems and Solutions

33.4.9 Received Message is Encoded

Messages sent by PMDF are received in an encoded format; e.g.,

Date: Sun, 07 Jan 2012 11:59:56 -0500 (EST)
From: "Elvis Presley" <elvis@example.com>
To: priscilla@example.edu
Subject: test message with 8bit data
MIME-Version: 1.0
Content-type: TEXT/PLAIN; CHARSET=ISO-8859-1
Content-transfer-encoding: QUOTED-PRINTABLE

2=00So are the Bo=F6tes Void and the Coal Sack the same?=

Such messages appear unencoded when read with a MIME-aware user agent such as
PMDF MAIL or PMDF Pine, or when decoded with a decoder such as PMDF DECODE.

The SMTP protocol as set forth by RFC 821 only allows the transmission of ASCII
characters. As ASCII is a seven-bit character set, the transmission via SMTP of eight bit
characters is illegal. As a practical matter, the transmission of eight bit characters over
SMTP is known to cause a variety of problems with some SMTP servers (e.g., cause SMTP
servers to go into compute bound loops, cause mail messages to be sent over and over
again, crash SMTP servers, wreak havoc with user agents or mailboxes which cannot
handle eight bit data, etc.).

Until the advent of RFC 1425 and RFC 1426, an SMTP client had only three
alternatives when presented with a message containing eight bit data: return the
message to the sender as undeliverable, encode the message, or send it anyhow in direct
violation of RFC 821. None of these alternatives were pleasant; prior to version 4.2,
PMDF chose the latter of the three owing to the lack of a standardized encoding format.
However, with the recent advent of MIME (first specified in RFCs 1521 and 1522, and
updated in RFCs 2045–2049) and the SMTP extensions work (RFC 1425 and RFC 1426),
there are now standard encodings which can be used to encode eight bit data using the
ASCII character set and mechanisms to negotiate, between the SMTP client and server,
whether or not eight bit data will be accepted as is by the server without first being
encoded.

When recipients receive encoded messages such as those shown above with a MIME
content type of TEXT/PLAIN, then invariably the original message contained eight bit
characters and the remote SMTP server to which the PMDF SMTP client transferred
the message did not support the transfer of eight bit data. PMDF then had to encode
the message.

Users can avoid sending messages with eight bit characters through use of PMDF
MAIL’s /EIGHTBIT qualifier to the SEND, FORWARD, and REPLY command. See the
OpenVMS Edition of the PMDF User’s Guide for details.

33–26

Maintenance and Troubleshooting on OpenVMS
Common Problems and Solutions

33.4.10 From: Address Missing in Notifications from PMDF

Occassionally users or postmasters on other mail systems will complain that PMDF
is losing, dropping, forgetting, or otherwise omitting the envelope From: address in
messages it sends. You can be presented with a message header fragment like the one
shown below

From Thu Jul 11 11:50:23 2012
Received: from vulcan.ajax.com by monster.ajax,com via SMTP
(930416.SGI/931108.SGI.ANONFTP) for xxxx id AA21154;
Thu, 11 Jul 02 11:50:23 +1100

Date: Thu, 11 Jul 2012 11:49:26 +1000
From: PMDF Mail Server <postmaster@vulcan.ajax.com>

Note how in the first line there is a noticeable blank space between the ‘‘From’’ and
date? This header line is often referred to as the ‘‘colonless From line’’ and it gives the
envelope From: address for the message. That blank space indicates that the message
had no envelope From: address; that is, it had what is called in the mail business a
‘‘null return path’’. Note further that this was an automatically generated mail message
as suggested by the RFC 822 From: address of postmaster@vulcan.ajax.com.

The relevant standards require that automatically generated messages such as non-
delivery notifications and delivery receipts use a null return path. As mailers are
supposed to bounce mail to the envelope From: address, this helps to prevent mail
loops from occurring. 4

If someone complains about the missing From: address, ask them to send you a
sample offending message. Determine if it was an automatically generated message. If
it was, then explain to them that if their mailer or user agent is incapable of handling
null return paths then it is incompliant with RFC 821 and 1123. Refer them to Paragraph
8 of Section 3.6 and the second paragraph of the MAIL command description in Section
4.1.1 in RFC 821. Further point out that were you to change your mailer to use a non-
null return path for automatically generated notifications, then you would be violating
the Internet Host Requirements; specifically, you would be in violation of Section 5.3.3
of RFC 1123.

Now, if for some reason you absolutely must generate non-null return paths in your
notification messages, then you can do so with the RETURN_ENVELOPE option of the
PMDF option file; see Section 7.3.4. Or to generate non-null return paths in notification
messages only for a particular channel or channels, you can use the returnenvelope
channel keyword; see Section 2.3.4.64. Be warned: Use of either the option or the
channel keyword will put you in violation of the Internet Host Requirements and, more
importantly, can lead to looping mail. Looping mail will not only inconvenience you but
can cause serious problems for some unfortunate site which gets into a loop with your
system. Also, keep in mind that changing PMDF’s behavior so as not to cause problems
for a broken mailer which cannot handle null return paths does not really fix anything:
Other mailers over which you have no control will continue to send the broken mailer
messages with null return paths. The only satisfactory solution in this situation is to fix
the broken mailer.

4 Some mailers will preferentially send notifications to the address specified with the non-standard Errors-to: or
Warnings-to: header lines. By default, PMDF itself sends notifications to the envelope From: address, unless
configured otherwise via the USE_ERRORS_TO and USE_WARNINGS_TO PMDF options.

33–27

Maintenance and Troubleshooting on OpenVMS
Common Problems and Solutions

33.4.11 MF, MB, or other $M... Files

When using PMDF-MR, sometimes files with names of the form Mx..., e.g.,

MF01H868YPNYBMAW31.00;1
MB01H798YCNYASAW41.00;1

are found in the PMDF queue directory. These are temporary files created by Message
Router and the HP MRIF interface. You need to check the PMDF-MR log files, usually
mr_local_master.log or mrif_*_slave.log in the PMDF log directory, to see if there
is a problem with processing messages to or from Message Router. There are also some
pathological cases where Message Router leaves files behind, but these are rare. If no
errors are found in the log files, these files can be deleted. You should monitor the queue
directory and see if they reappear.

33.4.12 @DIS Mailing List Expands into the Message Header

The only solution to the problem of @DIS mailing list addresses expanding into the
To: or other header is to stop using VMS MAIL @DIS distribution lists or @DIS style
addresses within PMDF MAIL.

PMDF has absolutely no control over the expansion of VMS MAIL @DIS mailing lists.
The expansion is done, and necessarily so, by VMS MAIL. It cannot work any other way:
VMS MAIL must look at each address from the list, determine if it is a pure MAIL-11
address, a DECnet MAIL-11 address, or an address involving a foreign protocol interface,
and dispatch it accordingly. PMDF is handed, one address at a time, those addresses
from the list which are intended for PMDF. (Any addresses that are not intended for
PMDF, VMS MAIL does not even tell PMDF about; see Section 33.4.13.) PMDF does not
know that a mailing list was used. While PMDF is passed a pure text string containing
the exact (original) To: address presented by the user (e.g., @STAFF.DIS), the context
under which to evaluate that string does not exist. It can have been entered on a remote
DECnet node in which case any incomplete file specifications cannot be resolved, and
similarly for addresses effected through process logical names. Moreover, the string is
just plain text and there are no assurances that it contains anything meaningful (e.g.,
TM%"bob\[123,456]").

To prevent @DIS mailing lists from being expanded into the message headers, stop
using @DIS style addresses and begin using PMDF’s mailing list facilities. See Section 4.1
for information on creating system-wide mailing lists. Direct your users to the OpenVMS
Edition of the PMDF User’s Guide for information on setting up their own mailing lists.

33–28

Maintenance and Troubleshooting on OpenVMS
Common Problems and Solutions

33.4.13 Some Addresses Missing from Headers of Messages Sent
from VMS MAIL

VMS MAIL only hands over to PMDF those addresses that have the IN%"..." wrapper
around them (or any synonyms for IN% you have defined on your system); VMS MAIL
does not even tell PMDF about any purely VMS MAIL or DECnet MAIL or other foreign
protocol addresses. PMDF of course can only construct headers showing the addresses
VMS MAIL told PMDF about. Therefore if a VMS MAIL user sends a message to multiple
recipients where some of the recipients are not handled via PMDF, then the recipients of
the messages that went through PMDF will not see those other, non-PMDF recipients.

The only solution is to ensure that all addresses go through PMDF, by using the
IN%"..." wrapper around all such addresses, or by using PMDF MAIL.

33.4.14 From: Addresses Contain SMTP%, EDU%, or Other Prefixes

When PMDF is correctly installed, all inbound mail from any network protocol and
transport supported by PMDF will be delivered to VMS MAIL users with the PMDF
foreign protocol prefix, ‘‘IN%’’, placed at the beginning of the From: address. This
ensures complete repliability, back through PMDF, of messages. If messages are coming
in with any other foreign protocol prefix, then messages can not be properly repliable,
and additional PMDF functionality, such as the DELIVER facility, will not work.

Incoming mail with a prefix other than ‘‘IN%’’ usually indicates that some PMDF
slave or server program has not been properly installed or has encountered some sort
of error. For TCP/IP channels, verify that you have disabled the TCP/IP package’s own
native SMTP server, and are using the PMDF SMTP server instead; see Chapter 21.

33.4.15 VMS MAIL Exits or Hangs

There is a bug in VMS MAIL which is manifested when a foreign protocol address is
entered at the To: or CC: prompts and the trailing double quote character, ", is omitted.
For example

MAIL> send
To: in%"user@domain
%LIB-F-SYNTAXERR, string syntax error detected by LIB$TPARSE
$

Under older versions of OpenVMS, MAIL will go into an infinite loop rather than exit
with the fatal error. This problem has nothing to do with PMDF and cannot be avoided;
indeed, it occurs before PMDF is ever invoked by VMS MAIL.

33–29

Maintenance and Troubleshooting on OpenVMS
Contacting Process Software Technical Support

33.5 Contacting Process Software Technical Support

Process Software provides technical support only for sites with a current mainte-
nance agreement.

If you obtained PMDF from an authorized Process Software distributor, then
technical support in your timezone can be most efficiently obtained from your distributor.
You can also contact Process Software directly if you want.

Process Software technical support can be contacted at:

Process Software, LLC
959 Concord Street
Framingham, MA 01701 USA
+1 508 879 6994
+1 508 879 0042 (FAX)
support@process.com

The public mailing list for PMDF sites, info-pmdf@process.com, is another useful
source of input and advice from other sites using PMDF.

When reporting a question or problem to Process Software technical support:

• Please include the output of the PMDF VERSION command. This will include the
architecture type for your system, the operating system version for your system, the
PMDF installed version number, and the version of your PMDF shared library image.

• If the question regards a message, please include an entire sample message, in
particular including all message headers. When sending a sample message via e-
mail, please extract the sample message (with all headers) to a file and then send
that entire file as an attachment; this is much preferable to forwarding the message
as a message since forwarding as a message leaves headers (which can be an essential
clue) subject to further processing.

• If the question regards the operation of a particular channel, please include a debug
channel log file; see Section 2.3.4.85 for a discussion of obtaining channel debug log
files.

• Be prepared to send copies of relevant PMDF configuration files, if Process Software
technical support requests them.

33–30

34Maintenance and Troubleshooting on UNIX

Under normal conditions PMDF accepts, processes, and promptly delivers messages.
If a message can not be delivered immediately, PMDF will periodically retry the delivery.
Intervention by a system or network manager is generally not required, as PMDF
is designed to perform its functions unattended as much as possible. It is a good
idea, however, to periodically inspect the PMDF queue directories. System or network
problems over which PMDF has no control can adversely affect normal operation. In
addition, unusual behavior from PMDF can often point out network problems which can
otherwise go unnoticed.

See also Chapter 31, which discusses monitoring PMDF activity. A baseline for what
normal PMDF activity looks like at your site can be helpful when questions arise.

34.1 Background on PMDF Operation

In order to diagnose and repair PMDF message delivery problems, you need some
understanding of the steps that PMDF goes through to process and deliver a message.
Each time a message is handed to PMDF, a file is created in the appropriate message
queue subdirectory. Each channel has a corresponding subdirectory. The subdirectory
into which the message is placed is that of the destination channel which will handle the
message next. For example, a message coming in from any source to be delivered to a
local user will be placed in the subdirectory corresponding to the local, or L, channel. A
message coming in from UUCP to be routed on through SMTP over TCP will be placed
in the subdirectory for the outbound TCP/IP channel, such as tcp_local.

Once the message is stored in the appropriate queue subdirectory, a PMDF
processing job is usually submitted to the PMDF Job Controller. This step is omitted
for channels marked with the periodic keyword. The processing job will attempt to
deliver the message. If it cannot be delivered and the failure is judged to be a permanent
condition, the message is returned to the sender and the local postmaster. If the failure
is a temporary error condition, the message is left in the message queue to be retried
later.

For additional discussion of PMDF operation, see also Chapter 1.

34.2 Standard Maintenance Procedures

In tracking down problems with PMDF you should first determine whether the
problem occurs before or after a message is entered into the message queue; then such
messages were never accepted: configuration problems, or environmental problems (e.g.,
disk space or quota problems), or the absence of PMDF servers (such as the Dispatcher
and its services) can prevent PMDF from accepting messages; or network connectivity
or routing problems could mean that the messages are stuck or misrouted on a remote

34–1

Maintenance and Troubleshooting on UNIX
Standard Maintenance Procedures

system. If messages do not get placed in a queue directory at all, or get put into the
wrong queue directory, you probably have a configuration problem.

To track an errant mail message, you can start by examining each step of the process
for errors. The subsections below discuss investigating these processing steps.

34.2.1 Check the PMDF Configuration

Use the pmdf test -rewrite utility, described in Chapter 30, to test the response
of your configuration to addresses. Certain basic sorts of problems in the PMDF
configuration, such as clear syntax errors in the PMDF configuration, will cause the
utility to issue an error message. Otherwise, the utility will show address rewrites that
will be applied as well as the channel to which messages would ultimately be queued. If
the output is not what you expect you can need to modify your configuration.

34.2.2 Check Message Queue Directories

Check whether messages are present under the PMDF message queue directory,
/pmdf/queue/. Shell commands such as ls or the pmdf qm -maint utility’s directory
command can be used to check for the presence of expected message files under the PMDF
message queue directory.

If the pmdf test -rewrite output looks correct, check that messages are actually
being placed in the PMDF message queue subdirectories. If not, you can have a problem
with file space on that disk.

34.2.3 Check the Ownership of Critical Files

You should have a pmdf account, created before you installed PMDF. The directories
/pmdf/queue, /pmdf/log, and /pmdf/table/queue_cache, and all subdirectories
and files under them should be owned by the pmdf account. The /pmdf/tmp directory
should also be owned by the pmdf account. If the protection and ownership are not
correct for the queue cache database, messages can not be entered into the queue cache,
and the queue cache will become desynchronized. Commands such as the following can
be used to check the protection and ownership of these directories:

ls -l -p -d /pmdf/queue
drwx------ 6 pmdf bin 512 Feb 7 09:32 /pmdf/queue/
ls -l -p -d /pmdf/log
drwx------ 2 pmdf bin 1536 Mar 10 20:00 /pmdf/log/
ls -l -p -d /pmdf/table/queue_cache
drwx------ 2 pmdf bin 512 Mar 10 15:03 /pmdf/table/queue_cache/
ls -l -p -d /pmdf/tmp
drwx------ 2 pmdf bin 512 Feb 7 10:00 /pmdf/tmp/

34–2

Maintenance and Troubleshooting on UNIX
Standard Maintenance Procedures

Then check that any files and subdirectories of /pmdf/queue and /pmdf/log are owned
by the pmdf account using commands such as:

ls -l -p -R /pmdf/queue
ls -l -p -R /pmdf/log

34.2.4 Checking that the Job Controller and Dispatcher are Present

The PMDF Job Controller handles the execution of PMDF processing jobs, including
most outgoing (master) channel jobs.

Some PMDF channels, such as PMDF’s multithreaded TCP/IP channels or Lotus
Notes channels, include resident server processes that process incoming messages—such
servers handle the slave (incoming) direction for the channel. In addition, remote clients
using protocols such as POP and IMAP download their messages by connecting to PMDF’s
POP or IMAP servers.

The PMDF Dispatcher handles the creation of such PMDF servers. Dispatcher
configuration options control whether such servers are available at all, and if available,
how many such servers are created and when, and how many connections each server
can handle. Most sites, for instance, will choose to have the Dispatcher always keep at
least one SMTP server process resident.

The command

pmdf process

can be used to check that the PMDF Job Controller and PMDF Service Dispatcher are
present, and to see if there are PMDF servers and processing jobs running. Under idle
conditions the command should result in output similar to that seen in Figure 34–1 or
Figure 34–2.

Figure 34–1 Basic Output of pmdf process

pmdf process
pmdf 13421 IW Nov 17 0:00.09 /pmdf/bin/dispatcher !
pmdf 13427 IW Nov 17 0:00.24 /pmdf/bin/job_controller "

Figure 34–2 Output of pmdf process With Optional Processes

pmdf process
pmdf 26031 I Nov 17 0:01.25 <DISPATCHER> !
pmdf 26110 IW Nov 17 0:00.17 /pmdf/bin/job_controller "

pmdf 26128 IW Nov 17 0:00.06 /pmdf/bin/x400_tsapd -r #

pmdf 23217 S 10:00:25 0:00.00 <LNSLAVE> $
pmdf 23218 S 10:00:26 0:00.00 <LNMASTER>
pmdf 23222 S 10:03:19 0:29.00 <SMTP> %
pmdf 23225 S 10:03:19 0:29.00 <POP3-01> &
pmdf 23305 S 10:03:19 0:29.00 <IMAP-01> '

34–3

Maintenance and Troubleshooting on UNIX
Standard Maintenance Procedures

The Job Controller and Dispatcher jobs, indicated ! and " in the figures, should always
be present during normal operation of PMDF. Additional jobs can be present as well, if
your system is currently processing messages.

! The PMDF Dispatcher should always be present. It is responsible for creating PMDF
server processes. The PMDF Dispatcher process name is ‘‘/pmdf/bin/dispatcher’’ when
the Dispatcher is first created; if the Dispatcher has been restarted, the name will
be ‘‘<DISPATCHER>’’.

" The PMDF Job Controller should always be present. It is responsible for handling
PMDF channel jobs.

Sites using PMDF-X400 should have a TSAPD process present. It is responsible for
listening for incoming X.400 connections.

$ Sites using PMDF-LAN Lotus Notes channels should have one LN master and one
LN slave process present per LN channel.

% Sites would normally have at least one SMTP server process present and possibly
more, depending on the number of current SMTP connections.

& Sites using the PMDF POP3 server would normally have at least one POP3 server
process present and possibly more, depending on the number of current POP3
connections.

' Sites using the PMDF IMAP server would normally have at least one IMAP server
process present and possibly more, depending on the number of current IMAP
connections.

If the Job Controller or Dispatcher is not present, you should issue the command:

pmdf startup

Also, the Dispatcher’s currently active connections can be monitored from a web
browser; see Section 11.7.

In addition to the sorts of processes described above that should always be present,
the Job Controller should create transient channel processing jobs that process a message
or a few messages and complete their work. The pmdf process command will include
any such current channel processing jobs in its output. Figure 34–3 shows an example
of pmdf process output that includes actively executing channel jobs.

Figure 34–3 Output of pmdf process With Channel Jobs

pmdf process
pmdf 7945 S May_26 0:08 imapd
pmdf 19072 S 07:24:53 0:05 /pmdf/bin/job_controller
pmdf 3885 S 13:52:40 0:12 <SMTP>
pmdf 9452 S 18:15:18 0:00 imapd
pmdf 2047 S Jun_02 0:04 /pmdf/bin/dispatcher
pmdf 9664 S 18:18:55 0:00 /pmdf/bin/tcp_smtp_client !

pmdf 9932 R 18:22:56 0:03 /pmdf/bin/l_master "

! An outbound TCP/IP channel job is running.

34–4

Maintenance and Troubleshooting on UNIX
Standard Maintenance Procedures

" The local channel is running.

34.2.5 Check Processing Log Files

If PMDF processing jobs run properly but the message stays in the message queue
directory, you can examine the log files to see what is happening. All log files are created
in the directory /pmdf/log . Log file name formats for various PMDF processing jobs
are shown in Table 34–1.

Table 34–1 PMDF Log Files on UNIX

File name Log file contains

channel_master.log-uniqueid Output of master program (usually client) for channel

channel_slave.log-uniqueid Output of slave program (usually server) for channel

dispatcher.log-uniqueid Dispatcher logging, if the Dispatcher DEBUG option has been
set

job_controller.log-uniqueid Job controller logging, if the Job Controller option DEBUG=1
has been set

server-name_server.log-
uniqueid

Logging for server server-name

server-name_thread.log-
uniqueid

Per thread errors for server-name

† post.log-uniqueid Log output for the periodic PMDF delivery job

† return.log-uniqueid Log output for the periodic PMDF message bouncer job

†The name and existence of such a log file is specified when the job is initially scheduled by cron; Process
Software recommends using crontab entries that specify a log file of the name shown.

Channel log files are not created unless an error occurs or unless debugging output
is enabled for the channel with the master_debug channel keyword or slave_debug
channel keyword. See Section 2.3.4.85 for more information.

Each new log file is created with a unique id to avoid overwriting an earlier log
written by the same channel. You can use the pmdf find utility to aid in finding the
desired ‘‘version’’ of a log file. You can purge back older log files using the pmdf purge
command.

34.2.6 Running a Channel Program Manually

While diagnosing a PMDF delivery problem it can be useful to run a PMDF delivery
job by hand, particularly after enabling debugging output for one or more channels. The
command

34–5

Maintenance and Troubleshooting on UNIX
Standard Maintenance Procedures

pmdf submit channel-name

will notify the PMDF Job Controller to run the channel. If debugging is enabled for the
channel in question, pmdf submit will create a log file in /pmdf/log as described in
Table 34–1.

The command

pmdf run channel-name

will perform outbound delivery for the channel channel-name under the currently active
process, with output directed to your terminal. This can be more convenient than
submitting a job, particularly if you suspect problems with job submission itself.

34.3 General Error Messages

There are a number of general sorts of issues that can interfere with the running
of a variety of PMDF components; such issues include general syntax errors in a PMDF
configuration, or license problems, or disk/quota problems leading to trouble writing files.
The following sections describe some of the more common general error messages.

Note that the pmdf test -rewrite utility will give warnings of many such common
issues and with more detailed error messages than some other components of PMDF can
display. So pmdf test -rewrite can be a useful diagnostic tool: see if it is getting an
error and if so, what.

Specific PMDF components can also issue other error messages, specific to that
component. So when you an encounter an error not described below, see also the
documentation on the PMDF component in question.

34.3.1 Errors in mm_init, such as ‘‘No room in ...’’ Errors

An ‘‘Error in mm_init’’ error generally indicates a PMDF configuration problem.
Thus the pmdf test -rewrite utility, which is often used to test the health of a PMDF
configuration, can return such an error, as can other utilities such as pmdf cnbuild, or
a channel, or server, or user agent trying to run can return such an error.

In particular, one of the more commonly encountered sorts of mm_init errors is a
‘‘No room in table’’ error or similar ‘‘No room in ...’’ sort of error. Generally, ‘‘no room in’’
errors are an indication that your current PMDF configuration has not set internal table
sizes sufficient for the size of your PMDF configuration, and that it is time to have PMDF
resize its internal tables, as described in Section 8.1.4.1 However, some particular such
‘‘no room in ...’’ error messages can have alternate causes, and such cases are called out
below. Any other ‘‘no room in’’ errors not explicitly mentioned are most likely simply an
indication of a need to resize internal tables.

1 Note that PMDF stores configuration information in internal tables in memory. To prevent unnecessary use of excessive
amounts of virtual memory, these tables are allocated with fixed sizes. The sizes of the tables are controlled by values in
the PMDF option file. See Chapter 7 for details on PMDF options.

34–6

Maintenance and Troubleshooting on UNIX
General Error Messages

Rather than manually calculating and setting table sizes, you should use the pmdf
cnbuild utility to automatically resize the tables for you. See Section 8.1.4 for exact
instructions on doing this.

If you use a compiled configuration, then be sure to recompile your configuration and
reinstall it after resizing the tables.

If you’re using the PMDF multithreaded SMTP server or the PMDF-LAN Lotus
Notes channel, or any other services running under the Dispatcher that need to be made
aware of the change, be sure to restart such services using the pmdf restart utility.

Following are some of the more commonly encountered mm_init errors.

bad equivalence for alias ...

The right hand side of an alias file entry is improperly formatted.

cannot open alias include file...

A file included into the alias file cannot be opened. This typically indicates a protection
problem with a file referenced by the file include operator, <. Note that such included
files (like the alias file itself) must be world readable.

duplicate alias(es) found ...

Two alias file entries have the same left hand side; you will need to find and eliminate
the duplication.

duplicate host in channel table ...

In its literal meaning, this error says that you have two channel definitions in the
PMDF configuration that both have the same official host name (line two of the channel
definition); see Section 2.3.2. But note that an extraneous blank line in the rewrite
rules (upper portion) of your PMDF configuration file causes PMDF to interpret the
remainder of the configuration file as channel definitions, and as there are often multiple
rewrite rules with the same pattern (left hand side), this then causes PMDF to think it
is seeing channel definitions with non-unique official host names. So check your PMDF
configuration both for any channel definitions with duplicate official host names, and for
any improper blank lines in the upper (rewrite rules) portion of the file.

duplicate mapping name found ...

This error literally means that two mapping tables have the same name, and one of the
‘‘duplicates’’ needs to be removed. However, note that formatting errors in the mapping
file can cause PMDF to interpret something not intended as a mapping table name as a
mapping table name; for instance, failure to properly indent a mapping table entry will
cause PMDF to think that the left hand side of the entry is actually a mapping table
name. So check your mapping file for general format, as well as checking the mapping
table names.

error initializing ch_ facility: ...

Note that such errors should not occur in normal operation; only sites that have
customized PMDF character set material, or have had installation problems, are likely
to encounter such errors. The next two items describe sorts of ch_ facility errors that
are simple to resolve; other sorts of ch_ errors, however, often indicate that required
PMDF files have not been properly installed or have been unintentionally deleted or
otherwise corrupted, and a re-installation of PMDF can be necessary to get the required
files properly installed. Contact Process Software if you have questions regarding such
an error.

34–7

Maintenance and Troubleshooting on UNIX
General Error Messages

error initializing ch_ facility: compiled character set version mismatch

Such an error generally means that you need to recompile and reinstall your compiled
character set tables via the command:

pmdf chbuild

See the documentation for pmdf chbuild in Chapter 30 for additional details.

error initializing ch_ facility: no room in ...

Such an error likely means that you need to resize your PMDF character set internal
tables and then rebuild the compiled character set tables via the commands

pmdf chbuild -noimage -maximum -option
pmdf chbuild

See the documentation for pmdf chbuild in Chapter 30 for additional details.

local host alias or proper name too long for system ...

This error literally means that a local host alias or proper name (the optional right hand
side in the second or subsequent names in a channel block) is too long. However, note that
certain syntax errors earlier in the PMDF configuration file (an extraneous blank line in
the rewrite rules, for instance) can cause PMDF to interpret something not intended as
a channel definition as a channel definition. So besides checking the indicated line of the
configuration file, also check above that line for other syntax errors and in particular, if
the line on which PMDF issues this error is intended as a rewrite rule, then be sure to
check for extraneous blank lines above it.

mapping name is too long ...

This error literally means that a mapping table name is too long and needs to be
shortened. However, note that formatting errors in the mapping file can cause PMDF to
interpret something not intended as a mapping table name as a mapping table name; for
instance, failure to properly indent a mapping table entry will cause PMDF to think that
the left hand side of the entry is actually a mapping table name. So check your mapping
file for general format, as well as checking the mapping table names.

no equivalence addresses for alias ...

An entry in the alias file is missing a right hand side (translation value).

no official host name for channel ...

This error indicates that a channel definition block is missing the required second line
(the official host name line). See Section 2.3.2 for a discussion of the format of channel
definition blocks. In particular, note that a blank line is required before and after each
channel definition block, but a blank line must not be present between the channel name
and official host name lines of the channel definition; also note that blank lines are not
permitted in the rewrite rules portion of the PMDF configuration file.

no room in ...

Generally, ‘‘no room in’’ errors are an indication that your current PMDF configuration
has not set internal table sizes sufficient for the size of your PMDF configuration, and that
it is time to have PMDF resize its internal tables, as described in Section 8.1.4. However,
some particular such ‘‘no room in ...’’ error messages can have alternate causes, and such
cases are called out below. Any other ‘‘no room in’’ errors not explicitly mentioned are
most likely simply an indication of a need to resize internal tables.

34–8

Maintenance and Troubleshooting on UNIX
General Error Messages

no room in channel host table for ...

This error indicates that your configuration’s current PMDF internal table sizes are not
large enough for the number of host names listed in your channel definitions. However,
note that an extraneous blank line in the rewrite rules (upper portion) of your PMDF
configuration file causes PMDF to interpret the remainder of the configuration file as
channel definitions; with just one such extraneous blank line, PMDF sees just one extra
channel but with a lot (all the rest of the rewrite rules) as host names on that channel.
So check the line of the file that the error is complaining about—if it is not truly intended
as a host name on a channel definition but rather is a line in the rewrite rules section of
your configuration file, then check for an extraneous blank line above it.

no room in channel table for ...

This error indicates that your configuration’s current PMDF internal table sizes are
not large enough for the number of channels defined in your PMDF configuration. See
Section 8.1.4.

no room in table for alias ...

This error says that the current PMDF internal table sizes are too small for the number
of aliases in the aliases file. This can be resolved either by resizing PMDF’s internal
table sizes—see Section 8.1.4—or in some cases can be an indication that it would be
wise to begin using the PMDF alias database to store some of the aliases currently in
the aliases file—see Section 3.1.2.

no room in table for mapping named ...

In its literal meaning, this error says that your configuration’s current PMDF internal
table sizes are not large enough for your current number of mapping tables. Internal
PMDF table sizes can be increased to match your current configuration side—see
Section 8.1.4. However, also note that formatting errors in the PMDF mapping file
can cause PMDF to think that you have more mapping tables than you really have; for
instance, check that mapping table entries are all properly indented.

official host is too long

The official host name for a channel (second line of the channel definition block) is limited
to forty characters in length. So if you were trying to use a longer official host name on
a channel, shorten it to a ‘‘placeholder’’ name and then use a rewrite rule to match the
longer name to the short official host name. Note, however, that certain syntax errors
earlier in the PMDF configuration file (an extraneous blank line in the rewrite rules, for
instance) can cause PMDF to interpret something not intended as a channel definition
as a channel definition; that could result in an intended rewrite rule being interpreted
as an official host name. So besides checking the indicated line of the configuration file,
also check above that line for other syntax errors and in particular, if the line on which
PMDF issues this error is intended as a rewrite rule, then be sure to check for extraneous
blank lines above it.

34.3.2 Compiled Configuration Version Mismatch

One of the functions of the pmdf cnbuild utility is to compile PMDF configuration
information into an image or file that can be loaded quickly.

The compiled format is quite rigidly defined and often changes substantially between
different versions of PMDF. Minor changes can also occur as part of mid-version releases.

34–9

Maintenance and Troubleshooting on UNIX
General Error Messages

When such changes occur an internal version field is also changed so that incompati-
ble formats can be detected. When an incompatible format is detected PMDF components
will halt with a ‘‘Compiled configuration version mismatch’’ error.

The solution to this problem is simply to generate a new compiled configuration with
the UNIX command,

pmdf cnbuild -option

It is also a good idea to use the pmdf restart command to restart any resident
PMDF server processes so they can obtain updated configuration information.

34.3.3 Swap Space Errors

For proper PMDF operation it is important to have your system configured with
enough swap space. How much swap space will be required will depend upon what
components of PMDF you are using and how heavily they are used, as well as on what
other non PMDF programs are running on the system. Regarding PMDF components,
for instance, heavy POP or IMAP usage will increase the swap space needed. Note that
a typical general system tuning recommendation, regardless of PMDF, is to have swap
space at least three times the amount of main memory.

For PMDF, at a minimum you should have at least 320 megabytes of swap space
configured on Solaris SPARC or at least 250 megabytes on Solaris x86. On a PMDF
system with more than minimal usage, better values would be to start with at least 750
megabytes of swap space on Solaris SPARC or at least 500 megabytes on Solaris x86.

In particular, errors such as

pmdf: fatal: /pmdf/lib//libpmdf.so: can’t set protections on segment: errno=11

from various PMDF components, or in the PMDF Job Controller log file an error such as

jbc_channels: chan_execute [1]: fork failed: Not enough space

are typical symptoms of a lack of swap space.

Note that shell commands such as swap -s and, at the time when PMDF processes
are busy, ps -elf can be useful in seeing how much swap space you have available and
used.

34–10

Maintenance and Troubleshooting on UNIX
General Error Messages

34.3.4 File Open or Create Errors

In order to send a message, PMDF needs to read configuration files and create
message files in the PMDF message queue directories. Configuration files must be
readable to the user, which generally implies world read access on the files in the PMDF
table directory. During installation, proper protections are assigned to these files. PMDF
utilities and procedures which create configuration files also assign proper protections. If
the files are reprotected by the system manager or other privileged user or through some
site-specific procedure, PMDF can not be able to read configuration information. This will
result in ‘‘File open’’ errors or unpredictable behavior. The pmdf test -rewrite utility
will report additional information when it encounters problems reading configuration
files. See Chapter 30 for information on using this utility.

If PMDF appears to function from privileged accounts but not from unprivileged
accounts, then file protections in the PMDF table directory are likely to blame. Check
the protections on configuration files and their directories. The only files that should be
protected against world read access in the table directory are the queue cache database
and PhoneNet script files or other channel option files which can contain password
information.

‘‘File create’’ errors usually indicate a problem while creating a message file in a
PMDF message queue directory. See Section 34.2.2 for procedures to aid in diagnosing
file creation problems.

34.3.5 Illegal Host/domain Errors

Such an error can be returned immediately in response to an address provided to
PMDF through a user agent, or the error can be deferred and returned as part of an error
return mail message. In all cases, such an error message indicates that PMDF is not
able to deliver mail to the specified host. Before diagnosing such problems any further,
verify that the address in question is indeed correct and is not misspelled, transcribed
incorrectly, or using the name of a host or domain which no longer exists.

Try running the address in question through the pmdf test -rewrite utility. If
this utility also returns an ‘‘illegal host/domain’’ error on the address, then PMDF has no
rules in its configuration file, pmdf.cnf and related files, to handle the address. Verify
that you have configured PMDF correctly, that you answered all configuration questions
appropriately, and that you have kept your configuration information up to date.

Otherwise, if pmdf test -rewrite does not encounter an error on the address, then
PMDF was able to determine how to handle the address, but the network transport would
not accept it. You can examine the appropriate log files from the delivery attempt for
additional details. Transient network routing or name service errors should not result
in returned error messages, though it is possible for badly misconfigured domain name
servers to cause such problems.

If you are on the Internet then check that you have properly configured your TCP/IP
channel to support MX record lookups. Many domain addresses are not directly accessible
on the Internet and require that your mail system correctly resolve MX entries. If you
are on the Internet and your TCP/IP is configured to support MX records, you should

34–11

Maintenance and Troubleshooting on UNIX
General Error Messages

have allowed the PMDF configuration utility to enable MX support; see Chapter 21. If
your TCP/IP package is not configured to support MX record lookups, then you will not
be able to reach MX-only domains.

34.3.6 Errors in SMTP Channels: os_smtp_* Errors

os_smtp_* errors, e.g., os_smtp_open, os_smtp_read, or os_smtp_write errors, are
not PMDF errors per se: they correspond to PMDF reporting back about a problem
encountered at the network layer. For instance, an os_smtp_open error means that
the network connection to the remote side could not be opened, which can be due
to addressing errors or channel configuration errors (PMDF configured to attempt to
connect to the ‘‘wrong’’ system), but is more commonly due to DNS problems or network
connectivity problems (particularly if this is a channel or address that was previously
working). os_smtp_read or os_smtp_write errors are usually an indication that the
connection was aborted (either by the other side or due to network problems).

Note that network and DNS problems are often transient in nature. It is normal to
occasionally see such problems. Indeed, for connections to troublesome systems, it can
even be common. So the occasional such error is usually nothing to be concerned about.
However, if you are consistently seeing such errors on most messages on a channel, or
seeing such errors on most messages to or from a particular remote system, then the
errors can be an indication of an underlying network problem.

If you need more information about an os_smtp_* error, enable debugging on the
channel in question and get a debug channel log file showing details of the attempted
SMTP dialogue; see Section 2.3.4.85. In particular, the timing of exactly when a network
problem occurred during the SMTP dialogue tends to be suggestive as to what sort of
network or remote side issue might be involved. In some cases, you can also want to do
network level debugging (e.g., TCP/IP packet tracing) to see what was sent or received
over the wire.

34.3.7 Error in qu_init: Usage Level Requires PMDF-MTA Service

If the error message ‘‘Usage level requires PMDF-MTA service’’ is reported by PMDF
components, then a PMDF-ACCESS license is loaded on a system that has a PMDF-
MTA configuration, that is, a configuration including channels not allowed on a PMDF-
ACCESS system.

If this system is supposed to be a PMDF-ACCESS system, then the problem is that
the PMDF configuration has non-ACCESS, disallowed components in it. Either manually
modify the PMDF configuration file to remove non-ACCESS channels, or use the pmdf
configure access utility to generate a new PMDF-ACCESS configuration.

34–12

Maintenance and Troubleshooting on UNIX
General Error Messages

If this system is supposed to be a PMDF-MTA system rather than a PMDF-ACCESS
system, then the problem is that a PMDF-ACCESS license has been loaded instead
of or in addition to a PMDF-MTA license. Note that the (lesser functionality) PMDF-
ACCESS license will override the PMDF-MTA license; you must remove the PMDF-
ACCESS license in order for the PMDF-MTA license to take effect.

34.4 Common Problems and Solutions

The following section lists some of the more common problems encountered during
PMDF installation, configuration, and operations.

34.4.1 Changes to Configuration Files or PMDF Databases Do Not
Take Effect

If changes to your configuration, mapping, conversion, security, option, or alias files
or to PMDF databases do not seem to be taking effect, check to see if you have a compiled
configuration or that you have exited and restarted your mail user agent (e.g., Pine)
session, and that you have restarted any PMDF components that need to be made aware
of the change. See Section 8.2 for additional discussion.

34.4.2 PMDF Sends Outgoing Mail, but Does Not Receive Incoming
Mail

Most PMDF channels depend upon a slave, or server, channel program to receive
incoming messages. For some transports supported by PMDF, in particular TCP/IP
and UUCP, you need to make sure that the transport activates the PMDF slave
program rather than its standard server. Replacing the native sendmail SMTP server
with the PMDF SMTP server is normally performed as a post-installation task when
first installing PMDF; see the appropriate edition of the PMDF Installation Guide for
instructions.

For the multithreaded SMTP server, the startup of the SMTP server is controlled via
the PMDF Dispatcher. The PMDF Dispatcher controls the starting up of an SMTP server
or servers, according to your Dispatcher configuration. If the Dispatcher is configured
to use a MIN_PROCS value greater than or equal to one for the SMTP service, then
there should always be at least one SMTP server process running (and potentially more,
according to the MAX_PROCS value for the SMTP service). The pmdf process command
can be used to check for the presence of SMTP server processes; see Section 34.2.4. Also,
the Dispatcher statistics web page can be viewed to check just what connections SMTP
processes are currently handling.

34–13

Maintenance and Troubleshooting on UNIX
Common Problems and Solutions

34.4.3 POP and IMAP Clients Time Out

The first thing to check is whether the clients are timing out when they try to connect, or
when they try to send mail. If the trouble is when users try to connect to read messages,
then you need to investigate the POP or IMAP server, according to which sort of client
is having difficulties. But note that POP and IMAP clients send mail out using SMTP
and the SMTP port, so if the trouble is when users try to connect to send messages, then
you need to investigate the SMTP server.

The POP, IMAP, and SMTP servers are controlled by the PMDF Dispatcher. For
the server in question, check the Dispatcher configuration for the maximum number of
servers allowed for that service (MAX_PROCS), and the maximum number of connections
each individual server can handle (MAX_CONNECTIONS). Then check how many such
server processes are actually running. If you have more than MAX_PROCS*MAX_
CONNECTIONS users trying to connect simultaneously, then you can want to increase
the total number of servers allowed, or perhaps the number of connections each server
can handle—though note that allowing too many connections per server tends to degrade
the performance for each particular connection.

Additionally, general system resource and quota problems will of course impact the
servers. See, for instance, Section 34.4.4.

34.4.4 Time Outs on Incoming SMTP Connections

Timeouts on incoming SMTP connections are most often related to system resources
and the allocation thereof.

Check how many simultaneous incoming SMTP connections you allow. This is
controlled by the MAX_PROCS and MAX_CONNECTIONS Dispatcher settings for the
SMTP service; the number of simultaneous connections allowed is MAX_PROCS*MAX_
CONNECTIONS. If you can afford the system resources, consider raising this number if
it is too low for your usage.

Try putting the slave_debug keyword on the channels handling incoming SMTP
over TCP/IP mail, usually tcp_local. Then take a look at the resulting
tcp_local_slave.log-uniqueid files, and try to spot any particular characteristics
of the messages that time out. For instance, if incoming messages with large numbers
of recipients are timing out, consider using the expandlimit keyword on the channel.

Of course, if your system is extremely overloaded and overextended, time outs will
be difficult to avoid entirely.

34–14

Maintenance and Troubleshooting on UNIX
Common Problems and Solutions

34.4.5 Outgoing TCP/IP Messages Sit in Queue

Errors encountered during TCP/IP delivery are quite often transient in nature and
PMDF will generally retain messages when problems are encountered and retry them
periodically. It is quite normal on very large networks to experience periodic outages to
certain hosts while other host connections work fine. You can examine the log files for
errors relating to delivery attempts. You can see error messages such as ‘‘Fatal error from
smtp_open’’. Such errors are not uncommon and are usually associated with a transient
network problem. Your TCP/IP package can contain tools such as ping, traceroute, and
nslookup to aid in debugging TCP/IP network problems.

Example 34–1 shows the steps you might use to see why a message is sitting in the
queue awaiting delivery to xtel.co.uk. The basic idea is to duplicate the steps PMDF uses
to deliver SMTP mail on TCP/IP.

Example 34–1 Tracing TCP/IP Mail Delivery

% nslookup -query=mx xtel.co.uk !

Server: LOCALHOST
Address: 127.0.0.1

Non-authoritative answer:
XTEL.CO.UK preference = 10, mail exchanger = nsfnet-relay.ac.uk "

% /usr/sbin/ping nsfnet-relay.ac.uk #
PING NSFNET-RELAY.AC.UK (128.86.8.6): 56 data bytes
64 bytes from 128.86.8.6: icmp_seq=0 time=490 ms
CANCEL

% telnet nsfnet-relay.ac.uk 25 $
Trying... [128.86.8.6]
telnet: Unable to connect to remote host: Connection refused

! First use the NSLOOKUP utility to see what MX records, if any, exist for this host.
If no MX records exist, then you should try connecting directly to the host. If MX
records do exist, then you must test by connecting to the designated MX relays since
PMDF is required to honor MX information preferentially.

" In this example, the Domain Name Service returned the name of the designated MX
relay for xtel.co.uk. This is the host that PMDF will actually connect to. If more
than one MX relay is listed, PMDF would try each in succession.

A simple way to test connectivity to the host is with a PING utility. If no response is
received then you have a network routing or configuration problem. If the problem
is on some router over which you have no control, there is not anything you can do
except to wait until it is fixed.

$ If you do have connectivity to the remote host, the next step is to see if it is accepting
inbound SMTP connections by using TELNET to the SMTP server port, port 25.
If you use TELNET without specifying the port, you can merely discover that the
remote host accepts normal TELNET connections. This by no means indicates that
it accepts SMTP connections: many systems can accept regular TELNET connections

34–15

Maintenance and Troubleshooting on UNIX
Common Problems and Solutions

but refuse SMTP connections or vice versa. Thus, you should always do your testing
against the SMTP port.

In this example, the remote host is currently refusing connections to the SMTP port.
This is undoubtedly why PMDF fails to deliver the message. The connection can
be refused due to a misconfiguration of the remote host or some sort of resource
exhaustion, again, on the remote host. There is absolutely nothing you can do locally
to solve the problem. Typically, you should just let PMDF continue to retry the
message.

If you are running on a TCP/IP network which does not use the Domain Name
Service, then you can skip steps ! and " and use PING and TELNET directly to the
host in question. Be careful to use precisely the host name that PMDF would use, which
can be ascertained by examination of the relevant log file from PMDF’s last attempt.

Note that if you test connectivity to a TCP/IP host and encounter no problems using
interactive tests, it is quite likely that the problem has simply been resolved since PMDF
last tried delivering the message. This is not an indication of a problem with PMDF.

34.4.6 PMDF Messages are Not Delivered

In addition to message transport problems, there are two other common problems
which can lead to messages sitting around unprocessed in the message queues:

1. There is a problem with the job controller process. It has crashed or is hung, or is
having some other problem which prevents it from processing messages.

2. The job controller’s in-memory queue cache database is not synchronized with the
messages in the queue directories.

Message files in the PMDF queue subdirectories which are awaiting delivery are
entered into the job controller’s in-memory queue cache database. When channel
programs run in order to deliver messages in their queues they consult the job
controller to determine what messages to process. There are circumstances which can
lead to message files in the queue that are not known to the job controller. Channel
programs will ignore queued messages which are not entered in the job controller’s
queue cache. You can use the pmdf cache -view utility to check if a particular file
is in the queue cache; if it is not, then the queue cache needs to be synchronized.

The queue cache is normally resynchronized daily. If required, you can manually
resynchronize the cache using the UNIX command

pmdf cache -synchronize

Once resynchronized, upon the next running of the PMDF periodic delivery job the
channel programs should process all messages in their queue.

3. Channel processing programs fail to run because they cannot create their execution
log file.

Check the access permissions, disk space and quotas.

34–16

Maintenance and Troubleshooting on UNIX
Common Problems and Solutions

34.4.7 Message Queues Contain .HELD Files

Mail messages in the PMDF message queue directories generally have a two-digit
file extension. If PMDF detects a message that is looping, it will rename the file so
that it has an extension of .HELD. Message files with such a file extension will not be
processed by PMDF channel programs and therefore will not be delivered. This is a
safety mechanism to prevent messages from looping indefinitely. Looping messages are
detected by having a large number of Received: headers lines.

34.4.7.1 Diagnosing .HELD Files

One cause of message loops is user error: a user forwards their messages on system
A to system B, and has system B set up to forward back to system A. The solution is for
the user to fix their forwarding definitions.

Another common cause of message loops is PMDF receiving a message that was
addressed to your host with a network name that PMDF does not recognize as one of
the host’s own names. For example, imagine a host which is known to the TCP/IP
domain name system and to other hosts and users as example.com, but whose PMDF
configuration does not know that. A message is sent to joe@example.com and is accepted
by the network and delivered to this host. Since PMDF does not know itself as
example.com, it will likely assume that example.com is elsewhere and direct the message
back out to the network and unwittingly loop the message back to itself. This loop will
continue until PMDF detects the loop and puts the message on hold.

If you detect such a situation you should try to determine by examination of the
message file whether there is a name you should add to your PMDF configuration as a
synonym for your official local host name. The Received: lines should show the path the
message travels through the loop.

Example 34–2 pmdf.cnf For milan.example.com

! pmdf.cnf - PMDF configuration file for milan.example.com
! Written by SYSTEM, 19-AUG-2012 21:23
! This file was created by the PMDF configuration generator.
!
! Rewrite rules for the local host/cluster
!
milan $u@milan.example.com !
milan.example.com $u@milan.example.com
naples $u@milan.example.com "
naples.example.com $u@milan.example.com
example.com $u@milan.example.com #
!
! Rewrite rules for the Internet

.

.

.

Example 34–2 Cont’d on next page

34–17

Maintenance and Troubleshooting on UNIX
Common Problems and Solutions

Example 34–2 (Cont.) pmdf.cnf For milan.example.com

l nox_env_to
milan.example.com $

.

.

.

! Rewrite rules for first cluster member to official local host.

" Rewrite rules for second cluster member to official local host.

We have added this rule so example.com is recognized.

$ The host name on the L channel (local channel) is always the official local host.

In Example 34–2 we have added example.com as another name for the cluster
consisting of milan.example.com and naples.example.com, where the official local host
name has been milan.example.com. Mail addressed to joe@example.com will now be
properly recognized and locally delivered.

If you do not believe that the name in question should be directed to your host,
then you can have to address the problem with a network configuration change or by
changing the behavior of a remote mailer.

34.4.7.2 Cleaning Up .HELD Files

After diagnosing and fixing the cause of the loop, .HELD files should be renamed to
.00; for example, in the csh shell you can use commands such as the following:

cd /pmdf/queue/tcp_local
foreach N ({.,*}/*.HELD)
? mv $N `dirname $N`/`basename $N \.HELD`.00
? end

Then synchronize the queue cache with the command

pmdf cache -synchronize

(Alternatively, the pmdf qm -maint utility’s release command can be used to cause
message files to cease to be .HELD and the PMDF queue cache database to be
synchronized.)

Then use the pmdf startup post to run the PMDF periodic delivery retry job
immediately. Now, after the resulting jobs have run, look around to see if there are
new .HELD files. There can very well be some. If there are still .HELD files in the
original queue directory, then you can not have solved the looping problem. However,
you can also find .HELD files in other queue directories such as the local channel (L
channel) queue directory. This is because PMDF marks a message .HELD when it has
too many Received: lines in which the local host appears. As the message moved from the
original directory to another directory (i.e., moved from one channel to another), PMDF
again saw too many Received: lines in the message’s header and again marked it .HELD.

34–18

Maintenance and Troubleshooting on UNIX
Common Problems and Solutions

This is to be expected. Simply repeat the process of renaming the .HELD files to .00,
synchronizing the queue cache, and again submitting PMDF processing jobs. Repeat this
process until there are no more .HELD files in any of the channel queue directories.

34.4.8 Messages are Looping

If PMDF detects that a message is looping, that message will be sidelined as a .HELD
file; see Section 33.4.7 for a discussion. But certain cases can lead to message loops which
PMDF can not detect. Some of the more common cases include:

1. A postmaster address is broken.

2. Stripping of Received: headers is preventing PMDF from detecting the message loop.

3. Incorrect handling of notification messages by other mail systems, that are generating
reencapsulated messages in response to notification messages.

The first step in dealing with looping messages is to determine why the messages
are looping. Useful things to look at are a copy of the problem message file while
it is in the PMDF queue area, PMDF mail log entries (if you have the logging
channel keyword enabled in your PMDF configuration file for the channels in question)
relating to the problem message, and PMDF channel debug log files for the channels in
question. Determining the From: and To: addresses for the problem message, seeing
the Received: headers, and seeing the message structure (type of encapsulation of
the message contents), can all help pinpoint which sort of message loop case you are
encountering.

For case (1), note that mail systems such as PMDF require that the postmaster
address be a functioning address that can receive e-mail. If a message to the postmaster
is looping, check that your configuration has a proper postmaster address pointing to an
account that can receive messages.

For case (2), note that normal detection of message loops is based on various
Received: headers. If Received: headers are being stripped—either explicitly on the
PMDF system itself, or more likely on some other system such as a firewall—that
interferes with proper detection of message loops. There will likely be two issues to
resolve: check that no undesired stripping of Received: headers is occurring so that if a
loop does occur it can be short-circuited, and check for the underlying reason why the
messages were looping. Possible underlying reasons for the occurrence of the message
loop in the first place include: a problem in the assignment of system names or a
system not configured to recognize a variant of its own name, a DNS problem, a lack
of authoritative addressing information on the system(s) in question, or a user address
forwarding error.

For case (3), note that Internet standards require that notification messages (reports
of messages being delivered, or messages bouncing) have an empty envelope From:
address to prevent message loops. However, some mail systems do not correctly handle
such notification messages; such mail systems can, when forwarding or bouncing such a
notification message, insert a new envelope From: address of their own. This can then
lead to message loops. The solution is to fix the mail system that is incorrectly handling
the notification messages.

34–19

Maintenance and Troubleshooting on UNIX
Common Problems and Solutions

34.4.9 Received Message is Encoded

Messages sent by PMDF are received in an encoded format; e.g.,

Date: Sun, 07 Jul 2012 11:59:56 -0700 (PDT)
From: "Elvis Presley" <elvis@example.com>
To: priscilla@example.edu
Subject: test message with 8bit data
MIME-Version: 1.0
Content-type: TEXT/PLAIN; CHARSET=ISO-8859-1
Content-transfer-encoding: QUOTED-PRINTABLE

2=00So are the Bo=F6tes Void and the Coal Sack the same?=

Such messages appear unencoded when read with a MIME-aware user agent such as
Pine or when decoded with a decoder such as pmdf decode.

The SMTP protocol as set forth by RFC 821 only allows the transmission of ASCII
characters. As ASCII is a seven-bit character set, the transmission via SMTP of eight bit
characters is illegal. As a practical matter, the transmission of eight bit characters over
SMTP is known to cause a variety of problems with some SMTP servers (e.g., cause SMTP
servers to go into compute bound loops, cause mail messages to be sent over and over
again, crash SMTP servers, wreak havoc with user agents or mailboxes which cannot
handle eight bit data, etc.).

Until the advent of RFC 1425 and RFC 1426, an SMTP client had only three
alternatives when presented with a message containing eight bit data: return the
message to the sender as undeliverable, encode the message, or send it anyhow in direct
violation of RFC 821. None of these alternatives were pleasant; prior to version 4.2,
PMDF chose the latter of the three owing to the lack of a standardized encoding format.
However, with the recent advent of MIME (first specified in RFCs 1521 and 1522, and
updated in RFCs 2045–2049) and the SMTP extensions work (RFC 1425 and RFC 1426),
there are now standard encodings which can be used to encode eight bit data using the
ASCII character set and mechanisms to negotiate, between the SMTP client and server,
whether or not eight bit data will be accepted as is by the server without first being
encoded.

When recipients receive encoded messages such as those shown above with a MIME
content type of TEXT/PLAIN, then invariably the original message contained eight bit
characters and the remote SMTP server to which the PMDF SMTP client transferred
the message did not support the transfer of eight bit data. PMDF then had to encode
the message.

34–20

Maintenance and Troubleshooting on UNIX
Common Problems and Solutions

34.4.10 From: Address Missing in Notifications from PMDF

Occassionally users or postmasters on other mail systems will complain that PMDF
is losing, dropping, forgetting, or otherwise omitting the envelope From: address in
messages it sends. You can be presented with a message header fragment like the one
shown below

From Thu Jul 11 11:50:23 2012
Received: from vulcan.ajax.com by monster.ajax.com via SMTP
(930416.SGI/931108.SGI.ANONFTP) for xxxx id AA21154;
Thu, 11 Jul 02 11:50:23 +1100

Date: Thu, 11 Jul 2012 11:49:26 +1000
From: PMDF Mail Server <postmaster@vulcan.ajax.com>

Note how in the first line there is a noticeable blank space between the ‘‘From’’ and
date? This header line is often referred to as the ‘‘colonless From line’’ and it gives the
envelope From: address for the message. That blank space indicates that the message
had no envelope From: address; that is, it had what is called in the mail business a ‘‘null
return path’’. Note further that this was an automatically generated mail message as
suggested by the RFC 822 From: address of postmaster@vulcan.ajax.com.

The relevant standards require that automatically generated messages such as non-
delivery notifications and delivery receipts use a null return path. As mailers are
supposed to bounce mail to the envelope From: address,3 this helps to prevent mail
loops from occurring.

If someone complains about the missing From: address, ask them to send you a
sample offending message. Determine if it was an automatically generated message. If
it was, then explain to them that if their mailer or user agent is incapable of handling
null return paths then it is incompliant with RFC 821 and 1123. Refer them to Paragraph
8 of Section 3.6 and the second paragraph of the MAIL command description in Section
4.1.1 in RFC 821. Further point out that were you to change your mailer to use a non-
null return path for automatically generated notifications, then you would be violating
the Internet Host Requirements; specifically, you would be in violation of Section 5.3.3
of RFC 1123.

Now, if for some reason you absolutely must generate non-null return paths in your
notification messages, then you can do so with the RETURN_ENVELOPE option of the
PMDF option file; see Section 7.3.4. Or to generate non-null return paths in notification
messages only for a particular channel or channels, you can use the returnenvelope
channel keyword; see Section 2.3.4.64. Be warned: Use of either the option or the
channel keyword will put you in violation of the Internet Host Requirements and, more
importantly, can lead to looping mail. Looping mail will not only inconvenience you but
can cause serious problems for some unfortunate site which gets into a loop with your
system. Also, keep in mind that changing PMDF’s behavior so as not to cause problems
for a broken mailer which cannot handle null return paths does not really fix anything:
Other mailers over which you have no control will continue to send the broken mailer
messages with null return paths. The only satisfactory solution in this situation is to fix
the broken mailer.

3 Some mailers will preferentially send notifications to the address specified with the non-standard Errors-to: or Warnings-
to: header lines. By default, PMDF itself sends notifications to the envelope From: address, unless configured otherwise
via the USE_ERRORS_TO and USE_WARNINGS_TO PMDF options.

34–21

Maintenance and Troubleshooting on UNIX
Common Problems and Solutions

34.5 Contacting Process Software Technical Support

Process Software provides technical support only for sites with a current mainte-
nance agreement.

If you obtained PMDF from an authorized Process Software distributor, then
technical support in your timezone can be most efficiently obtained from your distributor.
You can also contact Process Software directly if you want.

Process Software technical support can be contacted at:

Process Software, LLC
959 Concord Street
Framingham, MA 01701 USA
+1 508 879 6994
+1 508 879 0042 (FAX)
support@process.com

The public mailing list for PMDF sites, info-pmdf@process.com, is another useful
source of input and advice from other sites using PMDF.

When reporting a question or problem to Process Software technical support:

• Please include the output of the pmdf version command. This will include the
architecture type for your system, the operating system version for your system, the
PMDF installed version number, and the version of your PMDF shared library image.

• If the question regards a message, please include an entire sample message, in
particular including all message headers. When sending a sample message via e-
mail, please extract the sample message (with all headers) to a file and then send
that entire file as an attachment; this is much preferable to forwarding the message
as a message since forwarding as a message leaves headers (which can be an essential
clue) subject to further processing.

• If the question regards the operation of a particular channel, please include a debug
channel log file; see Section 2.3.4.85 for a discussion of obtaining channel debug log
files.

• Be prepared to send copies of relevant PMDF configuration files, if Process Software
technical support requests them.

34–22

Volume IV

The PMDF System Manager’s Guide is in four volumes. Volume I comprises
Chapter 1 through Chapter 13. Volume II comprises Chapter 14 through Chapter 28.
Volume III comprises Chapter 29 through Chapter 34.

PMDF software products are marketed directly to end users in North America, and
either directly or through distributors in other parts of the world depending upon the
location of the end user. Contact Process Software for ordering information, to include
referral to an authorized distributor where applicable:

Process Software, LLC
959 Concord Street
Framingham, MA 01701 USA
+1 508 879 6994
+1 508 879 0042 (FAX)
sales@process.com

Layered products

25

Glossary

APOP: RFC 1939, POP3, defines the APOP command. This is an alternate method for
authenticating the user which, rather than sending the username and password
in the clear over the network, encodes the password.

Authentication mechanism: An authentication mechanism is a particular method
for a client to prove its identity to a server. APOP, PLAIN and CRAM-
MD5 (mechanism names are as defined by RFC 2222, SASL), are examples of
authentication mechanisms. Another, but non-standard, mechanism is the LOGIN
mechanism. For discussions of particular mechanisms, see for instance RFC 2195
documenting CRAM-MD5, and RFC 1939 documenting APOP.

Authentication source: An authentication source is a file, database, interface to an
LDAP directory, etc., accessible to the server wherein are stored authentication
verifiers for users. The system password file, PMDF user profile passwords (PMDF
MessageStore or PMDF popstore profile passwords) and the PMDF password
database are examples of authentication sources.

Authentication verifier: An authentication verifier (e.g., password) is stored on the
server and contains information used to verify a user’s identity. The format of
the authentication verifier can restrict which mechanisms can be used. The term
authentication verifier is preferred in place of password, since while passwords are
the most common instance of authentication verifiers, an authentication verifier
could also be something like a certificate in an LDAP directory or the like; usually,
however, one can think ‘‘password’’ wherever one sees ‘‘authentication verifier’’.

Certificate: In the security context, a certificate is a guarantee, signed by some trusted
authority, that says that a piece of information is what it purports to be. For
instance, certificates are often needed and encountered when using a public key
pair.

Certificate Authority: A Certificate Authority is a recognized, generally well-trusted
authority that is willing to sign other organization’s certificates. A Certificate
Authority has a well-published certificate (containing their public key) that other
organizations can use to verify the Certificate Authority’s signature on other
certificates. Assuming that an organization trusts the Certificate Authority, this
then gives them confidence in certificates that include a valid signature from the
Certificate Authority. Verisign, Inc., and Thawte Consulting are two of the better
known commercial Certificate Authorities. Large corporations will sometimes, for
their own internal purposes, act as their own Certificate Authority.

Certificate request: A certificate request is a special form of a site’s public key suitable
for signing by a Certificate Authority. The signing of a certificate request generates
a certificate.

Channel block: The definition of a PMDF channel appearing in the PMDF configu-
ration file is called a channel block; see Section 2.3.2.

Glossary–1

Glossary

Channel keyword: A large number of channel keywords are available for use in PMDF
channel definitions (channel blocks) to control and modify the action of the channel
to which a keyword is applied; see Section 2.3.4.

Channel program: Loosely speaking, any program which enqueues or dequeues
messages to or from PMDF’s message queues.

Common name: In X.500 terminology, the common name or commonName or CN
attribute is a multi-valued attribute that describes an entry; typically it is
something like a person’s name, ‘‘First Middle Last’’, etc. The term is also used
in other contexts, such as in a certificate, and in non-X.500 directories, especially
LDAP directories.

CRAM-MD5: RFC 2195, IMAP/POP AUTHorize Extension, defines the CRAM-MD5
mechanism (Challenge-Response Authentication Mechanism using the MD5 digest
algorithm) for authenticating using an encoded password, rather than sending the
user’s password in the clear over the network.

Dequeue: The act of removing a mail message from PMDF’s message queues.

Distinguished name: In X.500 terminology, the distinguished name or distinguished-
Name or DN attribute uniquely identifies an object in the Directory Information
Tree. The term is also used in other contexts, such as in a certificate, and in non-
X.500 directories, especially LDAP directories, and hence is a much used term in
PMDF-DIRSYNC.

Enqueue: The act of submitting for transmission a mail message to PMDF.

Envelope: The message’s transport layer To: and From: addressing information is
contained in the message envelope.

GUI: A Graphics User Interface or GUI is a visually oriented interface, such as
typically seen on Mac or Windows systems.

IETF: The IETF, Internet Engineering Task Force, is the Internet standards body.

Keyword: See Channel keyword.

Private key: A private key is the secret half of a public key pair.

Public key: A public key is the published half of a public key pair.

Public key encryption: So-called public key encryption refers to encryption and
decryption using a pair of keys, referred to as a public key pair. One key is referred
to as the public key, and is generally published (visible to the outside world); the
other key is referred to as the private key and is secret and known only to the
owner of the public key pair. User A can encrypt data to send to user B using user
B’s public key, and then only user B will be able to decrypt the data by using user
B’s own private key.

Public key pair: Public key encryption uses pairs of keys, one kept secret and one
published (made accessible) to the outside world. What the public key encrypts,
the private key decrypts, and vice-versa. The keys together are called a public key
pair.

Glossary–2

Glossary

Mailbox filter: Mailbox filters are rules for individual users, for PMDF channels, or
for the PMDF system specifying screening of incoming messages; see Section 16.2.

Mapping table: Many components of PMDF make use of one or another mapping
table: a table mapping input strings to output strings. All PMDF mapping tables
are stored in the PMDF mapping file; see Chapter 5.

Master channel program: Any program which enqueues messages to PMDF’s message
queues.

MIME: See RFCs 2045–2049.

MTA: Message transfer agent; e.g., PMDF.

MUA: Mail user agent; see UA.

NOTARY: See RFCs 1891–1894.

RFC: Request For Comments; the Internet’s method of publishing documents.

RFC 821: RFC 821, written by Jonathan Postel, defines SMTP, the Simple Mail
Transfer Protocol, used to transfer messages over the Internet.

RFC 822: RFC 822, written by David Crocker, is the Internet standards document
entitled Standard for the Format of ARPA Internet Text Messages. Messages in
PMDF’s message queues conform to this standard; i.e., RFC 822 is the format
which PMDF uses internally.

RFC 1123: RFC 1123, edited by Robert Braden, is the Internet standards document
entitled Internet Host Requirements — Application and Support. PMDF adheres
to the requirements put forth by this document.

RFC 1566: RFC 1566, sometimes referred to as MADMAN, written by Steve Kille
and Ned Freed, is the Internet standards track protocol entitled Mail Monitoring
MIB. PMDF accumulates the necessary message traffic statistics needed for this
MIB. The concept of ‘‘group’’ used in the MIB is identified with a PMDF channel.
The PMDF_get_channel_stats routine can be used to access the messages traffic
statistics, referred to as channel statistics.

RFCs 1891–1894: RFCs 1891–1894, sometimes referred to as NOTARY, written by
Keith Moore and Greg Vaudreuil, are the Internet standards track documents for
the format and handling of notification messages.

RFCs 2045–2049: RFCs 2045–2049, commonly referred to as MIME, written by
Nathaniel Borenstein and Ned Freed, are the Internet standards track documents
describing the format of Internet message bodies. PMDF uses the specifications
laid out in this document when forming multipart messages, encoded messages,
etc. Note that RFCs 2045–2049 replaced RFCs 1521–1522 and 1431, previous
drafts of MIME.

RFC 2222: RFC 2222, SASL (Simple Authentication and Security Layer), describes
methods for adding authentication mechanisms, encryption, and data integrity
checking to protocols such as POP, IMAP, and SMTP.

Glossary–3

Glossary

RFC 2246: RFC 2246 defined TLS (Transport Layer Security), a protocol for providing
data integrity and encryption for reliable data connections (such as TCP).

SASL: See RFC 2222.

Security rule set: In the PMDF security configuration file context, a security rule set
is a set of rules determining which authentication mechanisms and sources are
permitted or used by the server. In PMDF the PORT_ACCESS mapping is used
to determine the security rule set to apply to an incoming connection, based on IP
addresses and ports.

Sign: In the context of a TLS certificate, to say that a certificate is signed means
that a Certificate Authority has generated a hash of the contents of the certificate
and used their own private key to encrypt that hash and then appended that
encrypted hash to the original certificate. Then other sites that want to check on
the validity of your certificate can use the Certificate Authority’s well-published
certificate (containing the Certificate Authority’s public key) to verify the hash
and thus verify that the contents of your supposed certificate match the contents
that were seen and signed off on by the Certificate Authority. Assuming that the
other site trusts the Certificate Authority, this then gives them confidence in your
certificate.

Slave channel program: Any program which dequeues messages from PMDF’s
message queues.

SMTP (Simple Mail Transfer Protocol): See RFC 821.

SSL (Secure Sockets Layer): This protocol was developed by Netscape and has been
superseded by TLS which is backward compatible with SSL.

Symmetric encryption: When encryption is done such that the same key encrypts and
decrypts the data, it is said that the encryption is symmetric. This does require
that the key that is used to encrypt the data must be given to the decryption side
in a secure fashion.

TLS (Transport Layer Security): See RFC 2246.

UA: User agent; e.g., the VMS MAIL utility or the Pine utility.

User domain: A user domain is an independent set of users known to the server.
This is useful, for example, if a server wants to support multiple sets of users
possibly with overlapping user names. In PMDF the PORT_ACCESS mapping
is used to determine the user domain for each incoming connection, based on IP
addresses and ports. Currently only the PMDF popstore authentication source
supports multiple user domains; for all other sources, or if no user domain is
explicitly specified in the PORT_ACCESS mapping, the default user domain is
assumed. Currently only the PMDF POP server supports authentication using a
user domain.

Virtual domain: When a system hosts multiple domain names, it is considered to
be supporting virtual domains—pseudodomain names that do not correspond to a
system dedicated to only that domain name. PMDF’s directory channel, etc., and
user domain support for PMDF popstore users, are examples of PMDF features
helpful in supporting virtual domains.

Glossary–4

Index

! routing • 2–6, 2–12

% routing • 2–6, 2–12

.forward file

See Files, .forward
.HELD files

See Held files

/etc/pmdf_tailor file

See Tailor file

733 keyword • 2–35, 2–45, 2–59, 18–7

822 keyword • 2–35, 2–45, 2–59

A
acceptalladdresses keyword • 2–35, 2–45

acceptvalidaddresses keyword • 2–35, 2–45

Access control

see also DNS_VERIFY

See also Mailbox filters

see also SPF and SRS

ACCESS_ERRORS option • 7–12

dispatcher

PORT_ACCESS mapping table • 11–13

logging rejections • 11–15

FROM_ACCESS mapping • 16–6 to 16–7

group ids • 2–35, 2–103

MAIL_ACCESS mapping • 16–4 to 16–5

multithreaded TCP SMTP channel

PORT_ACCESS mapping table • 21–11

NETMBX privilege • 2–103

network keyword • 2–103

ORIG_MAIL_ACCESS mapping • 16–4 to 16–5

ORIG_SEND_ACCESS mapping • 16–2 to 16–3

rightslist identifiers • 2–35, 2–103

SEND_ACCESS mapping • 16–2 to 16–3

Accounts

pmdf
use by pipe channels • 26–34

use in channel or system level mailbox filter

authentication • 16–28

PMDF

use by DN channels • 20–7

log files • 20–9

use by DSMTP channels • 20–2

log files • 20–5

use by pipe channels • 26–34

use in channel or system level mailbox filter

authentication • 16–28

Activity logging

See Logging

addlineaddrs keyword • 2–35, 2–48, 2–104

Addresses

See also Aliases

See also Pager channels

See also Printer channels

! routing • 2–6

% routing • 2–6

authenticated sender

adding to headers • 2–81, 16–6

autoregistration • 3–50

bang-style • 2–6

centralized naming • 3–44

channel-level translations • 2–34

conversion • 2–59

PMDF addresses to VMS format • 18–4 to 18–7

VMS addresses to PMDF format • 18–2 to 18–4

DECnet • 19–16

domain literals • 2–5

forwarding mail • 3–39

VMS MAIL • 19–8 to 19–9

Forwarding mail

See also Aliases

See also Directory channel

fully-qualified domain name (FQDN) • 2–5

IBM NOTES • 19–16

illegal • 2–30

interpretation • 2–60

percent hack • 2–5

personal name fields • 19–16

postmaster

alias • 3–6

returnpersonal keyword • 2–90

RETURN_ADDRESS option • 7–12

RETURN_PERSONAL option • 7–13

Postmaster

returnaddress keyword • 2–90

RFC 822 ‘‘specials’’ characters • 3–44

short-form domain name • 2–5

source routes • 2–5, 19–15

testing

OpenVMS • 29–69 to 29–75

UNIX • 30–67 to 30–73

types • 2–59

Addressing channels • 26–1 to 26–7

commands • 26–2 to 26–4

example • 26–3 to 26–4

configuration • 26–4 to 26–5

delivery receipts • 26–2

example • 26–5

operation • 26–2 to 26–4

options • 26–5 to 26–7

Index–1

Index

Addressing channels

options (cont’d)

example • 26–7

queue to e-mail symbiont

ADDRESSING_CHANNEL option • 27–2

Address reversal • 3–34 to 3–36

examples • 3–35

PMDF_REVERSE_DATABASE logical • 3–34

PMDF_REVERSE_DATABASE tailor file option • 3–34

reverse database

file name • 3–34

file protection • 3–34

reverse keyword • 2–86

REVERSE mapping • 3–34

REVERSE_ENVELOPE option • 7–8

USE_REVERSE_DATABASE option • 7–9

addrsperfile keyword • 2–35, 2–47, 2–66

addrsperjob keyword • 2–35, 2–53, 2–65 to 2–66

after keyword • 1–8, 2–35, 2–53, 2–68 to 2–69

Alias database

used in place of directory channel • 3–13

Aliases

ALIAS_HASH_SIZE option • 7–21

ALIAS_MEMBER_SIZE option • 7–21

compiling • 8–1

database • 3–7 to 3–10

description of • 3–8

example • 3–8

format • 3–9

location of • 3–8

PMDF_ALIAS_DATABASE logical • 3–8

PMDF_ALIAS_DATABASE tailor file option • 3–8

protection of • 3–8

USE_ALIAS_DATABASE option • 7–8

examples • 3–6, 3–8, 4–13

fFile

examples • 3–8

file • 3–1 to 3–13

compiling • 3–2, 3–4

continuation lines • 3–2, 4–2

description of • 3–1

examples • 3–6, 4–13

format • 3–2

include files • 3–4

location of • 3–2

protection of • 3–2

protection of include files • 3–4

include files • 3–4

local host • 2–32

logical name aliases • 3–11

NAME_TABLE_NAME option • 3–11, 7–8

mailing lists • 3–4

See also Mailing lists

personal alias database • 3–10

USE_PERSONAL_ALIASES option • 7–9

pipe commands

Aliases

pipe commands (cont’d)

See Pipe channels

PMDF_ALIAS_DATABASE logical • 3–8

PMDF_ALIAS_DATABASE tailor file option • 3–8

PMDF_ALIAS_FILE logical • 3–2

PMDF_ALIAS_FILE tailor file option • 3–2

PMDF_PERSONAL_ALIAS_DATABASE logical • 3–10

PMDF_PERSONAL_ALIAS_DATABASE tailor file option

• 3–10

postmaster • 3–6

recursion • 3–7

restrictions • 3–12

standard aliases • 3–6

subaddress matching • 3–6

| commands

See Pipe channels

aliases.dat file

See Aliases, Database

aliases file

See Aliases, File

aliaslocal keyword • 2–92

aliaslocal keyword • 2–35, 2–45, 2–92, 2–93, 3–6,

7–6

aliaslocal keywords • 3–1

aliaspostmaster keyword • 2–35, 2–51, 2–90

ALL-IN-1

Sender and Fetcher processes

restarting

when necessary • 8–6

allowetrn keyword • 2–35, 2–55, 2–76

allowswitchchannel keyword • 2–35, 2–50, 2–79

to 2–80

firewall system • 28–3

SMTP relay blocking • 16–10

Alternate protocol prefixes in VMS MAIL • 19–1

API

See the PMDF Programmer’s Reference Manual

APOP

See RFC 1939 (POP3)

APOP POP client authentication • 13–19, 14–27, 29–45,

30–38

Appledouble

See MacMIME format conversions

Applesingle

See MacMIME format conversions

Audit event

LOGIN • 13–19

NETWORK BREAKIN • 13–19

NETWORK LOGFAIL • 13–19

Authenticated sender address

See Addresses, Authenticated sender

Authentication services

See also Security configuration

API • 14–13

Index–2

Index

Authentication services (cont’d)

authentication mechanism • 14–1, 14–13, Glossary–1

authentication source • 14–2, Glossary–1

authentication source control • 14–1

transitioning • 14–16

authentication verifier • 14–1, Glossary–1

security rule set • 14–2, 15–8, Glossary–4

user domain • 14–2, Glossary–4

virtual domain • Glossary–4

authrewrite keyword • 2–35, 2–45, 2–48, 2–54, 2–81,

14–16

Autoregistration of addresses • 3–50

Availability of PMDF • li, 13–21, 28–25, 34–23

AVPL

See Pager channels, Addresses

See Printer channels, Addresses

B
Backslash

continuation line indicator

in aliases file • 3–3

in configuration file • 2–2

in mapping file • 5–2

bangoverpercent keyword • 2–5, 2–35, 2–45, 2–60

Bang-style address • 2–6

bangstyle keyword • 2–35, 2–45, 2–59

Bang-style rule • 2–12

BASE64 encoding

See Encodings, BASE64

Base notation

PMDF option file • 7–1

Basic operation of PMDF • 1–1, 32–1

Batch jobs • 9–1 to 9–8

See Processing jobs

MAIL$BATCH • 2–68

monitoring

OpenVMS • 33–7 to 33–9

bidirectional keyword • 2–35, 2–53, 2–62

Binary attachments

CHARSET-CONVERSION mapping • 6–4 to 6–5

Macintosh files • 6–7

MS Mail SMTP gateway • 6–4 to 6–5

Pathworks Mail • 6–4 to 6–5

Binhex

See MacMIME, Format conversions

Bitbucket channel • 26–7 to 26–9

configuration • 26–7 to 26–9

example • 26–7

blocketrn keyword • 2–36, 2–56, 2–76

blocklimit keyword • 2–36, 2–55, 2–97 to 2–98

See also Message, Size limits

Bouncing mail

See Returning messages

Bouncing messages

See Message, Bouncing

BREAKIN

audit event • 13–19

BSIN channels

See BSMTP channels

BSMTP channels • 23–1 to 23–23

BSIN channels • 23–1

BSOUT channels • 23–1

option file • 23–4

options

ATTEMPT_TRANSACTIONS_PER_SESSION

• 23–4

FORWARD mapping • 23–2

message authentication • 23–6, 23–15

message compression • 23–5, 23–15

PGP • 23–6, 23–16

service conversions • 23–3

BSOUT channels

See BSMTP channels

C
cacheeverything keyword • 2–36, 2–57, 2–65

cachefailures keyword • 2–36, 2–57, 2–65

cachesuccesses keyword • 2–36, 2–57, 2–65

cache utilities

See Utilities on UNIX, cache
CACHE utilities

See Utilities on OpenVMS, CACHE

Callable MAIL

SYS$SCRATCH use • 19–9

Case sensitivity

UNIX user names • 2–15, 17–2

Cc: headers

See Headers, Cc:

cc:Mail channels

delivery receipts • 2–71

CCSO and qi

Bruce Tanner’s implementation

FTP availability • 3–28

CCSO lookup

See CCSO form

See Directory channel, CCSO directories

Centralized naming

See Addresses, Centralized naming

Certificate Authority

Thawte Consulting • 15–2

Verisign, Inc. • 15–2

Index–3

Index

Channel

running manually • 30–54 to 30–60

Channel/host table • 2–1, 2–32

Channel blocks • 2–1, 2–32 to 2–34

additional lines in • 2–33 to 2–34

channel host/table • 2–32

channel-level address translations • 2–33 to 2–34

channel names • 2–32

length limit • 2–105

valid characters • 2–105

continuation line indicator • 2–2

description of • 2–32 to 2–34

examples • 2–110, 2–112, 2–113

first line in • 2–32

keywords

See Keywords

local host aliases • 2–32 to 2–33

official hosts • 2–32 to 2–33

second line in • 2–32 to 2–33

system names • 2–32 to 2–33

testing

OpenVMS • 29–69 to 29–75

UNIX • 30–67 to 30–73

channelfilter keyword • 2–36, 2–51, 2–101, 16–27

Channels • 1–6, 2–31 to 2–105

addresses per message copy • 2–66

addresses per message file • 2–66

addressing

See Addressing channels

channel blocks

See Channel blocks

clearing defaults for channel keywords • 2–105

conversion

See Conversion channel

D

See DECnet MAIL-11 channels

debugging • 33–6, 34–5

Debugging • 2–101

DECnet MAIL-11

See DECnet MAIL-11 channels

DECnet-PhoneNet

See DECnet-PhoneNet channels

DECnet-SMTP

See DECnet-SMTP channels

DEC NOTES

See NOTES channels

defaults channel block • 2–104 to 2–105

defaults for channel keywords • 2–104

defragmentation

See Defragmentation channel

description of • 1–6, 2–31 to 2–34

directory

See Directory channel

Directory Channel Lookup Mode • 2–103

Channels (cont’d)

disclaimer

See Disclaimer channel

DN

See DECnet-PhoneNet channels

DSMTP

See DECnet-SMTP channels

D_PATHWORKS

See Pathworks MAIL channel

expansion of addresses on incoming mail • 2–67

generic SMTP

See Generic SMTP channels

Immediate service behavior • 2–64

keywords

See Keywords

L

See Local channel (OpenVMS)

See Local channel (UNIX)

list of channels • 2–105 to 2–107

local

See Local channel (OpenVMS)

See Local channel (UNIX)

logging

See Log files

MAIL

See MAIL channels

Mail/list server

See Mail/list server

master program • 1–6, 2–31

message formats • 1–16 to 1–18

multiple subdirectories • 2–67

nodefaults channel block • 2–104 to 2–105

pager

See Pager channels

Pathworks MAIL

See Pathworks MAIL channel

periodic service behavior • 2–64

periodic service intervals • 1–9, 2–62 to 2–63

PhoneNet

See PhoneNet channels

PhoneNet over DECnet

See DECnet-PhoneNet channels

pipe

See Pipe channels

prefixes • 2–106 to 2–107

printer

See Printer channels

process

See Processing channel

queue maintenance • 29–78 to 29–122

NT • 30–84 to 30–121

UNIX • 30–84 to 30–121

queues • 2–31

Index–4

Index

Channels (cont’d)

reprocess

See Reprocess channel

restricting usage

See Access contol

running manually • 1–8

OpenVMS • 33–6

UNIX • 34–5

script

See Script channel

sensitivity check • 2–102

slave program • 1–6, 2–31

SMTP over DECnet

See DECnet-SMTP channels

SMTP over TCP/IP

See TCP/IP channels

TCP/IP

See TCP/IP channels

testing

OpenVMS • 29–69 to 29–75

UNIX • 30–67 to 30–73

UUCP

See UUCP channels

VMSNET

See UUCP channels

VN

See UUCP channels

Character set conversion

allowed character sets • 2–84

CHARSET-CONVERSION mapping • 6–1 to 6–10

chbuild utility • 30–9 to 30–11

CHBUILD utility • 29–11 to 29–12

examples • 6–3

initial character set labelling • 2–84

rables • 29–12

tables • 29–11 to 30–11

charset7 keyword • 2–36, 2–47, 2–84 to 2–85

charset8 keyword • 2–36, 2–47, 2–84 to 2–85

charsetesc keyword • 2–36, 2–47, 2–84 to 2–85

chbuild utility

See Utilities on UNIX, chbuild
CHBUILD utility

See Utilities on OpenVMS, CHBUILD

checkehlo keyword • 2–36, 2–56, 2–74 to 2–75

Checkpointing

message transmission • 2–96

Circuit check • 31–29

configuration file

format • 31–30

location • 31–30

parameters

AVERAGE_THRESHOLD • 31–32

AVERAGE_THRESHOLD_COMMAND • 31–32

DESTINATION • 31–32

EXPIRY • 31–33

Circuit check

configuration file

parameters (cont’d)

EXPIRY_COMMAND • 31–33

FAILED_COMMAND • 31–33

MAXIMUM_THRESHOLD • 31–33

MAXIMUM_THRESHOLD_COMMAND •

31–33

NAME • 31–33

OBSOLETE_COMMAND • 31–33

OUTSTANDING_COMMAND • 31–34

OUTSTANDING_MAX • 31–34

PRIORITY • 31–34

RECURRENCE • 31–34

SIZE • 31–34

option file • 31–30

options

INTERVAL • 31–30

restarting

when necessary • 8–6

clbuild utility

See Utilities on UNIX, clbuild
CLBUILD utility

See Utilities on OpenVMS, CLBUILD

client_auth keyword • 2–36, 2–54, 2–80

CMKRNL privilege usage • 1–8

cnbuild utility

See Utilities on UNIX, cnbuild
CNBUILD utility

See Utilities on OpenVMS, CNBUILD

Command definition

clbuild utility • 30–12 to 30–14

CLBUILD utility • 29–13 to 29–14

Commander

See HP Commander

commentinc keyword • 2–36, 2–48, 2–91 to 2–92

Comment lines

COMMENT_CHARS option • 7–20

in PhoneNet channel option file • 24–3

in PMDF option file • 7–2

commentomit keyword • 2–36, 2–48, 2–91 to 2–92

commentstrip keyword • 2–36, 2–48, 2–91 to 2–92

commenttotal keyword • 2–36, 2–48, 2–91 to 2–92

Compiled configuration version mismatch error • 33–13,

34–9 to 34–10

Compiling configurations

See Configuration file

Configuration file • 1–5 to 1–7, 2–1 to 2–114

blank lines • 2–2

channel blocks

See Channel blocks

cnbuild utility • 8–1 to 8–4

CNBUILD utility • 8–1 to 8–3

comment lines • 2–2

compiling • 8–1 to 8–4, 30–15 to 30–18

Index–5

Index

Configuration file

compiling (cont’d)

mailing lists • 4–2

config_data • 8–1

config_data.exe • 8–1

creation • 1–5

examples • 2–110, 2–112, 2–113

format • 1–5, 2–1 to 2–2

blank lines • 1–5

comment lines • 1–5

include files • 1–6

include files • 2–2

keywords

See Keywords

PMDF_CONFIG_DATA logical • 8–1

PMDF_CONFIG_DATA tailor file option • 8–1

PMDF_CONFIG_FILE logical • 1–5, 2–1

PMDF_CONFIG_FILE tailor file option • 1–5, 2–1

protection of • 1–5, 2–1

rewrite rules

See Rewrite rules

testing

OpenVMS • 29–69 to 29–75

UNIX • 30–67 to 30–73

use of • 1–6

Configuration utility

URL • 12–5, 29–1, 30–1

configure utility

See Utilities on UNIX, configure
CONFIGURE utility

See Utilities on OpenVMS, CONFIGURE

connectalias keyword • 2–36, 2–57, 2–61

connectcanonical keyword • 2–36, 2–57, 2–61

Content-transfer-encoding: header

See Headers, Content-transfer-encoding:

Content-type: header

See Headers, Content-type:

Continuation lines

in aliases file • 3–2, 4–2

in configuration file • 2–2

in mapping file • 5–2

Controlling PMDF usage

See Access control

Conversion channel • 22–1 to 22–18

bouncing messages • 22–13

command procedure

example • 22–15

Completion Statuses • 22–12

configuration • 22–3

conversion file • 22–3 to 22–12

example • 22–15

CONVERSIONS mapping • 22–2

example • 22–2, 22–15

conversion targets • 22–2

Conversion channel (cont’d)

DCL symbols

INPUT_DESCRIPTION • 22–9

INPUT_DISPOSITION • 22–9

INPUT_FILE • 22–9

INPUT_HEADERS • 22–9

INPUT_SUBTYPE • 22–9

INPUT_TYPE • 22–9

MESSAGE_HEADERS • 22–9

OUTPUT_DESCRIPTION • 22–9

OUTPUT_DIAGNOSTIC • 22–9, 22–13

OUTPUT_DISPOSITION • 22–9

OUTPUT_ENCODING • 22–9

OUTPUT_FILE • 22–9

OUTPUT_HEADERS • 22–9

OUTPUT_MODE • 22–9

OUTPUT_OPTIONS • 22–9

OUTPUT_SUBTYPE • 22–9

OUTPUT_TYPE • 22–9

deleting messages • 22–14

deleting parts • 22–14

environment variables

INPUT_DESCRIPTION • 22–9

INPUT_DISPOSITION • 22–9

INPUT_FILE • 22–9

INPUT_HEADERS • 22–9

INPUT_SUBTYPE • 22–9

INPUT_TYPE • 22–9

MESSAGE_HEADERS • 22–9

OUTPUT_FILE • 22–9

OUTPUT_HEADERS • 22–9

OUTPUT_OPTIONS • 22–9, 22–12

example • 22–3

firewall system • 28–15

holding messages • 22–14

No Changes • 22–14

override options

OUTPUT_DESCRIPTION • 22–9

OUTPUT_DIAGNOSTIC • 22–9, 22–13

OUTPUT_DISPOSITION • 22–9

OUTPUT_ENCODING • 22–9

OUTPUT_MODE • 22–9

OUTPUT_SUBTYPE • 22–9

OUTPUT_TYPE • 22–9

STATUS • 22–9

parameters

COMMAND

DCL symbols • 22–9

environment variables • 22–9

PMDF_ _FORCEBITBUCKET status code • 22–14

PMDF_ _FORCEDELETE status code • 22–14

PMDF_ _FORCEDISCARD status code • 22–14

PMDF_ _FORCEHOLD status code • 22–14

PMDF_ _FORCERETURN status code • 22–13

PMDF_ _NOCHANGE status code • 22–14

PMDF_CONVERSION_FILE logical • 22–3

Index–6

Index

Conversion channel (cont’d)

PMDF_CONVERSION_FILE tailor file option • 22–3

specifying conversions • 22–3 to 22–12

example • 22–15 to 22–18

virus scanning • 22–1

with script channel or disclaimer channel • 22–29

Conversion file • 22–3 to 22–12

example • 22–15

format • 22–3

MIME relabelling • 6–5 to 6–7

parameters • 22–5

RELABEL

example • 6–5 to 6–7

SERVICE-COMMAND

example • 6–8

TAG • 4–5

service conversions • 6–8

conversions file

See Conversion file

convertdb utility

See Utilities on UNIX, convertdb
convert_octet_stream keyword • 2–36, 2–46,

2–86

copysendpost keyword • 2–36, 2–51, 2–70

copywarnpost keyword • 2–36, 2–51, 2–71

Counters • 31–38 to 31–41

example • 31–39

firewall system • 28–8

implementation

OpenVMS • 31–40

UNIX • 31–41

purpose and use • 31–38

synchronization

automatic • 31–41

synchronization process on OpenVMS • 31–40

restarting

when necessary • 8–6

CRAM-MD5

See RFC 2195

CRAM-MD5 IMAP or POP client authentication • 13–19,

14–27, 29–45, 30–38

crdb utility

See Utilities on UNIX, crdb
CRDB utility

See Utilities on OpenVMS, CRDB

Crocker, David • 1–18

cron daemon

periodic service intervals • 2–63

PMDF return job • 1–12

processing jobs • 1–7

scheduling UUCP message return job • 25–7

UUCP channels • 25–7

D
daemon keyword • 2–36, 2–48, 2–57, 2–98 to 2–99

usage with generic SMTP channels • 26–50

usage with L, D, and MAIL channels • 18–5, 18–6 to

18–7

usage with TCP/IP channels • 21–11

Databases

address reversal

See Address reversal

alias

See Aliases

crdb utility • 30–27 to 30–30

CRDB utility • 29–31 to 29–34

creating • 29–31 to 29–34, 30–27 to 30–30

domain

See Domain database

dumping to a text file

NT • 30–31

OpenVMS • 29–37

UNIX • 30–31

duplicate entries • 2–28

forward

See Forward database

general substitution

See General database

long • 2–28, 29–31, 30–27

personal alias

See Aliases

pipe

See Pipe channels, Pipe database

queue cache

See Queue cache database

rightslist • 2–103

updating • 29–31 to 29–34, 30–27 to 30–30

Date: header

See Headers, Date:

datefour keyword • 2–36, 2–48, 2–94

datetwo keyword • 2–36, 2–48, 2–94

dayofweek keyword • 2–36, 2–48, 2–95

DB utility

See Utilities on OpenVMS, DB

DCF utility

See Utilities on OpenVMS, DCF

D channels

See DECnet MAIL-11 channels

DCL symbols

See also Conversion channel, DCL symbols

See also Script channel, DCL symbols

PMDF_BAD_MODEMS • 26–30

Index–7

Index

Debugging • 2–101, 33–6, 34–5

DEQUEUE_DEBUG option • 7–22

POST_DEBUG option • 7–22

RETURN_DEBUG option • 7–22

DECnet

addresses • 19–16

objects

DECnet-PhoneNet channels • 20–6 to 20–7

DECnet-SMTP channels • 20–2 to 20–3

DECnet MAIL-11 channels • 18–1 to 18–10, 20–10

delivery receipts • 2–71

example • 18–8

PMDF addresses to VMS format • 18–4 to 18–7

RMS-W-RTB errors • 33–17

VMS addresses to PMDF format • 18–2 to 18–4

DECnet-PhoneNet channels • 20–5 to 20–9

configuration • 20–6 to 20–9

DECnet object • 20–6 to 20–7

example • 20–7 to 20–9

netserver.log • 20–9

slave logs • 20–9

DECnet-SMTP channels • 20–1 to 20–5

configuration • 20–2 to 20–5

DECnet object • 20–2 to 20–3

example • 20–4

netserver.log • 20–5

option file • 20–5

slave logs • 20–5

DEC NOTES channels • 26–50 to 26–54

configuration • 26–50 to 26–51

example • 26–50

NOTES-SUBJECT mapping • 26–53

options • 26–51 to 26–53

NOTEFILE • 26–51

PREFIXES • 26–51

RETAIN_FAILURES • 26–52

RETENTION_TIME • 26–52

SET_PERSONAL_NAME • 26–52

SUBJECTFILE • 26–53

SUBJECT_GROUPING • 26–53

USERNAME • 26–52, 26–53

DECwindows MAIL

ENQLM quota • 19–9

FILLM quota • 19–9

defaulthost keyword • 2–36, 2–45, 2–48, 2–82 to

2–83

defaultmx keyword • 2–36, 2–57, 2–77 to 2–78

defaultnameservers keyword • 2–36, 2–57, 2–77

to 2–78

Default rule • 2–12

defaults channel block • 2–104 to 2–105

Deferred address expansion

See also Reprocess channel

expandchannel keyword • 2–67

expandlimit keyword • 2–67

Deferred expansion of mailing lists

example • 4–13

deferred keyword • 2–36, 2–53, 2–69

Defragmentation channel • 26–9 to 26–10

configuration • 26–9 to 26–10

example • 26–9

defragment keyword • 2–36, 2–46, 2–96, 26–9

firewall system • 28–15

DELAY Utility

See Utilities on MS-DOS, DELAY

Deleting messages • 29–90, 30–94

DELIVER

default batch queue • 19–17

filtering personal mail • 19–17

MAIL_DELIVERY_FILENAME option • 7–23

USE_MAIL_DELIVERY option • 7–24

Delivery receipts • 2–71 to 2–72, 19–12 to 19–15

DELIVERY_RECEIPT_OFF option • 7–22

DELIVERY_RECEIPT_ON option • 7–23

Delivery-receipt-to: header • 2–71

See Headers, Delivery-receipt-to:

Delivery via programs

See Pipe channels

Denial of service attack

firewall system • 28–12

message size limits • 2–97

description keyword • 2–36, 2–58, 2–102

destinationfilter keyword • 2–36, 2–51, 2–101,

16–27

Directories

NT

Documentation

UsuallyC:\pmdf\doc
Language-specific

Normally points to C:\pmdf\table
Log

Usually C:\pmdf\log
Queue

Usually C:\pmdf\queue
Spool

Usually C:\pmdf\queue
Table

Usually C:\pmdf\table
OpenVMS

Documentation

PMDF_DOC:

Language-specific

PMDF_LANG: normally points to PMDF_

TABLE:

Log

PMDF_LOG:
MAILSERV spool

Index–8

Index

Directories

OpenVMS

MAILSERV spool (cont’d)

PMDF_QUEUE:[mailserv.spool] •

4–30

Queue

PMDF_QUEUE:

Spool

PMDF_QUEUE:

Table

PMDF_TABLE:
UNIX

Documentation

/pmdf/doc
Language-specific

Normally points to /pmdf/table
Log

/pmdf/log
MAILSERV spool

/pmdf/queue/mailserv/spool/ •

4–30

Queue

/pmdf/queue
Spool

/pmdf/queue
Table

/pmdf/table
Directory channel • 3–13 to 3–27

ALL-IN-1 lists • 3–19 to 3–20

CCSO directories • 3–27 to 3–33

examples • 3–33

options • 3–28 to 3–32

DEPARTMENT_FIELD_NAME • 3–31

EMAIL_FIELD_NAME • 3–31

LEADING_WILDCARDS • 3–31

NAME_FIELD_NAME • 3–31

NO_MATCH_HOST • 3–31

PUBLIC_EMAIL_FIELD_NAME • 3–31

QI_SERVERS • 3–29, 3–32

QUERY_METHOD_ • 3–29 to 3–31

RECV_TIMEOUT • 3–32

SITEINFO • 3–32

SIZELIMIT • 3–32

STRIP_QUOTES • 3–32

configuration • 3–14 to 3–27

CRDB or crdb databases • 3–17 to 3–19

default entries • 3–18

duplicate entries • 3–19

entries • 3–17 to 3–18

examples • 3–19

subaddresses • 3–18

wildcard entries • 3–18

examples • 3–14, 3–17, 26–27 to 26–28

firewall system • 28–20

Directory channel (cont’d)

general options

DEFAULT_METHOD • 3–16

INLINE_AMBIGUOUS • 3–15

inline mode • 3–15

LDAP/X.500 directories • 3–20 to 3–27

examples • 3–25

LDAP filters • 3–26 to 3–27

mailbox syntax • 3–26

options • 3–21 to 3–25

BIND • 3–22

CACERTFILE • 3–22

DISPLAY_MAIL_TYPE • 3–22

DN • 3–22

FILTERFILE • 3–23

FILTERTAG • 3–23

HINT_TYPE • 3–23

LDAP_BASE • 3–23

LDAP_SERVERS • 3–23

MAIL_TYPE • 3–24

PASSWORD • 3–24

SIZELIMIT • 3–24

TLS_MODE • 3–22

TRANSPORT • 3–24

TRIM • 3–25

TLS options • 3–21

UCX emulation required of TCP/IP package • 3–20

multiple pseudo domains • 3–16

X.500 directories

See Directory channel, LDAP/X.500 directories

Directory Channel Lookup Mode • 2–103

dirsync utilities

See Utilities on UNIX, dirsync
DIRSYNC utilities

See Utilities on OpenVMS, DIRSYNC

disableetrn keyword • 2–36, 2–56, 2–76

Disclaimer channel • 22–24 to 22–29

configuration • 22–26 to 22–29

DISCLAIMER mapping • 22–25

example • 22–25

disclaimer targets • 22–25

disclaimer text • 22–28

example • 22–26

option file • 22–26 to 22–28

format • 22–27

options • 22–27

options • 22–27

DEFAULT_FILE • 22–27

HEADER • 22–27

HTML_BOTTOM • 22–27

HTML_TOP • 22–28

PLAIN_BOTTOM • 22–28

PLAIN_TOP • 22–28

with conversion channel or script channel • 22–29

Index–9

Index

Disclaimers

See Disclaimer channel

Disk quotas

users’ • 2–98

Dispatcher • 11–1

configuration file • 11–3 to 11–12

Format • 11–3

configuration options • 11–5

configuration utility • 11–3

debugging • 11–15

operation • 11–1

options

ASTLM • 11–5

BACKLOG • 11–7

BIOLM • 11–5

BYTLM • 11–5

tuning POP and IMAP mailbox servers • 11–7

CPULM • 11–5

DEBUG • 11–15

DIOLM • 11–5

DNS_VERIFY_DOMAIN • 11–7

connection logging • 7–16

ENABLE_RBL • 11–8

connection logging • 7–16

ENQLM • 11–5

FILLM • 11–5

GROUP • 11–8

HISTORICAL_TIME • 11–8

IMAGE • 11–9

INTERFACE_ADDRESS • 2–77, 11–9

JTQUOTA • 11–5

LOGFILE • 11–9

MAX_CONNS • 11–2, 11–9

MAX_HANDOFFS • 11–10

MAX_IDLE_TIME • 11–10

MAX_LIFE_CONNS • 11–10

MAX_LIFE_TIME • 11–10

MAX_PROCS • 11–2, 11–10

MAX_SHUTDOWN • 11–10

MIN_CONNS • 11–2, 11–10

MIN_PROCS • 11–2, 11–10

PARAMETER • 11–11

PGFLQUOTA • 11–5

PORT • 11–11

HTTP server • 12–1

PRCLM • 11–5

PRIORITY • 11–11

STACKSIZE • 11–11

TLS_CERTIFICATE • 11–11, 15–4

TLS_PORT • 11–11, 15–4

example • 15–7

TQELM • 11–5

UCX_HOLD • 11–12, 11–18

USER • 11–8

WP_TIMEOUT • 11–12

WSDEFAULT • 11–5

Dispatcher

options (cont’d)

WSEXTENT • 11–5

WSQUOTA • 11–5

PORT_ACCESS mapping table • 11–13

logging rejections • 11–15

rejecting connections • 11–13

logging • 11–15

restarting

OpenVMS • 29–56

UNIX • 30–51

when necessary • 8–6

starting

OpenVMS • 29–63

UNIX • 30–57

starting and stopping • 11–12

statistics • 11–16

access • 11–16

URL • 12–5, 29–1, 30–1

stopping

OpenVMS • 29–60

UNIX • 30–55

web-based monitoring • 11–16

worker processes • 11–2

Distribution lists

See Mailing lists

DN channels

See DECnet-PhoneNet channels

DNS_VERIFY • 16–15 to 16–18

Documentation

online

URL • 12–5, 12–7, 29–1, 30–1

Documentation directory

/pmdf/doc on UNIX

PMDF_DOC: on OpenVMS

Usually C:\pmdf\doc on NT

Document conversion

DCF utility • 29–35 to 29–36

Domain database • 2–28 to 2–30

building • 2–29

example • 2–29

location of • 2–28

PMDF_DOMAIN_DATABASE logical • 2–28

protection of • 2–28

USE_DOMAIN_DATABASE option • 7–8

domainetrn keyword • 2–36, 2–56, 2–76

Domain literals • 2–5, 2–9 to 2–10

Domain rewriting rules

See Rewrite rules

domainvrfy keyword • 2–37, 2–56, 2–76

Dot rule • 2–12

dropblank keyword • 2–37, 2–48, 2–83

DSMTP channels

See DECnet-SMTP channels

Index–10

Index

dumpdb utility

See Utilities on UNIX, dumpdb
D_PATHWORKS channel

See Pathworks MAIL channel

E
ehlo keyword • 2–37, 2–56, 2–74 to 2–75

EHLO SMTP command

See SMTP commands, EHLO

eightbit keyword • 2–37, 2–47, 2–56, 2–83 to 2–84,

33–26, 34–20

eightnegotiate keyword • 2–37, 2–47, 2–56, 2–83

to 2–84

eightstrict keyword • 2–37, 2–47, 2–57, 2–83 to

2–84

E-mail firewall • 28–1

Encodings

See also the PMDF User’s Guide

BASE64 • 6–1, 33–26, 34–20

QUOTED-PRINTABLE • 6–1, 33–26, 34–20

UUENCODE • 6–1

Encompass UUCP channels

See UUCP channels

ENQLM quota and DECwindows MAIL • 19–9

Enterprise Mail Monitor • 31–42

Envelope

channel-level address translations • 2–33 to 2–34

Envelope From: address

adding SMTP AUTH authenticated address • 16–6

blank

logging • 7–17

notification messages • 2–90, 7–13

mailing lists • 4–6, 4–12

Environment variables

See also Conversion channel, Environment variables

See also Script channel, Environment variables

PMDF_CHANNEL

generic SMTP channels • 26–49

PMDF_DISPATCHER_DEBUG • 11–15

PMDF_FROM • 17–2

RECIPIENT • 17–4

Errors

BADSTATE • 9–7

can’t set protections on segment: errno=11 • 34–10

cnbuild • 8–4 to 8–5, 34–6 to 34–10

CNBUILD • 8–4 to 8–5, 33–10 to 33–13

compiled configuration version mismatch • 33–13, 34–9

to 34–10

DNETDISABL • 9–7

DNETERROR • 9–8

DNETSHUT • 9–8

DNETUNKMSG • 9–8

Errors (cont’d)

ERRACTRNS • 33–15

error activating transport • 33–15

file create/open error • 33–13, 34–11

illegal host/domain • 33–14, 34–11

INVMRNOTIFY • 9–7

JBC-I-ITMREMOVED, meaningless items removed from

request • 9–5

jbc_channels: chan_execute [1]: fork failed: Not enough

space • 34–10

LIB-F-SYNTAXERR • 33–29

MAIL-E-ERRACTRNS • 33–15

mm_init • 8–5, 33–10 to 33–13, 34–6 to 34–10

bad equivalence for alias • 33–10, 34–7

cannot open alias include file • 33–10, 34–7

duplicate alias(es) found • 33–10, 34–7

duplicate host in channel table • 33–10, 34–7

duplicate mapping name found • 33–10, 34–7

error initializing ch_ facility • 33–11, 34–7

local host alias or proper name too long for system •

33–11, 34–8

mapping name is too long • 33–11, 34–8

no equivalence addresses for alias • 33–11, 34–8

no official host name for channel • 33–12, 34–8

no room in ... • 8–4 to 8–5, 29–17, 30–18, 33–10 to

33–13, 34–6 to 34–9

no room in channel host table • 33–12, 34–8

no room in channel table • 33–12, 34–9

no room in table for alias • 33–12, 34–9

no room in table for mapping • 33–12, 34–9

official host is too long • 33–12, 34–9

MRLSUBERR • 9–7

MRRSUBERR • 9–7

NOLICENSE • 33–16

No room in ...

See Errors, mm_init, No room in ...

OPTIONERR • 9–7

os_smtp_* • 33–15, 34–12

pager channels • 26–26

postmaster mail • 2–70, 2–71

PRCSMBFTL • 9–7

PRCSMBWRN • 9–7

Process Symbiont • 9–6 to 9–8

record too large • 33–17

returned messages • 2–70, 2–71

RMS-W-RTB • 33–17

smtp_open • 33–19, 34–15

SYSTEM-F-NOLICENSE • 33–16

troubleshooting

OpenVMS • 33–2

UNIX • 34–1

usage level requires PMDF-MTA service • 33–16, 34–12

VMS MAI

TEXT • 19–10

VMS MAIL • 19–10

NOSUCHNODE • 19–10

NOSUCHUSER • 19–10

Index–11

Index

Errors

VMS MAIL (cont’d)

permanent • 19–10

SYNTAX • 19–10

temporary • 19–10

USERDSABL • 19–10

VMS MAIL exits, hangs • 33–29

Errors-to: header

See Headers, Errors-to:

errsendpost keyword • 2–37, 2–52, 2–70

errwarnpost keyword • 2–37, 2–52, 2–71

/etc/pmdf_tailor file

See Tailor file

ETRN SMTP command

See SMTP commands, ETRN

Eudora

See POP clients

Event log (NT)

connection entries • 7–16, 31–2

HELD_SNDOPR option • 7–19

LOG_SNDOPR option • 7–18

message entries • 7–17, 31–2

severity of • 7–19

Event log entries

PORT_ACCESS mapping table • 11–13

SEND_ACCESS and related mapping table • 16–3

Exclamation point

comment indicator

in PMDF option file • 7–2

PhoneNet channel option files • 24–3

expandchannel keyword • 2–37, 2–47, 2–51, 2–53,

2–67

expandlimit keyword • 2–37, 2–47, 2–51, 2–53, 2–67,

26–48

Explicit routing • 2–60 to 2–61

EXPN SMTP command

See SMTP commands, EXPN

exproute keyword • 2–37, 2–45, 2–60 to 2–61

EXPROUTE_FORWARD option • 7–7

exquota keyword • 2–37, 2–55, 2–98

F
FAX channels

editing G3 files • 29–38 to 29–39, 29–96 to 29–97

FAX receive process

restarting

when necessary • 8–6

Programming

See the PMDF Programmer’s Reference Manual

FAX editing • 29–38 to 29–39, 29–96 to 29–97

FDUMP Utility

See Utilities on MS-DOS, FDUMP

File attachments

Pathworks MAIL • 18–9

fileinto keyword • 2–37, 2–51, 2–101, 16–26

Files

MF, MB, or other $M... files • 33–28

.forward • 17–3

comment characters • 17–4

.HELD files

See Held files

/etc/inetd.conf • 13–3

/pmdf/mailserv/files/help.txt • 4–21

/pmdf/mailserv/files/index.txt •

4–21

/pmdf/mailserv/mail/lists.txt • 4–21

aliases
See Aliases, File

aliases.dat
See Aliases, Database

aliasesdb.*
See Aliases, Database

all_master.com

See PhoneNet channels

auth_error.txt • 16–31

bad_modem_alert • 26–30

bad_modem_alert.com • 26–30

C:\pmdf\mailserv\files\help.txt •

4–22

C:\pmdf\mailserv\files\index.txt •

4–22

C:\pmdf\mailserv\mail\lists.txt •

4–22

cedit.txt • 30–32

character set

See chbuild utility

See CHBUILD utility

charsets.txt • 2–84, 6–3, 27–7

circuitcheck.cnf • 31–30

circuitcheck_results database • 31–35

circuitcheck_results_nodename.dat •

31–35

command definition

See clbuild utility

See CLBUILD utility

compiled configuration

See Configuration file

compress.com • 23–5

compress.sh • 23–15

configuration

See Configuration file

config_data • 30–15

See Configuration file

config_data.exe • 29–15

Index–12

Index

Files

config_data.exe (cont’d)

See Configuration file

connection.log* • 1–13

connection.log_current
IMAP connection logging • 13–11

POP connection logging • 13–13

conversions
See Conversion file

counters.dat • 31–40

daily_cleanup • 1–14, 31–3

dialproto.col • 24–1

dispatcher.cnf • 11–3

dispatcher_main.cnf • 11–3

di_x_y.log • 24–3, 24–10

di_x_y.trn • 24–10

domain.dat
See Domain database

Encompass UUCP

control. • 25–3

uucp_mailshr • 25–4

uucp_systartup.com • 25–4

uuxqt_dcl.com • 25–2

error.txt • 16–31

err_x.log • 24–10

general.dat
See General database

http.cnf • 12–2

mailbox filters CGI definition • 16–30

ignore-msg.txt • 13–15

image_install.com • 29–40

imapd.cnf • 13–7

imappop.cnf • 13–7, 13–12

init_mail_queues.com-sample • 9–3

internet.rules • 2–11

job_controller.cnf • 10–1

job_controller.cnf_site • 10–3

job_controller.log-uniqueid • 10–6,

34–5

LDAP/X.500 filter file • 3–23

ldapfilter.conf • 3–26

link_username.com

See the OpenVMS Edition of the PMDF Installation

Guide

log • 33–22, 34–16

See Log files

l_option • 17–6

mac_mappings.sample • 6–8

mail.delivery • 19–17

mail.log
See Logging

firewall system • 28–7

mail.log* • 1–13

mail.log_current
IMAP connection logging • 13–11

Files

mail.log_current (cont’d)

POP connection logging • 13–13

mailbox_filters_option • 16–30

mailserv_help.sample • 4–20, 4–21, 4–22

mailserv_index.sample • 4–20, 4–21, 4–22

mappings
See Mapping file

master.com • 1–8

use in troubleshooting • 33–6

maximum.dat • 29–16, 30–16, 30–17

maximum_charset.dat • 29–11, 29–12, 30–10

maximum_command.dat • 29–14, 30–13

netserver.log • 20–9

option

Channel, See specific channel

option.dat
See PMDF option file

option_charset.dat • 29–12

pager_table.sample • 29–66, 30–62

password.auth • 14–28, 29–45, 30–38

personal alias database

See Aliases

pgp_sign.com • 23–6

pgp_sign.sh • 23–16

pgp_verify.com • 23–8

pgp_verify.sh • 23–16

phone.ovr • 24–1

phone_list.dat • 24–1, 24–7

ph_x_y.log • 24–3, 24–10

pipe.dat
See Pipe channels, Pipe database

pipedb.*
See Pipe channels, Pipe database

pmdf.cld • 29–13 to 29–14, 30–12 to 30–14

pmdf.cnf
See Configuration file

pmdf.cop • 29–14

pmdf.filter • 16–27

pmdfimage.dat • 29–40

pmdf_bad_modem-uniqueid • 26–30

pmdf_check_logs.com • 1–13

pmdf_delete_queues.com • 9–2

pmdf_err.h • 22–12, 22–22

pmdf_init_queues.com • 9–2

PMDF_MAILSERV_FILES_DIR:help.txt •

4–20

PMDF_MAILSERV_FILES_DIR:index.txt •

4–20

PMDF_MAILSERV_MAIL_DIR:lists.txt •

4–21

pmdf_process_smb.opt • 9–3

PMDF_QUEUE:$... • 1–16

pmdf_sendmail.log • 2–101

Index–13

Index

Files (cont’d)

pmdf_site_startup.com • 1–21, 4–20, 25–4

pmdf_startup.com • 19–4

created during PMDF installation • 1–21

pmdf_start_queues.com • 9–2

pmdf_stop_queues.com • 9–2

pmdf_submit_jobs.com • 33–9

check Encompass UUCP message return job •

25–4

pmdf_tailor

See Tailor file

pop3d.cnf • 13–12

pop3d_thread.log • 13–12

pop3s_thread.log • 13–12

post.com • 1–9 to 1–11

post.log-uniqueid • 34–5

post.sh • 1–9 to 1–11

post_job.exe • 1–9 to 1–11

printer_setup.ps_sample • 26–46

profiledb • 17–5, 30–77

protections

See Protections

qm.com • 29–78

queue_cache.fdl • 32–2

return.com • 1–11, 1–13

return.log-uniqueid • 34–5

return.sh • 1–11

return_*.txt • 1–12

return_bounced.txt • 1–12, 29–59, 29–111,

30–53, 30–112

return_job.exe • 1–11

return_uucp • 25–7

return_uucp.exe • 25–4

return_uucp.log • 25–7

return_vn.com • 25–4

reverse.dat
See Address reversal

security.cnf • 14–3

sequence number files

autoregistration of addresses • 3–51

sequence_number.fdl • 3–51

server-certreq.pem
using • 15–2

server-priv.pem
using • 15–3

server-pub.pem
using • 15–3

siteimage.dat • 29–40

start_synch_counters.com • 31–44

submit_master.com • 1–9

use in troubleshooting • 33–6

sysexits.h • 26–31

task_server_queue-name.log • 9–2, 9–5,

9–6

tcp_smtp_server.log-uniqueid • 34–5

Files (cont’d)

temporary • 1–16

test_smtp_master • 26–49

test_smtp_slave • 26–49

version limits

See Log files

filesperjob keyword • 2–37, 2–53, 2–65 to 2–66

FILLM quota and DECwindows MAIL • 19–9

filter keyword • 2–37, 2–51, 2–101, 16–25

substitution sequences • 16–25

find utility

See Utilities on UNIX, find
Firewall and e-mail • 28–1

Flushing disk output

FSYNC option • 7–20, 32–6

foreign keyword • 2–37, 2–46, 2–85

Foreign protocols for VMS MAIL • 19–1

Foreign protocols in VMS MAIL • 19–1

forwardcheckdelete keyword • 2–37, 2–57, 2–78

forwardchecknone keyword • 2–37, 2–57, 2–78

forwardchecktag keyword • 2–37, 2–58, 2–78

Forward database • 3–39

enabling use

USE_FORWARD_DATABASE option • 3–39

source specific entries • 3–39

Forwarding mail

See also Aliases

See also Directory channel

FQDN, fully-qualified domain name • 2–5

Fragmentation

See Defragment channel

See Message

Free Software Foundation

GZIP and GUNZIP utilities • 23–1

From: header

See Headers, From:

Fully-qualified domain name (FQDN) • 2–5

G
G3 files

See also Utilities on OpenVMS, G3

converting to DDIF • 29–38 to 29–39

editing • 29–38 to 29–39, 29–96 to 29–97

previewing • 29–38 to 29–39

G3 utility

See Utilities on OpenVMS, G3

General database

callout from mapping table • 5–11

callout from rewrite rule • 2–19

location of • 2–19

PMDF_GENERAL_DATABASE logical • 2–19

Index–14

Index

General database (cont’d)

protection of • 2–19

used in place of directory channel • 3–13

Generic SMTP channels • 26–49 to 26–50

goldmail keyword • 2–37, 2–52, 2–72

Grey Book • 2–99 to 2–100

grey keyword • 2–37, 2–45, 2–99 to 2–100

Group ids

access control for channels • 2–103

H
headerbottom keyword • 2–37, 2–48, 2–87 to 2–88

headerinc keyword • 2–38, 2–48, 2–87 to 2–88

headerlabelalign keyword • 2–38, 2–48, 2–95 to

2–96

headerlinelength • 2–95 to 2–96

headerlinelength keyword • 2–38, 2–48

headeromit keyword • 2–38, 2–48, 2–87 to 2–88

Header options • 2–107 to 2–110

ADD • 2–108

CUTLINES • 2–108

Defaults: tag • 2–108

EMPHASIS • 2–109

FILL • 2–109

GROUP • 2–109

LINELENGTH • 2–109

MAXCHARS • 2–109

MAXIMUM • 2–109

MAXLINES • 2–110

Other: tag • 2–108

PRECEDENCE • 2–110

RELABEL • 2–110

headerread keyword • 2–38, 2–48, 2–88, 2–107

Headers

Cc:

VMS MAIL incoming mail • 19–12

VMS MAIL outgoing mail • 19–4

Comments:

mailing lists • 4–13

comment strings • 2–91 to 2–92

content-transfer-encoding:

VMS MAIL • 19–5

content-type:

VMS MAIL • 19–5

Date: • 2–94, 2–95

Deferred-delivery: • 2–69

Delivery-receipt-to: • 2–71

VMS MAIL • 19–13

Disposition-notification-to:

VMS MAIL • 19–13

errors-to:

See also the OpenVMS Edition of the PMDF User’s

Guide

Headers (cont’d)

Errors-to:

mailing lists • 4–12

USE_ERRORS_TO option • 7–13

fragmentation • 26–9

From:

UNIX mail user agent outgoing messages • 17–2

VMS MAIL incoming mail • 19–11

VMS MAIL outgoing mail • 19–5

imbedded • 19–17

importance:

See also the OpenVMS Edition of the PMDF User’s

Guide

Importance: • 2–110

incoming VMS MAIL • 19–11

inner rewriting • 2–86

keywords:

See also the OpenVMS Edition of the PMDF User’s

Guide

lines • 1–17

List-Archive: • 4–7

List-Help: • 4–7, 4–32, 4–35

List-Owner: • 4–7, 4–32, 4–35

List-Post: • 4–7, 4–32, 4–35

List-Subscribe: • 4–7, 4–32, 4–35

List-Unsubscribe: • 4–7, 4–32, 4–35

Message-id: • 28–18

omitting • 2–87 to 2–88

organization:

See also the OpenVMS Edition of the PMDF User’s

Guide

personal strings • 2–92

priority:

See also the OpenVMS Edition of the PMDF User’s

Guide

Priority: • 2–110

effect on PMDF processing • 2–62

Read-receipt-to:

VMS MAIL • 19–13

Received: • 28–18

PMDF_RELAYING logical name • 19–17

SASL use • 14–25, 15–10

TLS use • 14–25, 15–10

references:

See also the OpenVMS Edition of the PMDF User’s

Guide

relocating • 2–87 to 2–88

Reply-to:

See also the OpenVMS Edition of the PMDF User’s

Guide

mailing lists • 4–12

Resent-date:

VMS MAIL • 19–6, 19–8

Resent-from:

VMS MAIL • 19–6, 19–8

Index–15

Index

Headers (cont’d)

Resent-reply-to:

VMS MAIL • 19–6

Resent-Sender:

adding SMTP AUTH authenticated address • 2–81

Resent-to:

in forwarded mail • 19–8

VMS MAIL • 19–7, 19–8

Return-receipt-to: • 2–71

Sender:

adding SMTP AUTH authenticated address • 2–81,

16–6

VMS MAIL • 19–5

sensitivity:

See also the OpenVMS Edition of the PMDF User’s

Guide

Sensitivity:

checking • 2–102

size limits

See Message, Size limits

Subject:

VMS MAIL • 19–7, 19–12

To:

VMS MAIL • 19–7

VMS MAIL incoming mail • 19–11

trimming • 2–88

VMS MAIL outgoing mail • 19–3 to 19–8

Warnings-to:

See also the OpenVMS Edition of the PMDF User’s

Guide

mailing lists • 4–13

USE_WARNINGS_TO option • 7–13

wrapping of • 2–95, 2–109

X-Envelope-to: • 2–89

VMS MAIL • 19–7

X-FAX-defaults:

See also the OpenVMS Edition of the PMDF User’s

Guide

X-MSMail-Priority: • 2–110

X-Organization:

See also the OpenVMS Edition of the PMDF User’s

Guide

X-Priority: • 2–110

X-PS-qualifiers:

See also the OpenVMS Edition of the PMDF User’s

Guide

X-Sun-Content-encoding: • 6–4

X-Sun-Content-label: • 6–4

X-Sun-Content-length: • 6–4

X-Sun-Content-lines: • 6–4

X-VMS-Cc:

VMS MAIL • 19–8

X-VMS-To:

VMS MAIL • 19–8

headertrim keyword • 2–38, 2–48, 2–88, 2–107, 2–108

firewall system • 28–19

header_733 keyword • 2–37, 2–48, 2–59

header_822 keyword • 2–37, 2–48, 2–59

header_uucp keyword • 2–37, 2–48, 2–59

Held files

cleaning up • 33–24, 34–18

diagnosing • 33–23 to 33–24, 34–17 to 34–19

HELD_SNDOPR option • 7–19

holding due to excessive recipient addresses • 2–67

firewall system • 28–11

MAX_LOCAL_RECEIVED_LINES option • 7–19

MAX_MR_RECEIVED_LINES option • 7–19

MAX_RECEIVED_LINES option • 7–19

MAX_TOTAL_RECEIVED_LINES option • 7–20

MAX_X400_RECEIVED_LINES option • 7–20

OPCOM broadcast notification • 7–19

syslog message notification • 7–19

HELO SMTP command

See SMTP commands, HELO

Hexadecimal values

PMDF option file • 7–1

holdexquota keyword • 2–38, 2–55, 2–98

holdlimit keyword • 2–38, 2–45, 2–51, 2–55, 2–67

firewall system • 28–11

Horton, Mark • 25–1

HP Commander • 31–42

HTTP server • 12–1

access • 12–5

configuration • 12–1

mailbox filters • 16–30

configuration file • 12–2

firewall system • 28–16

logging • 12–1

monitoring • 31–47

options

ALLOW_ROBOTS • 12–2

DEBUG • 12–2

DESCRIPTION • 12–2

DOMAINNAME • 12–3

GET • 12–4

HEAD • 12–4

HIDDEN • 12–4

LOGGING • 12–1, 12–4

METHODS • 12–4

PATH • 12–4

PORT • 12–4

POST • 12–4

REDIRECT • 12–4

port used • 12–1

restarting

when necessary • 8–6

Index–16

Index

I
identnone keyword • 2–38, 2–58, 2–78

identnonelimited keyword • 2–38, 2–58, 2–78

identnonenumeric keyword • 2–38, 2–58, 2–78

identnonesymbolic keyword • 2–78

IETF (Internet Engineering Task Force) • Glossary–2

ignoreencoding keyword • 2–38, 2–46, 2–89

ignoremessageencoding keyword • 2–38, 2–46

ignoremultipartencoding keyword • 2–38,

2–46

Illegal host/domain error • 33–14, 34–11

IMAP server

See Mailbox servers

immediate keyword • 2–38, 2–53, 2–62 to 2–63

Immediate service behavior • 2–64

Immediate submission jobs

See Processing jobs

immnonurgent keyword • 2–38, 2–53, 2–62 to 2–63

immnormal keyword • 2–38, 2–53, 2–62 to 2–63

immurgent keyword • 2–38, 2–53, 2–62 to 2–63

Implicit routing • 2–60 to 2–61

Importance: header

See Headers, Importance:

improute keyword • 2–38, 2–45, 2–60 to 2–61

IMPROUTE_FORWARD option • 7–7

IN% protocol prefix in VMS MAIL • 19–1

includefinal keyword • 2–38, 2–52, 2–73

Infinite loop

See Loop, infinite

inline keyword • 2–38, 2–45, 2–103

inner keyword • 2–38, 2–48, 2–86

firewall system • 28–5, 28–20

innertrim keyword • 2–38, 2–48, 2–88

firewall system • 28–19

Installation

images on OpenVMS

See Utilities on OpenVMS, INSTALL

PMDF

See the appropriate edition of the PMDF Installation

Guide

INSTALL utility

See Utilities on OpenVMS, INSTALL

interfaceaddress keyword • 2–38, 2–58, 2–77,

11–9

interpretencoding keyword • 2–47, 2–89

interpret keyword • 2–38

interpretmessageencoding keyword • 2–38,

2–47

interpretmultipartencoding keyword • 2–38,

2–47

J
Job Controller • 10–1 to 10–8

adding additional queues • 10–8

checking that it is running • 10–8

configuration • 10–1 to 10–7

configuration file

customizing • 10–3

default • 10–3

example • 10–3, 10–4

format • 10–1, 10–3

location • 10–1

section names • 10–3

site supplied • 10–3

options • 10–5 to 10–7

ANON_HOST • 10–7

DEBUG • 10–6

JOB_LIMIT • 10–6

MASTER_COMMAND • 10–7

MAX_AGE • 10–7

MAX_CONNS • 10–7

MAX_MESSAGES • 10–6

QUEUE • 10–7

SECRET • 10–6

SLAVE_COMMAND • 10–7

restarting • 30–51

when necessary • 8–6

starting • 30–57

stopping • 30–55

Job Controller>

options

integer • 10–6

Jobs per addressee • 2–65 to 2–66

Jobs per file • 2–65 to 2–66

K
Kerberos V4 authentication information • 14–18

Keywords • 2–35 to 2–103

733 • 2–35, 2–45, 2–59, 18–7

822 • 2–35, 2–45, 2–59

acceptalladdresses • 2–35, 2–45

acceptvalidaddresses • 2–35, 2–45

addlineaddrs • 2–35, 2–48, 2–104

addrsperfile • 2–35, 2–47, 2–66

addrsperjob • 2–35, 2–53, 2–65 to 2–66

after • 1–8, 2–35, 2–53, 2–68 to 2–69

aliaslocal • 2–92

aliaslocal • 2–35, 2–45, 2–92, 2–93, 3–1, 3–6,

7–6

aliaspostmaster • 2–35, 2–51, 2–90

allowetrn • 2–35, 2–55, 2–76

Index–17

Index

Keywords (cont’d)

allowswitchchannel • 2–35, 2–50, 2–79 to

2–80

firewall system • 28–3

SMTP relay blocking • 16–10

authrewrite • 2–35, 2–45, 2–48, 2–54, 2–81,

14–16

bangoverpercent • 2–5, 2–35, 2–45, 2–60

bangstyle • 2–35, 2–45, 2–59

bidirectional • 2–35, 2–53, 2–62

blocketrn • 2–36, 2–56, 2–76

blocklimit • 2–36, 2–55, 2–97 to 2–98

See also Message, Size limits

cacheeverything • 2–36, 2–57, 2–65

cachefailures • 2–36, 2–57, 2–65

cachesuccesses • 2–36, 2–57, 2–65

channelfilter • 2–36, 2–51, 2–101, 16–27

charset7 • 2–36, 2–47, 2–84 to 2–85

charset8 • 2–36, 2–47, 2–84 to 2–85

charsetesc • 2–36, 2–47, 2–84 to 2–85

checkehlo • 2–36, 2–56, 2–74 to 2–75

client_auth • 2–36, 2–54, 2–80

commentinc • 2–36, 2–48, 2–91 to 2–92

commentomit • 2–36, 2–48, 2–91 to 2–92

commentstrip • 2–36, 2–48, 2–91 to 2–92

commenttotal • 2–36, 2–48, 2–91 to 2–92

connectalias • 2–36, 2–57, 2–61

connectcanonical • 2–36, 2–57, 2–61

convert_octet_stream • 2–36, 2–46, 2–86

copysendpost • 2–36, 2–51, 2–70

copywarnpost • 2–36, 2–51, 2–71

daemon • 2–36, 2–48, 2–57, 2–98 to 2–99

generic SMTP channels • 26–50

usage with L, D, and MAIL channels • 18–5 to 18–7

usage with TCP/IP channels • 21–11

datefour • 2–36, 2–48, 2–94

datetwo • 2–36, 2–48, 2–94

dayofweek • 2–36, 2–48, 2–95

defaulthost • 2–36, 2–45, 2–48, 2–82 to 2–83

defaultmx • 2–36, 2–57, 2–77 to 2–78

defaultnameservers • 2–36, 2–57, 2–77 to

2–78

defaults, setting • 2–104

deferred • 2–36, 2–53, 2–69

defragment • 2–36, 2–46, 2–96, 26–9

firewall system • 28–15

description • 2–36, 2–58, 2–102

description of • 2–35 to 2–58

destinationfilter • 2–36, 2–51, 2–101, 16–27

disableetrn • 2–36, 2–56, 2–76

domainetrn • 2–36, 2–56, 2–76

domainvrfy • 2–37, 2–56, 2–76

dropblank • 2–37, 2–48, 2–83

ehlo • 2–37, 2–56, 2–74 to 2–75

eightbit • 2–37, 2–47, 2–56, 2–83 to 2–84

eightnegotiate • 2–37, 2–47, 2–56, 2–83 to

2–84

Keywords (cont’d)

eightstrict • 2–37, 2–47, 2–57, 2–83 to 2–84

errsendpost • 2–37, 2–52, 2–70

errwarnpost • 2–37, 2–52, 2–71

expandchannel • 2–37, 2–47, 2–51, 2–53, 2–67

expandlimit • 2–37, 2–47, 2–51, 2–53, 2–67,

26–48

exproute • 2–37, 2–45, 2–60 to 2–61

EXPROUTE_FORWARD option • 7–7

exquota • 2–37, 2–55, 2–98

fileinto • 2–37, 2–51, 2–101, 16–26

filesperjob • 2–37, 2–53, 2–65 to 2–66

filter • 2–37, 2–51, 2–101, 16–25

substitution sequences • 16–25

foreign • 2–37, 2–46, 2–85

forwardcheckdelete • 2–37, 2–57, 2–78

forwardchecknone • 2–37, 2–57, 2–78

forwardchecktag • 2–37, 2–58, 2–78

goldmail • 2–37, 2–52, 2–72

grey • 2–37, 2–45, 2–99 to 2–100

headerbottom • 2–37, 2–48, 2–87 to 2–88

headerinc • 2–38, 2–48, 2–87 to 2–88

headerlabelalign • 2–38, 2–48, 2–95 to 2–96

headerlinelength • 2–38, 2–48, 2–95 to 2–96

headeromit • 2–38, 2–48, 2–87 to 2–88

headerread • 2–38, 2–48, 2–88, 2–107

headertrim • 2–38, 2–48, 2–88, 2–107, 2–108

firewall system • 28–19

header_733 • 2–37, 2–48, 2–59

header_822 • 2–37, 2–48, 2–59

header_uucp • 2–37, 2–48, 2–59

holdexquota • 2–38, 2–55, 2–98

holdlimit • 2–38, 2–45, 2–51, 2–55, 2–67

firewall system • 28–11

identnone • 2–38, 2–58, 2–78

identnonelimited • 2–38, 2–58, 2–78

identnonenumeric • 2–38, 2–58, 2–78

identnonesymbolic • 2–78

ignoreencoding • 2–38, 2–46, 2–89

ignoremessageencoding • 2–38, 2–46

ignoremultipartencoding • 2–38, 2–46

immediate • 1–8, 2–38, 2–53, 2–62 to 2–63

immnonurgent • 2–38, 2–53, 2–62 to 2–63

immnormal • 2–38, 2–53, 2–62 to 2–63

immurgent • 2–38, 2–53, 2–62 to 2–63

improute • 2–38, 2–45, 2–60 to 2–61

IMPROUTE_FORWARD option • 7–7

includefinal • 2–38, 2–52, 2–73

inline • 2–38, 2–45, 2–103

inner • 2–38, 2–48, 2–86

firewall system • 28–5, 28–20

innertrim • 2–38, 2–48, 2–88

firewall system • 28–19

interfaceaddress • 2–38, 2–58, 2–77, 11–9

interpretencoding • 2–38, 2–47, 2–89

interpretmessageencoding • 2–38, 2–47

Index–18

Index

Keywords (cont’d)

interpretmultipartencoding • 2–38, 2–47

lastresort • 2–38, 2–48, 2–58, 2–78

linelength • 2–38, 2–47, 2–85, 33–17

linelimit • 2–38, 2–55, 2–97 to 2–98

See also Message, Size limits

localvrfy • 2–38, 2–57, 2–76

logging • 2–39, 2–50, 2–100, 31–2 to 31–20

firewall system • 28–7

SASL use • 14–25

TLS use • 15–11

logicaldisk • 2–39, 2–47, 2–74

loopcheck • 2–39, 2–57

mailfromdnsverify • 2–39, 2–57, 2–58, 2–79

master • 1–8, 2–39, 2–53, 2–62

periodic delivery job • 1–10

master_debug • 2–39, 2–51, 2–101, 33–6, 34–5

maxblocks • 2–39, 2–47, 2–96 to 2–97

See also Message, Limits

maxheaderaddrs • 2–39, 2–48, 2–95

See also Message, Limits

maxheaderchars • 2–39, 2–49, 2–95

See also Message, Limits

maxjobs • 2–39, 2–53, 2–65 to 2–66

maxlines • 2–39, 2–47, 2–96 to 2–97

See also Message, Limits

maxperiodicnonurgent • 2–39, 2–53, 2–64

maxperiodicnormal • 2–39, 2–53, 2–64

maxperiodicurgent • 2–39, 2–53, 2–64

maxprocchars • 2–39, 2–51, 2–98

maysasl • 2–39, 2–54, 2–80

maysaslclient • 2–39, 2–54, 2–80

maysaslserver • 2–39, 2–54, 2–80

maytls • 2–39, 2–54, 2–81, 15–5

maytlsclient • 2–39, 2–54, 2–81, 15–5

maytlsserver • 2–39, 2–54, 2–81, 15–5

minperiodicnonurgent • 2–39, 2–53, 2–64

minperiodicnormal • 2–39, 2–53, 2–64

minperiodicurgent • 2–39, 2–53, 2–64

missingrecipientpolicy • 2–39, 2–45, 2–49,

2–83, 7–8

msexchange • 2–39, 2–54, 2–82, 15–5

multigate • 2–39, 2–48, 2–99

multiple • 2–39, 2–47, 2–66

mustsasl • 2–39, 2–54, 2–80

mustsaslclient • 2–39, 2–54, 2–80

mustsaslserver • 2–39, 2–54, 2–80

musttls • 2–39, 2–54, 2–81, 15–5

musttlsclient • 2–40, 2–54, 2–81, 15–5

musttlsserver • 2–40, 2–54, 2–81, 15–5

mx • 2–40, 2–58, 2–77 to 2–78

nameservers • 2–40, 2–58, 2–77 to 2–78

network • 2–40, 2–55, 2–103

noaddlineaddrs • 2–40, 2–49, 2–104

nobangoverpercent • 2–40, 2–45, 2–60

noblocklimit • 2–40, 2–55, 2–97 to 2–98

Keywords (cont’d)

nocache • 2–40, 2–58, 2–65

nochannelfilter • 2–40, 2–51, 2–101

noconvert_octet_stream • 2–40, 2–47, 2–86

nodayofweek • 2–40, 2–49, 2–95

nodefaulthost • 2–40, 2–45, 2–49, 2–82 to 2–83

nodeferred • 2–40, 2–53, 2–69

nodefragment • 2–40, 2–47, 2–96

nodestinationfilter • 2–40, 2–51, 2–101

nodns • 2–40, 2–58, 2–77 to 2–78

nodropblank • 2–40, 2–49

noehlo • 2–40, 2–57, 2–74 to 2–75

noexproute • 2–40, 2–46, 2–60 to 2–61

noexquota • 2–40, 2–55, 2–98

nofileinto • 2–40, 2–51, 2–101

nofilter • 2–40, 2–51, 2–101

noforeign • 2–40, 2–47, 2–85

nogoldmail • 2–40, 2–52, 2–72

nogrey • 2–40, 2–46, 2–99

noheaderread • 2–40, 2–49, 2–88, 2–107

noheadertrim • 2–40, 2–49, 2–88, 2–107

noimproute • 2–40, 2–46, 2–60 to 2–61

noinline • 2–40, 2–46, 2–103

noinner • 2–40, 2–49, 2–86

noinnertrim • 2–40, 2–49, 2–88

nolinelimit • 2–41, 2–47, 2–97 to 2–98

nologging • 2–41, 2–51, 2–100

nologicaldisk • 2–41, 2–47, 2–74

nomailfromdnsverify • 2–41, 2–57, 2–58,

2–79

nomaster_debug • 2–41, 2–51, 2–101

nomsexchange • 2–41, 2–54, 2–82, 15–5

nomultigate • 2–41, 2–48, 2–99

nomx • 2–41, 2–58, 2–77 to 2–78

nonrandommx • 2–41, 2–58, 2–77 to 2–78

nonurgentblocklimit • 2–41, 2–53, 2–55,

2–63

nonurgentnotices • 1–11, 2–41, 2–52, 2–69 to

2–70

nonurgentqueue • 2–41, 2–53, 2–68 to 2–69

noreceivedfor • 2–41, 2–49, 2–89

firewall system • 28–19

noreceivedfrom • 2–41, 2–49, 2–89

firewall system • 28–19

norelaxheadertermination • 2–41, 2–49

noremotehost • 2–41, 2–46, 2–49, 2–82 to 2–83

norestricted • 2–41, 2–46, 2–49

noreturnaddress • 2–41, 2–52, 2–90

noreturnpersonal • 2–41, 2–52, 2–90

noreverse • 2–41, 2–46, 2–49, 2–86, 3–34, 3–35

normalblocklimit • 2–41, 2–53, 2–55, 2–63

normalnotices • 1–11, 2–41, 2–52, 2–69 to 2–70

normalqueue • 2–41, 2–53, 2–68 to 2–69

norules • 2–22, 2–41, 2–46, 2–49, 2–62

nosasl • 2–41, 2–54, 2–80

nosaslclient • 2–41, 2–54, 2–80

Index–19

Index

Keywords (cont’d)

nosaslserver • 2–41, 2–54, 2–80

nosaslswitchchannel • 2–41, 2–50, 2–54,

2–80

nosendetrn • 2–41, 2–57, 2–75

nosendpost • 2–41, 2–52, 2–70

noserviceall • 2–41, 2–53, 2–64

noslave_debug • 2–42, 2–51, 2–101

nosmtp • 2–42, 2–57, 2–74

nosourcefilter • 2–42, 2–51, 2–101

noswitchchannel • 2–42, 2–50, 2–79 to 2–80

firewall system • 28–3

SMTP relay blocking • 16–9

notices • 1–11, 2–42, 2–52, 2–69 to 2–70

RETURN_DELTA option • 7–12

RETURN_UNITS option • 7–13

notls • 2–42, 2–54, 2–81, 15–5

notlsclient • 2–42, 2–54, 2–81, 15–5

notlsserver • 2–42, 2–54, 2–81, 15–5

novrfy • 2–42, 2–57, 2–76

nowarnpost • 2–42, 2–52, 2–71

nox_env_to • 2–42, 2–49, 2–89, 19–7

percents • 2–42, 2–46, 2–59

period • 2–42, 2–53, 2–62 to 2–63

periodic • 1–8, 2–42, 2–53, 2–62 to 2–63

personalinc • 2–42, 2–49, 2–92

personalomit • 2–42, 2–49, 2–92

personalstrip • 2–42, 2–49, 2–92

port • 2–42, 2–58, 2–77

postheadbody • 2–42, 2–52, 2–71

postheadonly • 2–42, 2–52, 2–71

queue • 1–10, 1–14, 2–42, 2–53, 2–68 to 2–69, 10–2

randommx • 2–42, 2–58, 2–77 to 2–78

readreceiptmail • 2–42, 2–52, 2–72

receivedfor • 2–42, 2–49, 2–89

receivedfrom • 2–42, 2–49, 2–89

relaxheadertermination • 2–42, 2–49

remotehost • 2–42, 2–46, 2–49, 2–82 to 2–83

firewall system • 28–5

reportboth • 2–42, 2–52, 2–71 to 2–72, 19–15

reportheader • 2–43, 2–52, 2–71 to 2–72, 19–15

reportnotary • 2–43, 2–52, 2–71 to 2–72, 19–15

reportsuppress • 2–71 to 2–72, 19–15

restricted • 2–43, 2–46, 2–49, 2–86 to 2–87

returnaddress • 2–43, 2–52, 2–90

directory channel • 3–14

returnenvelope • 2–43, 2–52, 2–90, 7–13

returnpersonal • 2–43, 2–52, 2–90

reverse • 2–43, 2–46, 2–49, 2–86, 3–34, 3–35

rightslist identifiers • 2–103

routelocal • 2–43, 2–46, 2–61

firewall system • 28–5

SMTP relay blocking • 16–10

rules • 2–22, 2–43, 2–46, 2–50, 2–62

saslswitchchannel • 2–43, 2–50, 2–54, 2–80

sendetrn • 2–43, 2–57, 2–75, 21–12

Keywords (cont’d)

sendpost • 2–43, 2–52, 2–70

sensitivitycompanyconfidential •

2–43, 2–50, 2–55, 2–102

sensitivitynormal • 2–43, 2–50, 2–55, 2–102

sensitivitypersonal • 2–43, 2–50, 2–55,

2–102

sensitivityprivate • 2–43, 2–50, 2–55,

2–102

serviceall • 2–43, 2–53, 2–64

sevenbit • 2–43, 2–47, 2–57, 2–83 to 2–84

silentetrn • 2–43, 2–57, 2–76

firewall system • 28–13

single • 2–43, 2–47, 2–66

pipe channel usage • 26–31, 26–34

use with x_vms_to • 2–89, 19–7

single_sys • 2–43, 2–47, 2–66

slave • 2–43, 2–54, 2–62

slave_debug • 2–43, 2–51, 2–101, 33–6, 34–5

smtp • 2–43, 2–57, 2–74

smtp_cr • 2–43, 2–57, 2–74

smtp_crlf • 2–43, 2–57, 2–74

smtp_crorlf • 2–43, 2–57, 2–74

smtp_lf • 2–43, 2–57, 2–74

sourceblocklimit • 2–43, 2–55, 2–97 to 2–98

See also Message, Size limits

sourcecommentinc • 2–43, 2–50, 2–91 to 2–92

sourcecommentomit • 2–43, 2–50, 2–91 to 2–92

sourcecommentstrip • 2–43, 2–50, 2–91 to

2–92

sourcecommenttotal • 2–44, 2–50, 2–91 to

2–92

sourcefilter • 2–44, 2–51, 2–101, 16–27

sourcepersonalinc • 2–44, 2–50, 2–92

sourcepersonalomit • 2–44, 2–50, 2–92

sourcepersonalstrip • 2–44, 2–50, 2–92

sourceroute • 2–44, 2–46, 2–59

streaming • 2–44, 2–57, 2–73

subaddressexact • 2–44, 2–46, 2–93 to 2–94

subaddressrelaxed • 2–44, 2–46, 2–93 to 2–94

subaddresswild • 2–44, 2–46, 2–93 to 2–94

subdirs • 2–44, 2–47, 2–67

submit • 2–44, 2–58, 2–62

summary of • 2–35 to 2–58

suppressfinal • 2–44, 2–52, 2–73

firewall system • 28–20

switchchannel • 2–44, 2–50, 2–78, 2–79 to 2–80

direction-specific rewrite rules • 28–4

firewall system • 28–3

separating internal and external traffic • 28–3

SMTP relay blocking • 16–9

threaddepth • 2–44, 2–54, 2–58, 2–73

tlsswitchchannel • 2–44, 2–50, 2–54, 2–81,

15–5

unrestricted • 2–44, 2–46, 2–50, 2–86 to 2–87

urgentblocklimit • 2–44, 2–54, 2–55, 2–63

urgentnotices • 1–11, 2–44, 2–52, 2–69 to 2–70

Index–20

Index

Keywords (cont’d)

urgentqueue • 2–44, 2–54, 2–68 to 2–69

user • 2–44, 2–48, 2–54

usereplyto • 2–44, 2–50, 2–91

useresent • 2–44, 2–50, 2–91

local channel

VMS MAIL recipients • 18–4

uucp • 2–44, 2–46, 2–59

validatelocalmsgstore • 2–44, 2–46, 2–93

validatelocalnone • 2–44, 2–46, 2–93

validatelocalsystem • 2–45, 2–46, 2–93

vrfyallow • 2–45, 2–57, 2–76

vrfydefault • 2–45, 2–57, 2–76

vrfyhide • 2–45, 2–57, 2–76

warnpost • 2–45, 2–52, 2–71

x_env_to • 2–45, 2–50, 2–89, 19–7

Keywords: header

See Headers, Keywords:

L
Language-specific directory

Normally synonymous with the PMDF table directory

lastresort keyword • 2–38, 2–48, 2–58, 2–78

L channel

See Local channel (OpenVMS)

See Local channel (UNIX)

ldapfilter.conf file • 3–26

LDAP URLs

testing

OpenVMS • 29–76

UNIX • 30–74

License problems • 33–16 to 33–1734–13

LICENSE utility

See Utilities on OpenVMS, LICENSE

Limits

See Message, Limits

Line continuation

in aliases file • 3–2, 4–2

in configuration file • 2–2

in mapping file • 5–2

linelength keyword • 2–38, 2–47, 2–85, 33–17

linelimit keyword • 2–38, 2–55, 2–97 to 2–98

See also Message, Size limits

Line wrapping

for display • 6–1

for transport • 2–85

Linux upgrade

Steps to perform after

See the Linux Edition of the PMDF Installation

Guide

List server

See Mail/list server

Local channel (OpenVMS) • 18–1 to 18–10

addresses • 19–15

binary attachments in VMS MAIL • 19–3

command script execution upon message delivery •

19–17

delivery receipts • 2–71, 19–12

error messages

from VMS MAIL • 19–10

headers

extracted from message text • 19–17

from VMS MAIL • 19–3 to 19–9

received in VMS MAIL • 19–11 to 19–12

PMDF addresses to VMS format • 18–4 to 18–7

PMDF From: addresses as seen in VMS MAIL • 19–2

read receipts • 2–72, 19–12

sending to PMDF from VMS MAIL • 19–1

VMS addresses to PMDF format • 18–2 to 18–4

Local channel (UNIX) • 17–1 to 17–7

option files

base notation • 17–6

options

FORCE_CONTENT_LENGTH • 17–6

format • 17–6

FORWARD_FORMAT • 17–6

REPEAT_COUNT • 17–6

SHELL_TIMEOUT • 17–7

SHELL_TMPDIR • 17–7

SLEEP_TIME • 17–6

Local host aliases • 2–32

localvrfy keyword • 2–38, 2–57, 2–76

Log directory

/pmdf/log on UNIX

PMDF_LOG: on OpenVMS

Usually C:\pmdf\log on NT

LOGFAIL

audit event • 13–19

Log files

See Debugging

See Logging

Logging • 2–100, 31–2 to 31–20

See also Debugging

See also Mail/list server, Logging

See also Pager channels, Logging

See also PhoneNet channels

See also Printer channels

See also Process Symbiont

See also queue to e-mail symbiont

analyzing log files

freeware • 31–2

BLOCK_SIZE option • 7–14

connection.log • 7–19

format • 14–25, 15–11, 31–3

Index–21

Index

Logging (cont’d)

log files

analyzing • 31–2

location • 1–13

managing • 31–3

naming • 1–13

Process Symbiont • 9–1

purging • 1–11, 33–6, 33–22

purging on NT • 30–43

purging on UNIX • 30–43

splitting • 1–13

version limits • 1–13, 33–6, 33–22, 34–16

version monitoring • 1–13

logging keyword • 2–100, 31–2 to 31–20

LOG_ALQ option • 7–16

LOG_CONNECTION option • 7–16

DNS_VERIFY_DOMAIN rejection logging • 11–8

ENABLE_RBL rejection logging • 11–8

firewall system • 28–8

LOG_CONNECTIONS_SYSLOG option • 7–16

LOG_DEQ option • 7–17

LOG_FILENAME option • 7–17

firewall system • 28–8

LOG_FORMAT option • 7–17

LOG_HEADER option • 7–17

firewall system • 28–8

LOG_LOCAL option • 7–17

LOG_MESSAGES_SYSLOG option • 7–17

LOG_MESSAGE_ID option • 7–17

firewall system • 28–8

LOG_NODE option • 7–18

LOG_NOTARY option • 7–18

LOG_PROCESS option • 7–18

firewall system • 28–8

LOG_SENSITIVITY option • 7–18

LOG_SNDOPR option • 7–18

LOG_USERNAME option • 7–18

firewall system • 28–8

mail.log • 2–100, 31–2

managing log files • 31–3

SEPARATE_CONNECTION_LOG option • 7–19

logging keyword • 2–39, 2–50, 2–100, 31–2 to 31–20

firewall system • 28–7

SASL use • 14–25

TLS use • 15–11

logicaldisk keyword • 2–39, 2–47, 2–74

Logical names

DELIVER_BATCH • 19–17

MAIL$PROTOCOL_IN • 19–2

MAIL$PROTOCOL_x • 19–1

MAIL$SYSTEM_FLAGS • 13–15, 33–15

PMDF_ALIAS_DATABASE • 3–8

PMDF_ALIAS_FILE • 3–2

TEST/REWRITE utility • 29–70

PMDF_BATCH_ACCOUNT • 1–15

PMDF_BATCH_USERNAME • 1–15, 26–40

Logical names (cont’d)

PMDF_CHANNEL • 26–30

generic SMTP channels • 26–49

PMDF_CHARSET_DATA • 29–11 to 29–12

PMDF_CHARSET_OPTION_FILE • 29–11 to 29–12

PMDF_COMMAND_DATA • 29–13

PMDF_CONFIG_DATA • 8–1

PMDF_CONFIG_FILE • 1–5, 2–1

PMDF_CONVERSION_FILE • 22–3

PMDF_COUNTER_INTERVAL • 31–41

PMDF_DELIVERY_RECEIPT_TO • 19–14

PMDF_DISPATCHER_CONFIG • 11–3

PMDF_DISPATCHER_CONFIG_MAIN • 11–3

PMDF_DISPATCHER_DEBUG • 11–15

PMDF_DOMAIN_DATABASE • 2–28

PMDF_DO_RETURN_VN • 25–4, 33–8

PMDF_FROM • 19–5

PMDF_GENERAL_DATABASE • 2–19

PMDF_IMAPPOP_CONFIG_FILE • 13–7, 13–12

PMDF_IMAP_CONFIG_FILE • 13–7

PMDF_IMAP_TMP • 32–4

PMDF_MAILSERV_FILES_DIR • 4–20

PMDF_MAILSERV_MAIL_DIR • 4–20

PMDF_MAPPING_FILE • 5–1

PMDF_NOCOUNTERS • 31–41

PMDF_OPTION_FILE • 7–1

PMDF_PASSWORD_DATABASE • 14–28

PMDF_PERSONAL_ALIAS_DATABASE • 3–10

PMDF_PIPE_DATABASE • 26–32

PMDF_POP3_CONFIG_FILE • 13–12

PMDF_POST_INTERVAL • 1–9, 2–63

PMDF_PROTOCOL • 19–2

PMDF_Q2EMAIL_LOG • 27–2

PMDF_QUEUE_CACHE_DATABASE • 29–8

PMDF_QUEUE_channel-name • 2–74

PMDF_READ_RECEIPT_TO • 19–14

PMDF_RELAYING • 19–17

restricted to privileged users • 19–17

PMDF_RESENT_FROM • 19–6

PMDF_RESENT_REPLY_TO • 19–6

PMDF_RETURN_CHECK_PERIOD • 1–13

PMDF_RETURN_PERIOD • 1–11

PMDF_RETURN_SPLIT_PERIOD • 1–13

PMDF_RETURN_SYNCH_PERIOD • 1–13

PMDF_REVERSE_DATABASE • 3–34

PMDF_SCRATCH • 19–9, 32–4

PMDF_SERVER_USERNAME • 33–3

PMDF_SPEC_TMP • 32–4

PMDF_SYNCH_CACHE_PERIOD • 1–11

PMDF_SYSTEM_FLAGS • 13–15

See also the PMDF User’s Guide

PMDF_TIMEZONE • 19–4

restart Dispatcher after changing • 8–6, 19–4

PMDF_TMP • 32–4

PMDF_VERSION_LIMIT • 1–11, 33–22

PMDF_VERSION_LIMIT_PERIOD • 1–11

Index–22

Index

Logical names (cont’d)

PMDF_WARNINGS_TO

See the OpenVMS Edition of the PMDF User’s

Guide

PMDF_WELCOME • 19–2

SYS$SCRATCH • 19–9

system names

DECnet-style addresses • 19–16

usernames

preventing translation • 19–15

LOGIN

audit event • 13–19

log_condense

logging utility • 31–6

Loop, infinite

See Infinite loop

loopcheck keyword • 2–39, 2–57

Looping message • 33–25, 34–19

See also Forwarding mail

See also Held files

See also Rewrite rules

Lotus Notes channels

delivery receipts • 2–71

server processes

restarting

when necessary • 8–6

M
Macbinary

See MacMIME, Format conversions

Macintosh file formats for e-mail • 6–7

MacMIME

See also RFC 1740

format conversions • 6–7

MADMAN

See RFCs 1565 and 1566

mail
UNIX mail user agent • 17–1

Mail

See mail, UNIX mail user agent

See Message

See PMDF MAIL

See sendmail
See the PMDF User’s Guide

See VMS MAIL

MAIL$BATCH queue

See Batch jobs

Mail/list server • 4–17 to 4–32

access control • 4–25 to 4–30

access check results • 4–27 to 4–29

compare with list of addresses • 4–27

Mail/list server

access control

access check results (cont’d)

cookie response • 4–28, 4–29

referral to a list owner • 4–27

access check strings • 4–25 to 4–27

access defaults • 4–29

challenge-response confirmation • 4–29

example • 4–30

automatic message fragmentation • 4–19

commands • 4–30 to 4–31

configuration • 4–18 to 4–30

directory

NT • 4–22

OpenVMS • 4–20 to 4–21

UNIX • 4–21

error text • 4–26

example • 4–18, 4–32 to 4–37

files

file name mapping • 4–24

NT • 4–22

OpenVMS • 4–20 to 4–21

UNIX • 4–21

From: address control • 4–19, 4–24

help text • 4–20, 4–21, 4–22

index of available files • 4–20, 4–21, 4–22

list name defaults • 4–25

list of available lists • 4–21, 4–22

logging • 4–31 to 4–32

logical names • 4–20 to 4–21

mailing lists • 4–22 to 4–24

example • 4–23

file protections • 4–22

list name mapping • 4–24

MAILSERV_ACCESS mapping • 4–25 to 4–30

MAILSERV_FILES mapping • 4–24

MAILSERV_LISTS mapping • 4–24

From: address control • 4–24

operation • 4–18

option file • 4–19

options

COMMAND_LIMIT • 4–19

LIBERAL • 4–19

LIST_MAPPING_FLAGS • 4–19

MAILSERV_PERSONAL • 4–19

MAILSERV_REPLY • 4–19

MAXBLOCKS • 4–19

MAXLINES • 4–19

PMDF_MAILSERV_FILES_DIR logical • 4–20

PMDF_MAILSERV_MAIL_DIR logical • 4–20

tailor file options • 4–21

Mailbox filters • 7–11, 16–24 to 16–36

accept filters • 16–24

Accept Body • 16–24

Accept From • 16–24

Accept Subject • 16–24

Index–23

Index

Mailbox filters

accept filters (cont’d)

Accept To • 16–24

authentication • 14–27, 16–28

password database • 14–29

channelfilter keyword • 16–27

checking changes • 16–36

destinationfilter keyword • 16–27

discard filters • 16–24

Discard Body • 16–24

Discard From • 16–24

Discard Subject • 16–24

Discard To • 16–24

fileinto keyword • 16–26

filter keyword • 16–25

substitution sequences • 16–25

FILTER_DISCARD channel • 16–28

FILTER_DISCARD PMDF option • 7–11, 16–28

folder delivery for MessageStore accounts • 16–26

location of channel filter file on disk • 16–27

location of filter file on disk • 16–25

MAX_FILEINTOS PMDF option • 7–11

MAX_FORWARDS PMDF option • 7–11

MAX_LIST_SIZE PMDF option • 7–11

option file • 16–30

options

AUTHENTICATION_ERROR • 16–31

DEFAULT_HOST • 16–31

GENERAL_ERROR • 16–31

passwords • 29–45, 30–38

See Mailbox filters, Authentication

sourcefilter keyword • 16–27

timing of message discards • 16–28

URL • 12–5, 29–1, 30–1

web interface • 16–29

HTTP server configuration • 16–30

Mailbox portion of address

restricted encoding • 2–86 to 2–87

Mailbox servers • 13–1 to 13–20

configuration • 13–4 to 13–15

IMAP server

authentication • 14–27

configuration example • 15–6

password database • 14–28

configuration file

location • 13–7

disabling old

OpenVMS • 13–3

UNIX • 13–3

mailbox location on UNIX • 13–18

options

DEBUG • 13–8

DEBUG_USER_username • 13–9

FORCE_CHECK_TIME • 13–10

FORCE_COPY_TO_APPEND • 13–10

FORCE_KILL_TIMEOUT • 13–10

Mailbox servers

IMAP server

options (cont’d)

KILL_FINAL_TEXT • 13–11

KILL_WARNING_TEXT • 13–11

LOGGING • 13–11, 13–19, 13–20

SEND_KILL_WARNING • 13–11

SESSION_LIFETIME • 13–11

TIMEOUT • 13–12

UPDATE_LOGIN_TIME • 13–12

restarting

when necessary • 8–6

TLS port • 15–1

logical names

PMDF_SYSTEM_FLAGS • 13–15

login auditing • 13–18 to 13–19

login checks • 13–18 to 13–19

mailbox location on UNIX • 13–18

passwords for users • 29–45, 30–38

POP server

authentication • 14–27

configuration example • 15–6

password database • 14–28

configuration file

location • 13–12

disabling old

OpenVMS • 13–3

UNIX • 13–3

mailbox location on UNIX • 13–18

options

DEBUG • 13–12

DEBUG_USER_username • 13–13

DISABLE_UIDL • 13–13

FUDGE_SIZE • 13–13

LOGGING • 13–13, 13–19, 13–20

MAX_MESSAGES • 13–13

MIN_LOGIN_INTERVAL • 13–14

MOVE_READ_MAIL • 13–14

NO_UIDL • 13–14

OVER_QUOTA_MSG_FILE • 13–14

TIMEOUT • 13–14

UPDATE_LOGIN_TIME • 13–14

restarting

when necessary • 8–6

TLS port • 15–1

starting, stopping, restarting • 13–16

Starting, stopping, restarting • 13–18

MAILbus 400 channels

delivery receipts • 2–71

MAIL channels • 18–1 to 18–10

example • 18–8

PMDF addresses to VMS format • 18–4 to 18–7

RMS-W-RTB errors • 33–17

VMS addresses to PMDF format • 18–2 to 18–4

Index–24

Index

mailfromdnsverify keyword • 2–39, 2–57, 2–58,

2–79

Mailing lists • 3–4, 4–1 to 4–16

Comments: header • 4–13

compiling configuration • 4–2

deferred expansion

example • 4–13

deferred expansion and deferred processing • 4–10

envelope From: address • 4–6, 4–12

Errors-to: header • 4–12

example • 4–13, 4–32 to 4–37

file protection • 4–2

headers

adding • 4–7

Errors-to: • 4–12

moderated • 4–8

named parameters • 4–3 to 4–11

AUTH_CHANNEL • 4–3

AUTH_LIST • 4–3

AUTH_MAPPING • 4–4

example • 4–4

AUTH_USERNAME • 4–5

BLOCKLIMIT • 4–5

CANT_CHANNEL • 4–3

CANT_LIST • 4–3

CANT_MAPPING • 4–4

CANT_USERNAME • 4–5

CONVERSION_TAG • 4–5

DEFERRED • 4–6

DELAY_NOTIFICATIONS • 4–6

ENVELOPE_FROM • 4–6

EXPANDABLE • 4–6, 21–5

EXPIRY • 4–6

FILTER • 4–7

HEADER_ADDITION • 4–7

HEADER_ALIAS • 4–7

HEADER_EXPANSION • 4–7

HOLD_LIST • 4–7

HOLD_MAPPING • 4–7

IMPORTANCE • 4–8

KEEP_DELIVERY • 4–8

KEEP_READ • 4–8

LINELIMIT • 4–5

MODERATOR_ADDRESS • 4–8

MODERATOR_LIST • 4–8

MODERATOR_MAPPING • 4–8

NODELAY_NOTIFICATIONS • 4–6

NOHOLD_LIST • 4–7

NOHOLD_MAPPING • 4–7

NONEXPANDABLE • 4–6, 21–5

NOORIGINATOR_REPLY • 4–9

NORECEIVEDFOR • 4–10

NORECEIVEDFROM • 4–10

ORIGINATOR_REPLY • 4–9

PRECEDENCE • 4–8

PRIORITY • 4–8

Mailing lists

named parameters (cont’d)

PRIVATE • 4–9

PUBLIC • 4–9

RECEIVEDFOR • 4–10

RECEIVEDFROM • 4–10

REPROCESS • 4–10

SENSITIVITY • 4–8

SEQUENCE_PREFIX • 4–10

SEQUENCE_STRIP • 4–10

SEQUENCE_SUFFIX • 4–10

TAG • 4–11

USERNAME • 4–11

USERNAME_AUTH_LIST • 4–3

USERNAME_CANT_LIST • 4–3

USERNAME_MODERATOR_LIST • 4–8

ownership • 4–11

positional parameters • 4–12 to 4–13

comments header • 4–13

envelope From: address • 4–12

errors-to-address • 4–12

reply-to-address • 4–12

warnings-to-address • 4–13

Reply-to: header • 4–12

restrictions • 4–15

testing • 4–15

OpenVMS • 29–69

UNIX • 30–67

Warnings-to: header • 4–13

Mail Monitoring MIB • 31–38

Mail servers

See Mailbox servers

mailtool
UNIX mail user agent • 17–1

Mail User Agent (MUA) • 1–1

MailWorks servers

restarting

when necessary • 8–6

mailx
UNIX mail user agent • 17–1

MAIL_ACCESS mapping

See Mappings, MAIL_ACCESS

Maintenance • 33–1 to 33–9, 34–1 to 34–5

Manually starting processing jobs • 1–8, 30–54 to 30–60

Mapping file • 5–1 to 5–14

See also Mappings

compiling • 8–1

continuation lines • 5–2

description of • 5–1

examples • 5–12 to 5–14, 6–3, 6–7 to 6–10, 26–15 to

26–17

format • 5–2

include files • 5–3

location of • 5–1

metacharacters • 5–6

$ • 5–6

Index–25

Index

Mapping file

metacharacters (cont’d)

$\ • 5–7

$: • 5–8

$; • 5–8

$? • 5–8

$C • 5–8

$E • 5–8

$L • 5–8

$R • 5–8

$^ • 5–7

$_ • 5–7

explicit control of text case • 5–7

processing control • 5–8

randomizing results • 5–8

operation of • 5–3

patterns • 5–3

PMDF_MAPPING_FILE logical • 5–1

protection of • 5–1

substitutions • 5–6

$# • 5–9

$n • 5–7

$[• 5–11

$] • 5–10

${ • 5–11

$ | • 5–11

general database • 5–11

LDAP query URL • 5–10

mapping table • 5–11

sequence numbers • 5–9

site-supplied routine • 5–11

white space • 5–6

wildcard fields • 5–7

templates • 5–6

testing

OpenVMS • 29–65 to 29–66

UNIX • 30–61 to 30–63

wildcards • 5–3 to 5–5

testing

OpenVMS • 29–67 to 29–68

UNIX • 30–64 to 30–66

Mappings

See also Mapping file

AUTH_MAPPING • 4–4

example • 4–4

BACKOFF • 24–13 to 24–14

CANT_MAPPING • 4–4

CHARSET-CONVERSION • 6–1 to 6–10

example • 27–7

examples • 6–3, 6–7 to 6–10

CONVERSIONS • 22–2

example • 22–2, 22–15

DISCLAIMER • 22–25

example • 22–25

FORWARD • 3–37 to 3–38

example • 3–38

Mappings

FORWARD (cont’d)

flags • 3–37

use with BSMTP channels • 23–2

FROM_ACCESS • 16–6 to 16–7

HTTP_ACCESS • 12–5

example • 28–17

firewall system • 28–16

MAC-TO-MIME-CONTENT-TYPES • 6–8

MAILSERV_ACCESS • 4–25 to 4–30

example • 4–30, 4–33

MAILSERV_FILES • 4–24

MAILSERV_LISTS • 4–24

example • 4–33

MAIL_ACCESS • 16–4 to 16–5

NOTES-SUBJECT • 26–53

ORIG_MAIL_ACCESS • 16–4 to 16–5

ORIG_SEND_ACCESS • 16–2 to 16–3

SMTP relay blocking • 16–12

PAGER • 26–13 to 26–17

example • 26–15

PMDF-TO-VMSMAIL • 18–4 to 18–5

PORT_ACCESS • 11–13, 14–21, 21–11

firewall system • 28–10

logging rejections • 11–15

PROTOCOL-TO-PMDF • 18–2 to 18–3

example • 18–2

REVERSE • 3–34 to 3–36

example • 3–36

examples • 3–38

flags • 3–35

$A example • 3–51

$F example • 3–51

Message-id: canonicalization on e-mail firewall •

28–19

USE_REVERSE_DATABASE option • 7–9

SCRIPT • 22–19

example • 22–19

SEND_ACCESS • 16–2 to 16–3

example • 16–3

firewall system • 28–10

VMSMAIL-TO-PMDF • 18–3 to 18–4

example • 18–4

mappings file

See Mapping file

Master channels • 1–6, 2–31

master keyword • 2–39, 2–53, 2–62

periodic delivery job • 1–10

master_debug keyword • 2–39, 2–51, 2–101, 33–6,

34–5

Match-all rule • 2–12

maxblocks keyword • 2–39, 2–47, 2–96 to 2–97

See also Message, Limits

maxheaderaddrs keyword • 2–39, 2–48, 2–95

See also Message, Limits

Index–26

Index

maxheaderchars keyword • 2–39, 2–49, 2–95

See also Message, Limits

maxjobs keyword • 2–39, 2–53, 2–65 to 2–66

maxlines keyword • 2–39, 2–47, 2–96 to 2–97

See also Message, Limits

maxperiodicnonurgent keyword • 2–39, 2–53,

2–64

maxperiodicnormal keyword • 2–39, 2–53, 2–64

maxperiodicurgent keyword • 2–39, 2–53, 2–64

maxprocchars keyword • 2–39, 2–51, 2–98

maysaslclient keyword • 2–39, 2–54, 2–80

maysasl keyword • 2–39, 2–54, 2–80

maysaslserver keyword • 2–39, 2–54, 2–80

maytlsclient keyword • 2–39, 2–54, 2–81, 15–5

maytls keyword • 2–39, 2–54, 2–81, 15–5

maytlsserver keyword • 2–39, 2–54, 2–81, 15–5

Message

See also Headers

bouncer job • 1–11

bouncing • 1–11, 29–59, 29–96, 29–111, 30–53

See Conversion channel, Bouncing messages

See Script channel, Bouncing messages

UNIX • 30–112

deleting • 29–90, 30–94

See Conversion channel, Deleting messages

See Script channel, Deleting messages

deleting parts

See Conversion channel, Deleting parts

file format in PMDF queue area • 1–16 to 1–18

format

RFC 1154

Encoding: header • 2–89

format conversion

MacMIME • 6–7

fragmentation • 26–9

Mail/list server responses

maxblocks keyword • 2–96 to 2–97

maxlines keyword • 2–96 to 2–97

headers

VMS MAIL incoming mail • 19–11

VMS MAIL outgoing mail • 19–3 to 19–8

holding • 2–67

See Conversion channel, Holding messages

See Script channel, Holding messages

OpenVMS • 29–50, 29–80, 29–104

UNIX • 30–105

UNIX or NT • 30–45, 30–86

imbedded headers • 19–17

loop • 33–25, 34–19

looping

See also Forwarding mail

See also Held files

See also Rewrite rules

Message (cont’d)

nondelivery

See Message, Notification

notification • 7–11

enqueued to process channel • 26–48

Envelope From: address • 2–90

From: address • 7–12

postmaster copies • 2–70 to 2–71

return job scheduling • 7–12, 7–13

return of content • 7–14

size limit • 7–14

text of • 7–11

text of expired messages • 1–12

text of manually bounced • 29–59, 29–111, 30–53,

30–112

text of warning messages • 1–12

Notification

See also Keywords, notices
periodic delivery job • 1–4, 33–8

scheduling • 1–10

popstore message return job • 33–9

releasing • 29–109

UNIX • 30–110

returning • 1–11, 29–59, 29–96, 29–111, 30–53

UNIX • 30–112

return job • 1–11, 33–8

return utility • 30–53

RETURN utility • 29–59

size limits

absolute • 2–97 to 2–98, 7–14

blocklimit keyword • 2–97 to 2–98

BLOCK_LIMIT option • 7–14

BLOCK_SIZE option • 7–14

bounce messages • 7–14

firewall system • 28–14

headers • 2–95

linelimit keyword • 2–97 to 2–98

LINE_LIMIT option • 7–14

maxheaderaddrs keyword • 2–95

maxheaderchars keyword • 2–95

MAX_HEADER_BLOCK_USE option • 2–97, 7–14

MAX_HEADER_LINE_USE option • 2–97, 7–14

sourceblocklimit keyword • 2–97 to 2–98

temporary space • 32–4

undeliverable mail • 1–11

Message compression

BSMTP channels • 23–5

Message Router channels

delivery receipts • 2–71

Messages

format

RFC 1154 • 6–5

MessageStore

flags

PWD_ELSEWHERE • 29–46

folders

Index–27

Index

MessageStore

folders (cont’d)

delivery into via subaddresses • 2–93

management utility

web based

URL • 12–5, 29–1, 30–1

subaddresses • 16–26

folder delivery • 2–93

Message Transport Agent (MTA) • 1–1

MHSFORM Utility

See Utilities on MS-DOS, MHSFORM

MIME • Glossary–3

See Standards, RFCs 2045–2049

MIME labelling

charset • 2–84

MIME relabelling • 6–5

minperiodicnonurgent keyword • 2–39, 2–53,

2–64

minperiodicnormal keyword • 2–39, 2–53, 2–64

minperiodicurgent keyword • 2–39, 2–53, 2–64

missingrecipientpolicy keyword • 2–39, 2–45,

2–49, 2–83, 7–8

Monitoring

HTTP CGI • 31–47

PMM • 31–42

configuration • 31–42

operation • 31–42

SNMP • 31–38, 31–44

MIB variables • 31–44

operation • 31–44

TCPware subagent

availability • 31–44

configuration • 31–46

URL • 12–5, 29–1, 30–1

web-based • 31–47

%!first • 31–53

%!last • 31–53

%first • 31–53

%last • 31–53

%none • 31–53

.HELD files • 31–58

channel counters • 31–54

commands • 31–53

example • 31–65

noop • 31–65

show_counters • 31–54

show_held • 31–58

show_pmdf • 31–59

show_queue • 31–60

customization • 31–51

formatting files

command-specific • 31–52

error • 31–52

success • 31–52

general PMDF information • 31–59

GET requests • 31–51

Monitoring

web-based (cont’d)

host name • 31–59

HTTP requests

GET • 31–51

POST • 31–51

processing • 31–51

HTTP responses

errors • 31–51, 31–52

generating • 31–51

noop command • 31–65

option file • 31–49

options

STORED_THRESHOLD • 31–49

PMDF version • 31–59

POST requests • 31–51

processing jobs • 31–60

processing queues • 31–60

sample configuration

using • 31–48

show_channels
example • 31–65

show_counters command • 31–54

show_held command • 31–58

show_pmdf command • 31–59

show_queue command • 31–60

substitution strings • 31–52

%!first • 31–53

%!last • 31–53

%first • 31–53

%last • 31–53

%none • 31–53

data types • 31–52

formatting • 31–53

time • 31–59

msexchange keyword • 2–39, 2–54, 2–82, 15–5

MS Mail channels

delivery receipts • 2–71

MS Mail SMTP gateway

binary attachment conversion • 6–4

MTA, Message Transport Agent • 1–1

MTA to MTA tunnelling • 23–1

MUA, Mail User Agent • 1–1

multigate keyword • 2–39, 2–48, 2–99

MultiNet MM

MULTINET_MM_EXCLUSIVE option • 7–23

multiple keyword • 2–39, 2–47, 2–66

mustsaslclient keyword • 2–39, 2–54, 2–80

mustsasl keyword • 2–39, 2–54, 2–80

mustsaslserver keyword • 2–39, 2–54, 2–80

musttlsclient keyword • 2–40, 2–54, 2–81, 15–5

musttls keyword • 2–39, 2–54, 2–81, 15–5

musttlsserver keyword • 2–40, 2–54, 2–81, 15–5

mx keyword • 2–40, 2–58, 2–77 to 2–78

Index–28

Index

N
nameservers keyword • 2–40, 2–58, 2–77 to 2–78

Netdata channels

server processes

restarting

when necessary • 8–6

NETMBX privilege • 2–103

netserver.log file • 20–9

network keyword • 2–40, 2–55, 2–103

noaddlineaddrs keyword • 2–40, 2–49, 2–104

nobangoverpercent keyword • 2–40, 2–45, 2–60

noblocklimit keyword • 2–40, 2–55, 2–97 to 2–98

nocache keyword • 2–40, 2–58, 2–65

nochannelfilter keyword • 2–40, 2–51, 2–101

noconvert_octet_stream keyword • 2–40, 2–47,

2–86

nodayofweek keyword • 2–40, 2–49, 2–95

nodefaulthost keyword • 2–40, 2–45, 2–49, 2–82 to

2–83

nodefaults channel block • 2–104 to 2–105

nodeferred keyword • 2–40, 2–53, 2–69

nodefragment keyword • 2–40, 2–47, 2–96

nodestinationfilter keyword • 2–40, 2–51,

2–101

nodns keyword • 2–40, 2–58, 2–77 to 2–78

nodropblank keyword • 2–40, 2–49

noehlo keyword • 2–40, 2–57, 2–74 to 2–75

noexproute keyword • 2–40, 2–46, 2–60 to 2–61

noexquota keyword • 2–40, 2–55, 2–98

nofileinto keyword • 2–40, 2–51, 2–101

nofilter keyword • 2–40, 2–51, 2–101

noforeign keyword • 2–40, 2–47, 2–85

nogoldmail keyword • 2–40, 2–52, 2–72

nogrey keyword • 2–40, 2–46, 2–99

noheaderread keyword • 2–40, 2–49, 2–88, 2–107

noheadertrim keyword • 2–40, 2–49, 2–88, 2–107

noimproute keyword • 2–40, 2–46, 2–60 to 2–61

noinline keyword • 2–40, 2–46, 2–103

noinner keyword • 2–40, 2–49, 2–86

noinnertrim keyword • 2–40, 2–49, 2–88

nolinelimit keyword • 2–41, 2–47, 2–97 to 2–98

nologging keyword • 2–41, 2–51, 2–100

nologicaldisk keyword • 2–41, 2–47, 2–74

nomailfromdnsverify keyword • 2–41, 2–57,

2–58, 2–79

nomaster_debug keyword • 2–41, 2–51, 2–101

nomsexchange keyword • 2–41, 2–54, 2–82, 15–5

nomultigate keyword • 2–41, 2–48, 2–99

nomx keyword • 2–41, 2–58, 2–77 to 2–78

Nondelivery messages

See Message, Notification

nonrandommx keyword • 2–41, 2–58, 2–77 to 2–78

nonurgentblocklimit keyword • 2–41, 2–53,

2–55, 2–63

nonurgentnotices keyword • 2–41, 2–52, 2–69 to

2–70

nonurgentqueue keyword • 2–41, 2–53, 2–68 to 2–69

noreceivedfor keyword • 2–41, 2–49, 2–89

firewall system • 28–19

noreceivedfrom keyword • 2–41, 2–49, 2–89

firewall system • 28–19

norelaxheadertermination keyword • 2–41,

2–49

noremotehost keyword • 2–41, 2–46, 2–49, 2–82 to

2–83

norestricted keyword • 2–41, 2–46, 2–49

noreturnaddress keyword • 2–41, 2–52, 2–90

noreturnpersonal keyword • 2–41, 2–52, 2–90

noreverse keyword • 2–41, 2–46, 2–49, 2–86, 3–34,

3–35

REVERSE_ENVELOPE option • 7–8

USE_REVERSE_DATABASE option • 7–9

normalblocklimit keyword • 2–41, 2–53, 2–55,

2–63

normalnotices keyword • 2–41, 2–52, 2–69 to 2–70

normalqueue keyword • 2–41, 2–53, 2–68 to 2–69

No room in ... errors

See Errors, mm_init, No room in ...

norules keyword • 2–41, 2–46, 2–49, 2–62

nosaslclient keyword • 2–41, 2–54, 2–80

nosasl keyword • 2–41, 2–54, 2–80

nosaslserver keyword • 2–41, 2–54, 2–80

nosaslswitchchannel keyword • 2–41, 2–50,

2–54, 2–80

nosendetrn keyword • 2–41, 2–57, 2–75

nosendpost keyword • 2–41, 2–52, 2–70

noserviceall keyword • 2–41, 2–53, 2–64

noslave_debug keyword • 2–42, 2–51, 2–101

nosmtp keyword • 2–42, 2–57, 2–74

nosourcefilter keyword • 2–42, 2–51, 2–101

NOSUCHNODE errors from VMS MAIL • 19–10

NOSUCHUSER errors from VMS MAIL • 19–10

noswitchchannel keyword • 2–42, 2–50, 2–79 to

2–80

firewall system • 28–3

SMTP relay blocking • 16–9

NOTARY • Glossary–3

Notes channels

See DEC NOTES channels

See Lotus Notes channels

notices keyword • 1–11, 2–42, 2–52, 2–69 to 2–70

RETURN_DELTA option • 7–12

RETURN_UNITS option • 7–13

Notification message

See Message, Notification

Index–29

Index

notlsclient keyword • 2–42, 2–54, 2–81, 15–5

notls keyword • 2–42, 2–54, 2–81, 15–5

notlsserver keyword • 2–42, 2–54, 2–81, 15–5

Novell MHS channels

delivery receipts • 2–71

novrfy keyword • 2–42, 2–57, 2–76

nowarnpost keyword • 2–42, 2–52, 2–71

nox_env_to keyword • 2–42, 2–49, 2–89, 19–7

NT commands

at
PMDF return job • 1–12

O
OPCOM messages

BREAKIN

POP or IMAP breakin alert • 13–19

HELD_SNDOPR option • 7–19

LOGFAIL

POP or IMAP login failure alert • 13–19

LOG_SNDOPR option • 7–18

PORT_ACCESS mapping table • 11–13, 11–14

Process Symbiont • 9–6 to 9–8

SEND_ACCESS and related mapping tables • 16–3

OpenVMS upgrade

Steps to perform after

See the OpenVMS Edition of the PMDF Installation

Guide

Operating system upgrade

Steps to perform after

See the appropriate edition of the PMDF Installation

Guide

option.dat file

See PMDF option file

Option file

See entries for specific channels

See PMDF option file

Ordering PMDF • li, 13–21, 28–25, 34–23

Organization: header

See Headers, Organization:

ORIG_MAIL_ACCESS mapping

See Mappings, ORIG_MAIL_ACCESS

ORIG_SEND_ACCESS mapping

See Mappings, ORIG_SEND_ACCESS

OVVM channels

server processes

restarting

when necessary • 8–6

P
Pager channels • 26–10 to 26–30

addresses • 26–28 to 26–29

AVPL • 26–28 to 26–29

examples • 26–29

address simplification • 26–27 to 26–28

Australia • 26–26

configuration • 26–11 to 26–28

directory channel • 26–27 to 26–28

example • 26–12

filtering pages • 26–13 to 26–17

example • 26–15

logging • 26–29 to 26–30

modem problems • 26–30

modem script • 26–17 to 26–20

names

length limits • 26–12

options • 26–21 to 26–25

ACKNOWLEDGEMENT • 26–21

ACK_SUCCESS • 26–21

BACKOFF • 26–22

BLOCK_ACK_TIMEOUT • 26–22

BLOCK_TX_RETRIES • 26–22

HEADER_STOP • 26–22

ID_RX_RETRIES • 26–22

ID_RX_TIMEOUT • 26–22

LINE_STOP • 26–22

LOGIN_ACK_TIMEOUT • 26–23

LOGIN_RETRIES • 26–23

LOGOUT_ACK_TIMEOUT • 26–23

LOGOUT_RETRIES • 26–23

MAX_BLOCKS_PER_PAGE • 26–23

MAX_DELIVERY_ATTEMPTS • 26–24

MAX_MESSAGE_SIZE • 26–24

MAX_PAGES_PER_MESSAGE • 26–24

MAX_PAGE_SIZE • 26–24

PAGES_PER_CALL • 26–24

PASSWORD • 26–24

RETURN_HEADERS • 26–25

RETURN_PAGES • 26–25

REVERSE_ORDER • 26–25

STRIP_8BIT_CHARS • 26–25

STRIP_CONTROL_CHARS • 26–25

TEXT_CASE • 26–25

USE_REPLY_TO • 26–25

PAGER mapping • 26–13 to 26–17

example • 26–15

testing • 26–17

PET, use with • 26–26

preconfiguration • 26–11 to 26–12

required information • 26–11 to 26–12

trial-and-error tests • 26–26

Index–30

Index

Password change utility

URL • 12–5, 29–1, 30–1

Password database • 14–27

authentication by POP and IMAP clients • 13–19

authentication for mailbox filters • 16–28

location of • 14–28

password utility • 30–38

PASSWORD utility • 29–45

Password source control

See Authentication services, Authentication source

control

password utility

See Utilities on UNIX, password
PASSWORD utility

See Utilities on OpenVMS, PASSWORD

Pathworks MAIL

channel • 18–9

file attachments • 18–9

MIME to Pathworks Mail file attachment • 18–10

Pathworks Mail file attachment to MIME • 18–9

reply to all • 19–11

Percent hack • 2–5, 2–12

Percent sign

base notation

in PhoneNet channel option files • 24–3

Percent signs • 2–6

percents keyword • 2–42, 2–46, 2–59

Periodic jobs

See Processing jobs

periodic keyword • 2–42, 2–53, 2–62 to 2–63

periodic periodic • 1–8

Periodic service behavior • 2–64

period keyword • 2–42, 2–53, 2–62 to 2–63

Personal alias database

See Aliases

personalinc keyword • 2–42, 2–49, 2–92

Personal name fields • 19–16

personalomit keyword • 2–42, 2–49, 2–92

personalstrip keyword • 2–42, 2–49, 2–92

PGP • 23–1

BSMTP channels • 23–6, 23–16

ph lookup

See CCSO lookup

PhoneNet channels • 24–1 to 24–14

all_master.com file • 24–9

example • 24–9

BACKOFF mapping • 24–13 to 24–14

backoff retries • 24–13 to 24–14

log files • 24–10 to 24–11

di_x_y.log • 24–3, 24–10

di_x_y.trn • 24–10

err_x.log • 24–10

ph_x_y.log • 24–3, 24–10

option file

PhoneNet channels

option file (cont’d)

base notation • 24–3

comment lines • 24–3

format • 24–3

location • 24–2

options • 24–2 to 24–7

BACKOFF • 24–3

BAUDRATE • 24–3

CHANNEL • 24–3

DACKWAIT • 24–4

DATAWAIT • 24–4

EACKWAIT • 24–4

EIGHTBIT • 24–5

ESCAPEWAIT • 24–4

EXPECTWINDOW • 24–5

FLUSHRATE • 24–5

HOSTSYNC • 24–5

LOGGING • 24–3

NBAWAIT • 24–4

NBUFFWAIT • 24–4

NOISE • 24–5

PARITY • 24–6

QACKWAIT • 24–4

RPATHWAIT • 24–4

RPAWAIT • 24–4

SENDWINDOW • 24–6

TERMINATOR • 24–6

TRANSCRIBE • 24–3

TTSYNC • 24–6

WINDOW • 24–6

XMITWAIT • 24–4

XPATHWAIT • 24–4

XPAWAIT • 24–4

phone_list.dat file • 24–9 to 24–10

examples • 24–7, 26–18

script files • 24–8, 24–11 to 24–13

control sequences • 24–12

end command • 24–11

examples • 24–12, 26–19 to 26–20

go command • 24–11

init command • 24–11

recv command • 24–11

toff command • 24–11

ton command • 24–11

xmit command • 24–11

structure diagram • 24–1

troubleshooting • 24–10 to 24–11

Pine

See also the OpenVMS Edition of the PMDF User’s

Guide

See also the UNIX Edition of the PMDF User’s Guide

OpenVMS mail user agent • 19–1

UNIX mail user agent • 17–1

Index–31

Index

Pipe channels • 26–30 to 26–35

completion codes • 26–31

configuration • 26–31 to 26–34

delivery failures

permanent • 26–31

temporary • 26–31

examples • 26–35

exit codes • 26–31

option file

format • 26–33 to 26–34

location • 26–33

protection • 26–34

options • 26–33 to 26–34

SHELL_TIMEOUT • 26–34

use of %s • 26–34

pipe database • 26–32 to 26–33

profile database • 26–32

single keyword • 26–31, 26–34

PMDF • 1–1

structure • 1–19

pmdf.cnf file

See Configuration file

PMDF-ACCESS configuration utility

Linux

pmdf configure access
See also the Linux edition of the PMDF Installation

Guide

OpenVMS

PMDF CONFIGURE ACCESS

See also the OpenVMS edition of the PMDF

Installation Guide

Solaris

pmdf configure access
See also the Solaris edition of the PMDF

Installation Guide

PMDF configuration utility

Linux

pmdf configure
OpenVMS

PMDF CONFIGURE

See also the OpenVMS edition of the PMDF

Installation Guide

Solaris

pmdf configure
PMDF documentation

browsing • 12–1

PMDF-FAX configuration utility

OpenVMS

PMDF CONFIGURE FAX

See also the OpenVMS edition of the PMDF

Installation Guide

PMDF-LAN configuration utility

Linux

pmdf configure lan

PMDF-LAN configuration utility

Linux (cont’d)

See also the Linux edition of the PMDF Installation

Guide

OpenVMS

PMDF CONFIGURE LAN

See also the OpenVMS edition of the PMDF

Installation Guide

Solaris

pmdf configure lan
See also the Solaris edition of the PMDF

Installation Guide

PMDF MAIL

See also the OpenVMS Edition of the PMDF User’s

Guide

delivery receipt requests • 19–14

read receipt requests • 19–14

welcome messages • 19–2

PMDF-MB400 configuration utility

OpenVMS

PMDF CONFIGURE MB400

See also the OpenVMS edition of the PMDF

Installation Guide

PMDFMOVE utility

See Utilities on MS-DOS, PMDFMOVE

PMDF-MR configuration utility

OpenVMS

PMDF CONFIGURE MR

See also the OpenVMS edition of the PMDF

Installation Guide

PMDF-MTA configuration utility

Linux

pmdf configure mta
See also the Linux edition of the PMDF Installation

Guide

OpenVMS

See also the OpenVMS edition of the PMDF

Installation Guide

See Utilities, CONFIGURE

Solaris

pmdf configure mta
See also the Solaris edition of the PMDF

Installation Guide

PMDF option file

See also PMDF options

base notation • 7–1

cnbuild utility • 8–1

CNBUILD utility • 8–1

comments • 7–2

compiling • 8–1

location of • 7–1

PMDF_OPTION_FILE logical • 7–1

protection of • 7–1

Index–32

Index

PMDF options • 7–1 to 7–25

See also PMDF option file

ACCESS_ERRORS • 7–12

ACCESS_ORCPT • 7–25

ALIAS_DOMAINS • 7–6

ALIAS_HASH_SIZE • 7–21

ALIAS_MEMBER_SIZE • 7–21

BLOCK_LIMIT • 2–97, 7–14

See also Message, Limits

BLOCK_SIZE • 2–100, 7–14

See also Message, Limits

BOUNCE_BLOCK_LIMIT • 7–14

CHANNEL_TABLE_SIZE • 7–21

CIRCUITCHECK_COMPLETED_BINS • 7–16

CIRCUITCHECK_PATHS_SIZE • 7–21

COMMENT_CHARS • 7–20

CONTENT_RETURN_BLOCK_LIMIT • 7–14

CONVERSION_SIZE • 7–21

DELIVERY_RECEIPT_OFF • 7–22

DELIVERY_RECEIPT_ON • 7–23

DEQUEUE_DEBUG • 7–22

DISABLE_DELIVERY_RECEIPT option • 7–12

DIS_NESTING • 7–23

DOMAIN_HASH_SIZE • 7–21

EXPROUTE_FORWARD • 2–60, 7–7

FILTER_DISCARD • 7–11, 16–28

FORM_NAMES • 7–23

FSYNC • 7–20, 32–6

HELD_SNDOPR • 7–19

HISTORY_TO_RETURN • 7–12

HOST_HASH_SIZE • 7–21

ID_DOMAIN • 7–7, 28–18

IMPROUTE_FORWARD • 2–61, 7–7

INCLUDE_CONNECTIONINFO • 7–25

LDAP_HOST • 7–10

LDAP_PASSWORD • 7–10

LDAP_PORT • 7–10

LDAP_TIMEOUT • 7–10

LDAP_TLS_MODE • 7–10

LDAP_USERNAME • 7–11

LINES_TO_RETURN • 7–12

LINE_LIMIT • 2–97, 7–14

See also Message, Limits

LOG_ALQ • 7–16, 32–5

LOG_CONNECTION • 7–16, 31–2, 32–5

$T PORT_ACCESS flag • 11–14

DNS_VERIFY_DOMAIN rejection logging • 11–8

ENABLE_RBL rejection logging • 11–8

example • 31–5

firewall system • 28–8

site-supplied text in C connection log entries •

11–14

LOG_CONNECTIONS_SYSLOG • 7–16, 31–2

LOG_DELAY_BINS • 7–16

LOG_DEQ • 7–17, 32–5

PMDF options (cont’d)

LOG_FILENAME • 7–17, 31–2

example • 31–5

firewall system • 28–8

LOG_FORMAT • 7–17

LOG_HEADER • 7–17

firewall system • 28–8

LOG_LOCAL • 7–17

LOG_MESSAGES_SYSLOG • 7–17, 31–2

LOG_MESSAGE_ID • 7–17, 31–2

example • 31–5

firewall system • 28–8

LOG_NODE • 7–18

example • 31–5

LOG_NOTARY • 7–18

example • 31–5

LOG_PROCESS • 7–18, 31–2

example • 31–5

firewall system • 28–8

LOG_SENSITIVITY • 7–18

LOG_SIZE_BINS • 7–18

LOG_SNDOPR • 7–18

LOG_USERNAME • 7–18

example • 31–5

firewall system • 28–8

MAIL_DELIVERY_FILENAME • 7–23, 19–17

MAIL_OFF • 7–7

MAX_ALIAS_LEVELS • 7–7

MAX_FILEINTOS • 7–11

MAX_FORWARDS • 7–11

MAX_HEADER_BLOCK_USE • 2–97, 7–14

See also Message, Limits

MAX_HEADER_LINE_USE • 2–97, 7–14

See also Message, Limits

MAX_INLINE_DIR_LEVELS • 7–7

MAX_INTERNAL_BLOCKS • 7–15

MAX_LIST_SIZE • 7–11

MAX_LOCAL_RECEIVED_LINES • 7–19

MAX_MIME_LEVELS • 7–15

MAX_MIME_PARTS • 7–15

MAX_MR_RECEIVED_LINES • 7–19

MAX_NAMES_SIZE • 7–21

MAX_RECEIVED_LINES • 7–19

MAX_TOTAL_RECEIVED_LINES • 7–20

MAX_URLS • 7–11

MAX_X400_RECEIVED_LINES • 7–20

MISSING_ADDRESS • 7–23

MISSING_RECIPIENT_POLICY • 2–83, 7–7

MP_SIGNED_MODE • 7–23

MULTINET_MM_EXCLUSIVE • 7–23

NAME_TABLE_NAME • 3–11, 7–8

NON_URGENT_BLOCK_LIMIT • 7–15

NORMAL_BLOCK_LIMIT • 7–15

PMDF_SECURITY_CONFIG_FILE • 14–3

POST_DEBUG • 7–22

READ_RECEIPT_OFF • 7–24

Index–33

Index

PMDF options (cont’d)

READ_RECEIPT_ON • 7–24

RECEIVED_DOMAIN • 7–8, 28–18

RETURN_ADDRESS • 2–90, 7–12

effect on PMDF TEST/REWRITE • 29–70

effect on pmdf test -rewrite • 30–68

RETURN_DEBUG • 7–22

RETURN_DELIVERY_HISTORY • 1–12, 7–12

RETURN_DELTA • 7–12

RETURN_ENVELOPE • 2–90, 7–13

RETURN_PERSONAL • 2–90, 7–13

RETURN_UNITS • 1–12, 2–69 to 2–70, 7–13

REVERSE_ENVELOPE • 3–35, 7–8

REVERSE_URL • 7–11

SAFE_TCL_MODE • 7–24

SEPARATE_CONNECTION_LOG • 7–19, 31–2, 32–5

IMAP connection logging • 13–11, 13–20

POP connection logging • 13–13, 13–20

SNDOPR_PRIORITY • 7–19

STRING_POOL_SIZE • 7–21

SUPPRESS_CONTENT_DISP • 7–8

URGENT_BLOCK_LIMIT • 7–15

USE_ALIAS_DATABASE • 3–8, 7–8

USE_DOMAIN_DATABASE • 2–28, 7–8

USE_ERRORS_TO • 7–13

USE_FORWARD_DATABASE • 3–39, 7–8

autoregistration of addresses • 3–50

USE_MAIL_DELIVERY • 7–24, 19–17

USE_PERSONAL_ALIASES • 3–11, 7–9

USE_REVERSE_DATABASE • 3–35, 7–9

autoregistration example • 3–52

USE_WARNINGS_TO • 7–13

VMS_MAIL_EXCLUSIVE • 7–24

WILD_POOL_SIZE • 7–21

PMDF shared library

OpenVMS

PMDFSHR.EXE

UNIX

libpmdf.so
PMDF-X400 configuration utility

OpenVMS

PMDF CONFIGURE X400

See also the OpenVMS edition of the PMDF

Installation Guide

PMDFXFER utility

See Utilities on MS-DOS, PMDFXFER

PMDF-XGS configuration utility

Linux

pmdf configure xgs
See also the Linux edition of the PMDF Installation

Guide

OpenVMS

PMDF CONFIGURE XGS

See also the OpenVMS edition of the PMDF

Installation Guide

PMDF-XGS configuration utility (cont’d)

Solaris

pmdf configure xgs
See also the Solaris edition of the PMDF

Installation Guide

PMDF_MR_NOTIFY utility

See Utilities on OpenVMS, PMDF_MR_NOTIFY

pmdf_tailor file

See Tailor file

PolyCenter MAILbus Monitor • 31–42

POP clients

changing password • 14–25

POPPASSD server • 14–25

restarting

when necessary • 8–6

POP server

See Mailbox servers

popstore

flags

PWD_ELSEWHERE • 29–46, 30–39

management utility

web based

URL • 29–1, 30–1

Management utility

web based

URL • 12–5

user interface

URL • 12–5, 29–1, 30–1

Popstore

flags

PWD_ELSEWHERE • 14–27

port keyword • 2–42, 2–58, 2–77

PORT_ACCESS mapping

See Mappings, PORT_ACCESS

postheadbody keyword • 2–42, 2–52, 2–71

postheadonly keyword • 2–42, 2–52, 2–71

Postmaster

address required • 28–7

alias • 3–6

returnaddress keyword • 2–90

returned message content • 2–71

returned messages • 2–70

returnpersonal keyword • 2–90

RETURN_ADDRESS option • 7–12

RETURN_PERSONAL option • 7–13

warning messages • 2–71

Printer channels • 26–35 to 26–47

addresses • 26–44 to 26–45

AVPL • 26–44 to 26–45

examples • 26–45

quoting • 26–45

configuration • 26–36 to 26–37

example • 26–36

logging • 26–45

notification broadcast • 26–39

Index–34

Index

Printer channels (cont’d)

options • 26–37 to 26–41

AT • 26–38

BURST • 26–38

END_ATTRIBUTE • 26–38

END_COVER • 26–38

END_HEADERLINE • 26–38

END_JOB • 26–38

END_LINE • 26–38

FLAG • 26–38

FORM • 26–39

HEADER_OPTIONS • 26–39

MIME_HANDLINE • 26–39

MIME_HANDLING • 26–43

MS • 26–39

NOTIFY • 26–39

O • 26–39

OU • 26–39

P1–P8 • 26–39

P1_DEFAULT–P8_DEFAULT • 26–40

PAGINATE • 26–40

PREAMBLE • 26–40

PRINT_COMMAND • 26–35, 26–40, 26–42, 26–47

QUOTE_CHARS • 26–40, 26–42, 26–47

SETUP • 26–40

SETUP_DEFAULT • 26–41

SET_USERNAME • 26–36, 26–40, 26–45, 26–47

START_ATTRIBUTE • 26–41

START_HEADERLINE • 26–41

START_LINE • 26–41

TN • 26–41

TRAILER • 26–41

PostScript • 26–46

print form • 26–39

security considerations • 26–46 to 26–47

OpenVMS • 26–47

UNIX • 26–47

username • 26–36

Priority: header

See Headers, Priority:

Privileges

CMKRNL

printer channels

SET_USERNAME option • 26–40, 26–47

processing job submission • 1–8

NETMBX • 2–103

SYSPRV • 1–8

Process channel • 26–47 to 26–49

configuration • 26–48 to 26–49

example • 26–48

used for notification messages • 26–48, 31–11

Processing jobs • 1–7 to 1–15

CMKRNL privilege usage • 1–8

detached processes • 1–14

immediate submission • 1–8 to 1–9

jobs per addressee • 2–65 to 2–66

Processing jobs (cont’d)

jobs per file • 2–65 to 2–66

MAIL$BATCH • 1–14

manually starting • 1–8, 30–54 to 30–60

monitoring

OpenVMS • 33–7 to 33–9

UNIX • 34–3 to 34–5

periodic • 1–9 to 1–11

periodic delivery job

debugging • 7–22

manually starting on UNIX or T • 30–57

return job • 1–11

debugging • 7–22

manually starting on UNIX or NT • 30–57

scheduling • 7–12, 7–13

Return job

Scheduling

See also Keywords, notices
See also PMDF options, RETURN_UNITS

suppression of superfluous jobs • 1–8

usernames • 1–15

UUCP message return job

Encompass (VN) • 25–4

UNIX • 25–7

Process Software, LLC • li, 13–21, 28–25, 34–23

Process Symbiont • 9–1 to 9–8, 33–7

configuration • 9–1

error messages • 9–7

logging • 9–2, 9–5, 9–6

OPCOM messages • 9–6 to 9–8

options • 9–3 to 9–5

example • 9–4

IDLE_TIMEOUT • 9–5

LIFETIME • 9–5

PROCESS_PRIORITY • 9–5

restarting

when necessary • 8–6

restrictions • 9–5

troubleshooting • 9–6 to 9–8

process utility

See Utilities on UNIX, process
PROCESS utility

See Utilities on OpenVMS, PROCESS

Profile database

See User profile database

pipe channels • 26–32

profile utility

See Utilities on UNIX, profile
Programming

See the PMDF Programmer’s Reference Manual

Protections

alias database • 3–8

alias file • 3–2

include files • 3–4

Index–35

Index

Protections (cont’d)

configuration file • 1–5, 2–1

include files • 2–2

domain database • 2–28

general database • 2–19

mailing list files • 4–2, 4–22

mapping file • 5–1

pipe channel option file • 26–34

pmdf.cnf file • 1–5, 2–1

PMDF option file • 7–1

Process symbiont queues • 9–3, 9–5

reverse address database • 3–34

script files

PhoneNet channels • 24–8

PS utility

See Utilities on OpenVMS, PS

purge utility

See Utilities on UNIX, purge

Q
Q2EMAIL symbiont

See Queue to e-mail symbiont

qi and CCSO

Bruce Tanner’s implementation

FTP availability • 3–28

qi lookup

See CCSO lookup

QM utility

See Utilities on OpenVMS, QM

Queue

See also Batch jobs

MAIL$BATCH • 1–14

maintenance • 29–78 to 29–122

NT • 30–84 to 30–121

UNIX • 30–84 to 30–121

message storage area on disk • 1–15

Queue cache database

closing • 29–7

converting • 29–22

creating • 29–8 to 29–9

location of • 29–8

ownership

OpenVMS • 33–3

UNIX • 34–2

PMDF_QUEUE_CACHE_DATABASE logical • 29–8

protection of • 29–8

synchronizing • 29–10, 30–7

automatic by periodic delivery job • 1–11

troubleshooting • 33–21 to 33–22, 34–16

tuning file structure on OpenVMS • 32–2

updating • 29–10, 30–7

Queue cache database (cont’d)

viewing entries • 30–8

Queue directory

/pmdf/queue on UNIX

PMDF_QUEUE: on OpenVMS

Usually C:\pmdf\queue on NT

queue keyword • 1–10, 2–42, 2–53, 2–68 to 2–69

Queue maintenance utility

URL • 12–5, 29–1, 30–1

Queue to e-mail symbiont • 27–1 to 27–7

character set handling • 27–6

configuration • 27–1

logging • 27–2

options • 27–2 to 27–3

ADDRESSING_CHANNEL • 27–2

ADDRESSING_DELIMITER • 27–2

CHARSET • 27–2, 27–5

EXCLUDE_PROXIES • 27–3

EXCLUDE_USERNAMES • 27–3

FROM_ALLOWED • 27–3

HEADERS_ALLOWED • 27–3

SPACE_STRINGS • 27–3

PostScript support • 27–6

restarting

when necessary • 8–6

sending mail with • 27–4

usage • 27–4

with word processors • 27–5

Quotas

See also Dispatcher, Options

ENQLM and DECwindows MAIL • 19–9

FILLM and DECwindows MAIL • 19–9

Quotas, disk

users’ • 2–98

QUOTED-PRINTABLE encoding

See Encodings, QUOTED-PRINTABLE

Quoting

special characters in addresses

VMS MAIL • 18–2

R
randommx keyword • 2–42, 2–58, 2–77 to 2–78

readreceiptmail keyword • 2–42, 2–52, 2–72

Read receipts • 19–12 to 19–15

READ_RECEIPT_OFF option • 7–24

READ_RECEIPT_ON option • 7–24

VMS MAIL • 2–72

Read-receipt-to: header

See Headers, Read-receipt-to:

Index–36

Index

Receipt requests • 19–12 to 19–15

DELIVERY_RECEIPT_OFF option • 7–22

DELIVERY_RECEIPT_ON option • 7–23

READ_RECEIPT_OFF option • 7–24

READ_RECEIPT_ON option • 7–24

receivedfor keyword • 2–42, 2–49, 2–89

receivedfrom keyword • 2–42, 2–49, 2–89

Receiving mail

See also the PMDF User’s Guide

See VMS MAIL

References: header

See Headers, References:

Relabelling MIME headers • 6–5

relaxheadertermination keyword • 2–42, 2–49

remotehost keyword • 2–42, 2–46, 2–49, 2–82 to 2–83

firewall system • 28–5

renamedb utility

See Utilities on UNIX, renamedb
Reply-to: header

See Headers, Reply-to:

reportboth keyword • 2–42, 2–52, 2–71 to 2–72,

19–15

reportheader keyword • 2–43, 2–52, 2–71 to 2–72,

19–15

reportnotary keyword • 2–43, 2–52, 2–71 to 2–72,

19–15

reportsuppress keyword • 2–71 to 2–72, 19–15

Reprocess channel • 26–47 to 26–49

configuration • 26–49

example • 26–49

expandlimit keyword • 2–67

Resent-date: header

See Headers, Resent-date:

Resent-from: header

See Headers, Resent-from:

Resent-reply-to: header

See Headers, Resent-reply-to:

Resent-to: header

See Headers, Resent-to:

restart utility

See Utilities on UNIX, restart
RESTART utility

See Utilities on OpenVMS, RESTART

Restricted encodings • 2–86 to 2–87

restricted keyword • 2–43, 2–46, 2–49, 2–86 to 2–87

Restricting PMDF usage

See Access control

return.com file • 1–11

return.sh file • 1–11

returnaddress keyword • 2–43, 2–52, 2–90

directory channel • 3–14

Returned messages

See Message, Notification

returnenvelope keyword • 2–43, 2–52, 2–90, 7–13

Returning messages

automatically • 1–11

manually • 29–59, 30–53

Return job

See Processing jobs

return job

returnpersonal keyword • 2–43, 2–52, 2–90

Return-receipt-to: header • 2–71

return utility

See Utilities on UNIX, return
RETURN utility

See Utilities on OpenVMS, RETURN

return_job.exe file • 1–11

Reverse address database

See Address reversal

reverse keyword • 2–43, 2–46, 2–49, 2–86, 3–34, 3–35

REVERSE_ENVELOPE option • 7–8

USE_REVERSE_DATABASE option • 7–9

Rewrite rules • 1–7, 2–3 to 2–30

. rule • 2–12

bang-style • 2–12

case sensitivity • 2–15

channel-level translations • 2–34

channel specific • 2–62

channel-specific • 2–22, 2–23

continuation line indicator • 2–2

control sequences • 2–15 to 2–17, 2–22 to 2–25

summary of • 2–15 to 2–17

customer-supplied • 2–20 to 2–21

example • 2–20

DECnet address handling • 18–1

default rule • 2–12

destination channel-specific • 2–23

direction-specific • 2–23 to 2–24

firewall system • 28–4

switchchannel keyword • 28–4

domain database

See Domain database

domain-dependent • 2–22, 2–23

domain literals • 2–5, 2–9 to 2–10

domain subportion substitutions • 2–17

domain substitutions • 2–17

dot rule • 2–12

envelope-specific • 2–23 to 2–24

error message specification • 2–25

examples • 2–26 to 2–27, 2–110, 2–112, 2–113

extracting host/domain • 2–5 to 2–6

failures • 2–9

final steps • 2–8 to 2–9

firewall system • 28–9 to 28–10

format • 2–3 to 2–4

Index–37

Index

Rewrite rules (cont’d)

general database

See General database

header-specific • 2–23 to 2–24

host location-specific • 2–24

host subportion substitutions • 2–17

host substitutions • 2–17

illegal addresses • 2–30

LDAP query URL substitutions • 2–18

location of • 2–3 to 2–4

location-specific • 2–23 to 2–24

mapping application • 2–19

match-all rule • 2–12

operation of • 1–7, 2–4 to 2–10

ordinary • 2–14

patterns • 2–6 to 2–7, 2–10 to 2–13

percent hack • 2–12

percent signs • 2–6

PSIMail address handling • 18–1

repeated rewritings • 2–14

scanning • 2–6 to 2–7

single field substitutions • 2–21

example • 2–21

source channel-specific • 2–22

specified routes • 2–14

substitutions • 2–8, 2–15 to 2–21

See also General database

$D, $H, $U • 2–8

$ quoting • 2–18

customer-supplied • 2–20 to 2–21

domain • 2–17

domain subportion • 2–17

host • 2–17

host subportion • 2–17

LDAP query URLs • 2–18

mapping • 2–19

single field • 2–21

subaddress • 2–17

summary of • 2–15 to 2–17

testing

OpenVMS • 29–69 to 29–75

UNIX • 30–67 to 30–73

unique strings • 2–21

username • 2–17

syntax checking • 2–9

tagged rules • 2–12 to 2–13, 2–24 to 2–25

templates • 2–8, 2–13 to 2–15

summary of • 2–13

testing

OpenVMS • 29–69 to 29–75

UNIX • 30–67 to 30–73

unique string substitutions • 2–21

RFC 1123 • Glossary–3

RFC 1566 • Glossary–3

RFC 1891–1894 • Glossary–3

RFC 2222 (SASL; Simple Authentication and Security

Layer) • Glossary–3

RFC 2246 (TLS; Tranport Layer Security) • Glossary–3

RFC 2246 (TLS; Transport Layer Security) • 15–1

RFC 821 (SMTP) • Glossary–3

RFC 822 • Glossary–3

RFC 822 ‘‘specials’’ • 3–44

RFCs

See Standards

RFCs 2045–2049 • Glossary–3

Rightslist identifier usage • 2–103

Rose, Marshall

fundamental axiom of management • 31–38

routelocal keyword • 2–43, 2–46, 2–61

firewall system • 28–5

SMTP relay blocking • 16–10

! routing • 2–6, 2–12

% routing • 2–6, 2–12

Routing

explicit • 2–60 to 2–61

exproute • 2–60 to 2–61

EXPROUTE_FORWARD option • 7–7

implicit • 2–60 to 2–61

improute • 2–60 to 2–61

IMPROUTE_FORWARD option • 7–7

rules keyword • 2–43, 2–46, 2–50, 2–62

run utility

See Utilities on UNIX, run

S
Secure sockets layer, see SSL (Secure Sockets Layer)

Safe-Tcl

enabling or disabling • 7–24

SASL • 2–80, 15–6

See Standards, RFC 2222

mechanisms • 14–1, Glossary–1

saslswitchchannel keyword • 2–43, 2–50, 2–54,

2–80

Scratch files

location of

OpenVMS • 19–9

Script channel • 22–18 to 22–24

bouncing messages • 22–22

Completion Statuses • 22–22

configuration • 22–20

DCL symbols

ENVELOPE_FROM • 22–21

ENVELOPE_TO_FILE • 22–21

INPUT_FILE • 22–21

ORIG_ENV_TO_FILE • 22–21

OUTPUT_DIAGNOSTIC • 22–21, 22–22

Index–38

Index

Script channel

DCL symbols (cont’d)

OUTPUT_FILE • 22–21

OUTPUT_OPTIONS • 22–21

deleting messages • 22–23

environment variables

ENVELOPE_FROM • 22–21

ENVELOPE_TO_FILE • 22–21

INPUT_FILE • 22–21

ORIG_ENV_TO_FILE • 22–21

OUTPUT_FILE • 22–21

OUTPUT_OPTIONS • 22–21, 22–22

example • 22–20

holding messages • 22–23

multiple channels • 22–24

No Changes • 22–23

options

COMMAND

DCL symbols • 22–21

environment variables • 22–21

output options

OUTPUT_DIAGNOSTIC • 22–21

STATUS • 22–21

override options

OUTPUT_DIAGNOSTIC • 22–22

PMDF_ _FORCEBITBUCKET status code • 22–23

PMDF_ _FORCEDISCARD status code • 22–23

PMDF_ _FORCEHOLD status code • 22–23

PMDF_ _FORCERETURN status code • 22–22

PMDF_ _NOCHANGE status code • 22–23

SCRIPT mapping • 22–19

example • 22–19

script targets • 22–19

spam scanning • 22–18

virus scanning • 22–18

with conversion channel or disclaimer channel • 22–29

Script files

See PhoneNet channels

Security configuration

authentication sources

ANONYMOUS • 14–9

USER option • 14–9

Kerberos V4 • 14–18

LDAP • 14–9

BASEDN option • 14–9

LDAP_VERSION option • 14–10

SERVER option • 14–9

LOGIN • 14–11

MSGSTORE • 14–11

PASSDB • 14–11

PMDF • 14–11

POPPROXY • 14–11

SERVER option • 14–11

site-defined

FUNCTION option • 14–12

IMAGE option • 14–12

Security configuration

authentication sources (cont’d)

SYSTEM • 14–12

SIA_SES_LAUNCH option • 14–12

auxiliary property modules

DEFAULT • 14–16

LOCALMAIL • 14–15

MSGSTORE • 14–15

PASSWD • 14–15

configuration file

location of • 14–3

options • 14–8

AUTH_METHOD • 14–5

AUXPROP_ENABLE • 14–5

BASEDN • 14–5

BASEDN option for LDAP source • 14–9

ENABLE • 14–5

FUNCTION • 14–5

FUNCTION option for site-defined source •

14–12

IMAGE • 14–5

IMAGE option for site-defined source • 14–12

LDAP_ATTRIBUTE • 14–6

LDAP_CACERTFILE • 14–6

LDAP_SEARCHACCT_DN • 14–6

LDAP_SEARCHACCT_PASSWORD • 14–6

LDAP_TLS_MODE • 14–6

LDAP_VERSION • 14–6

LDAP_VERSION option for LDAP source •

14–10

MAIL_DOMAIN • 14–6

MECHANISMS • 14–7

PASSWORD • 14–7

RESTRICT • 14–7, 15–6, 15–8

SERVER • 14–7

SERVER option for LDAP source • 14–9

SERVER option for POPPROXY source •

14–11

SIA_SES_LAUNCH option for SYSTEM

source • 14–12

TLS_MODE • 14–7

TRANSITION_ADD • 14–8

TRANSITION_CRITERIA • 14–8

TRANSITION_DISABLE • 14–8

TRANSITION_FROM • 14–8

TRANSITION_RETAIN_USERS • 14–9

TRANSLATE • 14–7

USER • 14–7

USER option for ANONYMOUS source • 14–9

mechanisms

ANONYMOUS • 14–13

APOP • 14–13

CRAM-MD5 • 14–13

DIGEST-MD5 • 14–13

LOGIN • 14–13

PLAIN • 14–14

security rule set • 14–2, Glossary–4

Index–39

Index

Security configuration

security rule set (cont’d)

DEFAULT

PMDF password database usage • 14–27

transitioning between authentication sources • 14–16

username translation functions

ASCII-NOCASE • 14–14

DEFAULT • 14–14

IDENTITY • 14–14

Sender Policy Framework

see SPF and SRS

Sender Rewriting Scheme

see SPF and SRS

sendetrn keyword • 2–43, 2–57, 2–75, 21–12

Sending mail

See also the PMDF User’s Guide

See PMDF MAIL

See sendmail
See VMS MAIL

sendmail
command line options • 17–1

PMDF replacement for sendmail • 17–1 to 17–2

sendpost keyword • 2–43, 2–52, 2–70

SEND utility

See Utilities on OpenVMS, SEND

SEND_ACCESS mapping

See Mappings, SEND_ACCESS

Sensitivity: header

See Headers, Sensitivity:

Sensitivity check • 2–102

sensitivitycompanyconfidential keyword

• 2–43, 2–50, 2–55, 2–102

sensitivitynormal keyword • 2–43, 2–50, 2–55,

2–102

sensitivitypersonal keyword • 2–43, 2–50,

2–55, 2–102

sensitivityprivate keyword • 2–43, 2–50, 2–55,

2–102

Sequence numbers

in mapping table output • 5–9

on list posting subject lines • 4–10

Servers

monitoring

dispatcher connections • 11–16

OpenVMS • 33–3 to 33–4

UNIX • 34–3

serviceall keyword • 2–43, 2–53, 2–64

Service conversions • 6–8 to 6–10

BSMTP channels • 23–3

Service denial attack

See Denial of service attack

Service Dispatcher

See Dispatcher

SET WATCH FILE • 33–14

sevenbit keyword • 2–43, 2–47, 2–57, 2–83 to 2–84

Shell commands

See also Utilities on UNIX

.forward files • 17–3

pipe channels • 17–3, 26–30

user profile database • 17–3, 17–4, 30–77

Short-form domain name • 2–5

shutdown utility

See Utilities on UNIX, shutdown
SHUTDOWN utility

See Utilities on OpenVMS, SHUTDOWN

SIEVE • 16–31 to 16–36

Sieve filtering

See Mailbox filters

silentetrn keyword • 2–43, 2–57, 2–76

firewall system • 28–13

single keyword • 2–43, 2–47, 2–66

pipe channel usage • 26–31, 26–34

use with x_vms_to • 2–89, 19–7

single_sys keyword • 2–43, 2–47, 2–66

Size limits

See Message, Limits

Slave channels • 1–6, 2–31

slave keyword • 2–43, 2–54, 2–62

slave_debug keyword • 2–43, 2–51, 2–101, 33–6,

34–5

SMTP

authentication • 14–27

SMTP commands

AUTH • 2–80, 2–82, 14–1, 15–6, 21–12

adding authenticated sender to headers • 2–81,

16–6

disabling • 21–5

disabling on a firewall system • 28–17

EHLO • 2–74

ETRN • 2–75, 2–76, 21–12

firewall system • 28–13

limiting use • 2–76, 21–4, 28–13

EXPN

blocking use • 4–6

disabling • 21–5

HELO • 2–74

STARTTLS • 15–2

VRFY • 2–76

obfuscating responses • 21–6

XADR

disabling • 21–5

XCIR

disabling • 21–5

XGEN

disabling • 21–5

XSTA

disabling • 21–5

Index–40

Index

smtp keyword • 2–43, 2–57, 2–74

SMTP over TCP/IP channels

See TCP/IP channels

SMTP relay blocking • 16–8

SMTP server

See TCP/IP channels

smtp_cr keyword • 2–43, 2–57, 2–74

smtp_crlf keyword • 2–43, 2–57, 2–74

smtp_crorlf keyword • 2–43, 2–57, 2–74

smtp_lf keyword • 2–43, 2–57, 2–74

SNADS channels

autoregistration of addresses • 3–50

server processes

restarting

when necessary • 8–6

SNMP support • 31–38

Solaris upgrade

Steps to perform after

See the Solaris Edition of the PMDF Installation

Guide

sourceblocklimit keyword • 2–43, 2–55, 2–97 to

2–98

See also Message, Size limits

sourcecommentinc keyword • 2–43, 2–50, 2–91 to

2–92

sourcecommentomit keyword • 2–43, 2–50, 2–91 to

2–92

sourcecommentstrip keyword • 2–43, 2–50, 2–91

to 2–92

sourcecommenttotal keyword • 2–44, 2–50, 2–91

to 2–92

sourcefilter keyword • 2–44, 2–51, 2–101, 16–27

sourcepersonalinc keyword • 2–44, 2–50, 2–92

sourcepersonalomit keyword • 2–44, 2–50, 2–92

sourcepersonalstrip keyword • 2–44, 2–50, 2–92

sourceroute keyword • 2–44, 2–46, 2–59

Source routes • 2–5

optional angle brackets • 19–15

Spam scanning

script channel • 22–18

SPF (Sender Policy Framework) and SRS (Sender

Rewriting Scheme) • 16–18 to 16–24

Spool directory

See Queue directory

SSL (Secure Sockets Layer) • 15–1

Standards

delivery receipts

See RFC 1891-1894

IDENT

See Standards, RFC 1413 (IDENT)

IMAP

See Standards, RFC 2060 (IMAP4rev1)

ISO 8601 P • 4–6, 31–33

LDAP

See Standards, RFC 2251 (LDAPv3)

Standards (cont’d)

MADMAN

See RFCs 1565 and 1566

mail monitoring MIB

See RFC 1566

MIME

See RFCs 2045-2049

NOTARY

See RFCs 1891-1894

POP3

See Standards, RFC 1939 (POP3)

read receipts

See RFC 2298

RFC 1006 (X.400 over TCP/IP) • 1–22

RFC 1026

See RFC 2156

RFC 1123 (Requirements for Internet Hosts) • 1–22

required domain literal address support • 21–3

required minimum retry time for Internet mail • 1–10

RFC 1137 (Restricted encoding) • 2–87, 29–73, 30–71

RFC 1148

See RFC 2156

RFC 1154

Encoding: header • 2–89

format conversion • 6–5

RFC 1176

See RFC 2060

RFC 1225

See RFC 1939

RFC 1274 (The COSINE and Internet X.500 Schema) •

3–24

RFC 1425

See RFC 1869

RFC 1426

See RFC 1652

RFC 1427

See RFC 1870

RFC 1460

See RFC 1939

RFC 1485 (Distinguished Names) • 3–21

RFC 1521-1522

See RFCs 2045-2049

RFC 1558

See RFC 1960

RFC 1565 (Network Services Monitoring MIB) • 31–44

RFC 1566 (Mail Monitoring MIB) • 1–22, 31–38, 31–44

RFC 1651

See RFC 1869

See RFC 1870

RFC 1652 (ESMTP 8BIT-MIME extension) • 1–22

RFC 1725

See RFC 1939

RFC 1730

See RFC 2060

Index–41

Index

Standards (cont’d)

RFC 1731 (IMAP4 authentication mechanisms) • 13–2

RFC 1733 (Distributed electronic mail models in IMAP4)

• 13–2

RFC 1740 (MacMIME) • 6–7

RFC 1741 (Binhex) • 6–7

RFC 1777 (LDAPv2)

See Standards, RFC 2251 (LDAPv3)

RFC 1869 (ESMTP) • 1–22

RFC 1870 (ESMTP message size extension) • 1–22

RFC 1891-1894 (NOTARY) • 1–22, 2–71, 19–14

RFC 1939 (POP3) • 1–22

RFC 1960

See RFC 2254

RFC 1960 (LDAP Search Filters) • 3–26

RFC 1985 (ETRN) • 1–22, 2–75, 2–76, 21–12, 28–13

RFC 2034 (ESMTP error code enhancements) • 1–22

RFC 2045-2049 (MIME) • 1–22

RFC 2060 (IMAP4rev1) • 1–22

RFC 2086 (IMAP4 ACL extension) • 1–22

RFC 2087 (IMAP4 QUOTA extension) • 1–22

RFC 2088 (IMAP4 non-synchronizing literals) • 1–22

RFC 2156 (MIXER: Mapping between X.400 and RFC

822/MIME) • 1–22, 26–44

Deferred-delivery: header • 2–69

RFC 2183 (Content-disposition: header) • 1–22

RFC 2222 (SASL) • 1–22, 14–1, 14–2

RFC 2246 (TLS) • 2–81

RFC 2246 (TLS; Transport Layer Security) • 15–5

RFC 2251 (LDAPv3) • 3–20

RFC 2252 (LDAPv3: Attribute Syntax Definitions) • 1–22

RFC 2253 (LDAPv3: UTF-8 DNs) • 1–22

RFC 2254 (LDAP Search Filters) • 1–22

RFC 2255 (LDAP URL Format) • 1–22

RFC 2298 (Message Disposition Notifications) • 19–13

RFC 2342 (IMAP4 NAMESPACE) • 13–2

RFC 2342 (IMAP4 NAMESPACE command) • 1–22

RFC 2359 (IMAP4 UIDPLUS extension) • 1–22

RFC 2369 (URLs for Mail List Commands through

Message Headers) • 4–7

RFC 2449 (POP3 CAPA command) • 1–22

RFC 2476 (Message Submission) • 2–62

RFC 2487 (SMTP STARTTLS extension) • 2–81, 15–1,

15–5

RFC 2505 (Anti-Spam Recommendations for SMTP

MTAs) • 1–22

RFC 2554 (ESMTP AUTH) • 1–22, 2–80, 2–82, 14–1

RFC 2595 (Using TLS with IMAP, POP3 and ACAP) •

15–1

RFC 2617 (HTTP Authentication) • 14–13

RFC 821 (SMTP) • 1–22

RFC 822 (Internet text messages) • 1–17, 1–22

extensions to address format • 19–15 to 19–17

RFC 934 • 1–22

RFC 974 (Mail Routing and the Domain System) • 1–22

RFC 976 (UUCP) • 1–22, 2–6, 2–59, 25–1

Standards (cont’d)

RFC 987

See RFC 2156

RFCs

FTP site for obtaining • 13–2

SASL

See RFC 2222

SMTP

See also Standards, RFC 1090 (SMTP over X.25)

See also Standards, RFC 1426 (ESMTP 8BIT-

MIME extension)

See also Standards, RFC 1869 (ESMTP)

See also Standards, RFC 1870 (ESMTP message

size extension)

See also Standards, RFC 1891 and 1893

(NOTARY)

See also Standards, RFC 1985 (ETRN)

See also Standards, RFC 2034 (ESMTP error code

enhancements)

See also Standards, RFC 2487 (SMTP STARTTLS

extension)

See RFC 821

See Standards, RFC 821 (SMTP)

SMTP extensions

DSN • 2–71, 19–14

TLS

See Standards, RFC 2246 (TLS; Transport Layer

Security)

UUCP

See Standards, RFC 976 (UUCP)

startup utility

See Utilities on UNIX, startup
STARTUP utility

See Utilities on OpenVMS, STARTUP

Store-and-forward • 1–1

streaming keyword • 2–44, 2–57, 2–73

Structure of PMDF • 1–19

Subaddresses

alias match • 2–93, 3–6

MessageStore folder delivery • 2–93, 16–26

subaddressexact keyword • 2–44, 2–46, 2–93 to

2–94

subaddressrelaxed keyword • 2–44, 2–46, 2–93 to

2–94

subaddresswild keyword • 2–44, 2–46, 2–93 to 2–94

subdirs keyword • 2–44, 2–47, 2–67

Subject: header

See Headers, Subject:

submit keyword • 2–44, 2–58, 2–62

submit utility • 1–9, 30–59

use in troubleshooting • 34–5

submit_master utility • 1–9, 30–60

Index–42

Index

suppressfinal keyword • 2–44, 2–52, 2–73

firewall system • 28–20

Swap space • 34–10

switchchannel keyword • 2–44, 2–50, 2–78, 2–79 to

2–80

direction-specific rewrite rules • 28–4

firewall system • 28–3

separating internal and external traffic • 28–3

SMTP relay blocking • 16–9

Symbionts

See Process Symbiont

See Queue to e-mail symbiont

SYNTAX errors from VMS MAIL • 19–10

SYS$SCRATCH

PMDF usage • 19–9, 32–4

VMS MAIL usage • 19–9

SYSGEN parameters

CHANNELCNT • 11–18

LGI_BRK_LIM • 13–19

MAXPROCESSCNT • 11–18

PQL_DASTLM • 11–18

PQL_DBIOLM • 11–18

PQL_DBYTLM • 11–18

PQL_DCPULM • 11–18

PQL_DDIOLM • 11–18

PQL_DENQLM • 11–18

PQL_DFILLM • 11–18

PQL_DJTQUOTA • 11–18

PQL_DPGFLQUOTA • 11–18

PQL_DTQELM • 11–18

PQL_DWSEXTENT • 11–18

PQL_DWSQUOTA • 11–18

PQL_MASTLM • 11–18

PQL_MBIOLM • 11–18

PQL_MBYTLM • 11–18

PQL_MCPULM • 11–18

PQL_MDIOLM • 11–18

PQL_MENQLM • 11–18

PQL_MFILLM • 11–18

PQL_MJTQUOTA • 11–18

PQL_MPGFLQUOTA • 11–18

PQL_MTQELM • 11–18

PQL_MWSEXTENT • 11–18

PQL_MWSQUOTA • 11–18

VIRTUALPAGECNT • 11–18

WSMAX • 11–18

syslog messages

PORT_ACCESS mapping table • 11–13, 11–14

SEND_ACCESS and related mapping tables • 16–3

syslog messages (UNIX)

connection entries • 7–16, 31–2

HELD_SNDOPR option • 7–19

level of • 7–19

LOG_SNDOPR option • 7–18

message entries • 7–17, 31–2

T
Transport layer security, see TLS (Transport Layer Security)

Table directory

/pmdf/table on UNIX

PMDF_TABLE: on OpenVMS

Usually C:\pmdf\table on NT

Tailor file

/etc/pmdf_tailor
options

PMDF_CONVERSION_FILE • 22–3

PMDF_PASSWORD_DATABASE • 14–28

PMDF_SECURITY_CONFIG_FILE • 14–3

Tailor file or Tailor key in NT Registry

created during PMDF installation • 1–21

options

PMDF_ALIAS_DATABASE option • 3–8

PMDF_ALIAS_FILE • 3–2, 30–16, 30–68

PMDF_CHARSET_DATA • 30–9 to 30–11, 30–15

PMDF_CHARSET_OPTION_FILE • 30–9 to 30–11

PMDF_COMMAND_DATA • 30–12, 30–13

PMDF_CONFIG_DATA • 8–1, 30–15, 30–16, 30–70

PMDF_CONFIG_FILE • 1–5, 30–16, 30–68

PMDF_CONVERSION_FILE • 30–16

PMDF_DISPATCHER_CONFIG • 11–3

PMDF_DISPATCHER_CONFIG_MAIN • 11–3

PMDF_IMAPPOP_CONFIG_FILE • 13–7, 13–12

PMDF_IMAP_CONFIG_FILE • 13–7

PMDF_MAILSERV_FILES_DIR • 4–21

PMDF_MAILSERV_MAIL_DIR • 4–21

PMDF_MAPPING_FILE • 5–1, 30–16, 30–70

PMDF_OPTION_FILE • 7–1, 30–16, 30–70

PMDF_PERSONAL_ALIAS_DATABASE • 3–10

PMDF_PIPE_DATABASE • 26–32

PMDF_POP3_CONFIG_FILE • 13–12

PMDF_POST_VERIFY • 7–22

PMDF_QUEUE_CACHE_DATABASE • 30–7

PMDF_RETURN_PERIOD • 1–11

PMDF_RETURN_SPLIT_PERIOD • 1–13

PMDF_RETURN_SYNCH_PERIOD • 1–13

PMDF_RETURN_VERIFY • 7–22

PMDF_REVERSE_DATABASE • 3–34

PMDF_SECURITY_CONFIG_FILE • 30–16

PMDF_SYNCH_CACHE_PERIOD • 1–11

PMDF_VERSION_LIMIT • 1–11

PMDF_VERSION_LIMIT_PERIOD • 1–11

Tailor file or Tailor key in Windows Registry

options

PMDF_SCRATCH • 32–4

PMDF_TMP • 32–4

Tanner, Bruce • 3–28

Index–43

Index

TCP/IP channels • 21–1 to 21–13

client-side SASL authentication • 21–12

Connection history caching • 2–65

daemon keyword • 2–99, 21–11

DNS lookups on envelope From: addresses • 2–79

DNS lookups on incoming connections • 2–78

DNS lookups on outgoing connections • 2–77

gateway access • 21–11

interfaceaddress keyword • 2–77, 11–9

lastresort keyword • 2–78

local host table name lookups • 2–77

multithreaded TCP SMTP • 21–10

configuration • 21–2 to 21–10

option file

format • 21–4

location • 21–3

options • 21–3 to 21–8

server

controlling • 21–10 to 21–11

multi-threading on outgoing connections • 2–73

MX records • 2–77

nameserver selection • 2–77

options

ALLOW_ETRNS_PER_SESSION • 2–76, 21–4

firewall system • 28–13

ALLOW_RECIPIENTS_PER_TRANSACTION •

21–4

firewall system • 28–13

ALLOW_REJECTIONS_BEFORE_DEFERRAL •

21–4

ALLOW_TRANSACTIONS_PER_SESSION

firewall system • 28–13

ATTEMPT_TRANSACTIONS_PER_SESSION •

21–4

BANNER_ADDITION • 21–4

CHECK_SOURCE • 21–4

COMMAND_RECEIVE_TIME • 21–4

COMMAND_TRANSMIT_TIME • 21–5

DATA_RECEIVE_TIME • 21–5

DATA_TRANSMIT_TIME • 21–5

DISABLE_ADDRESS • 21–5

DISABLE_CIRCUIT • 21–5

DISABLE_EXPAND • 21–5

DISABLE_GENERAL • 21–5

DISABLE_STATUS • 21–5

DOT_TRANSMIT_TIME • 21–5

firewall system • 28–17

HIDE_VERIFY • 21–6

LOG_BANNER • 21–6

LOG_CONNECTION • 21–6

LOG_TRANSPORTINFO • 21–6

LONG_LINE_MODE • 21–6

MAIL_TRANSMIT_TIME • 21–7

MAX_CLIENT_THREADS • 21–7

MAX_MX_RECORDS • 21–7

RCPT_TRANSMIT_TIME • 21–7

TCP/IP channels

options (cont’d)

STATUS_DATA_RECEIVE_TIME • 21–7

STATUS_DATA_RECV_PER_ADDR_PER_

BLOCK_TIME • 21–7

STATUS_DATA_RECV_PER_ADDR_TIME • 21–7

STATUS_DATA_RECV_PER_BLOCK_TIME • 21–7

STATUS_MAIL_RECEIVE_TIME • 21–7

STATUS_RCPT_RECEIVE_TIME • 21–7

STATUS_RECEIVE_TIME • 21–8

STATUS_TRANSMIT_TIME • 21–8

TRACE_LEVEL • 21–8

performance • 2–73

polling via ETRN command • 21–12

port keyword • 2–77

PORT_ACCESS mapping table • 21–11

rejecting connections • 21–11

SASL use • 2–80, 15–6

configuration example • 15–6

SMTP commands

See SMTP commands

threads used for outgoing connections • 2–73

TLS port for SMTP • 15–1

TLS use • 15–5

configuration example • 15–6

TCP SMTP server

restarting • 30–15

UNIX • 30–51

when necessary • 8–6

stopping

UNIX • 30–55

Temporary files • 1–16

changing location of • 32–4

location of

OpenVMS • 19–9

test utilities

See Utilities on UNIX, test
TEST utilities

See Utilities on OpenVMS, TEST

Text attachments

character set • 2–84, 6–1

TEXT errors from VMS MAIL • 19–10

threaddepth keyword • 2–44, 2–54, 2–58, 2–73

Timeouts

incoming SMTP connections

expansion of multiple recipient addresses • 2–67,

26–47

Time zone • 19–4

See also the OpenVMS edition of the PMDF Installation

Guide

TLS (Transport Layer Security) • 15–1, Glossary–3

configuration • 15–2 to 15–6

certificate • 15–2 to 15–3

ports • 15–4

required minimum bits of encryption • 15–6

TCP/IP channels • 15–5

Index–44

Index

TLS (Transport Layer Security) (cont’d)

established HTTP port number • 15–1

established IMAP port number • 15–1

established POP port number • 15–1

established SMTP port number • 15–1

STARTTLS command • 15–1

tlsswitchchannel keyword • 2–44, 2–50, 2–54,

2–81, 15–5

To: header

See Headers, To:

Troubleshooting

MF, MB, or other $M... files • 33–28

.HELD files • 33–23 to 33–24, 34–17 to 34–19

See also Held files

common problems

OpenVMS • 33–17 to 33–30

UNIX • 34–13 to 34–22

compiled configuration version mismatch • 33–13, 34–9

to 34–10

configuration changes have no effect • 33–18, 34–13

DECnet channels • 20–9

error activating transport • 33–15

file errors • 33–13 to 33–14, 34–11

file ownership

OpenVMS • 33–3

file protection

OpenVMS • 33–3

UNIX • 34–2

general guidelines

OpenVMS • 33–2 to 33–9

UNIX • 34–1 to 34–6

illegal host/domain errors • 33–14, 34–11 to 34–12

license problems

OpenVMS • 33–16 to 33–17

Solaris • 34–12

log files

See also Log files

OpenVMS • 33–5 to 33–6

UNIX • 34–5

looping messages • 33–23 to 33–24, 34–17 to 34–19

manually running channels

OpenVMS • 33–6

UNIX • 34–5

messages sit in queues • 33–21 to 33–22, 34–16

No room in ...

See Errors, mm_init, No room in ...

pager channels • 26–26

PhoneNet channels • 24–10 to 24–11

processing jobs

OpenVMS • 33–5

UNIX • 34–5

record too large errors • 33–17

SMTP%, EDU%, etc. • 33–29

swap space shortage • 34–10

TCP/IP problems • 33–19 to 33–21, 34–15 to 34–16

timeouts on incoming SMTP connections • 33–19, 34–14

Troubleshooting (cont’d)

unable to receive incoming mail • 33–18, 34–13

VMS MAIL exits or hangs • 33–29

U
Undeliverable mail • 1–11

unrestricted keyword • 2–44, 2–46, 2–50, 2–86 to

2–87

Upgrade operating system

Steps to perform after

See the appropriate edition of the PMDF Installation

Guide

urgentblocklimit keyword • 2–44, 2–54, 2–55,

2–63

urgentnotices keyword • 2–44, 2–52, 2–69 to 2–70

urgentqueue keyword • 2–44, 2–54, 2–68 to 2–69

User domain • 14–2, Glossary–4

USERDSABL errors from VMS MAIL • 19–10

usereplyto keyword • 2–44, 2–50, 2–91

useresent keyword • 2–44, 2–50, 2–91

useresent keywords

local channel

VMS MAIL recipients • 18–4

user keyword • 2–44, 2–48, 2–54

User profile database • 17–3, 17–4 to 17–6

mailbox location • 13–18

manipulating • 30–77

Utilities

QM web-based version • 31–20

web-based

QM • 31–20

Utilities on NT

cnbuild
building option files with • 8–4 to 8–5

compiling the configuration • 8–1 to 8–4

errors • 8–4 to 8–5

extending table sizes with • 8–4 to 8–5

configuration

web based • 12–5

crdb
use with Directory channel • 3–17

MessageStore management

web based • 12–5

movein
See the PMDF MessageStore & popstore

Manager’s Guide

msgstore
See the PMDF MessageStore & popstore

Manager’s Guide

password change

web based • 12–5

popstore

Index–45

Index

Utilities on NT

popstore (cont’d)

See the PMDF MessageStore & popstore

Manager’s Guide

popstore management

web based • 12–5

queue maintenance

web based • 12–5

restart
dispatcher • 13–16, 13–18, 21–10

job_controller • 10–1

run • 1–8

shutdown
dispatcher • 11–12, 13–17

job_controller • 10–2

startup
dispatcher

starting mailbox servers • 13–16

submit • 1–9

submit_master • 1–9

test -rewrite
testing mailing list expansion • 4–15

utilities on OpenVMS • 29–1

Utilities on OpenVMS

CACHE/CLOSE • 29–7

CACHE/REBUILD • 29–8 to 29–9

CACHE/SYNCHRONIZE • 29–10

use in troubleshooting • 33–21

CHBUILD • 29–11 to 29–12, 33–11

example • 27–7

CLBUILD • 29–13 to 29–14

CNBUILD • 29–15 to 29–17

building option files with • 8–4 to 8–5

compiling the configuration • 8–1 to 8–3

errors • 8–4 to 8–5, 33–10 to 33–13

extending table sizes with • 8–4 to 8–5

full description • 29–15 to 29–17

configuration

web based • 12–5

CONFIGURE • 29–18

FIREWALL • 28–3

MAILBOX_SERVERS • 13–4

POPPASSD server • 14–26

QUEUES • 9–2

CONVERT • 29–19 to 29–21

convert_cache.com • 29–22

COUNTERS/CLEAR • 29–23 to 29–24

COUNTERS/CRDB • 29–25

COUNTERS/SHOW • 29–26 to 29–28

COUNTERS/SYNCHRONIZE • 29–29

COUNTERS/TODAY • 29–30

CRDB • 29–31 to 29–34

full description • 29–31 to 29–34

use with Directory channel • 3–17

use with the address reversal database • 3–36

use with the alias database • 3–9

Utilities on OpenVMS (cont’d)

DB • 3–40

See also the OpenVMS Edition of the PMDF User’s

Guide

personal mailing lists • 4–17

DCF • 29–35 to 29–36

DECODE

See the OpenVMS edition of the PMDF User’s

Guide

DUMPDB • 29–37

ENCODE

See the OpenVMS edition of the PMDF User’s

Guide

FOLDER

See the OpenVMS edition of the PMDF User’s

Guide

FORWARD

See the OpenVMS edition of the PMDF User’s

Guide

G3 • 29–38 to 29–39

GZIP and GUNZIP

Free Software Foundation • 23–1

INSTALL • 29–40 to 29–41

site-specified images • 29–40

KILL • 29–42

LICENSE • 29–43 to 29–44

MAIL

See the OpenVMS edition of the PMDF User’s

Guide

MessageStore management

web based • 12–5

migrate
See the appropriate edition of the PMDF User’s

Guide

MOVEIN

See the PMDF MessageStore & popstore

Manager’s Guide

MSGSTORE

See the PMDF MessageStore & popstore

Manager’s Guide

PASSWORD • 14–28, 29–45 to 29–48

password change

web based • 12–5

POPSTORE

See the PMDF MessageStore & popstore

Manager’s Guide

popstore management

web based • 12–5

PROCESS • 29–49

QCLEAN • 29–50 to 29–52

QM • 29–78 to 29–122

channel description • 2–102

commands

CLEAN • 29–80

COUNTERS CLEAR • 29–83

COUNTERS CRDB • 29–84

COUNTERS SHOW • 29–85

Index–46

Index

Utilities on OpenVMS

QM

commands (cont’d)

COUNTERS SYNCHRONIZE • 29–87

COUNTERS TODAY • 29–88

DATE • 29–89

DELETE • 29–90

DIRECTORY • 29–92

EDIT_FAX • 29–96

EXIT • 29–98

HELD • 29–99

HELP • 29–101

HISTORY • 29–102

HOLD • 29–104

QUIT • 29–106

READ • 29–107

RELEASE • 29–109

RETURN • 29–111

SPAWN • 29–113

SUMMARIZE • 29–116

TOP • 29–118

VIEW • 29–121

help • 29–101

QTOP • 29–53 to 29–55

queue maintenance

command line • 29–78

web based • 12–5

RESTART • 21–10, 29–56 to 29–58

COUNTERS • 31–44

DISPATCHER • 11–13

starting mailbox servers • 13–16

IMAP • 13–17

IMAP_SERVER • 13–17

POP3 • 13–17

POP_SERVER • 13–17

RETURN • 29–59

SEND

See also the OpenVMS Edition of the PMDF User’s

Guide

use by queue to e-mail symbiont • 27–1

SHUTDOWN • 29–60 to 29–62

COUNTERS • 31–44

DISPATCHER • 11–12

IMAP • 13–17

IMAP_SERVER • 13–17

POP3 • 13–17

POP_SERVER • 13–17

SMTP • 21–10

STARTUP • 29–63 to 29–64

DISPATCHER • 11–12, 21–10

starting mailbox servers • 13–16

submit_master • 1–9

TEST/MAPPING • 29–65 to 29–66

TEST/MATCH • 29–67 to 29–68

TEST/REWRITE • 29–69 to 29–75

testing access controls • 16–8

Utilities on OpenVMS

TEST/REWRITE (cont’d)

testing mailing list expansion • 4–15

TEST/URL • 29–76

VERSION • 29–77

Utilities on UNIX • 30–1

cache -synchronize • 30–7

use in troubleshooting • 34–16

cache -view • 30–8

chbuild • 30–9 to 30–11, 34–8

clbuild • 30–12 to 30–14

cnbuild • 30–15 to 30–18

building option files with • 8–4 to 8–5

compiling the configuration • 8–1 to 8–3

errors • 8–4 to 8–5, 34–6 to 34–9

extending table sizes with • 8–4 to 8–5

full description • 30–15 to 30–18

configuration

web based • 12–5

configure • 30–19 to 30–20

firewall • 28–3

mailbox_servers • 13–4

POPPASSD server • 14–26

convertdb • 30–21 to 30–22

counters -clear • 30–23

counters -show • 30–24 to 30–25

counters -today • 30–26

crdb • 30–27 to 30–30

full description • 30–27 to 30–30

use with Directory channel • 3–17

use with the address reversal database • 3–36

use with the alias database • 3–9

use with the domain database • 2–29

db • 3–40

personal mailing lists • 4–17

decode
See the UNIX edition of the PMDF User’s Guide

dumpdb • 30–31

encode
See the UNIX edition of the PMDF User’s Guide

find • 30–34 to 30–35

gzip and gunzip

Free Software Foundation • 23–1

kill • 30–36

license -verify • 30–37

MessageStore management

web based • 12–5

migrate
See the appropriate edition of the PMDF User’s

Guide

movein
See the PMDF MessageStore & popstore

Manager’s Guide

msgstore
See the PMDF MessageStore & popstore

Manager’s Guide

Index–47

Index

Utilities on UNIX (cont’d)

password • 14–28, 30–38 to 30–41

password change

web based • 12–5

popstore
See the PMDF MessageStore & popstore

Manager’s Guide

popstore management

web based • 12–5

process • 30–42

profile • 30–84

delete delivery • 30–78

delete method • 30–79

set delivery • 30–80

set method • 30–81

show delivery • 30–82

show method • 30–83

profile database • 17–5, 30–77

purge • 30–43 to 30–44

qclean • 30–45 to 30–47

qm • 30–84 to 30–121

commands

clean • 30–86

counters clear • 30–89

counters show • 30–90

counters today • 30–92

date • 30–93

delete • 30–94

directory • 30–96

exit • 30–99

held • 30–100

help • 30–102

history • 30–103

hold • 30–105

quit • 30–107

read • 30–108

release • 30–110

return • 30–112

run • 30–114

summarize • 30–115

top • 30–117

view • 30–120

help • 30–102

qtop • 30–48 to 30–50

queue maintenance

command line • 30–84

web based • 12–5

restart • 30–51 to 30–52

dispatcher • 11–13, 13–16

imap • 13–17

imap_server • 13–17

job_controller • 10–1

pop3 • 13–17

pop_server • 13–17

troubleshooting • 34–4

return • 30–53

Utilities on UNIX (cont’d)

run • 1–8, 30–54

use in troubleshooting • 34–6

send
See the UNIX edition of the PMDF User’s Guide

shutdown • 30–55 to 30–56

dispatcher • 11–12

imap • 13–17

imap_server • 13–17

job_controller • 10–2

pop3 • 13–17

pop_server • 13–17

startup • 30–57 to 30–58

dispatcher • 11–12

starting mailbox servers • 13–16

submit • 1–9, 30–59

submit_master • 1–9, 30–60

test -mapping • 30–61 to 30–63

test -match • 30–64 to 30–66

test -rewrite • 30–67 to 30–73

compiled configuration • 30–15

testing access controls • 16–8

testing mailing list expansion • 4–15

test -url • 30–74

version • 30–75

view • 30–76

UUCP channels • 25–1 to 25–7

Encompass (VN) • 25–1 to 25–4

configuration • 25–1 to 25–3

example • 25–1

log files • 25–3

mailer deinstallation • 25–4

master • 25–2

slave • 25–2 to 25–3

undelivered mail • 25–3 to 25–4, 33–8

UNIX • 25–4 to 25–7

configuration • 25–5 to 25–6

example • 25–5

log files • 25–7

master • 25–5

option file

format • 25–6

location • 25–6

options • 25–6

COMMAND_FLAGS • 25–6

slave • 25–6

undelivered mail • 25–7

uucp keyword • 2–44, 2–46, 2–59

UUENCODE encoding

See Encodings, UUENCODE

Index–48

Index

V
Vacation notices

See also Mailbox filters

SIEVE vacation command • 16–34

vacation_exceptions.opt • 16–35

web interface • 16–24

Vacation Notices • 16–35

validatelocalmsgstore keyword • 2–44, 2–46,

2–93

validatelocalnone keyword • 2–44, 2–46, 2–93

validatelocalsystem keyword • 2–45, 2–46, 2–93

VDIR utility

See Utilities on MS-DOS, VDIR

Version numbers

See Log files

version utility

See Utilities on UNIX, version
VERSION utility

See Utilities on OpenVMS, VERSION

view utility

See Utilities on UNIX, view
Virtual domain • Glossary–4

Virus scanning

conversion channel • 22–1

script channel • 22–18

Virus sniffing • 28–15

VMS MAIL

See also the OpenVMS Edition of the PMDF User’s

Guide

addresses with special characters

quoting • 18–2

alternate protocol prefixes • 19–1

binary files • 19–3

Cc: header

incoming mail • 19–12

outgoing mail • 19–4

content-transfer-encoding: header • 19–5

content-type: header • 19–5

DECnet-style addresses • 19–16

delivery receipts • 19–12 to 19–15

Delivery-receipt-to: header • 19–13

Disposition-notification-to: header • 19–13

error handling • 19–10

errors-to: header

See the OpenVMS Edition of the PMDF User’s

Guide

exits • 33–29

extended address formats • 19–15 to 19–17

foreign format messages • 2–85, 19–3, 19–5

foreign protocols • 19–1

forwarding

See also Aliases

VMS MAIL (cont’d)

forwarding mail • 19–8 to 19–9

From: header

incoming mail • 19–11

outgoing mail • 19–5

handling addresses • 2–104

hangs • 33–29

headers imbedded in messages • 19–17

importance: header

See the OpenVMS Edition of the PMDF User’s

Guide

IN% protocol prefix • 19–1

keywords: header

See the OpenVMS Edition of the PMDF User’s

Guide

LIB-F-SYNTAXERR error • 33–29

message headers

incoming • 19–11

outgoing • 19–3 to 19–8

organization: header

See the OpenVMS Edition of the PMDF User’s

Guide

priority: header

See the OpenVMS Edition of the PMDF User’s

Guide

read receipts • 2–72, 19–13

Read-receipt-to: header • 19–13

receipt requests • 19–12 to 19–15

receiving messages in • 19–11

references: header

See the OpenVMS Edition of the PMDF User’s

Guide

Reply-to: header

See the OpenVMS Edition of the PMDF User’s

Guide

Resent-date: header • 19–6

Resent-from: header • 19–6

Resent-reply-to: header • 19–6

Resent-to: header • 19–7

return receipts • 19–12 to 19–15

scratch files • 19–9

SEND/FOREIGN • 2–85, 19–3, 19–5

Sender: header • 19–5

sensitivity: header

See the OpenVMS Edition of the PMDF User’s

Guide

Subject: header

incoming mail • 19–12

outgoing mail • 19–7

SYS$SCRATCH use • 19–9

temporary files • 19–9

To: header

incoming mail • 19–11

outgoing mail • 19–7

Warnings-to: header

Index–49

Index

VMS MAIL

Warnings-to: header (cont’d)

See the OpenVMS Edition of the PMDF User’s

Guide

welcome messages • 19–2

X-Envelope-to: header • 2–89, 19–7

X-FAX-defaults: header

See the OpenVMS Edition of the PMDF User’s

Guide

X-PS-qualifiers: header

See the OpenVMS Edition of the PMDF User’s

Guide

X-VMS-Cc: header • 19–8

X-VMS-To: header • 19–8

VMSNET channels

See UUCP channels

VN channels

See UUCP channels

vrfyallow keyword • 2–45, 2–57, 2–76

vrfydefault keyword • 2–45, 2–57, 2–76

vrfyhide keyword • 2–45, 2–57, 2–76

VRFY SMTP command

See SMTP commands, VRFY

W
Warning messages

See Message, Notification

Warnings-to: header

See Headers, Warnings-to:

warnpost keyword • 2–45, 2–52, 2–71

Welcome messages in VMS MAIL or PMDF MAIL • 19–2

WPO channels

delivery receipts • 2–71

X
X.400 bodypart 14 • 2–86

X.400 channels

delivery receipts • 2–71

TSAPD process

restarting

when necessary • 8–6

X-Envelope-to: header

See Headers, X-Envelope-to:

X-FAX-defaults: header

See Headers, X-FAX-defaults:

X-PS-qualifiers: header

See Headers, X-PS-qualifiers:

X-VMS-Cc: header

See Headers, X-VMS-Cc:

X-VMS-To: header

See Headers, X-VMS-To:

x_env_to keyword • 2–45, 2–50, 2–89, 19–7

Index–50

